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Abstract. We study the group IET of all interval exchange transformations. Our first main
result is that the group generated by a generic pairs of elements of IET is not free (assuming
a suitable irreducibility condition on the underlying permutation). Then we prove that any
connected Lie group isomorphic to a subgroup of IET is abelian.

Additionally, we show that IET contains no infinite Kazhdan group. We also prove residual
finiteness of finitely presented subgroups of IET and give an example of a two-generated
subgroup of IET of exponential growth that contains an isomorphic copy of every finite group
and which is therefore not linear.
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Consider an interval. Break it into finitely many subintervals. Rearrange these pieces
in the interval (preserving the orientation) to obtain a bijection. This is an interval
exchange transformation. More precisely, an interval exchange transformation of
Œ0; 1/ is a left-continuous bijection, with finitely many discontinuity points, which
is piecewise a translation. The set IET of all interval exchange transformations is a
group under composition.

Interval exchange transformations have been widely studied for themselves, in the
point of view of the dynamical system they individually generate (for an introduction
see [5], Chap. 14.5). Considerably less is known about the global structure of the
group IET.

Basic test questions concern the possible subgroups of IET. For instance, the
answer to the following question raised by Katok is still unknown.

Question (Katok). Does IET contain a non-abelian free group ?

Our first result concerns the subgroups of IET isomorphic to a connected Lie
group, a question raised by Franks. Using rotations with disjoint support, one can
easily realize the n-dimensional torus T n as a subgroup of IET for any n (therefore,
one can also realize Rn and any connected abelian Lie group). We prove
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Theorem 4.4. A connected Lie group embeds as a subgroup of IET if and only if it
is isomorphic to T n � Rm.

The embedding in the statement is purely algebraic, it is not assumed to have any
continuity property. A similar result was recently independently obtained by Novak
[10], [11]. It is also known that there is no finitely generated subgroup of IET that
has a distorted element for a word metric [9]. This excludes most nilpotent groups
but does not exclude SO3.R/.

Because translations commute, the orbit of any point under a finitely generated
subgroup of IET has polynomial growth. In particular, a possible free subgroup of
IET cannot be produced by controling only the action on a single point, hence this
kind of ping-pong will fail. Following an observation by Witte Morris, we show that
this implies that the image in IET of any finitely generated Kazhdan group is finite.

But polynomial growth of orbits does not imply polynomial growth of the group,
and we produce an example of subgroup of IET containing a free semigroup.

Theorem 8.1. There is a 2-generated subgroup G of IET such that

� G contains a free semigroup,
� G contains an isomorphic copy of every finite group.

In particular, G is not linear.

In the context of connected Lie groups, the existence of a free subgroup of a
connected lie group G implies that a generic subgroup is free. Here a generic subset
is a subset containing a countable intersection of dense open subsets. Indeed, for
each reduced word in two letters and their inverses, the subset Vw � G � G of pairs
.a; b/ 2 G �G with w.a; b/ D 1 is a proper analytic subset of G �G (it is not G �G

because there exists a free subgroup). Since G is connected, Vw has empty interior.
Baire’s theorem then implies that a generic subset of G � G consists of generators of
free non-abelian subgroups.

There is a natural topology on IET that allows to talk about genericity. Given a
permutation � of f1; : : : ; ng, the set IET� of all interval exchange transformations
with n � 1 points of discontinuity and with underlying permutation � is naturally in
bijection with the .n � 1/-dimensional open simplex. This gives a natural topology
on IET� . Since IET is the disjoint union of all IET� , this defines a topology on IET
by declaring all IET� open in IET. For this topology, a generic subset of IET is a
subset that intersects each IET� in a generic subset. Note however that this does not
make IET a topological group as the group law is discontinuous.

The genericity argument used above for a connected Lie group does not work in
IET. Indeed, the subset Vw � IET � IET is not an analytic subset but looks like
a union of polyhedra and can have non-empty interior. In fact, we prove that the
situation is opposite to that of non-solvable connected Lie groups: if one restricts to
admissible permutations (as defined below), the group generated by a generic pair
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of elements is not free. This is a beginning of an explanation of the fact that free
subgroups of IET seem difficult to find.

Theorem 5.2. Let IETa be the set of interval exchange transformations whose un-
derlying permutation is admissible.

Then there is a dense open subset of IET � IETa such that the group generated
by any pair in this subset is not free.

In this statement a permutation of f1; : : : ; ng is admissible if there is no m such
that �.m/ D m and f1; : : : ; m�1g � -invariant. The subset IETa � IET is the (open)
set of all transformations in IET with admissible underlying permutation.

Finally we prove a simple additional result for subgroups of IET that excludes the
existence of Thompson groups in IET.

Theorem 7.1. Any finitely presented subgroup of IET is residually finite.
More generally, any finitely generated subgroup is a limit of finite groups in the

space of marked groups. In particular, IET is sofic.

The methods of this paper are rather elementary, and the paper is almost self-
contained.

Our first observation, similar to that in [9], allows to establish that elements
admitting roots of arbitrarily high order are conjugated to so-called virtual multi-
rotations. Denoting by Disc.h/ the number of discontinuity points of an IET h,
define its growth rate khk D limn!1 1

n
Disc.hn/. Obvious properties are that khk

is a conjugacy invariant, khk � Disc.h/, and khkk D kkhk for k � 0. We prove
that if one allows to change Œ0; 1/ to a more complicated domain (a union of circles
and intervals), then there any IET has a conjugate that is optimal with respect to the
growth of its number of discontinuity points:

Proposition 2.4. For any h 2 IET, there exists another domain Dm and an IET hm

conjugate to h such that Disc.hm/ D khmk D khk.

This implies that khk is an integer. In particular, any divisible element satisfies
khk D 0 and is therefore conjugate to a continuous IET: a virtual multi-rotation. This
can be used to compute centralizers as in [9] (see Corollary 2.7).

We then argue that no non-abelian free group contains a multi-rotation. In fact,
for every multi-rotation S and for every interval exchange transformation T , we can
play a game of computing commutators to obtain an interval exchange transformation
with small support in the generated subgroup hS; T i. Then one can conjugate this
element to an element with disjoint support. This exhibits a commutation relation
that prevents hS; T i from being free non-abelian.

Since connected Lie groups have mostly elements admitting roots of arbitrarily
high order, if they are realized as subgroup of IET they cannot contain any non-
abelian free group, therefore they must be solvable. This already rules out groups
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like SO3.R/. For solvable connected Lie groups, we investigate the metabelian case
to conclude that they must be abelian.

In order to address our genericity theorem, we argue that interval exchange trans-
formations whose subdivision points are well approximated by rational numbers al-
most behave like those ones with rational subdivision points. The latter are of finite
order and this allows again using commutators to obtain elements with small supports.
The next step again is to find elements with disjoint supports to deduce commutation
relations. This is where we need the assumption that the underlying permutation of
at least one of the elements is admissible.

The paper is organized as follows. Section 1 is mainly devoted to definitions
concerning IETs. Section 2 constructs our minimal model for discontinuity points.
Section 3 shows that multi-rotations cannot be contained in a free group. Section 4
classifies which Lie groups are subgroups of IET. Section 5 shows that generically,
pairs of elements do not generate a free group. Sections 6 and 7 show that infinite
Kazhdan groups and Thompson groups are not subgroups of IET. Section 8 explains
the example of a 2-generated subgroup of exponential growth containing all finite
groups.

We would like to thank A. Katok, D. Calegari, E. Breuillard and D. Witte-Morris
for related discussions. We also thank the referee for useful suggestions. The second
author is in part supported by Grant-in-Aid for Scientific Research (No. 19340013).
He also acknowledges the hospitality of Institut de Mathématiques de Toulouse.

1. Preliminaries

1.1. Interval exchange transformations. A domain D is a disjoint finite union of
circles of the form R=lZ and of semi-open bounded intervals Œ˛; ˇ/. Each component
of D carries a natural metric and an orientation.

An interval exchange transformation h W D ! D 0 between two domains D , D 0
is a bijective map h W D ! D 0 which is piecewise isometric, orientation-preserving,
continuous on the right, and with only finitely many discontinuity points. We denote
by IET.D ; D 0/ the set of interval exchange transformation from D to D 0. Interval
exchange transformations may be composed, and the set IET.D ; D/ is a group which
we denote by IET.D/ (in fact, the set of all interval exchange transformations has a
structure of a groupoid, but we will not make use of this terminology). We also define
IET D IET.Œ0; 1//

The continuity intervals of h are the maximal connected subsets of D on which h

is continuous. These are finitely many semi-open intervals or circles that partition D .
We say that g 2 IET.D/ and g0 2 IET.D 0/ are conjugate if there exists h 2

IET.D ; D 0/ with g0 D hgh�1. There exists an interval exchange transformation h

between D and D 0 if and only if D , D 0 have the same total length. In this case
conjugation by h induces an isomorphism between IET.D/ and IET.D 0/. Note that
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even if D and D 0 do not have the same total length, conjugation by a homothety
shows that IET.D/ ' IET.D 0/.

A subdomain of D is a subset of D which is a finite union of semi-open intervals
and circles. Interval exchange transformations map subdomains to subdomains. We
define the support of g 2 IET.D/ as supp.g/ D fx 2 D j g.x/ ¤ xg (and not its
closure). It is a subdomain of D and is natural under conjugation: supp.hgh�1/ D
h.supp.g//.

1.2. Multi-rotations. If D is a circle, a continuous interval exchange is a rotation.
We define a multi-rotation as an interval exchange transformation of some domain
D , which preserves each component on D and which restricts to a rotation on each
circle of D and to the identity on each segment. More generally, a virtual multi-
rotation is any continuous element of IET.D/. Clearly, multi-rotations are virtual
multi-rotations, and any virtual multi-rotation has a power which is a multi-rotation.

Say that a multi-rotation R is irrational if R has infinite order, and the restriction
of R to each circle is either the identity or has infinite order (i.e., is an irrational
rotation). Note that any multi-rotation of infinite order has a power which is an
irrational multi-rotation. If R is conjugate to an irrational multi-rotation, then R

defines a free action of Z on the support of R.
The following is probably well known.

Lemma 1.1. Let R be an irrational rotation on a circle C .

(1) If R0 commutes with R, then R0 is a rotation.

(2) If S 2 IET.C/ is such that SRS�1 commutes with R. then S is itself a rotation,
and in particular, S commutes with R.

Proof. For R0 2 IET, denote by �.R0/ its set of discontinuity points. Since R, R�1

are continuous, �.RR0R�1/ D R.�.R0//. In particular, if R0 commutes with R,
�.R0/ is R-invariant. Being finite, �.R0/ has to be empty and R0 is a rotation. This
proves the first assertion.

If R0 D SRS�1 commutes with R, then R0 is a rotation. By continuity of R and
R0, the relation R0S D SR yields �.S/ D R�1�.S/, which implies that �.S/ D ;
as above.

1.3. Irrational circles

Definition 1.2. Let T 2 IET.D/. An irrational circle of T is a subdomain C � D

(not necessarily homeomorphic to a circle, or even connected) which is T -invariant
and such that T jC is conjugate to an irrational rotation on a circle.

For example, given 0 < � < l < 1, consider the transformation h W Œ0; 1/ ! Œ0; 1/

defined as the translation of length � on Œ0; l � �/, as the translation of length � � l
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on Œl � �; l/, and as the identity on Œl; 1/. Then Œ0; l/ is an irrational circle of h if and
only if �=l … Q.

Of course, T is conjugate to an irrational multi-rotation if and only if its support
is a disjoint union of irrational circles.

It follows from the definition that if g0 D hgh�1 and if C is an irrational circle of
g, then h.C/ is an irrational circle of g0.

Lemma 1.3. For any T 2 IET.D/, two irrational circles of T either are disjoint or
coincide.

More generally, if a subdomain D0 � D intersects some irrational circle C and
if T .D0/ D D0, then D0 � C .

Proof. The first statement follows from the second. Assume that there is some point
x 2 D0 \ C . Then D0 \ C contains a small interval I D Œx; x C "/. Since D0

is T -invariant, T i .I / � D0 for all i 2 Z. Since T jC is conjugate to an irrational
rotation, there exists i such that C D I [T .I /[� � �[T i .I /, and the lemma follows.

Lemma 1.4. Let S; T 2 IET.D/ be conjugate to irrational multi-rotations.
If S , T commute, then for each irrational circle C of S , either C does not intersect

supp.T /, or C is an irrational circle of T .

Proof. Since S and T commute, T .C/ is an irrational circle of S . Since S has only
finitely many irrational circles, there exists k � 1 such that T k.C/ D C . Assume
that C intersects supp.T /, i.e., that it intersects some irrational circle CT of T . By
Lemma 1.3 (applied to the transformation T k and to D0 D C ), CT � C . By
symmetry of the argument, C � CT . The lemma follows.

Lemma 1.5. Let S and T be conjugate to irrational multi-rotations. If SnTS�n

commutes with T for all n, then S commutes with T .

Proof. We prove that for each irrational circle CT of T , S preserves CT and S jCT

commutes with T jCT
. The lemma follows immediately.

We can assume that CT intersects the support of S , hence some irrational circle
CS of S . Let I D Œx; x C "/ be a segment in CS \ CT . There is n � 1 such that
Sn.I / \ I ¤ ;, so Sn.CT / intersects CT . Since Sn.CT / is an irrational circle of
SnTS�n which commutes with T , Sn.CT / D CT by Lemma 1.4.

Applying Lemma 1.3 to the Sn-invariant subdomain CT , we get CT � CS . Since
this holds for all irrational circle CS which intersect CT , CT is S -invariant. Since
T jCT

is conjugate to an irrational rotation, we can apply Lemma 1.1 to the restrictions
of T and S to CT , and get that S jCT

commutes with T jCT
.
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2. Points of discontinuity

2.1. Definitions

Definition 2.1. Given h W D ! D 0 an interval exchange map, we denote by �.h/

the finite set of points in D where h is discontinuous, and by Disc.h/ D #�.h/ its
cardinal.

We define the interior VD of D as the set of points x having a neighbourhood
isometric to an open interval .�"; "/. We note that h being continuous on the right,

it is automatically continuous at points in D n VD . Conversely, if h.x/ 2 D n VD and

x 2 VD , then h is not continuous at x.

Lemma 2.2. Consider h 2 IET.D ; D 0/, h0 2 IET.D 0; D 00/.
Then Disc.h0 B h/ � Disc.h/ C Disc.h0/.

Proof. For any x 2 �.h0 B h/, then either x 2 �.h/ or h.x/ 2 �.h0/ as the compo-
sition of continuous maps is continuous. Thus �.h0 B h/ � �.h/ [ h�1�.h0/. Since
h is a bijection, the lemma follows.

Lemma 2.3. Given h 2 IET.D/, we can define

khk D inff 1
n

Disc.hn/ j n 2 Ng D lim
n!1

1
n

Disc.hn/:

It satisfies khkk D kkhk for all k 2 N and if h, h0 are conjugate, then khk D kh0k.

Proof. The limit exists and coincides with the infimum by subadditivity (Lemma 2.2).
For any h 2 IET.D/, khkk D limn!1 1

n
Disc.hkn/ D k limn!1 1

kn
Disc.hkn/ D

kkhk. If h0 D ghg�1, then h0n D ghng�1, so Disc.h0n/ � Disc.g/ C Disc.hn/ C
Disc.g�1/. Passing to the limit, we get kh0k � khk. Since the symmetric inequality
holds, the lemma follows.

2.2. Minimal model for discontinuity points and applications

Proposition 2.4. Let h 2 IET.D/. Then there exists another domain Dm and
hm 2 IET.Dm/ conjugate to h, such that Disc.hn

m/ D n Disc.hm/ for all n 2 N.

This conjugate hm has the minimal number of discontinuity points among all
conjugates of h as shows the third assertion of the following corollary.

Corollary 2.5. Consider any h 2 IET.D/. Then:

(1) khk D khmk D Disc.hm/. In particular, khk 2 N.

(2) There exists a constant C such that nkhk � C � Disc.hn/ � nkhk C C for all
n � 0.
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(3) If h0 is any other conjugate of h, then Disc.hn
m/ � Disc.h0n/ for all n.

(4) khk D 0 if and only if h is conjugate to a virtual multi-rotation.

(5) If h is divisible (i.e., if h has roots of arbitrary order), then khk D 0.

Proof. The first assertion is clear.
Let g 2 IET.D ; Dm/ conjugating h to hm. Then Disc.hn/ � Disc.g/ C

Disc.hn
m/C Disc.g�1/ D Disc.g/CnkhkC Disc.g�1/. Similarly, we have nkhk D

Disc.hn
m/ � Disc.g/ C Disc.hn/ C Disc.g�1/. Assertion 2 follows.

For assertion 3, assume that Disc.h0n0/ < Disc.h
n0
m / D n0khk. Then kh0k D

inff 1
n

Disc.h0n/g < khk, a contradiction.
If khk D 0, then Disc.hm/ D 0, so hm is continuous, i.e., a virtual multi-rotation.

Hence h is conjugate to a virtual multi-rotation. The converse is obvious.
Finally, assume that khk > 0. Since kgkk D kkgk and k � k takes only integer

values, h has no root of order larger that khk.

The following lemma shows that the orbit of �.hm/ is canonical.

Lemma 2.6. Let hm be such that Disc.hm/ D khmk. Then the centralizer of hm

preserves hZ
m.�.hm//. Equivalently, if Œg; hm� D 1, then for any x 2 �.hm/ there

exists k 2 Z such that g.x/ 2 hk
m.�.hm//.

Proof. Fix x 2 �.hm/. Since khmk D Disc.hm/, we have Disc.hi
m/ D i Disc.hm/

for all i > 0, so �.hi
m/ is the disjoint union �.hm/ t � � � t h

�.i�1/
m � �.hm/. In

particular, x; : : : ; h
�.i�1/
m .x/ 2 �.hi

m/.
Since g commutes with hi

m for all i > 0,

�.hi
m/ D �.g�1hi

mg/ � �.g/ [ g�1 � �.hi
m/ [ g�1h�i

m � �.g�1/:

In particular, �.hi
m/ng�1 ��.hi

m/ contains at most 2 Disc.g/ elements. It follows that
for i > 2 Disc.g/ there is some i0 2 f0; : : : ; i � 1g such that h

�i0
m .x/ 2 g�1 � �.hi

m/.
Hence, gh

�i0
m .x/ lies in some h

�j
m � �.hm/ for some j 2 f0; : : : ; i � 1g, and the

lemma follows since g and hm commute.

These considerations allow to slightly simplify Novak’s result on centralizers.

Corollary 2.7 ([9]). It h 2 IET acts with dense orbits on D and khk ¤ 0, then the
centralizer of h is virtually cyclic.

Proof. By Proposition 2.4, we may assume that khk D Disc.h/. Denote by Z the
centralizer of h. By the previous lemma, Z permutes the h-orbits of the points of
�.h/. Let Z0 � Z be the finite index subgroup that preserves the h-orbit of each
point of �.h/. We claim that Z0 D hhi. Indeed, consider g 2 Z0, x 2 �.h/ and k

such that g.x/ D hkx. Since g commutes with h, we have g.hi .x// D hk.hix/ for
all i 2 Z. Since the orbit of x is dense, it follows that g D hk .
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The proof of Proposition 2.4 is better visualized in terms of suspensions. It is a
direct consequence of Lemmas 2.11 and 2.12, whose proofs occupy next subsection.

2.3. Suspensions and construction of minimal models. Consider h 2 IET.D/.
We now define its suspension (in a slightly non-standard way). Let I1; : : : ; Ik be the
continuity intervals of h, i.e., the maximal connected sets on which h is continuous.
Each Ii is either a circle, or a semi-open interval, closed on the left. Let xD be
the metric completion of D , and xIi the closure of Ii in xD . Note that hjIi

extends
by continuity to a map xhi W xIi ! xD . We denote by Ji D h.Ii /, which are the
maximal connected sets on which h�1 is continuous and by xJi D xhi . xIi / its closure
in xD .

We consider bands Bi D xIi � Œ0; 1�, which we glue on xD using two maps '" W xIi �
f"g ! xD defined for " D 0; 1 as follows: '0 W .x; 0/ 2 xIi � f0g 7! x 2 xIi is just the
inclusion, and '1.x; 1/ 2 xIi � f1g 7! xhi .x/ 2 xJi is the extension of hjIi

. Since xIi

can be a circle, bands can be annuli.
We denote by †.h/ (or simply †) the cellular complex obtained in this way. We

call it the suspension of h. If we foliate bands by fxg � Œ0; 1�, † inherits a natural
foliation such that for all x 2 D , x lies in the same leaf as h.x/.

Since I1 t � � � t Ik is a partition of D , every x 2 D lies in exactly one interval
xIi except if h is discontinuous at x, in which case x lies in the intersection of exactly
two closed intervals xIi . Similarly, any x 2 D lies in exactly one xJi except if h�1 is
discontinuous at x.

� � � � �a

b

c d e

Figure 1. Suspension of an interval exchange transformation.

Denote by Sing.h/ D �.h/ \ �.h�1/ the set of points where both h and h�1 are
discontinuous (see Figure 1 where �.h/ D fb; dg, �.h�1/ D fc; dg and Sing.h/ D
fdg). In Figure 1, dotted lines correspond to leaf segments x � Œ0; 1� whose endpoints
are not the image of each other under h (only under xhi ).
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Points in Dn.�.h/[�.h�1// (resp. �.h/[�.h�1/nSing.h/) have an neighbour-
hood in † homeomorphic to R2 (resp. to a RC � R). In particular, �.h/ is a surface
with boundary if (and only if) Sing.h/ D ;. In this case, �.h/ [ �.h�1/ � @†.

It will be useful to perform some moves that change h to a conjugate, and that
allow to simplify †.

Consider h 2 IET.D/, and x 2 VD . Let D 0 be the domain obtained from D

by cutting at x. More precisely, if the component of D containing x is Œ˛; ˇ/ with
˛ < x < ˇ, we replace Œ˛; ˇ/ by the two intervals Œ˛; x/ and Œx; ˇ/. Similarly,
if the component of D containing x is a circle R=lZ, we replace it by an interval
Œx; x C l/. We denote by i W D 0 ! D the natural inclusion (i 2 IET.D 0; D/), and
define h0 D i 0�1 B h B i 2 IET.D 0/. We say that h0 is obtained from h by splitting D

at x.

Lemma 2.8. Every h 2 IET.D/ is conjugate to some h0 2 IET.D 0/ such that †.h0/
is a surface with boundary.

Proof. Assume that †.h/ is not a surface and consider a point x 2 Sing.h/. Let h0 2
IET.D 0/ be obtained by splitting D at x. We claim that # Sing.h0/ D # Sing.h/ � 1.
The Lemma will follow by induction.

Denote by i W D 0 ! D the splitting map and by x0 D i�1.fxg/ the copy of x in
D 0. Since i is continuous on D 0 and i�1 is only discontinuous at x, Sing.h/ n x D
i.Sing.h0/ n fx0g/. Since x0 2 D 0 n VD 0, h0 and h0�1 are continuous at x0. The claim
follows.

When † is a surface, one can describe its boundary @†. Each connected compo-
nent of @† is a circle C , which has a natural set of vertices C \D , and a natural set of
edges contained in boundaries of bands . xIi n VIi / � Œ0; 1�. Each edge fxg � Œ0; 1� of C

carries a preferred orientation from 0 to 1. A vertex x 2 C can be of three exclusive

types: x 2 xD n VD having one incoming and one outgoing edge (the vertices a, e in
Fig. 1), x 2 �.h/ having two outgoing edges (the vertex b), and x 2 �.h�1/ having
two incoming edges (the vertex c, recall that Sing.h/ D �.h/ \ �.h�1/ D ; by
assumption).

We say that † has a boundary connection if there exists a leaf segment in † which
intersects @† exactly at its endpoints, or if Sing.h/ ¤ ;. Equivalently, †.h/ has a
boundary connection if there exists x 2 �.h�1/ and k � 0 such that hk.x/ 2 �.h/.
Note that taking k as small as possible, this is equivalent to ask that h�1 discontinuous
at x but continuous at h.x/, h2.x/, …, hk.x/ and h discontinuous at hk.x/ but
continuous at x, h.x/, …, hk�1.x/.

Lemma 2.9. Every h 2 IET.D/ is conjugate to some h0 2 IET.D 0/ such that †.h0/
has no boundary connection.

Proof. We can assume that Sing.h/ D ; by Lemma 2.8. Assume that x, h.x/,
h2.x/, …, hk.x/ is a boundary connection, with x 2 �.h�1/, hk.x/ 2 �.h/, and
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h.x/; : : : ; hk�1.x/ 2 VD n .�.h/ [ �.h�1//. We split D at the points x, h.x/,
…, hk.x/ and denote by D 0 the new domain, and write i W D 0 ! D induced by
inclusion. We write xi D hi .x/ 2 D and x0

i D i�1.hi .x// 2 D 0 for i D 0; : : : ; k.

Since x0
i 2 D 0 n VD 0, we have that �.h0/ contains no x0

i . Moreover, since i and
i�1 are continuous away from xi ; x0

i , it follows that i�1.�.h/ n fx0; : : : ; xkg/ D
�.h0/ n fx0

0; : : : ; x0
k
g D �.h0/, and similarly for �.h/�1. We still have Sing.h0/ D ;

and †.h0/ has one less boundary connection. By induction, the lemma follows.

Now there are some useless boundary components which we want to get rid of.
They correspond to points x such that h is discontinuous at x, but some positive power
is continuous at x. We will denote by h.x�/ D lim"!0C h.x � "/ (only defined if

x 2 VD) and by h.xC/ D lim"!0C h.x C "/ D h.x/.
Let C � @† be a boundary component. We say that C is a fake boundary if

C \ VD consists of exactly two vertices x; y, (necessarily one in �.h/, the other in
�.h�1/), and the two connected components of C n fx; yg have the same number
of edges. Denote by k this number of edges, and up to exchanging x and y, assume
x 2 C \�.h/. Then hk.x/ coincides with hk.x�/, so hk is continuous at x although
h is not.

Lemma 2.10. Assume that †.h/ has no boundary connection, and that x 2 �.h/ is
such that hk is continuous x for some k > 0. Then †.h/ has a fake boundary.

Proof. Define xC
i D hi .x/ D hi .xC/ and x�

i D hi .x�/, and let k > 0 be smallest
such that xC

k
D x�

k
. Since x 2 �.h/, k � 2.

We claim that for all i � k, xC
i and x�

i lie in @†.h/. Otherwise, consider some
xC

i (resp. x�
i ) which does not lie in @†.h/. Then because there is no boundary

connection, xC
k

(resp. x�
k

) does not lie in @†.h/, so h�1 is continuous at xC
k

D x�
k

.
It follows that xC

k�1
D x�

k�1
, a contradiction.

It follows that the component C of @† containing x contains oriented edges
joining xC

i to xC
iC1 (resp. x�

i to x�
iC1) for i D 0; : : : ; k � 1, and C is a fake boundary.

Lemma 2.11. Every h 2 IET.D/ is conjugate to some hm 2 IET.Dm/ such that
†.hm/ has no boundary connection and no fake boundary.

Proof. First, by Lemma 2.9 we can assume that †.h/ has no boundary connection.
We will produce a sequence of conjugates of h whose suspensions have no boundary
connection, and fewer fake boundaries. By finiteness of the number of boundaries,
this will ensure the result.

Assume that C is a fake boundary, denote by Cl ; Cr the two components of

C n .C \ VD/, by k their number of edges, and consider x 2 C \ �.h/. Note
that k � 2 since otherwise h would be continuous at x, a contradiction. Introduce
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xi D hi .x/ 2 Cr for i D f1; : : : ; k � 1g, and yi D hi .x�/ 2 Cl . Note that xi is a
(left) endpoint of D , but yi 2 xD n D .

We now perform a gluing move on h as follows. Let D 0 be obtained from D [
fy1; : : : ; yk�1g � xD by identifying yi with xi . Clearly, D 0 is a domain, and the
inclusion j W D ! D 0 allows to define h0 D jhj �1 2 IET.D 0/.

This is a general construction, and we claim that if †.h/ has no boundary connec-
tion, then neither does †.h0/. Indeed assume that x, h0.x/, …, .h0/k.x/ is a boundary
connection in †.h0/. Then if no j �1..h0/i .x// 2 C (i D 0; : : : ; k), its image under
j �1 would also be one in †.h/; and if some j �1..h0/i .x// 2 C , then a shorter path
would provide a boundary connection in †.h/.

Since †.h0/ has one less fake boundary, the lemma follows by induction.

Lemma 2.12. Let hm be as above. Then Disc.hn
m/ D n Disc.hm/ for all n 2 N.

Proof. We can assume that n > 0. By Lemma 2.2, one has Disc.hn
m/ � n Disc.hm/.

Let � � D be the set of discontinuity points of hm. Recall that � lies in the
boundary of the suspension † of hm. Let x 2 �. By Lemma 2.10, hk

m is discontinuous
at x for all k > 0. We claim that hn

m is discontinuous at each point h�k
m .x/ for

k D 0; : : : ; n � 1. Indeed, since there is no boundary connection, h�i
m .x/ … @† for

all i > 0, so h�1
m is continuous at all these points. If hn

m were continuous at h�k
m .x/

0 � k < n, then hn
m B .h�1

m /k D hn�k
m would be continuous at x, a contradiction.

We proved that hn
m is discontinuous on

Sn
iD0 h�i

m .�/. We claim that this is a
disjoint union. Indeed, the absence of boundary connection implies that h�i

m .x/ is
not in @†, hence not in � for all i > 0. It follows that all h�i

m .�/ are disjoint, and
the lemma follows.

Proposition 2.4 is proved.

3. Commutation relations involving multi-rotations

Let D be a domain. For a subset Y � D and " > 0, let Y" denote the closed "-
neighborhood of Y in D , where we assume that the distance between two components
of D is infinite. We define int".Y / D fx 2 Y j Œx � "; x C "� � Y g. By definition,
we have int".DnY / \ Y" D ;.

Recall that the support of T 2 IET.D/ is supp.T / D fx 2 D jT .x/ ¤ xg. We
denote by Œg; h� D g�1h�1gh the commutator of two group elements g; h. The
following proposition allows to produce elements with small support.

Proposition 3.1. Let R 2 IET.D/ be a multi-rotation, and consider any S 2
IET.D/. Let X D . xD n VD/ [ �.S/ [ �.S�1/. Then for all " > 0 there exists
n � 1 such that the support of U D ŒŒS; Rn�; Rn� is contained in X", the closed
"-neighbourhood of X .
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Remark 3.2. If D is a union of circles, then X D �.S/ [ �.S�1/.

We first prove a few easy lemmas. We will be concerned with subsets E that
consist of a finite union of sub-intervals.

Lemma 3.3. Consider a subset E � D , g 2 IET.D/ such that g is continuous (i.e.,
a translation) on each connected component of E. Consider h 2 IET.D/ whose
restriction to each component of E and of g.E/ is a (continuous) translation of
amplitude 2 Œ�"; "�.

Then on each component of int2".E/, the restriction of Œg; h� is a translation of
amplitude 2 Œ�2"; 2"�.

Proof. Let I be a connected component of E, and t; t 0 2 Œ�"; "� be such that hjI .x/ D
x C t and hjg.I/.x/ D x C t 0. Then h.x/ D x C t 2 int".I / for x 2 int2".I /, and
since gjI commutes with translations, h�1gh.x/ D h�1.g.x/ C t / D g.x/ C t � t 0.
Similarly, since g.x/ C t � t 0 2 g.I /, we have g�1h�1gh.x/ D x C t � t 0.

As an immediate corollary we have:

Lemma 3.4. Let g 2 IET.D/ be arbitrary and r 2 IET.D/ a multi-rotation which
moves all points of D by at most "=2. Let X D �.g/ [ �.g�1/.

Then the restriction of Œg; r� to each component of int".D n X/ is a (continuous)
translation of amplitude in Œ�"; "�.

Lemma 3.5. Let E � D . Consider g; h 2 IET.D/ whose restrictions on each
component of E are (continuous) translations of amplitude 2 Œ�"; "�.

Then Œg; h� is the identity in restriction to int".E/.

Proof. Let x 2 int".E/. Denote by ˛, ˇ the amplitude of the translations induced by
g and h in the component of E containing x. Since g.x/; h.x/ 2 E, it follows that
hg.x/ D x C ˛ C ˇ D gh.x/. The lemma follows.

Proof of Proposition 3.1. Let R be a multi-rotation on a domain D with k circles.
We view R as an element of the torus group .S1/k . Since this group is compact,
powers of R get arbitrarily close to the identity. In other words, for all " > 0 there
exists n such that Rn moves all points of D by at most "=2. By Lemma 3.4, the
restriction of ŒS; Rn� to each component of int".D n X/ is a translation of amplitude
in Œ�"; "�. By Lemma 3.5, ŒŒS; Rn�; Rn� is the identity in restriction to int2".D n X/.
The proposition is proved.

Theorem 3.6. A non-abelian free subgroup of IET.D/ contains no non-trivial ele-
ment conjugate to a virtual multi-rotation.
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Proof. We argue by contradiction. Consider R conjugate to a non-trivial virtual multi-
rotation, contained in a non-abelian free subgroup H of IET. Up to conjugating H

to a group of IETs on some other domain, we can assume that R is indeed a virtual
multi-rotation of D . Since R has infinite order, we can change R to some power and
assume that R is an irrational multi-rotation. Consider S 2 H not commuting with
R, so that R, S form a basis of the subgroup they generate (if two elements generate a
non-abelian free group, they are a basis of this free group by the Hopf property of free
groups). Define R0 D SRS�1 and note that fR; R0g freely generates a free subgroup
of H . We aim to find a non-trivial relation between R, R0 to get a contradiction.

Let C � D be the support of R (a union of circles of D) and let C 0 � D be the
support of R0 (which may be arbitrary). Up to restricting to a subdomain of D , we
can assume that C [ C 0 D D , and we can still assume that D is a union of circles by
identifying each interval of D (on which R is the identity) to a circle of same length.
Define X D �.R0/ [ �.R0�1/, and let X" be its closed "-neighbourhood.

Lemma 3.7. There exists p; p0 � 1 and " > 0 such that R0p0

Rp.X"/ \ X" D ;.

Proof. Since C is the support of the irrational multi-rotation R, there exists p � 1

such that Rp.X \ C/ \ X D ;. Denote by Y" D Rp.X"/ D N".R
p.X// since R is

continuous. For " small enough, Y" \ C does not intersect X". We need to prove that
R0p0

Y" \ X" D ; for suitable p0 and ". Since R0 is the identity on D n C 0 and since
D n C 0 � C , we have R0p0

.Y"/ \ .D n C 0/ � Y" \ C for any p0, which does not
intersect X". Thus, we need only to prove that R0p0

.Y"/ \ C 0 does not intersect X"

for suitable p0 and ", or equivalently (since R0 D SRS�1), that Rp0

.S�1.Y"/ \ C/

does not intersect S�1.X"/. Now there exist finite sets X 0; Y 0 � D such that, for all
" > 0 small enough, S�1.X"/ and S�1.Y"/ are contained in the "-neighbourhood of
X 0 and Y 0 respectively. Denote by X 0

", Y 0
" these neighbourhoods. As above, since X 0

and Y 0 are finite, there exists p0 and " such that Rp0

.Y 0 \ C/ does not intersect X 0,
so Rp0

.Y 0
" \ C/ does not intersect X 0

" for " small enough. This proves the lemma.

We are ready to conclude the proof of Theorem 3.6 by exhibiting a non-trivial
relation between R and R0. In view of Lemma 3.7, consider p; p0 � 1 and " > 0

such that R0p0

Rp.X"/ \ X" D ;. By Proposition 3.1, there exists n � 1 such that
the support of U D ŒŒR0; Rn�; Rn� is contained in X" (see Remark 3.2). Since U and
its conjugate under R0p0

Rp have disjoint supports, they commute. In other words,
we have the relation ŒU; R0p0

RpUR�pR0�p0

� D id.
One easily checks that this relator is non-trivial, i.e., that ŒU; R0p0

RpUR�pR0�p0

�,
viewed as an element of the free group F freely generated by R, R0, is non-trivial
in F . First ŒR0; Rn� is non-trivial in F . Since commuting elements of F are powers
of a common element [7], Prop. I.2.17–18, we see that Rn does not commute with
ŒR0; Rn�, so U ¤ 1. The normalizer of the maximal cyclic subgroup containing U

in F being cyclic [7], Prop. I.2.19, we get that ŒU; R0p0

RpUR�pR0�p0

� D 1 would
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imply ŒU; R0p0

Rp� D 1 in F , which is impossible since U and R0p0

Rp are not powers
of a common element. Theorem 3.6 is proved.

4. Application to Lie groups

Consider a connected Lie group L. Recall that the exponential map of a Lie group
is a local diffeomorphism from the Lie algebra of the group, in the group. Any
element in its image belongs to a one-parameter subgroup, and therefore admits roots
of arbitrary order (in other words, it is infinitely divisible). See for instance [12],
Chap. 2, Proposition 3.2.

Recall also that there exists a unique maximal connected solvable normal Lie
subgroup, RadL, called the radical of L, and L=RadL is semisimple (see [12],
Chap. 2, Theorem 5.11, for instance). On the other hand, every non-trivial semisimple
Lie group contains a non-abelian free subgroup that is dense [6], final Corollary. In
particular there are free subgroups of L generated by elements arbitrarily close to the
identity.1

Proposition 4.1. Let L be a connected Lie group. If L ,! IET is an injective
homomorphism (not necessarily continuous), then L is solvable.

Proof. Assume that L is not solvable and that L embeds in IET. Then L contains a
non-abelian free group generated by elements a, b in the image of the exponential
map, hence divisible. By Corollary 2.5 (4), (5), the image of a and b in IET are
conjugate to virtual multi-rotations. This contradicts Theorem 3.6.

Proposition 4.2. Let A be an abelian connected Lie group and B ' R or B ' S1.
Let L be a Lie group that is an extension (of Lie groups) 1 ! A ! L ! B ! 1 in
which A is closed.

Assume that L ,! IET. Then L is abelian.

Remark 4.3. We do not assume that the embedding in IET is continuous. However,
the maps occurring in the extension are continuous, and L ! B is a surjective
submersion.

Proof. We identify the elements of L with their images in IET. Density arguments
below take place in the Lie group.

Write A ' Rn � .S1/m, and choose a finite subset F � A generating a dense
subgroup. Note that by Corollary 2.5 (5), every element of A is conjugate to a virtual
multi-rotation. Replacing every element of F by a power, hF i remains dense in A.
Thus, we can assume that elements of F are conjugate to irrational multi-rotations.

1Note that this argument using [6] can be replaced by the genericity of free subgroups in L, provided
there is one free subgroup to begin with, as recalled in the introduction
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First we claim that there exist a pair of commuting elements Q1; Q2 2 L both
conjugate to irrational multi-rotations, whose image generates a dense subgroup in B

(if B ' S1, we only need one element, but if B ' R we clearly need a pair). Indeed,
consider two elements b1; b2 2 B of infinite order, generating a dense subgroup of
B. One can choose b1, b2 close enough to the identity so that they have preimages
Q1; Q2 2 L in the image of the exponential map. One can choose Q1, Q2 in the
same one-parameter subgroup, so Q1 commutes with Q2. By Corollary 2.5 (4), (5),
Q1, Q2 are conjugate to virtual multi-rotations. Replacing them by powers, we can
assume that Q1; Q2 are conjugate to irrational multi-rotations.

Since A is normal and abelian, for each T 2 F and each Qi , Qn
i TQ�n

i commutes
with T for all n > 0. By Lemma 1.5, T commutes with Qi . Since hF i is dense in A,
Qi commutes with A. Since Q1 commutes with Q2, hQ1; Q2; Ai is abelian. Since
hQ1; Q2; AiA is dense in L, L is abelian.

Theorem 4.4. If L is a connected Lie group and L ,! IET is an injective homomor-
phism, then L is abelian.

Proof. By Proposition 4.1, L is solvable. Assume it is not abelian, and write f1g D
LnC1 C Ln C Ln�1 C � � � C L1 D L where LiC1 D ŒLi ; Li �. One can assume n

to be minimal, that is, Ln�1 non-abelian.
By induction, we see that each Li is connected. In particular, the closures Ln and

Ln�1 are connected Lie subgroups of L. Since Ln is abelian, so is Ln. Moreover,
since ŒLn�1; Ln�1� � Ln, ŒLn�1; Ln�1� � Ln.

This means that Ln�1=Ln is a connected abelian Lie group, hence isomorphic

to Rk � .S1/j . Hence Ln�1 is an extension (of Lie groups) 1 ! Ln ! Ln�1
��!

Rk � .S1/j ! 1.
Let us write Rk � .S1/j ' L

i�kCj Bi , coordinate by coordinate. Since Ln�1

itself is non-abelian, there exists a least index i0 such that ��1.
L

i�i0
Bi / is not

abelian. Note that ��1.f1g/ D Ln is abelian, so that i0 � 1.
Consider ��1.

L
i�i0�1 Bi / (if i0 D 1 this is Ln). It is abelian, by definition of

i0, normal and closed in ��1.
L

i�i0
Bi /, as it is the kernel of the natural projection

��1.
L

i�i0
Bi / ! Bi0 . By Proposition 4.2, ��1.

L
i�i0

Bi / does not embed in
IET, and neither does L.

5. Generic subgroups are not free

The main result of this section says that under some irreducibility assumption, a
“generic” subgroup of IET is not free. This genericity is defined in topological
terms using the natural topology on IET where varying the lengths of the intervals
of continuity of an IET with fixed combinatorics describes a simplex (see below or
[5], Chap. 14.5, for a formal definition). Note however that group operations are not
continuous in this topology.
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More precisely, if I1; : : : ; In (resp. J1; : : : ; Jn) are the continuity intervals of T

(resp. T �1), ordered in an increasing fashion, then the underlying permutation � is
the permutation of f1; : : : ; ng so that T .Ii / D J�.i/. We denote by IET� the set
of all interval exchange transformations (with n � 1 points of discontinuity) whose
underlying permutation is � . Assigning to a transformation T 2 IET� the n-tuple
of lengths of its continuity intervals, yields a natural bijection of IET� with the open
simplex �n�1 of dimension n � 1. Clearly, � occurs as the permutation underlying
some IET if and only if for all i < n, �.i C 1/ ¤ �.i/ C 1, and we denote by Sn

the set of such permutations. Thus IET D tn�1 t�2Sn
IET� and the topology we

consider is the one for which each subset IET� is open and the bijection above with
�n�1 is a homeomorphism.

Definition 5.1. The permutation � of f1; : : : ; ng is admissible if there is no m 2
f1; : : : ; ng such that �.m/ D m and � preserves f1; : : : ; m � 1g (and therefore fm C
1; : : : ; ng). We denote by IETa � IET the set of all transformations whose underlying
permutation is admissible.

The main result of this section is Theorem 5.2:

Theorem 5.2. There is a dense open set �a � IET � IETa such that hS; T i is not
free for all .S; T / 2 �a.

Remark 5.3. In the statement, S is not required to be in IETa.

5.1. Explanation in a simpler situation. Before going into more technical argu-
ments, we sketch a proof of the analogous result in a simpler situation. Here, we
consider interval exchange transformations on the circle R=Z. Denote by R� the
rotation x 7! x C � on R=Z. There is a natural topology on IET.R=Z/ such that
R� B T varies continuously with � . This possibility to drift T will be important
below. For instance, given a permutation � of f1; : : : ; ng there is a natural set of
IETs, parametrized by R=Z � R=Z � �n�1. The two factors R=Z indicate the initial
points of I1 and J1, and the simplex �n�1 defines the lengths of the intervals (note
that in this setting the permutation � is not uniquely defined in terms of T , but only
its double coset modulo the cycle .1; : : : ; n/).

Consider S0, T0 two IETs on R=Z whose points of discontinuity are in the finite
set Dq D . 1

q
Z/=Z � R=Z, and whose translation lengths are in Dq . Then Dq

is invariant under S0, and S
qŠ
0 is the identity. If S is a small perturbation of S0,

then SqŠ agrees with a very small translation on each interval that is contained in the
complement of a small neighbourhood of Dq . Now consider T a small perturbation
of T0. Since two translations commute, this implies that the support of the com-
mutator ŒSqŠ; TSqŠT �1� is contained in a small neighbourhood of Dq , say N".Dq/

(Lemma 3.5).
Given � > 0, define T� D R� B T0, and consider T a small perturbation of T� .

If � is small enough, and if T is close enough to T� , the discussion above applies in



900 F. Dahmani, K. Fujiwara and V. Guirardel

particular to T . Note that all translation lengths of T� are equal to � modulo 1
q
Z. We

view � as a drift since modulo 1
q
Z, R� B T0 moves points uniformly by � to the right.

Because of this drift, some power of R� B T0 sends N".Dq/ disjoint from itself. If
we perturb T0 into a transformation T , all translation lengths of T are very close to
� modulo 1

q
Z so T still features this drift. Thus, if T is close enough to R� B T0,

some power of T will also send N".Dq/ disjoint from itself. This means that for
some k ¤ 0, the support of ŒSqŠ; TSqŠT �1� will be disjoint from its image under T k ,
so ŒSqŠ; TSqŠT �1� commutes with its conjugate by T k . This prevents hS; T i from
being free.

In what follows, we run the same strategy, except that the drift is not given by
composition by a rotation but by a suitably designed modification of the IET T0.

5.2. Linear maps. Now we come back to IET.Œ0; 1//. Given � 2 Sn, one has
a homeomorphism 	 W IET� ! �n�1 assigning to an IET T the tuple 	.T / D
.l1; : : : ; ln/ of lengths of its intervals of continuity. This allows to define the `1-
metric on IET� by d.T; T 0/ D k	.T / � 	.T 0/k1 D Pn

iD1 jli � l 0
i j. We extend

this definition to IET by saying that two transformations with distinct underlying
permutations are at infinite distance.

The tuple ˇ.T / D .b1 < � � � < bn�1/ of points of discontinuity of T is related
to .l1; : : : ; ln/ by the formulae li D bi � bi�1 (with the obvious conventions b0 D
0; bn D 1) and bi D P

j �i li . This implies that jbi � b0
i j � d.T; T 0/ for all i .

We will also be interested in the tuple of translation lengths of an IET: given a
transformation T 2 IET� , define '.T / D .t1; : : : ; tn/ where ti is the translation
length of T in restriction to its i -th continuity interval. The following is immediate.

Lemma 5.4. The map ' B 	�1 W .l1; : : : ; ln/ 7! .t1; : : : ; tn/ is linear. Explicitly,

ti D �
i�1P
j D1

lj C
�.i/�1P
j D1

l��1.j /:

In particular, jti � t 0
i j � 2d.T; T 0/ for all i 2 f1; : : : ; ng.

5.3. q-rationality and small support. A transformation S0 2 IET.Œ0; 1// is called
q-rational, for q 2 N, if all its discontinuity points are in 1

q
N. Clearly, in such case,

all its translation lengths are in 1
q
Z and S

qŠ
0 D id. We also note that a q-rational

transformation has at most q continuity intervals.

Lemma 5.5. For all " > 0, q 2 N, m 2 N, there exists 
 > 0 such that if S0 and
T0 are q-rational, if w.s; t/ is a word of length � m in the letters s˙1, t˙1 such
that w.S0; T0/ D id, and if S and T are 
-close to S0 and T0 respectively, then on
each interval of Œ0; 1/ n N".

1
q
N/ the transformation w.S; T / induces a translation

of length < ".
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Proof. Let " > 0, and choose 
 < "
2m

. Let I D .a; b/ be any connected component
of Œ0; 1/ n 1

q
N. Points of discontinuity of S (resp. T ) are within 
 from those of S0

(resp. T0). Moreover, in restriction to .a C 2
; b � 2
/, S and S0 (resp. T and T0)
are translations of amplitude differing by at most 2
 by Lemma 5.4.

It follows that if k � 1, the endpoints of S..a C 2k
; b � 2k
// avoid the
2.k � 1/
-neighborhood of 1

q
N (and similarly for T ). This is enough to ensure, by

induction, that on each component of Œ0; 1/nN2m�. 1
q
N/ the transformation w.S; T /

is a translation, and its amplitude differs from that of w.S0; T0/ by at most 2m
.
Since w.S0; T0/ is the identity, the result follows.

Lemma 5.6. For all " > 0, q 2 N, there exists 
 > 0 such that if S0 and T0 are
q-rational, and if S and T are 
-close to S0 and T0 respectively, then on each interval
of Œ0; 1/ n N".

1
q
N/ the transformation ŒSqŠ; TSqŠT �1� induces the identity.

Proof. Apply the previous lemma to the words sqŠ and tsqŠt�1 for "=4. Then apply
Lemma 3.5.

5.4. Drifting the support

5.4.1. Drift vector. In this section, we introduce the notion of drift vector, a substi-
tute to the composition by a rotation that can be used over a circle.

Fix a permutation � , and consider the linear map ˆ� D 'B	�1 that assigns to tuple
of lengths .li /iD1;:::;n the tuple of translation lengths .ti /iD1;:::;n (see Lemma 5.4).

Definition 5.7. We say that a permutation � 2 Sn is driftable if there exists a vector
Ædl D .d l1; : : : ; d ln/ 2 Rn with

P
dli D 0 such that the vector Ædr D ˆ� . Ædl/ 2 Rn

has only positive (non-zero) coordinates.
When it exists, we call Ædr a drift vector, and Ædl a drifting direction.

The vector Ædr D ˆ� . Ædl/ represents the change of translation lengths induced by
the change of lengths of intervals Ædl . The point of a drift vector is therefore that all
translation lengths increase when we change the lengths of the intervals by a positive
multiple of Ædl . In Proposition 5.12, we will see that � is driftable if and only if it is
admissible.

In the remainder of this section we assume that the permutation � is driftable, and
we fix Ædl and Ædr as above.

Consider T0 2 IET� a given q-rational transformation. Given � > 0, define
T� 2 IET� in terms of lengths of its continuity intervals by 	.T� / D 	.T0/ C � Ædl .

Definition 5.8. We denote by drmax D maxn
iD1 dri and drmin D minn

iD1 dri the

maximal and minimal drift of Ædr .
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Lemma 5.9. All translation lengths of T� are in Œ�drmin; �drmax� mod 1
q
.

Moreover, if k	.T / � 	.T� /k1 � �, then all translation lengths of T are in
Œ�drmin � 2�; �drmax C 2�� mod 1

q
.

Proof. All translation lengths of T0 are 0 mod 1
q

. By linearity of ˆ� (as defined at

the beginning of Section 5.4.1, the translation vector of T� is ˆ� .	.T0/ C � Ædl/ D
ˆ� .	.T0// C �ˆ� . Ædl/ D '.T0/ C � Ædr . Therefore, the translation lengths of T� are
the coordinates of � Ædr mod 1

q
. The first assertion follows.

For the second statement, express 	.T / as 	.T / D 	.T0/ C � Ædl C E", where
kE"k1 � �. By linearity, '.T / D '.T0/ C � Ædr C ˆ� .E"/, which mod 1

q
, gives

� Ædr C ˆ� .E"/. Now, writing E" D ."i /
n
iD1, we have by Lemma 5.4,

ˆ� ."/ D
�

�
i�1P
j D1

"j C
�.i/�1P
j D1

"��1.j /

�
iD1;:::;n

:

Since kE"k1 � �, every coordinate of this vector is at most 2�.

5.4.2. Generic absence of free groups

Proposition 5.10. Assume that S0, T0 are q-rational and that the permutation �

underlying T0 is driftable.
Then there exist a neighbourhood U of S0 which accumulates on T0 such that

hS; T i is not free of rank 2 whenever .S; T / 2 U � V .

Remark 5.11. We do not claim that V is a neighbourhood of T0, only that T0 2 xV .

Proof. Let Ædl; Ædr be a drifting direction and a drifting vector as above, and � D drmax
drmin

.

Let " < min. 1
100�

; 1
10q

/, and let 
 be given by Lemma 5.6. Let U be the set of
transformations S at distance 
 from S0.

Now consider � > 0 such that �drmax � 
=10, �k Ædlk1 � 
=10, and �drmin < ".
The transformation T� defined above is then at distance � 
=10 from T0. Finally,
let � < �drmin

4
, � < 
=2. Let V� be the set of tranformations T 2 IET� at distance

< � from T� . Note that any T 2 V� is at distance < 
 from T0. In particular,
any .S; T / 2 U � V� satisfies the assumptions of Lemma 5.6. It follows that
U D ŒSqŠ; TSqŠT �1� has support in the "-neighborhood of 1

q
N.

We claim that there exists k such that T kU T �k has support disjoint from that
of U . The claim implies that ŒT kU T �k; U � D id. As in the end of the proof of
Theorem 3.6, one checks that this word is non-trivial (as an element of the abstract
free group on S; T ), so hS; T i is not free group of rank 2. Taking for V the union of
all V� for � small enough concludes the proposition.
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Let us now prove the claim. It suffices to show that there exists k such that all
translation lengths of T k lies in Œ2"; 1

q
� 2"� modulo 1

q
Z.

We know from Lemma 5.9 that all translation lengths of T are in Œ�drmin �
2�; �drmax C 2�� mod 1

q
. Thus by our choice of � they are in Œ�drmin=2; 2�drmax�

mod 1
q

. Hence any translation length � of T k satisfies � 2 Œk�drmin=2; 2k�drmax� C
1
q
Z .

Since �drmin < ", there exists k such that 2" < k�drmin=2 � 3". For such a
k, one has 2k�drmax D 2k�drmin � � � 12"�. Since " < min. 1

100�q
; 1

10q
/ , one

successively gets 12"� � 12
100q

< 1
q

� 2". This establishes the claim.

5.4.3. Driftablepermutation. To conclude this section, we prove that a permutation
is driftable if and only if it is admissible. Recall that � 2 Sn is driftable if there exists
a change of lengths Ædl D .d l1; : : : ; d ln/ with

P
dli D 0 that increases all translation

lengths of the corresponding IET (Definition 5.7), and that � is non-admissible if there
is an m 2 f1; : : : ; ng such that �.m/ D m and �.f1; : : : ; m � 1g/ D f1; : : : ; m � 1g
(Definition 5.1).

Proposition 5.12. Let � 2 Sn. Then � is driftable if and only if it is admissible.

Let us note that, together with Proposition 5.10, this immediately implies Theo-
rem 5.2.

Before proving proposition 5.12, we treat a particular case related to the example
on the circle described in Section 5.1. Start from an IET T on the circle with n

intervals of continuity, and cut the circle at a discontinuity point of T that is not a
discontinuity point of T �1 (assuming that there is such a point). Then we get an IET
T0 on Œ0; 1/. Looking at the interval of continuity of T �1 that has been cut, we see
that the underlying permutation � 2 SnC1 of T0 satisfies ��1.1/ D ��1.n C 1/ C 1.
In other words, �.i0/ D n C 1 and �.i0 C 1/ D 1 for some i0 2 f1; : : : ; ng. Then
define T� 2 IET� to be the transformation with the same underlying permutation
and the same lengths of continuity intervals l 0

i D li for i ¤ i0; i0 C 1, whereas
l 0
i0

D li0 � � and l 0
i0C1 D li0C1 � � for some � small enough. Denote by ti (resp. t 0

i )
the translation lengths of T (resp. T� ). Then one easily checks that t 0

i D ti C � for
all i D 1; : : : ; n C 1 (we leave the proof of this fact to the reader). This shows that �

is driftable.

Proof of Proposition 5.12. Recall that the map ˆ� is the map assigning translation
lengths to interval lengths defined before Definition 5.7. Assume that � is not admis-
sible, and consider m such that �.m/ D m and f1; : : : ; m�1g is � -invariant. Clearly,
whatever the lengths of the continuity intervals, the corresponding interval exchange
T is the identity on Im (this follows from Lemma 5.4). This implies that for all
Ædl D .d li /i�n with

P
dli D 0 the corresponding coordinate of ˆ� . Ædl/ vanishes.
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Now let us assume that � is admissible. Say that a pair fi1; i2g is inverted if i1 < i2
and �.i1/ > �.i2/. The fact that � is admissible implies that each i 2 f1; : : : ; ng
lies in an inverted pair since otherwise f1; : : : ; i � 1g and fi C 1; : : : ; ng are � -
invariant. Given an inverted pair fi1; i2g, consider the vector Ædl D .d l1; : : : ; d ln/

where dli1 D �1, dli2 D C1, and dli D 0 otherwise. Consider Ædr D ˆ� . Ædl/ and

write Ædr D .tk/kD1:::n with tk D � Pk�1
j D1 dlj CP�.k/�1

j D1 dl��1.j /. The contribution
of the first sum is 1 for i1 < k � i2 and 0 otherwise. The contribution of the second
sum is 1 for �.i2/ < �.k/ � �.i1/ and 0 otherwise. It follows that tk � 0 for all k,
and that ti2 and ti1 are at least 1.

Since any i 2 f1; : : : ; ng lies in an inverted pair, adding all vectors Ædl corre-
sponding to all inverted pairs yields a vector whose image under ˆ� has only positive
entries. This proves that � is driftable.

6. No infinite Kazhdan groups in IET

Using non-distortion of cyclic subgroups in IET, Novak has proved that non-uniform
lattices in higher rank semi-simple Lie groups with finite center have finite image in
IET [9]. The following applies to lattices (including cocompact ones) in Kazhdan
semi-simple Lie groups.

Theorem 6.1. Let G be a finitely generated Kazhdan group. Then any morphism
from G to IET has finite image.

Here we give an argument based on the fact that orbits have polynomial growth.

Lemma 6.2. Let G < IET be a finitely generated group. Then every orbit of G for
its action on Œ0; 1/ has polynomial growth.

Proof. Let g1; : : : ; gn 2 IET be a finite set generating G as a semigroup. For each i ,
let t

j
i 2 Œ0; 1/; .1 � j � mi / be the translation lengths of gi . Set M D m1C� � �Cmn

the total number of translations involved. For R 2 N, let BR � G be the set of all
elements of word-length at most R. For any x 2 Œ0; 1/, commutation of translations
implies that

jBR � xj � RM :

Recall that a group G is Kazhdan (or has Kazhdan property .T /) if any unitary
representation of G having almost fixed vectors has a fixed vector. Witte Morris
pointed out to us the following result:

Lemma 6.3 (See for instance Theorem B in [14]). Let G be a finitely generated
Kazhdan group and let G Õ X be an action on a set. If the orbit of some x 2 X is
infinite, then it has exponential growth.
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This implies that all orbits of G are finite. We conclude the proof of Theorem 6.1
by the following fact.

Lemma 6.4. Let G < IET be a finitely generated group. Assume that every orbit of
G is finite. Then G is finite.

Proof. We view work in IET.R=Z/. Let S be a finite generating set of G. Let
D � R=Z be the union of all orbits of the discontinuity points of the elements of
S˙1. The set D is finite and we can assume D ¤ ; since otherwise the result is clear.
All generators are continuous on the G-invariant set R=Z n D. It easily follows that
on each connected component of R=ZnD, every orbit has the same finite cardinality.
It follows that G is finite.

7. Residual finiteness

Let S be a finite set. A group marked by S is a finitely generated group with a quotient
map FS ! G, where FS is the free group over S .

For R > 0, denote by BR the ball of radius R centered at 1 in Fs . A sequence of
marked groups �n W FS ! Gn converges to a marked group � W FS ! G if for all
R > 0, we have ker.�n/ \ BR D ker.�/ \ BR for all n large enough.

The aim of this section is to obtain the following.

Theorem 7.1. Every finitely generated subgroup of IET is the limit of a sequence of
finite groups in the space of marked groups.

In particular, every finitely presented subgroup of IET is residually finite.

The second statement immediately follows from the first since any finitely pre-
sented marked group G has a neighborhood consisting of quotients of itself (i.e., for
all � 0 W FS ! G0 close enough to � W FS ! G, � 0 D q B � for some q W G ! G0).
This is because if R is the length of the longest defining relation of G, then all defin-
ing relations are in ker.�/ \ BR, hence those relations are in ker.�n/ for sufficiently
large n, so that Gn is a quotient of G.

In particular Thompson’s groups cannot embed in IET.

Corollary 7.2. Thompson’s groups F (on the interval) and T , V (on the circle and
the Cantor set) are not subgroups of IET.

Proof. It is known that F , T and V are finitely presented (cf. [1]). The groups T and
V are simple and infinite, therefore not residually finite, and do not embed in IET by
Theorem 7.1.

The group F is not simple, but any proper quotient is abelian [1]. Since F is
infinite and non-abelian, it is not residually finite: any commutator has to be mapped
to the trivial element in a finite quotient. Therefore, F is not a subgroup of IET.
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The following is also immediate from Theorem 7.1. We would like to thank
Alexei Muranov for turning our attention to the idea of sofic groups. See [4] or [13]
for definitions.

Corollary 7.3. The group IET is sofic.

In view of Theorem 7.1, this follows immediately from the fact that finite groups
are sofic, limits of sofic groups are sofic, and that soficity for a group holds if and
only if it holds for its finitely generated subgroups [2].

The idea of the proof of the theorem is to produce a finite group by replacing
the coefficients (i.e., the lengths) of the interval exchanges considered by rational
numbers, keeping the fact that a given finite collection of words represent the identity
or not. Then we use the fact that the group generated by interval exchanges with
rational coefficients is always finite. The control on trivial and non-trivial elements
is based on the fact that any system of linear equations and inequations with rational
coefficients that has a real solution, also has a rational solution.

Proposition 7.4 ([8], Cor. 3.1.17). If a linear system of equations and inequations
with rational coefficients has a real solution, then it has a rational solution.

In this statement we allow equalities f .x/ D 0 and strict inequalities f .x/ > 0

for f W RN ! R an affine map with rational coefficients.

Proof of Theorem 7.1. Define a rational polyhedron in RN as the set of solutions of
finitely many equations and inequations of the form f .x/ D 0 or f .x/ > 0 where
f W RN ! R is an affine map. A PL subset of RN is a finite union of rational
polyhedra. If C � RN is a PL subset, we say that f W C ! RM is PL if there is a
partition of C into finitely many rational polyhedra in restriction to which f coincides
with an affine map RN ! RM (note that contrary to standard terminology, we do
not require f to be continuous). Obviously, composition and inverses of PL maps are
PL, and the preimage of a PL subset by a PL map is a PL subset. The intersection of
finitely many PL subsets is a PL subset. By Proposition 7.4, any non-empty rational
polyhedron contains a rational point, so does any non-empty PL subset.

Note that if C1 � RN1 and C2 � RN2 are PL subsets, then C1 � C2 � RN1CN2

is a PL subset. Moreover, there is a PL embedding of C1 t C2 to a PL subset of
RN1 � RN2 � R as C1 � f0g � f0g [ f0g � C2 � f1g.

Since for each permutation � 2 Sn, IET� is parametrised by an open simplex
of dimension n � 1, and embeds naturally in Rn, the set IET�n of interval exchange
transformations of Œ0; 1/ with at most n points of discontinuity can be identified with
a PL subset of some RNn .

The following lemma is a key.

Lemma 7.5. The group law IET�n � IET�m ! IET�nCm is a PL map.
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Proof. It is clear that the map S 7! S�1 is PL. It is enough to prove that the group
law is PL on IET� � IET� . Consider .S; T / 2 IET� � IET� . Recall that �.S/

denotes its set of discontinuity points (which we view as an ordered tuple b1 <

� � � < bn. Clearly, �.S/ and T�.T / are affine functions of .S; T /. Thus each
possible combinatorics for �.S/ [ T�.T / defines a rational polyhedron, and we can
assume that one of these combinatorics is fixed. Denote by Kk the set of connected
components of Œ0; 1/ n �.S/ [ T�.T /, and note that S B T is continuous on the
intervals T �1.Kk/. The endpoints of Kk are affine functions of .S; T /. Since the
evaluation map Œ0; 1/ � IET�m ! Œ0; 1/ sending .x; T / to T .x/ is PL, the endpoints
of T �1.Kk/ are PL (indeed affine) functions of .S; T /. The amplitude of translation
of S B T on T �1.Kk/ is the sum of the amplitude of T on T �1.Kk/ and of the
amplitude of S on Kk . It easily follows that the group law is PL.

Now consider a subgroup G � IET generated by g1; : : : ; gk 2 IET�n. We
see G as a quotient of the free group Fk over fx1; : : : ; xkg, in which xi is mapped
on gi . Denote by BR � Fk the set of words of length � R. We need to show
that, for all R > 0, there is a finite quotient Q of Fk such that for any element
w.x1; : : : ; xk/ 2 BR, w.g1; : : : ; gk/ is trivial in G if and only if the image of w in
Q is trivial.

For each w 2 BR, consider the PL map fw W .IET�n/k ! IET�Rn defined by
.t1; : : : ; tk/ 7! w.t1; : : : ; tk/. Consider Cw � .IET�n/k the PL subset defined by
Cw D f �1

w .fidg/ if w.g1; : : : ; gk/ D id in G and by Cw D f �1
w .IET�Rn n fidg/

otherwise. The intersection C of all Cw is a PL subset that contains .g1; : : : ; gk/ by
construction. It follows that C contains a point with rational coordinates .g0

1; : : : ; g0
k
/.

In particular, the subgroup Q of IET generated by g0
1; : : : ; g0

k
is finite. Because

.g0
1; : : : ; g0

k
/ 2 C , this finite quotient of Fk satisfies that w.g1; : : : ; gk/ is trivial in

G for all w 2 BR if and only if w.g0
1; : : : ; g0

k
/ is trivial in Q.

8. An example of a subgroup

Theorem 8.1. There is a subgroup F � IET generated by two elements that contains

� an isomorphic copy of all finite groups,
� a free semigroup.

In particular this group is not linear and has exponential growth.

Proof. Let C D R=2Z be a circle of perimeter 2 and � D Œ0; 1/ � C an interval of
length 1. Let J D Œ0; 1/ be a copy of �. Consider the domain D D C [ J and two
iets r , s on D such that r is an irrational rotation on C and the identity on J, and s

is the involution that switches I and J and is the identity on C n I .
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r ′′ = r−1r ′r

id

t = r ′−1r ′′

id

idid id

t ′ = r2tr −2

id

idid id

t ′′ = r ′−1t ′r ′

id

idid id

r ′
id

�

� = t ′t ′′

id

idid idid

E

F

J
C

Figure 2. A non-linear example.

We prove that the subgroup F D hr; si < IET contains every permutation group
†n. First, up to replacing r with some power, we may assume that the amplitude 	

of r satisfies 0 < 	 < 1
10n

.
We claim that hr; si contains an involution � that exchanges E D Œ1�2	; 1/ � J

and F D Œ1; 1 C 2	/ � C , and that is the identity everywhere else. The element
r 0 D srs can be thought as a rotation of the circle C 0 obtained from C by replacing
� by J. Figure 2 shows the dynamics of r 0, r 00 D r�1r 0r , t D r 0�1r 00, t 0 D r2t r�2,
t 00 D r 0�1t 0r , and finally � D t 0t 00.

Note that r2 fixes E and moves F apart from itself. Since 	 	 1
n

, the intervals F ,
r2.F /, …, r2n.F / are disjoint. It follows that the group h�; r2�r�2; : : : ; r2n�r�2ni
permutes the intervals E, F , …, r2n.F / and is isomorphic to †nC2.

We now prove that the semigroup of F generated by r and r 0 D srs is a free
semigroup. Let f W D ! C denotes the map which is identity on C and maps J

to � isometrically, and let p, q be the initial and terminal endpoints of �. Given a
positive word w on fr; r 0g, denote by jwj its word length and by W the corresponding
transformation. Observe that for any x 2 D , there exists n 2 f0; : : : ; jwjg such that
f .W.x// D rn.f .x//. If w ¤ 1, then for x 2 C n � one has n > 0, and since
r is irrational, this already implies W ¤ id. We note for future use that a similar
argument shows that W.p/ D p if and only if W is a power of r 0. We still have to
check that the mapping w 7! W is injective.

Define

Dk D f �1.fp; qg [ r�1fp; qg [ � � � [ r�kC1fp; qg/
and

D0
k D f �1.fp; qg [ rfp; qg [ � � � [ rk�1fp; qg/:

We see that for any positive word w, the discontinuity points of W (resp. W �1)
are in Djwj (resp. D0jwj). Since r is irrational, p … r�1.Dk/, so W r is continuous
at p. We claim that W 0 D W r 0 is discontinuous at p. Indeed, if W 0 was continuous
at p, then since r 0 D W �1W 0 is discontinuous at p, W �1 would be discontinuous
at W 0.p/, so W 0.p/ 2 D0jwj. Since r is irrational and p, q are not in the same orbit
under r , this leaves only the possibility W 0.p/ D p (W 0.p/ D s.p/ is impossible).
It follows that W 0 is a power of r 0. Since p and q are not in the same orbit under r ,
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no proper power of r 0 is continuous at p, so W 0 D id, a contradiction, which proves
the claim.

We show that W1 D W2 implies w1 D w2 by induction on n D min.jw1j; jw2j/.
For n D 0, this is the fact that w ¤ 1 H) W ¤ 1. For n > 0, the continuity or
discontinuity of W1 D W2 at p tells us that w1 and w2 start with the same letter and,
by induction, w1 D w2. This concludes the proof that r , r 0 generate a free semigroup
in IET.

Finally, the fact that F is not linear follows immediately from the following
fact.

Fact. Let G be a finitely generated linear group. Then there exists C such that the
order of an element in G of finite order is at most C .

This fact is proved in the proof of Theorem 36.2 (Schur) in [3], which says that
any finitely generated periodic subgroup of GL.n; K/ is finite if the characteristic
of the field K is zero. In the proof it is shown that if G < GL.n; K/ is a finitely
generated group then there exists m such that if g 2 G has finite order then gm D 1.
The essential part of the argument is to show that a characteristic root of g is the m-th
root of unity. For this part, it does not matter if the characteristic of K is zero or
positive. If the characteristic of K is zero, it immediately follows that gm D 1. If the
characteristic p is positive, then we use a Jordan normal form of g, write gm D I CN

with N nilpotent, and observe that .gm/pn D 1.
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