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Abstract. We give an analytical proof of the Poincaré-type inequalities for widths of geodesic
homotopies between equivariant maps valued in Hadamard metric spaces. As an application
we obtain a linear bound for the length of an element conjugating two finite lists in a group
acting on an Hadamard space.
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1. Introduction

Let M and M 0 be smooth Riemannian manifolds without boundary. For a smooth
mapping u W M ! M 0 by E.u/ we denote its energy

E.u/ D
Z

M

kdu.x/k2 dvol.x/;

where the norm of the linear operator du.x/ W TxM ! Tu.x/M
0 is induced by the

Riemannian metrics on M and M 0. Let u and v be smooth homotopic mappings of
M to M 0 and H.s; � / be a smooth homotopy between them. The L2-width W2.H/

of H is defined as the L2-norm of the function

`H .x/ D the length of the curve s 7! H.s; x/; x 2 M: (1.1)

A smooth homotopy H.s; x/ is called geodesic if for each x 2 M the track curve
s 7! H.s; x/ is a geodesic.

In [7], [8] Kappeler, Kuksin, and Schroeder prove the following geometric in-
equality for the L2-widths of geodesic homotopies when the target manifold M 0 is
non-positively curved.

Width Inequality I. Let M and M 0 be compact Riemannian manifolds and suppose
that M 0 has non-positive sectional curvature. Let � be a homotopy class of maps
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of M to M 0. Then there exist constants C� and C with the following property: any
smooth homotopic maps u and v 2 � can be joined by a geodesic homotopy H whose
L2-width W2.H/ is controlled by the energies of u and v,

W2.H/ 6 C�.E1=2.u/ C E1=2.v// C C: (1.2)

Moreover, if the sectional curvature of M 0 is strictly negative, the constants C� and
C can be chosen to be independent of a homotopy class �.

This inequality can be viewed as a version of the Poincaré inequality for mappings
between manifolds. It also has an isoperimetric flavour; it says that the ‘measure’ of
the cylinder induced by the homotopy is estimated in terms of the ‘measure’ of its
boundary. Inequality (1.2) is a key ingredient in the proof of compactness results for
perturbed harmonic map equation [7], [9]. The latter, combined with old results of
Uhlenbeck, yields Morse inequalities for harmonic maps with potential [10].

The proof of Width Inequality I in [7], [8] is based on an analogous inequality for
maps of metric graphs; see [7], Th. 5.1. In more detail, let G be a finite graph and
u W G ! M 0 be a smooth map, that is, whose restriction to every edge is smooth.
The length L.u/ of u is defined as the sum of the lengths of the images of the edges.
By the L1-width W1.H/ of a homotopy H we mean the L1-norm of the length
function `H .x/, given by (1.1).

Width Inequality II. Let G be a finite graph and M 0 be a compact manifold of
non-positive sectional curvature. Let � be a homotopy class of maps G ! M 0. Then
there exist constants C� and C with the following property: any smooth homotopic
maps u and v 2 � can be joined by a geodesic homotopy H such that

W1.H/ 6 C�.L.u/ C L.v// C C:

Moreover, if the sectional curvature of M 0 is strictly negative, the constants C� and
C can be chosen to be independent of a homotopy class �.

The purpose of this note is twofold: firstly, we generalise the width inequalities to
the framework of equivariant maps, which we assume to be valued in Hadamard metric
spaces. This, in particular, includes width inequalities for homotopies between maps
into non-compact target spaces, completing the previous results [8] in this direction.
In contrast with the geometric methods in [7], [8] (and also algebraic in [2]), we give
an analytical proof of the width inequalities via harmonic map theory.

Secondly, we use width inequalities for equivariant maps of trees to study the
multiple conjugacy problem for finitely generated groups ƒ acting by isometries
on Hadamard spaces. More precisely, under some extra hypotheses, we obtain a
linear estimate for the conjugator length in these groups: given two finite conjugate
lists of elements .ai /16i6N and .bi /16i6N in ƒ there exists a conjugator g 2 ƒ,
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bi D g�1aig such that

jgj 6 C�
NX

iD1

.jai j C jbi j/ C C;

where j�j stands for the length d. � ; e/ in the word metric on ƒ. If the group ƒ has
a soluble word problem, then the latter estimate yields immediately the solubility of
the multiple conjugacy problem in ƒ.

Acknowledgments. The author is grateful to Sergei Kuksin and Dieter Kotschick
for their interest in the work and a number of discussions on the subject. The paper
was written when the author held a personal EPSRC fellowship at the University of
Edinburgh.

2. Statements and discussion of results

2.1. Width inequalities for equivariant maps. Let M be a compact Riemannian
manifold without boundary; we denote by zM its universal cover and by � the fun-
damental group �1.M/. Let .Y; d/ be an Hadamard space; that is a complete length
space of non-positive curvature in the sense of Alexandrov (see Section 3 for a precise
definition). Denote by � a representation of � in the isometry group of Y . Recall
that a map u W zM ! Y is called �-equivariant if

u.g � x/ D �.g/ � u.x/ for all x 2 zM; g 2 �:

For �-equivariant maps u and v the real-valued functions d.u.x/; v.x//, where x 2
zM , are invariant with respect to the domain action and, hence, are defined on the

quotient M D zM=� . In particular, the quantity

d2.u; v/ D
� Z

M

d 2.u.x/; v.x// dvol.x/

�1=2

(2.1)

defines a metric on the space of locally L2-integrable �-equivariant maps. The latter
can be also regarded as the L2-width of a unique geodesic homotopy between �-
equivariant maps. If u is a locally Sobolev W 1;2-smooth �-equivariant map, then its
energy density measure jduj2 dvol (see Section 3) is also �-invariant and the energy
of u is defined as the integral

E.u/ D
Z

M

jduj2 dvol :

Recall that the ideal boundary of Y is defined as the set of equivalence classes
of asymptotic geodesic rays; two rays are asymptotic if they remain at a bounded
distance from each other. Clearly, any action of � by isometries on Y extends to the
action on the ideal boundary.
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Theorem 1. Let M be a compact Riemannian manifold without boundary and Y

be a locally compact Hadamard space. Let � be the fundamental group of M and
� W � ! Isom.Y / be its representation whose image does not fix a point on the ideal
boundary of Y . Then there exists a constant C� such that for any �-equivariant
locally W 1;2-smooth maps u and v the L2-width of a geodesic homotopy H between
them satisfies the inequality

W2.H/ 6 C�.E1=2.u/ C E1=2.v//: (2.2)

The proof appears in Section 4. The idea is to prove first a similar inequality when
one of the maps is an energy minimiser, and then to use compactness properties of
the moduli space formed by such minimisers. The former is based on a compactness
argument, mimicking the proof of the classical Poincaré inequality.

Below we state a version of Theorem 1 for equivariant maps of trees. First, we
introduce more notation. Let G be a finite connected graph without terminals and �

be its fundamental group �1.G/. By T we denote the universal covering tree of G;
the group � acts naturally on T by the deck transformations. As above the symbol �

denotes a representation of � in the isometry group of an Hadamard space Y . For a
locally rectifiable �-equivariant map u W T ! Y , its length density measure jdujdt

(see Section 3) is �-invariant and the length of u is defined as the integral

L.u/ D
Z

G

jdujdt:

Theorem 2. Let G be a finite graph and Y be a locally compact Hadamard space. Let
� be the fundamental group of G and � W � ! Isom.Y / be its representation whose
image does not fix a point on the ideal boundary of Y . Then there exists a constant
C� such that for any locally rectifiable �-equivariant maps u and v the L1-width of
a geodesic homotopy between them satisfies the inequality

W1.H/ 6 C�.L.u/ C L.v//:

Example. Let M 0 be a non-compact Riemannian manifold whose sectional curvature
is negative and bounded away from zero and the injectivity radius is positive. Let
� W � ! �1.M 0/ be a homomorphism whose image is neither trivial nor infinite
cyclic. Then the latter does not fix a point on the ideal boundary of the universal
cover of M 0. Indeed, the group �.�/ is generated by hyperbolic elements (regarded
as isometries of the universal cover), see [8], Lemma B.1, and the statement follows
from the results in [4], Sect. 6. Thus, as a particular case, Theorem 2 contains the width
inequality for homotopies between maps from G to M 0; this is the situation considered
in [8], Th. 0.1. Under the same hypothesis on M 0, Theorem 1 yields an analogous
L2-width inequality for geodesic homotopies between maps from domains whose
dimension is greater than one. The latter statement does not seem to be achievable
via the methods in [7], [8].
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We proceed with width inequalities for representations in co-compact subgroups
of Isom.Y /. Recall that an action of a group ƒ on a metric space .Y; d/ is said to be co-
compact if the quotient Y=ƒ is compact. Further, the action of ƒ is said to be proper if
for each y 2 Y there exists r > 0 such that the set fg 2 ƒ j g �B.y; r/\B.y; r/ ¤ ¿g
is finite. For a homomorphism � W � ! ƒ we denote below by Z the centraliser of
the image �.�/ in ƒ.

Theorem 3. Let M be a compact Riemannian manifold without boundary and Y

be a locally compact Hadamard space. Let ƒ be a group acting properly and co-
compactly by isometries on Y . Denote by � the fundamental group of M and let
� be a homomorphism � ! ƒ. Then there are constants C� and C such that for
any �-equivariant locally W 1;2-smooth maps u and v there exists an element h 2 Z

such that the L2-width of a geodesic homotopy H between u and h � v satisfies the
inequality

W2.H/ 6 C�.E1=2.u/ C E1=2.v// C C:

Theorem 4. Let G be a finite graph and Y be a locally compact Hadamard space.
Let ƒ be a group acting properly and co-compactly by isometries on Y . Denote by
� the fundamental group of G and let � be a homomorphism � ! ƒ. Then there are
constants C� and C such that for any locally rectifiable �-equivariant maps u and
v there exists an element h 2 Z such that the L1-width of a geodesic homotopy H

between u and h � v satisfies the inequality

W1.H/ 6 C�.L.u/ C L.v// C C:

Remark. If the homomorphism � W � ! ƒ in the theorems is trivial, then the second
constant C is equal to diam.Y=ƒ/vol1=2M and diam.Y=ƒ/ in the L2- and L1-
versions respectively. For non-trivial representations of � it can be chosen to be
zero.

Example. As a partial case, when the action of ƒ is free, Theorems 3 and 4 above
contain width inequalities for homotopies between continuous W 1;2-smooth maps
valued in a compact metric space Y=ƒ. The choice of an element h 2 Z in this
setting corresponds to the choice of the homotopy between maps. Indeed, recall
that the fundamental group of the space formed by continuous maps homotopic to
u W M ! Y=ƒ is equal to the centraliser of the image u�.�1.M// in ƒ.

2.2. Conjugacies of finite lists in isometry groups. Now we describe some ap-
plications of the width inequalities to geometric group theory. First, recall that a
discrete subgroup ƒ in a Lie group G is called the lattice if the quotient G=ƒ carries
a finite G -invariant measure. Such a lattice is always finitely generated provided the
group G is semi-simple and has rank > 2; see ref. in [12]. Choose a finite system
of generators .gi / of ƒ and consider the word metric d. � ; � / on ƒ associated with
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the Cayley graph determined by the generators. By jgj we denote below the length
d.g; e/, the distance between an element g and the neutral element e.

The following statements are essentially consequences of Theorems 2 and 4 and
are explained in Section 5.

Theorem 5. Let G be a semi-simple Lie group of rank > 2 all of whose simple
factors are non-compact. Let ƒ be an irreducible lattice in G and .ai /16i6N be
a finite list of elements in ƒ which does not fix a point on the ideal boundary of
the associated symmetric space. Then for any conjugate (in ƒ) list .bi /16i6N any
conjugating element g 2 ƒ, bi D g�1aig satisfies the inequality

jgj 6 C�
NX

iD1

.jai j C jbi j/ C C;

where the constants depend only on the conjugacy class of the lists. In particular, for
such two given lists the set of conjugating elements is finite.

Remark. An analogous statement holds if ƒ is an irreducible lattice in an almost
simple p-adic algebraic Lie group of rank > 2. In this case we consider lists which
do not fix points on the ideal boundary of the associated Euclidean building.

Example. When the group G is algebraic, the hypothesis on the finite list .ai / is
satisfied if, for example, the elements ai ’s generate a lattice (e.g., the whole group ƒ)
in G . Indeed, by Borel’s density theorem the latter is Zariski dense in G and, hence,
does not fix a point on the ideal boundary of the associated symmetric space.

The estimate above yields immediately an algorithm deciding whether a given list
of elements in ƒ is conjugate to the list .ai / in the theorem. This is a special case of
the more general result due to Grunewald and Segal [6]: the conjugacy problem for
finite lists in arithmetic groups is soluble. (Any irreducible lattice in a semi-simple
Lie group of rank > 2 is arithmetic by Margulis’ theorem.) However, we do not
know whether the linear estimate for the length of the conjugating element holds
under weaker hypotheses than in Theorem 5.

We proceed with the conjugacy problem for finite lists in groups which act properly
and co-compactly on Hadamard spaces by isometries. Recall that such groups are
necessarily finitely presented; see [1], I.8.11. As above by jgj we denote the length
d.g; e/ in the word metric.

Theorem 6. Let Y be a locally compact Hadamard space and ƒ be a group acting
properly and co-compactly by isometries on Y . Then for any finite conjugate lists
.ai /16i6N and .bi /16i6N of elements in ƒ there exists an element g 2 ƒ with
bi D g�1aig such that

jgj 6 C�
NX

iD1

.jai j C jbi j/ C C; (2.3)
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where the constants depend only on the conjugacy class of the lists. Further, there
exists an algorithm deciding whether two given finite lists of elements in ƒ are con-
jugate.

When the list .ai / in the theorem consists of a single element, the solubility of the
conjugacy problem is well known. It is, for example, a consequence of an exponential
bound for the length of the conjugating element in [1], III.� .1.12. Theorem 6 shows
that this exponential bound can be improved to a linear bound (with the cost that the
constants become dependant on the conjugacy class), thus, giving a partial affirmative
answer to Question 10.4 in [3]. In the context of decision problems it is worth noting
that there are finitely presented groups in which the conjugacy problem for elements is
soluble, but the conjugacy problem for finite lists is not. We refer to [2] for the explicit
examples. Finally, mention that in [2] Bridson and Howie, using purely algebraic
methods, prove a closely related linear estimate for the length of the conjugating (two
finite lists) element in Gromov hyperbolic groups. An analogous conjugator length
estimate is also known for pseudo-Anosov elements in the mapping class group, thus
reflecting its hyperbolic character, see [13]. For a more general discussion on the
geometry of the conjugacy problem, we refer to the survey talk by Tim Riley [15].

3. Preliminaries

3.1. Sobolev spaces of maps to metric targets. We recall some background mate-
rial on Sobolev spaces of maps valued in a metric space. The details can be found in
[11].

Let � be a Riemannian domain and .Y; d/ be an arbitrary metric space. We
suppose that � is endowed with a Lebesgue measure dvol induced by the Riemannian
volume. A measurable map u W � ! Y is called locally L2-integrable if it has a
separable essential range and for which d.u. � /; Q/ is a locally L2-integrable function
on � for some Q 2 Y (and, hence, by the triangle inequality for any Q 2 Y ). If the
domain � is bounded, then the function

d2.u; v/ D
� Z

�

d 2.u.x/; v.x// dvol.x/

�1=2

defines a metric on the space of locally L2-integrable maps. The latter is complete
provided Y is complete.

The approximate energy density of a locally L2-integrable map u is defined for
" > 0 by

e".u/.x/ D
Z

S".x/

d 2.u.x/; u.x0//
"nC1

dvol.x0/;

where S".x/ denotes the "-sphere centred at x and n stands for the dimension of �.
The function e".x/ is non-negative and locally L1-integrable.
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Definition. The energy E.u/ of a locally L2-integrable map u is defined by

E.u/ D sup
06f 61

�
lim
"!0

sup
Z

�

fe".u/ dvol
�

;

where the sup is taken with respect to compactly supported continuous functions
which take values between 0 and 1. A locally L2-integrable map u is called locally
W 1;2-smooth if for any relatively compact domain D � � the energy E.ujD/ is
finite.

Due to the results of Korevaar and Schoen [11], Sect. 1, a locally L2-integrable
map u is locally W 1;2-smooth if and only if there exists a locally L1-integrable
function e.u/ such that the measures e".u/ dvol converge weakly to the measure
e.u/ dvol as " ! 0. The function e.u/, also denoted by jduj2, is called the energy
density of u, and the energy E.u/ is equal to the total mass

R
e.u/ dvol.

Now suppose that the domain � is 1-dimensional, that is an interval I D .a; b/.
For a map u W I ! Y one can also define the approximate length density by

l".u/.t/ D d.u.t/; u.t C "// C d.u.t/; u.t � "//

"
; t 2 I:

Then the length of u is defined by the formula similar to that for the energy,

L.u/ D sup
06f 61

�
lim
"!0

sup
Z

I

f l".u/dt

�
;

where the sup is taken with respect to compactly supported continuous functions. A
map u W I ! Y is called rectifiable if its length is finite. In this case there exists
a length density function (or speed function) l.u/ such that the length L.u/ equalsR

l.u/dt .

3.2. Hadamard spaces. Recall that an Hadamard space .Y; d/ is a complete metric
space which satisfies the following two hypotheses:

(i) Length space. For any two points y0 and y1 2 Y there exists a rectifiable curve
� from y0 to y1 such that

d.y0; y1/ D length.�/:

We call such a curve � geodesic.
(ii) Triangle comparison. For any three points P , Q, and R in Y and the choices

of geodesics �PQ, �QR, and �RP connecting the respecting points denote by xP ,
xQ, and xR the vertices of the (possibly degenerate) Euclidean triangle with the

side lengths `.�PQ/, `.�QR/, and `.�RP / respectively. Let Q� be a point on
the geodesic �QR which is a fraction �, 0 6 � 6 1, of the distance from Q to R;

d.Q�; Q/ D �d.Q; R/; d.Q�; R/ D .1 � �/d.Q; R/:
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Denote by xQ� an analogous point on the side xQ xR of the Euclidean triangle. The
triangle comparison hypothesis says that the metric distance d.P; Q�/ (from Q�

to the opposite vertex) is bounded above by the Euclidean distance j xP � xQ�j.
This inequality can be written in the form

d 2
PQ�

6 .1 � �/d 2
PQ C �d 2

PR � �.1 � �/d 2
QR: (3.1)

It is a direct consequence of the property (ii) above that geodesics in an Hadamard
space are unique. It is also a consequence of geodesic uniqueness that an Hadamard
space has to be simply-connected [1], II.1. Examples include symmetric spaces
of non-compact type and Euclidean buildings, simply-connected manifolds of non-
positive sectional curvature, Hilbert spaces, simply-connected Euclidean or hyper-
bolic simplicial complexes satisfying certain local link conditions [1], II.5.4. Another
class of examples is provided by the following proposition.

Proposition 1. Let M be a compact Riemannian manifold without boundary and
.Y; d/ be an Hadamard space. Let � be a representation of the fundamental group
� D �1.M/ in the group of isometries of Y . Then the space of �-equivariant locally
L2-integrable maps from zM to Y endowed with the metric (2.1) is an Hadamard
space.

The proof follows straightforward from the definitions: the geodesics in the new
space are geodesic homotopies and the triangle comparison hypothesis follows by
integration of relation (3.1).

A useful consequence of the triangle comparison hypothesis is the following
quadrilateral comparison property due to Reshetnyak [14] (we refer to [11], Cor. 2.1.3,
for a proof).

Proposition 2. Let .Y; d/ be an Hadamard space and P , Q, R, and S be an ordered
sequence of points in Y . For 0 6 �; 	 6 1 define P� to be the point which is the
fraction � of the way from P to S (on the geodesic �PS ) and Q� to be the point which
is the fraction 	 of the way from Q to R (on the opposite geodesic �QR). Then for
any 0 6 ˛; t 6 1 the following inequality holds:

d 2
Pt Qt

6 .1 � t /d 2
PQ C td 2

RS � t .1 � t /Œ˛.dPS � dQR/2 C .1 � ˛/.dRS � dPQ/2
:

Setting ˛ to be equal to zero in this inequality, we deduce the convexity of the
distance between geodesics

dPt Qt
6 .1 � t /dPQ C tdRS : (3.2)

This implies the following energy convexity property. Let u and v be locally W 1;2-
smooth maps from the Riemannian domain � to an Hadamard space .Y; d/. Let
H.s; � / be a geodesic homotopy between u and v; the point H.s; x/ is the fraction s
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of the way from u.x/ to v.x/, where x 2 �. Then for any s the map H.s; �/ is locally
W 1;2-smooth and for any relatively compact domain D � � its energy satisfies the
inequality

E1=2.Hs/ 6 .1 � s/E1=2.u/ C sE1=2.v/: (3.3)

Inequality (3.2) also yields the length convexity along geodesic homotopies. More
precisely, let u and v be rectifiable paths in .Y; d/ and let H.s; � / be a geodesic
homotopy between the parameterised by the arc length as above. Then for any s the
map H.s; � / is rectifiable and its length satisfies the inequality

L.Hs/ 6 .1 � s/L.u/ C sL.v/: (3.4)

Another consequence of the triangle comparison hypothesis is the existence of
the nearest point projection � W Y ! A onto a convex subset A. In more detail, if
.Y; d/ is an Hadamard space and A is its non-empty closed convex subset, then for
any y 2 Y there exists a unique point a 2 A which minimises the distance d.y; a/

among all points in A; see [11], Prop. 2.5.4.

3.3. Some properties of harmonic maps. Let M be a compact Riemannian mani-
fold without boundary and .Y; d/ be an Hadamard space. As above by � we denote
the fundamental group of M and by � W � ! Isom.Y / its representation in the isom-
etry group of Y . We consider �-equivariant locally W 1;2-smooth maps u from the
universal cover zM to Y . The energy density of such a map u is a �-invariant function
on zM , which can be also regarded as a function on the quotient M D zM=� . In
particular, by the energy E.u/ we understand the integral

R
M

e.u/ dvol. We call a �-
equivariant map harmonic if it minimises the energy among all �-equivariant locally
W 1;2-smooth maps.

The following statement is a straightforward consequence of the energy convexity,
formula (3.3). We state it as a proposition for the convenience of references.

Proposition 3. Under the hypotheses above, let u and v be two �-equivariant har-
monic maps and H.s; � / be a geodesic homotopy between them; the point H.s; x/

is the fraction s of the way from u.x/ and v.x/, where x 2 zM . Then for each s the
map H.s; � / is also �-equivariant harmonic and the energy E.Hs/ does not depend
on s.

We proceed with the Lipschitz continuity of harmonic maps. The following propo-
sition is a consequence of the result by Korevaar and Schoen [11], [Th. 2.4.6].

Proposition 4. Under the hypotheses above, any �-equivariant harmonic map u is
Lipschitz continuous and its Lipschitz constant is bounded above by C � E1=2.u/,
where the constant C depends on the manifold M and its metric only.

Now let G be a finite connected graph without terminals and � be its fundamental
group. By T we denote the universal covering tree of G. Similarly to the discussion
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above, for a locally rectifiable �-equivariant map u W T ! Y the length density func-
tion l.u/ is �-invariant and, hence, descends to the quotient G D T=� . In particular,
by the length L.u/ we understand the integral

R
G

l.u/dt . It is straightforward to see
that if a map u minimises the length among all locally rectifiable �-equivariant maps,
then its restriction to every edge is a geodesic. If the latter has a constant-speed pa-
rameterisation on every edge, then it is also harmonic and the length of every edge uI

satisfies the relation L2.u/ D E.uI /.b � a/, see [5], Lemma 12.5. Conversely, if u

is a �-equivariant harmonic map, then its restriction to every edge is a constant-speed
geodesic whose squared length is proportional to the energy as above. In particular,
the length is constant on the set of �-equivariant harmonic maps, where it achieves
its minimum.

4. Proofs of the width inequalities

We start with the following lemma.

Main Lemma I. Let M be a compact Riemannian manifold without boundary and
.Y; d/ be a locally compact Hadamard space. Let � W � ! Isom.Y / be a represen-
tation of the fundamental group � D �1.M/. Suppose that the moduli space Harm,
formed by �-equivariant harmonic maps zM ! Y , is non-empty and bounded in the
L2-metric. Then there exists a positive constant C� with the following property: for
any �-equivariant locally W 1;2-smooth map u there exists a harmonic map Nu 2 Harm
such that

d2.u; Nu/ 6 C�.E1=2.u/ � E1=2� /; (4.1)

where E� D E. Nu/ is the energy minimum among �-equivariant maps.

Proof. First, note that inequality (4.1) is invariant under the rescaling of the metric
on the target space Y . Hence, it is sufficient to prove the lemma under the assumption
that

the distance d2.u; Nu/ is not less than one. (4.2)

Suppose the contrary. Then there exists a sequence of maps uk such that

d2.uk; Nu/ > k.E1=2.uk/ � E1=2. Nu//

for any Nu 2 Harm. For each uk choose a harmonic map Nuk at which the infimum

d2.u; Nu/ D inffd2.u; v/ j v 2 Harmg
is attained. Such a harmonic map Nu clearly exists: it is the value of u under the nearest
point projection onto Harm. (The lower semicontinuity of the energy [11], Th. 1.6.1,
and Proposition 3 imply that Harm is a closed convex subset in the Hadamard space
of �-equivariant locally L2-integrable maps.)
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Denote by H k
s , where s 2 Œ0; 1
, a geodesic homotopy between Nuk and uk; we

set H k
0 D Nuk and H k

1 D uk . Assuming that the parameter s is proportional to the
arc length, we obtain

d2.H k
s ; H k

0 / D s � d2.uk; Nuk/ > s � k.E1=2.uk/ � E1=2. Nuk//:

Recall the energy E1=2. � / is convex along geodesic homotopies;

s.E1=2.uk/ � E1=2. Nuk// > E1=2.H k
s / � E1=2.H k

0 /:

Combining the last two inequalities we conclude that

d2.H k
s ; H k

0 / > k.E1=2.H k
s / � E1=2.H k

0 //: (4.3)

Now choose a sequence of sk 2 Œ0; 1
 such that the distance d2.H k
sk

; H k
0 / equals one;

by the assumption (4.2) this is possible. Then relation (4.3) implies that the sequence
E.H k

sk
/ converges to E� as k ! C1. Since the moduli space Harm is bounded in

L2-metric, the latter together with the choice of the sk’s implies that the sequence
H k

sk
is bounded in the W 1;2-sense; that is

d2.H k
sk

; w/ C E.H k
sk

/ 6 C; (4.4)

where w is a fixed �-equivariant map. Now by the version of Rellich’s embedding
theorem [11], Th. 1.13, we can find a subsequence H k

sk
(denoted by the same symbol)

which converges in L2-metric and point-wise to a locally W 1;2-smooth map Nv. By the
lower semi-continuity of the energy [11], Th. 1.6.1, the map Nv is energy minimising
and by the point-wise convergence is �-equivariant. By the choice of the sk’s we
clearly have

d2.H k
1 ; H k

sk
/ D d2.H k

1 ; H k
0 / � d2.H k

sk
; H k

0 / D d2.uk; Nuk/ � 1:

Thus, the L2-distance between the maps uk and v can be estimated by

d2.uk; Nv/ 6 d2.H k
1 ; H k

sk
/ C d2.H k

sk
; Nv/ D d2.uk; Nuk/ C .d2.H k

sk
; Nv/ � 1/:

For sufficiently large k the second term on the right-hand side is negative, and we
arrive at a contradiction with the choice of the harmonic maps Nuk’s.

The following lemma summarises known results (essentially due to [11]) on the
moduli space Harm, formed by �-equivariant maps.

Lemma 1. Let M be a compact Riemannian manifold without boundary and Y be
a locally compact Hadamard space. Let � be the fundamental group of M and
� W � ! Isom.Y / be its representation whose image does not fix a point on the ideal
boundary of Y . Then the moduli space Harm, formed by �-equivariant harmonic
maps, is non-empty and compact in C 0-topology.
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Since there is no direct reference for the statement on the compactness of Harm
and to make our paper more self-contained, we give a proof now.

Proof of Lemma 1. First, we explain the existence of a �-equivariant harmonic map.
By [11], Th. 2.6.4, there exists an energy minimising sequence fuig of equivariant
Lipschitz continuous maps, whose Lipschitz constants are uniformly bounded. Let
� be a fundamental domain for the action of � on the universal cover zM . We claim
that under the hypotheses of the theorem the ranges ui .�/ are contained in a bounded
subset of Y . Indeed, suppose the contrary. Then there exists a point x 2 � such that
the sequence fui .x/g is unbounded in Y , i.e.,

d.ui .x/; Q/ ! C1 for some Q 2 Y:

For any g 2 � consider the sequence d.�.g/ � ui .x/; ui .x//. By the equivariance of
the ui ’s and the uniform boundedness of their Lipschitz constants we have

d.�.g/ � ui .x/; ui .x// 6 Cd.g � x; x/;

and hence the quantities on the left hand side remain bounded as i ! C1. By the
convexity of the distance between geodesics, relation (3.2), we see that the (Hausdorff)
distances between the geodesic segments Qui .x/ and �.g/ � Qui .x/ also remain
bounded as i ! C1. Since Y is locally compact, we can find a subsequence of ui ,
denoted by the same symbol, such that the segments Qui .x/ converge on compact
subsets to a geodesic ray � with initial point at Q. Then the distance between � and
�.g/ � � is also bounded for any g 2 � . This shows that � represents a fixed point
for the action of �.�/ and leads to a contradiction.

Now, since Y is locally compact, the Arzela–Ascoli theorem applies and we can
find a subsequence of ui converging in C 0-topology to an energy-minimising and,
hence, harmonic map. Thus, the moduli space Harm is non-empty.

Finally, we explain the compactness of Harm. Let ui be a sequence of �-
equivariant harmonic maps. By Proposition 3 their energies coincide, and by Propo-
sition 4 the ui ’s are uniformly Lipschitz continuous. The same argument as above
shows that the ranges ui .�/ are contained in a bounded subset of Y . Again by the
Arzela–Ascoli theorem there exists a converging subsequence. By the lower semi-
continuity of the energy the limit map is energy minimising and, hence, harmonic.
Thus, the moduli space Harm is compact in C 0-topology among �-equivariant har-
monic maps.

Proof of Theorem 1. By Lemma 1, Main Lemma I applies: for given �-equivariant
maps u and v we can find harmonic �-equivariant maps Nu and Nv such that d2.u; Nu/ and
d2.v; Nv/ are estimated as in (4.1). By Lemma 1 the moduli space Harm is compact
and, hence, the distance d2. Nu; Nv/ is uniformly bounded. The L2-width of a geodesic
homotopy H between u and v is the distance d2.u; v/, and by the triangle inequality
we have

W2.H/ 6 d2.u; Nu/ C d2. Nu; Nv/ C d2.v; Nv/:
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The second term is bounded, and the first and the last can be estimated as in (4.1);
thus, we obtain

W2.H/ 6 C�.E1=2.u/ C E1=2.v// C C;

where C equals diam.Harm/�2C�E
1=2� . Since, under the hypotheses of the theorem,

the energy minimum E� is positive, this inequality can be re-written in the form (2.2).

Now we explain the proof of Theorem 2; it follows essentially the same idea.
First, we discuss the version of Main Lemma I. By d1.u; v/ we denote below the
maximum of the distance function between maps u and v.

Main Lemma II. Let G be a finite graph and .Y; d/ be a locally compact Hadamard
space. Let � W � ! Isom.Y / be a representation of the fundamental group � D
�1.G/. Suppose that the moduli space Harm, formed by �-equivariant harmonic
maps T ! Y , is non-empty and compact in C 0-topology. Then there exists a positive
constant C� with the following property: for any continuous rectifiable �-equivariant
map u there exists a harmonic map Nu 2 Harm such that

d1.u; Nu/ 6 C�.L.u/ � L�/; (4.5)

where L� D L. Nu/ is the length minimum among �-equivariant maps.

Proof. First, without loss of generality we may assume that the maps u W T ! Y

under consideration are such that their restrictions to every edge are parameterised
proportionally to the arc length. Second, as in the proof of Main Lemma I, it is
sufficient to prove the lemma under the assumption that the distance d1.u; Nu/ is not
less than one.

Suppose the contrary. Then there exists a sequence of maps uk and harmonic
maps Nuk such that

d1.uk; Nuk/ > k.L.uk/ � L�/I
we suppose that the Nuk’s minimise the distance fd1.uk; v/, where v 2 Harmg.
Denote by H k

s , where s 2 Œ0; 1
, a geodesic homotopy between Nuk and uk . Assuming
that the parameter is proportional to the arc length and using the convexity of the
length, relation (3.4), we obtain

d1.H k
s / > k.L.H k

s / � L.H k
0 //:

Choosing a sequence sk 2 Œ0; 1
 such that the left-hand side above equals one, we
conclude that L.H k

sk
/ converges to L� as k ! C1. Since the lengths of H k

sk
are

bounded and the edges of the H k
sk

’s are parameterised proportionally to the arc length,

we see that the sequence of the H k
sk

’s is equicontinuous. Further, the compactness
of Harm implies that the latter sequence is d1-bounded. Now the Arzela–Ascoli
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theorem applies and there exists a subsequence converging in d1-metric to a contin-
uous map Nv. The map Nv is clearly �-equivariant and length-minimising. Moreover,
it has a constant-speed parameterisation and, hence, is harmonic. Now one gets a
contradiction in the same way as in the proof of Main Lemma I.

Proof of Theorem 2. First, Lemma 1 carries over the case of �-equivariant maps of
trees. In more detail, we need to start with a length minimising sequence which is
uniformly Lipschitz continuous. The latter can be constructed by re-parameterising
any length minimising sequence proportionally to the arc length on every edge. The
rest of the proof (of Lemma 1) carries over without essential changes.

Now we simply follow the lines in the proof of Theorem 1 and use Main Lemma II
instead of Main Lemma I.

We proceed with the proofs of Theorems 3 and 4. First, recall some notation.
Let ƒ be a group acting properly and co-compactly by isometries on Y . For a
homomorphism � W � ! ƒ by Z we denote the centraliser of the image �.�/ in ƒ.
The group Z acts naturally on the space of �-equivariant maps u W zM ! Y and, in
particular, on the moduli space Harm.

Lemma 2. Under the hypotheses of Theorem 3, the moduli space Harm, formed by
�-equivariant harmonic maps, is non-empty and the quotient Harm=Z is compact in
C 0-topology.

Proof. We start with the existence of a �-equivariant harmonic map. By [11],
Th. 2.6.4, there exists an energy minimising sequence fuig of equivariant Lipschitz
continuous maps, whose Lipschitz constants are uniformly bounded. Let � and D

be fundamental domains for the actions of � on zM and ƒ on Y respectively. Fix a
point x� 2 �. Then there exists a sequence of elements hi 2 ƒ such that the maps
hi � ui send x� into the closure of D. Since the hi ’s are isometries, the sequence
fhi � uig is also energy minimising and uniformly Lipschitz continuous. Moreover,
since ƒ acts co-compactly, its fundamental domain D is bounded, and the uniform
Lipschitz continuity implies that the ranges hi � ui .�/ are contained in a bounded
subset of Y . By the Arzela–Ascoli theorem there exists a subsequence, also denoted
by hi � ui , converging to a limit map v.

Now we define a homomorphism ' W � ! ƒ such that the limit map v is '-
equivariant. For this fix a generator g 2 � and consider the points

v.g � x/ D lim.hi � ui /.g � x/ and v.x/ D lim.hi � ui /.x/;

where x 2 �. The triangle inequality implies that

.hi�.g/h�1
i / � v.x/ ! v.g � x/ as i ! C1:

Now, since the action of ƒ is proper, the sequence hi�.g/h�1
i contains a constant

subsequence; we denote it value by '.g/ 2 ƒ. We use the hi ’s of this subsequence
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for the same procedure for another generator in � . Repeating the process we define
' on all generators. It then extends as a homomorphism ' W � ! ƒ and the map v

is '-equivariant. As a result of this procedure, we also have a sequence hi 2 ƒ such
that

hi�.g/h�1
i D '.g/ for any g 2 �:

This identity implies that the hi ’s can be written in the form k � Nhi , where Nhi 2 Z, and
the element k 2 ƒ conjugates � and '. Now, since the sequence hi � ui converges to
v, the sequence Nhi � ui converges to k�1v. Moreover, the latter is energy minimising
and is formed by �-equivariant maps. Thus, the limit map k�1v is a harmonic �-
equivariant map and the existence is demonstrated.

The compactness of Harm=Z follows by the same argument as above with the
substitution of the sequence of harmonic maps for the energy minimising sequence
fuig. By Proposition 3 the former sequence is also energy minimising, and by Propo-
sition 4 is uniformly Lipschitz continuous; the argument above yields a sequence
Nhi 2 Z such that Nhi � ui converges to a �-equivariant harmonic map.

Proof of Theorem 3. Let H be a fundamental domain for the action of Z on the
moduli space Harm. First, Main Lemma I holds under a weaker hypothesis than the
L2-boundedness of Harm. More precisely, it is sufficient to assume that the domain
H is bounded in the L2-metric. Indeed, since the group Z acts by isometries, one
can suppose that the maps Nuk’s (in the proof of Main Lemma I) belong to H . The
boundedness of the latter is then used to obtain the W 1;2-boundedness of the sequence
H k

sk
, relation (4.4). The rest of the proof stays unchanged.

Now the combination of Lemma 2 and estimate (4.1) yields the statement in the
fashion similar to the proof of Theorem 1.

Proof of Theorem 4. First, Main Lemma II holds under a weaker hypothesis than
the compactness of the moduli space Harm. Similarly to the above, it is sufficient to
assume that a fundamental domain for the action of Z on Harm is compact. Further,
Lemma 2 carries over the case of �-equivariant maps of trees; the proof follows
essentially the same line of argument. The combination of this version of Lemma 2
with estimate (4.5) yields the statement in the same fashion as above.

5. Finitely generated subgroups in isometry groups

Recall that the action of a group ƒ on a metric space .Y; d/ by isometries defines an
orbit pseudo-metric on ƒ:

dy.g; h/ D d.g � y; h � y/; where g; h 2 ƒ;

and y 2 Y is a fixed reference point. For another point Ny 2 Y the pseudo-metrics
dy and d Ny are coarsely isometric; that is there exists a constant C (D 2d.y; Ny/) such
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that
d Ny.g; h/ � C 6 dy.g; h/ 6 d Ny.g; h/ C C:

First, we show that the L1-width inequalities imply an estimate for the conjugating
element in the orbit pseudo-metric.

Lemma 3. Let G be a semi-simple Lie group all of whose simple factors are non-
compact. Let ƒ be an irreducible lattice inG and .ai /16i6N be a finite list of elements
in ƒ which does not fix a point on the ideal boundary of the associated symmetric
space. Then for any conjugate (in ƒ) list .bi /16i6N any conjugating element g 2 ƒ,
bi D g�1aig satisfies the inequality

dy.g; e/ 6 C�
NX

iD1

.dy.ai ; e/ C dy.bi ; e//;

where y 2 Y is a reference point, and the constant depends only on the conjugacy
class of the list .ai /.

Proof. Let Y be a symmetric space associated with the Lie group G . Under the
hypotheses on G , the natural G -invariant Riemannian metric on Y defines a distance
d which makes Y into an Hadamard space.

Consider a bouqet of N copies of a circle; denote by � D �N
iD1Z its fundamental

group and by T its universal cover. Define a homomorphism � W � ! ƒ by the
rule: the generator of the i th copy of Z maps into ai . For a fixed reference point
y 2 Y consider the graph in Y whose vertices are points g � y, where g is a word
in the alphabet .ai /. The edges are geodesic arcs; two points g1 � y and g2 � y are
joined by an edge if and only if g�1

1 g2 is an element ai or its inverse. Suppose that
each edge is parameterised proportionally to the arc length. Such a parameterisation
defines a �-equivariant map u W T ! Y , whose length L.u/ is given by the sumPN

iD1 d.aiy; y/.
Analogously, for a conjugate list .bi /16i6N one defines a .g�1�g/-equivariant

map v W T ! Y , where g is a conjugating element. Note that the map g � v is �-
equivariant and its length L.g � v/ coincides with L.v/ D PN

iD1 d.biy; y/. By the
hypotheses of the lemma, Theorem 2 applies and we have

d.g � y; y/ 6 W1.H/ 6 C�.L.u/ C L.v//;

where H is a homotopy between u and g�v. Now the combination with the expressions
for the lengths finishes the proof.

Proof of Theorem 5. The statement is a direct consequence of Lemma 3 and the
solution of Kazhdan’s conjecture in [12]. The latter says that the word metric (with
respect to some finite set of generators) on an irreducible lattice ƒ is quasi-isometric
to the orbit metric (with respect to the action on the associated symmetric space or
Euclidean building) provided G is semi-simple and its rank > 2.
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Lemma 4. Let Y be a locally compact Hadamard space and ƒ be a group acting
properly and co-compactly by isometries on Y . Then for any finite conjugate lists
.ai /16i6N and .bi /16i6N of elements in ƒ there exists an element g 2 ƒ with
bi D g�1aig such that

dy.g; e/ 6 C�
NX

iD1

.dy.ai ; e/ C dy.bi ; e// C C;

where y 2 Y is a reference point, and the constants depend only on the conjugacy
class of the list .ai /.

Proof. The proof follows the same line of argument as the proof of Lemma 3 with
the use of Theorem 4 instead of Theorem 2.

Proof of Theorem 6. By the Švarc–Milnor lemma [1], I.8.19, the word and orbit
metrics on ƒ are quasi-isometric. The combination of this with Lemma 4 implies
the first statement of the theorem. Further, by [1], III.� .1.4, the word problem in
ƒ is soluble. This yields the algorithm deciding the conjugacy of finite lists in the
following fashion. If there exists an element conjugating two given lists, then it
belongs to the finite subset of ƒ formed by elements satisfying the bound (2.3).
Using the solubility of the word problem, the algorithm checks all elements from this
finite set.
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