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1. Introduction

1.1. Our result. Hyperbolic groups are algorithmically tractable (their word and
conjugacy problems are straightforward) and are characterised by a tree-like property
that geodesic triangles in their Cayley graphs are close to tripods [5], [8]. The purpose
of this article is to show that nonetheless some harbour extreme wildness within their
subgroups – their finite rank free subgroups, even. We prove (the terminology is
explained below):

Theorem 1.1. There are hyperbolic groups �k for all k � 1 with free rank .kC 18/

subgroupsƒk whose distortion satisfies Dist�k

ƒk
� Ak , that is, grows at least like the

k-th of Ackermann’s functions.

A distortion function DistG
H measures the degree to which a subgroup H � G

folds in on itself within G by comparing the intrinsic word metric on H with the
extrinsic word metric inherited from G. Suppose that S and T are finite generating
sets for G and H , respectively. Then

DistG
H .n/ ´ maxfdT .1; g/ j g 2 H with dS .1; g/ � ng:

Up to the following equivalence, capturing qualitative agreement of growth rates,
DistG

H does not depend on S and T . For f; g W N ! N, we write f � g when there

�The first author gratefully acknowledges partial support from NSF grant DMS-0906962 and the third
author from NSF grant DMS-1101651 and Simons Foundation Collaboration Grant 208567.
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exists C > 0 such that f .n/ � Cg.CnC C/C CnC C for all n. Define f ' g

when f � g and g � f .
Ackermann’s Ak W N ! N are a family of fast growing functions defined recur-

sively:

A0.n/ D nC 2 for n � 0;

Ak.0/ D
´
0 for k D 1;

1 for k � 2;

and

AkC1.nC 1/ D Ak.AkC1.n// for k; n � 0:

In particular, A1.n/ D 2n, A2.n/ D 2n and A3.n/ is the n-fold iterated power of
2. They are representatives of the successive levels of the Grzegorczyk hierarchy of
primitive recursive functions – see, for example, [15].

1.2. The organisation of this article and an outline of our approach. Our groups
�k are elaborations of the hydra groups

Gk D ha1; : : : ; ak; t j t�1a1t D a1; t
�1ai t D aiai�1 (for all i > 1)i

explored by the second and third authors in [6]. These Gk are CAT.0/, free-by-
cyclic, biautomatic, and can be presented with only one relator, and yet the subgroups
Hk ´ ha1t; : : : ; akti are free of rank k and their distortion grows like the k-th of
Ackermann’s functions: DistGk

Hk
' Ak .

This extreme distortion stems from a phenomenon which can be described as a
re-imagining of Hercules’ battle with the Lernaean Hydra. A hydra is a positive word
w on the alphabet a1, a2, …. Hercules removes the first letter and then the creature
regenerates in that each remaining ai with i > 1 becomes aiai�1. (Each remaining
a1 is unaffected.) This repeats and Hercules triumphs when the hydra is reduced to
the empty word ". The number of steps is denoted H .w/. (Each step encompasses
the removal of the first letter and then regeneration.) For example, H .a3

2/ D 7:

a3
2 ! .a2a1/

2 ! a1a2a
2
1 ! a2a

3
1 ! a3

1 ! a2
1 ! a1 ! ":

In [6] it is shown that Hercules will be victorious whatever hydra he faces, but the
number of strikes it takes can be huge: the functions Hk , defined by Hk.n/ D H .an

k
/,

grow like Ackermann’s functions: Hk ' Ak .
The group Gk is not hyperbolic because it has the subgroup ha1; ti Š Z2. We

obtain�k by combiningGk with another free-by-cyclic group, which is hyperbolic, in
such a way that the hydra phenomenon persists in�k , but the troublesome “Euclidean”
relations t�1a1t D a1 are replaced by something “hyperbolic”.

In Section 2 we will give two presentations Pk and Qk for �k and will prove
they are equivalent. Pk is well suited to proving hyperbolicity: the associated Cayley
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2-complex, suitably metrized, will be shown in Section 3 to be CAT.0/ and to contain
no isometrically embedded copies of R2 and so is hyperbolic by the Flat Plane Theo-
rem. Qk places �k in a class of free-by-cyclic groups which we show in Section 4
(for k � 2) contain free subgroups of rank k C 18 and distortion � Ak . (In the case
k D 1, Theorem 1.1 is elementary: take �1 to be a free group and ƒ1 to be �1.)

1.3. Background. Other heavily distorted free subgroups of hyperbolic groups have
been exhibited by Mitra [12]: for all k, he gives an example with a free subgroup of
distortion like a k-fold iterated exponential function and, more extreme, an example
where the number of iterations grows like logn. Barnard, the first author and Dani
developed Mitra’s constructions into more explicit examples that are also CAT.�1/
[3]. We are not aware of any example of a hyperbolic group with a finite rank free
subgroup of distortion exceeding that of our examples. Indeed, we do not know of a
hyperbolic group with a finitely presented subgroup of greater distortion. The Rips
construction, applied to a finitely presentable group with unsolvable word problem
yields a hyperbolic (in fact, C 0.1=6/ small cancellation) group G with a finitely
generated subgroupN such that DistG

N is not bounded above by any recursive function,
but these N are not finitely presentable. (See [1], §3.4, [7], Corollary 8.2, [9], §3,
3:K 00

3 , and [14].)
Whilst we will not call on it in this paper (as we will give the translation between

the presentations Pk andQk explicitly), a result that lies behind how we came to our
examples is that if a 2-complex admits an S1-valued Morse function all of whose
ascending and descending links are trees, then its fundamental group is free-by-cyclic
[2]. (The ascending link for our examples is visible in Figure 2 as the subgraph made
up of all edges connecting pairs of negative vertices. The descending is that made up
of all edges connecting pairs of positive vertices. Both are trees.)

1.4. Towards an upper bound on distortion. It seems likely that Dist�k

ƒk
' Ak ,

but we do not offer a proof that Dist�k

ƒk
� Ak . The proof that DistGk

Hk
� Ak in [6]

may guide a proof that Dist�k

ƒk
� Ak , but that proof is technical and how to carry it

over to Dist�k

ƒk
is not readily apparent. We are content to present here just the lower

bound, which we believe is the more significant.

1.5. Height and quasiconvexity. A finitely generated subgroup H of a finitely
generated group G is quasiconvex when DistG

H .n/ � Cn for some constant C . An
infinite subgroup H of a group G has infinite height when, for all n, there exist g1,
…, gn such that

Tn
iD1 g

�1
i Hgi is infinite and Hgi ¤ Hgj for all i ¤ j .

As ƒk � �k , for k � 2, are new examples of non-quasiconvex finitely presented
subgroups of hyperbolic groups, they are test cases for the question attributed to
Swarup in [13]: if a finitely presented subgroupH of a hyperbolic groupG has finite
height, is H quasiconvex in G? (We thank Ilya Kapovich for drawing our attention
to this.)



964 N. Brady, W. Dison and T. R. Riley

Ourƒk � �k do not resolve Swarup’s question as they have infinite height for all
k � 1. We explain this using the notation of Section 4. It follows from Proposition 4.8
that t i 2 ƒk if and only if i D 0. Soƒkt

i ¤ ƒkt
j for all i ¤ j . And

T1
iD1 t

�iƒkt
i

is infinite since the rank l free group hb1; : : : ; bli is a subgroup of t�iƒkt
i for all i .

Acknowledgement. We thank an anonymous referee for a careful reading.

2. Our examples

2.1. A CAT.0/ presentation for �k. This presentation Pk is well suited to estab-
lishing hyperbolicity (see Section 3):

generators: ˛1; : : : ; ˛k; ˇ1; : : : ; ˇ8; �1; : : : ; �8; �; �;

relations:

˛�1
i �˛i D ˛i�1 .1 < i � k/;

ˇ�1
i �ˇi D ˇiC1 .1 � i � 7/; ˇ8�ˇ

�1
8 D ˇ1;

��1
i ��i D �iC1 .1 � i � 7/; �8 ��

�1
8 D �1;

�3ˇ5 D ˇ3�5; ˛1�1� D ��7˛1:

It is convenient to encode Pk as shown in Figure 1 (which displays the case
k D 6). Each edge in the three labelled oriented trees (LOTs, see [10]) encodes a
commutator relation, an edge labelled y from a vertex labelled x to a vertex labelled
z corresponds to a relation y�1xy D z. The square and hexagonal 2-cells represent
the remaining two relations, �3ˇ5 D ˇ3�5 and ˛1�1� D ��7˛1.

ˇ1
ˇ1

ˇ2

ˇ2

ˇ3

ˇ3

ˇ3

ˇ4

ˇ4

ˇ5

ˇ5
ˇ5

ˇ6

ˇ6

ˇ7

ˇ7

ˇ8

ˇ8
�

�

�

� �

�1

�1
�1

�2

�2

�3

�3

�3

�4

�4

�5

�5

�5

�6

�6

�7

�7

�7

�8

�8

˛1

˛1

˛1

˛2

˛2

˛3

˛3

˛4

˛4˛5

˛5

˛6

˛6

Figure 1. The defining relations of the presentation P6 for �6 displayed as three LOTs and
two 2-cells.

If one removes the ˛i and all the relations in which they appear from Pk , then one
essentially gets groups studied by Mecham and Muckerjee in [11]. These, in turn,
are built from two copies of groups studied by Barnard and the first author in [2].
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2.2. A presentation of �k as a free-by-cyclic group. This presentation Qk has

generators: a0; : : : ; ak; b1; : : : ; b8; c1; : : : ; c8; d; t;

relations:

t�1ai t D �.ai /; 0 � i � k;

t�1bi t D �.bi /; 1 � i � 8;

t�1ci t D d .c5/ .ci / .c5/
�1d�1; 1 � i � 8;

t�1dt D �2.b5/
�1d .c5c

�1
3 /�.b3/;

where � , � and  are defined by

�.ai / D

8̂<̂
:
ua1v; i D 0;

a0; i D 1;

aiai�1; 1 < i � k;

�.bi / D .bi : : : b7/b
�1
1 b8 .1 � i � 8/;

 .ci / D .ci : : : c8/c
�1
1 c8 .1 � i � 8/;

and

u D t�kc�1
7 td .c5/t

k�1; v D t�.k�1/ .c5/
�1d�1t�1c1t

k :

Lemma 2.1. Qk presents a free-by-cyclic group

F.a0; a1; : : : ; ak; b1; : : : ; b8; c1; : : : ; c8; d / Ì Z;

where the Z-factor is hti and t acts as an automorphism.

Proof. First note:

(i) u and v represent elements of the subgroup hb1; : : : ; b8; c1; : : : ; c8; d i, and
(ii) � and define automorphisms ofF.b1; : : : ; b8/ andF.c1; : : : ; c8/, respectively,

as would � for F.a0; : : : ; ak/ were �.a0/ equal to a1 rather than ua1v.

The action of t by conjugation on

F.a0; a1; : : : ; ak; b1; : : : ; b8; c1; : : : ; c8; d /

apparent in the presentationQk is an automorphism because, as we will explain, the
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following is a sequence of free bases:

.a0; a1; : : : ; ak; b1; : : : ; b8; c1; : : : ; c8; d /

.1/��! .a1; t
�1a1t; : : : ; t

�1akt; b1; : : : ; b8; c1; : : : ; c8; d /

.2/��! .t�1a0t; t
�1a1t; : : : ; t

�1akt; b1; : : : ; b8; c1; : : : ; c8; d /

.3/��! .t�1a0t; t
�1a1t; : : : ; t

�1akt; t
�1b1t; : : : ; t

�1b8t;  .c1/; : : : ;  .c8/; d/

.4/��! .t�1a0t; t
�1a1t; : : : ; t

�1akt; t
�1b1t; : : : ; t

�1b8t;  .c1/; : : :

: : : ;  .c8/; d .c5c
�1
3 //

.5/��! .t�1a0t; t
�1a1t; : : : ; t

�1akt; t
�1b1t; : : : ; t

�1b8t; t
�1c1t; : : :

: : : ; t�1c8t; d .c5c
�1
3 //

.6/��! .t�1a0t; t
�1a1t; : : : ; t

�1akt; t
�1b1t; : : : ; t

�1b8t; t
�1c1t; : : : ; t

�1c8t; t
�1dt/:

This is because (1) a1, t�1a1t , …, t�1akt is a free basis for F.a0; : : : ; ak/ as per
(ii) above; (2) t�1a0t D ua1v, which is equivalent via transvections to a1 by (i);
(3) follows from (ii); (4) is via transvections; (5) conjugation by  .c5/

�1d�1 D
 .c5/

�1 .c5c
�1
3 / .c5c

�1
3 /�1d�1 is first conjugation by  .c5/

�1 .c5c
�1
3 /,

which is an automorphism of F.c1; : : : ; c8/, and then by  .c5c
�1
3 /�1d�1; and

(6) is via transvections as t�1b1t; : : : ; t
�1b8t are a free basis for F.b1; : : : ; b8/

and �2.b5/
�1; �.b3/ 2 F.b1; : : : ; b8/.

The subgroup ƒk of Theorem 1.1 will be

ha0t; : : : ; akt; b1; : : : ; b8; c1; : : : ; c8; d i:

2.3. The equivalence of the presentations. We will prove:

Proposition 2.2. Pk andQk present the same groups.

As a first step we establish:

Lemma 2.3. Mapping � 7! t�1 and ˇi 7! t�1bi for 1 � i � 8 defines an isomor-
phism

hˇ1; : : : ; ˇ8; � j ˇ�1
i �ˇi D ˇiC1 .1 � i � 7/; ˇ8�ˇ

�1
8 D ˇ1i

! F.b1; : : : ; b8/ Ì� Z D hb1; : : : ; b8; t j t�1bi t D �.bi / .1 � i � 8/i:
Proof. The given map translates the relations ˇ�1

i �ˇi D ˇiC1 (1 � i � 7) and
ˇ8�ˇ

�1
8 D ˇ1 to the family

t�1bi t D bi t
�1biC1t .1 � i � 7/; t�1b8t D b�1

1 b8;

which is equivalent to t�1bi t D �.bi / (1 � i � 8).
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Let P 0
k

andQ0
k

be the presentation obtained from Pk andQk by removing all the
generators ˛i and ai , respectively, and all the relations in which they occur.

Lemma 2.4. The groups presented by P 0
k

andQ0
k

are isomorphic via

� 7! t�1; ˇi 7! t�1bi .1 � i � 8/;

� 7! s�1; �i 7! s�1ci .1 � i � 8/;

where s D td .c5/.

Proof. As per Lemma 2.3, translate ˇ1, …, ˇ8, � and associated relations to b1, …,
b8, t and �1, …, �8, � and associated relations to c1, …, c8, s.

The given map converts the relation �3ˇ5 D ˇ3�5 to

s�1c3t
�1b5 D t�1b3s

�1c5:

This rearranges as
t�1b5c

�5sb�1
3 t D c�1

3 s

and then as
.t�1b5t /t

�1s.s�1c�1
5 s/t.t�1b�1

3 t / D s.s�1c�1
3 s/;

which is equivalent to

�.b5/t
�1s .c5/

�1t�.b3/
�1 D s .c3/

�1;

and so to
t�1s .c5/

�1t D t�1�.b5/
�1s .c3/

�1�.b3/:

So, as s D td .c5/,

t�1dt D t�1�.b5/
�1td .c5/ .c3/

�1�.b3/;

which gives
t�1dt D �2.b5/

�1d .c5c
�1
3 /�.b3/

as per Q0
k

. Next, as s D td .c5/, the relation s�1cis D  .ci / is equivalent to

t�1ci t D d .c5/ .ci / .c5/
�1d�1

as per Q0
k

.

Inductively define words ui and vi for i � 0 by

u0 D ˛k; uiC1 D u�1
i t�1ui .i � 0/;

v0 D ak; viC1 D v�1
i t�1vi t .i � 0/:

The following observation from [6] can be proved by inducting on i .
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Lemma 2.5. On substituting an ak for each ˛k in ui , the words ui and t i�1vi t
�i

become freely equal for all i � 1.

Proof of Proposition 2.2. By Lemma 2.4 there is a sequence of Tietze moves carrying
the subpresentation P 0

k
of Pk toQ0

k
and the remaining relations (those involving the

˛i ) to

˛1s
�1c1t

�1 D t�1s�1c7˛1; ˛�1
i t�1˛i D ˛i�1; 1 < i � k:

A sequence of Tietze moves eliminating ˛1, …, ˛k�1 transforms this family to the
single relation

uk�1s
�1c1t

�1 D t�1s�1c7uk�1:

Now substitute an ak for each ˛k . Then, by Lemma 2.5, this relation is equivalent to

.tk�2vk�1t
�.k�1//s�1c1t

�1 D t�1s�1c7 .t
k�2vk�1t

�.k�1//;

which becomes

t�1vk�1t D .t�.k�1/c�1
7 stk�1/vk�1.t

�.k�1/s�1c1t
k�1/

on conjugating by tk�1 and rearranging. A sequence of Tietze moves introducing
ak�1, …, a1 expands this to the family

t�1a1t D t�.k�1/c�1
7 stk�1a1t

�.k�1/s�1c1t
k�1; t�1ai t D aiai�1; 1 < i � k:

The first of these relations becomes t�1a1t D a0 when we introduce a0 together
with the new relation

a0 D t�.k�1/c�1
7 stk�1a1t

�.k�1/s�1c1t
k�1;

which becomes t�1a0t D ua1v on conjugating by t and eliminating the s and s�1

using s D td .c5/.

3. Hyperbolicity

We establish hyperbolicity using techniques employed in [2] and [11].
Consider the presentation 2-complex Kk for Pk assembled from Euclidean unit

squares associated to each of the defining relations with the single exception of
˛1�1� D ��7˛1 for which we use a Euclidean hexagon made from one unit square
and two equilateral triangles as shown in Figure 1.

The link in the case k D 6 is shown in Figure 2. All edges have length �=2 apart
from the edges �C—˛C

1 and ��—˛�
1 (shown in grey), which have length�=3, and the

edges from �C
1 —��, �C

7 —˛�
1 , ˛C

1 —��
1 , and �C—�C

7 (shown in green), which have
length 5�=6. Inspecting the link we see that any simple loop in the graph has length at
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�C
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ˇ �
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ˇ �
4

ˇ �
5

ˇ �
6ˇ �

7

ˇ �
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�
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1
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C
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�
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�
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4
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C
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6

�
C

7

�
C

8

��
1

��
2 ��

3

��
4

��
5

��
6��

7

��
8

Figure 2. The link of the vertex in the presentation 2-complex associated to the presentation
P6 for �6 given in Section 2. The two grey edges have length �=3, the four green edges have
length 5�=6, and all other edges have length �=2.

least 2� (separately considering the cases of monochrome and multicoloured simple
loops in Figure 1 helps to check this) – that is, for all k � 1 the link is large. So Kk

satisfies the link condition (see [5]) and its universal cover fKk is therefore a CAT.0/
space.

To establish that �k is hyperbolic we will show that fKk contains no subspace
isometric to E2 and then appeal to the Flat Plane Theorem of [4], [8]. The link of a
vertex in any isometric copy of E2 in fKk would appear as a simple loop of length 2�
in the link. But inspecting the link, we find that no edges of length �=3 or 5�=6 (the
grey and green edges) occur in a simple loop of length 2� . Next one can check the
edges �C

3 —ˇ�
5 , ��

3 —ˇ�
3 , ��

5 —ˇC
3 and �C

5 —ˇC
5 (the brown edges in the figure) do

not occur in a simple loop of length 2� . Then it becomes evident that edges occurring
in simple loops of length 2� are precisely the edges

�C—˛�
i ; ��—˛�

i .2 � i � k/;

�C—ˇ�
i ; ��—ˇ�

i .1 � i � 7/; �C—ˇC
8 ; ��—ˇC

8 ;

�C—��
i ; ��—��

i .1 � i � 7/; �C—�C
8 ; ��—�C

8 :

So every corner of every 2-cell in an isometrically embedded copy of E2 must give
rise to one of the edges in this list. But, looking at the defining relations, we see
that no 2-cell in fKk has this property. Therefore there are no such E2, and so �k is
hyperbolic.
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4. Freeness and distortion

4.1. A family of free-by-cyclic groups. Fix an integer l � 1, words u and v on
b1; : : : ; bl , and an automorphism � of F.b1; : : : ; bl/. Then, for k � 1, define

‰k ´ F.a0; : : : ; ak; b1; : : : ; bl/ Ì� Z;

where � is the automorphism of F.a0; : : : ; ak; b1; : : : ; bl/ the restriction of which to
F.b1; : : : ; bl/ is � and

�.ai / D

8̂<̂
:
ua1v; i D 0;

a0; i D 1;

aiai�1; 1 < i � k:

Let t denote a generator of the Z-factor, so t�1ai t D �.ai / and t�1bj t D �.bj / for
all i and j .

The presentation Qk in Section 2.2 shows �k is an example of such a ‰k .
Our aim in the remainder of this section is to establish:

Proposition 4.1. The subgroup

ƒk ´ ha0t; : : : ; akt; b1; : : : ; bli

of ‰k is free of rank k C l C 1 and Dist‰k

ƒk
� Ak .

4.2. Towards a lower bound on distortion. In what follows, when, for a word
u D u.a0; : : : ; ak; b1; : : : ; bl/, we refer to � r.u/, we mean the freely reduced word
that equals � r.u/ in F.a0; : : : ; ak; b1; : : : ; bl/.

The extreme distortion in the hydra groups of [6] stemmed from the battle between
Hercules and the hydra that we described in Section 1. When studying ‰k we will
need the following more elaborate version of that battle. A hydra is now a word on

a0; a1; : : : ; ak; b1; : : : ; bl

in which the ai only appear with positive exponents. As before, Hercules fights a
hydra by removing the first letter. But in this version, the hydra only regenerates after
an ai is removed, and that regeneration is: each remaining ai and b˙1

j becomes �.ai /

and �.b˙1
j /, respectively. Again, we consider Hercules victorious if, on sufficient

repetition, the hydra is reduced to the empty word.
Reprising the example from Section 1, Hercules defeats a3

2 as follows:

a3
2 ! .a2a1/

2 ! a0a2a1a0 ! a2a1a0ua1v ! a0ua1v�.u/a0�.v/

! a0�.v/�
2.u/ua1v�

2.v/ ! a0�.v/�
3.v/ ! ":
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Here the steps in which Hercules removes a bj are not shown; the arrows indicate the
progression from when an ai is about to be removed to when an ai next appears at
the front of the word or the hydra becomes the empty word.

The salient point is that a0 and the bj play no essential role in this battle; if we
removed all bj and replaced all a0 by a1, we would have a battle of the original form.
Thus we have the following lemma. (Recall that H .u/ denotes the duration of the
battle (of the original type from Section 1 and [6]) against the hydra u.)

Lemma 4.2. Hercules wins against all hydraw and, in the battle, the number of times
he removes an ai equals H . Nw/ where Nw is the word obtained from w by removing
all b˙1

j and replacing all a0 by a1.

Consideration of the original battle between Hercules and the hydra led to the
result that, for all k; n � 1, there is a positive word uk;n D uk;n.a1t; : : : ; akt / of
length Hk.n/ that equals an

k
tHk.n/ in Gk . (This is Lemma 5.1 in [6].) The reason is

that the pairing off of a t with an initial ai in a positive word on a1, …, ak corresponds
to a decapitation, and the conjugation by t that moves that t into place from the right-
hand end causes regeneration for the remainder of the word. For example H2.3/ D 7

and

a3
2t

7 D .a2t /t
�1a2

2t t
6

D .a2t /.a2a1/
2t6

D .a2t /.a2t /t
�1a1a2a1t t

5

:::

D .a2t /.a2t /.a1t /.a2t /.a1t /.a1t /.a1t /

D u2;3:

In the corresponding calculation for‰k , only the ai get paired with t , and on each
of the Hk.n/ times that happens, the subsequent conjugation by t can increase length
by a factor C which depends only on �, `.u/ and `.v/. So:

Lemma 4.3. There exists C > 0 such that for all k; n � 1 there is a word Ouk;n D
Ouk;n.a0t; : : : ; akt; b1; : : : ; bl/ that equals an

k
tHk.n/ in‰k and has the properties that

Hk.n/ � `. Ouk;n/ � CHk.n/n

and all the .ai t / it contains have positive exponents.

This and our next two lemmas will be components of a calculation that will yield
Proposition 4.6 (the analogue of Proposition 5.2 in [6]), which will be the key to
establishing a lower bound on the distortion of ƒk in ‰k .

A simple calculation yields:
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Lemma 4.4. t�ma1t
mC1 D �m in ‰k for all m � 1 where

�m ´

8̂<̂
:
a0t for m D 1;

�m�2.u/ : : : �2.u/u.a1t /�.v/�
3.v/ : : : �m�1.v/ for even m � 2;

�m�2.u/ : : : �3.u/�.u/.a0t /�
2.v/�4.v/ : : : �m�1.v/ for odd m > 2:

This combines with

t�1.a1t
�1/n D .t�1a1t

2/.t�3a1t
4/.t�5a1t

6/ : : : .t1�2na1t
2n/t�2n�1

to give:

Lemma 4.5. There is a constant C > 0, depending only on �, `.u/ and `.v/, such
that for all n � 0 there is a word vn D vn.a0t; b1; : : : ; bl/ such that t�1.a1t

�1/n D
vnt

�2n�1 in ‰k , the number of .a0t / contained in vn is n and all have positive
exponent, and n � `.vn/ � C n.

Proposition 4.6. For all k � 2 and n � 1, there is a reduced word of length at least
2Hk.n/C 3 on a0t , a1t , …, akt , b1, …, bl that equals an

k
a2ta1a

�1
2 a�n

k
in ‰k .

Proof. After rewriting the relation t�1a2t D a2a1 as a�1
2 ta2 D ta�1

1 , we see
a�1

2 tHk.n/a2 D .ta�1
1 /Hk.n/. So

an
ka2 D Ouk;na2.ta

�1
1 /�Hk.n/

for Ouk;n as in Lemma 4.3. This gives the first of the equalities

an
ka2ta1a

�1
2 a�n

k D Ouk;na2.ta
�1
1 /�Hk.n/ta1.ta

�1
1 /Hk.n/a�1

2 Ou�1
k;n

D Ouk;n.a2t /t
�1.ta�1

1 /�Hk.n/ta1.ta
�1
1 /Hk.n/t .a2t /

�1 Ou�1
k;n

D Ouk;n.a2t /vHk.n/t
�2Hk.n/�1ta1t

2Hk.n/C1v�1
Hk.n/.a2t /

�1 Ou�1
k;n

D Ouk;n.a2t /vHk.n/�2Hk.n/v
�1
Hk.n/.a2t /

�1 Ou�1
k;n:

The second is a free equality and the third and fourth are applications of Lemmas 4.5
and 4.4, respectively.

This calculation arrives at a word on a0t , a1t , …, akt , b1, …, bl that equals
an

k
a2ta1a

�1
2 a�n

k
in ‰k . This word may not be freely reduced, but if we delete all

the b˙1
j it contains, replace all a˙1

0 by a˙1
1 , and then freely reduce (i.e., cancel away

all .ai t /
˙1.ai t /

�1 subwords), we get uk;n.a2t /.a1t /.a2t /
�1u�1

k;n
, which has length

2Hk.n/C 3.

4.3. Freeness and rank. The result of this section is:

Proposition 4.7. The subgroup ƒk is free of rank k C l C 1.
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It will be convenient to prove more. In the special case where w represents
the identity, the following proposition tells us that there are no non-trivial relations
between a0t , …, akt , b1, …, bl and so establishes Proposition 4.7.

Proposition 4.8. If w D w.a0t; : : : ; akt; b1; : : : ; bl/ represents an element of the
subgroup hti in ‰k , then w freely equals the empty word.

We begin with an observation on how the groups ‰k nest.

Lemma 4.9. For 1 � i � k, the canonical homomorphism‰i ! ‰k is an inclusion.

Proof. The free-by-cyclic normal forms – a reduced word on a0, …, ak , b1, …, bl

times a power of t – of an element of ‰i and its image in ‰k are the same.

We will prove Proposition 4.8 by induction, but first we give a corollary which
will be useful in the induction step. We emphasise that when we say that
v.a0t; : : : ; akt; b1; : : : ; bl/ is freely reduced in the following we mean that there
are no .ai t /

˙1.ai t /
�1 or b˙1

j b�1
j subwords.

Corollary 4.10. Suppose that v.a0t; : : : ; akt; b1; : : : ; bl/ is a freely reduced word
equalling Ovt s in ‰k , where s 2 Z and Ov D Ov.a0; : : : ; ak; b1; : : : ; bl/ is a word in
which all the ai that occur have positive exponents. Then all the .ai t / in v have
positive exponents.

Proof. When played out against Ov.a0; : : : ; ak; b1; : : : ; bl/, the hydra battle described
prior to Lemma 4.2 gives a word v0 D v0.a0t; : : : ; akt; b1; : : : ; bl/ and an integer s0
such that v0 D Ovt s0

in‰k . Moreover, the exponents of all the .ai t / in v0 are positive.
Now v�1v0 2 hti since Ov D vt�s D v0t�s0

, and so v and v0 are freely equal by
Proposition 4.8. Therefore the exponents of all the .ai t / in v are positive.

Proof of Proposition 4.8. We induct on k. For the base case of k D 1, notice that
defining Na0 ´ a0t and Na1 ´ a1t , we can transform the presentation

ha0; a1; b1; : : : ; bl ; t j t�1a0t D ua1v; t
�1a1t D a0; t

�1bj t D �.bj / for all j i
for ‰1 to

h Na0; Na1; b1; : : : ; bl ; t j t�1 Na0t D u Na1�.v/; t
�1 Na1t D Na0; t

�1bj t D �.bj / for all j i;
which is an alternative means of expressing‰1 as a free-by-cyclic group from which
the result is evident.

For the induction step, we consider a freely reduced word w D w.a0t; : : : ; akt;

b1; : : : ; bl/ representing an element of hti in ‰k where k � 2. If no .akt /
˙1 are

present in w we can deduce from the induction hypothesis and Lemma 4.9 that w
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freely reduces to the empty word. For the remainder of our proof we suppose there
are .akt /

˙1 present, and we seek a contradiction.
Consider shuffling the t˙1 to the start ofw using the defining relations – replacing

each ai and bj passed by a t˙1 with �˙1.ai / and �˙1.bj /, respectively. The result
will be a power of t times a word on a0, …, ak , b1, …, bl which freely reduces
to the empty word. Such is � , no ak are created or destroyed in this process of
shuffling the t˙1. So there is some expression w0.akt /

˙1u.akt /
�1w1 for w such

that u D u.a0t; : : : ; ak�1t; b1; : : : ; bl/ and the a˙1
k

and a�1
k

in the .akt /
˙1 and

.akt /
�1 buttressing u cancel after the shuffling and free reduction.

We will address first the casew D w0.akt /
�1u.akt /w1. Break down the shuffling

process by first shuffling the t˙1 out ofw0, u andw1, and then carrying the resulting
powers to the front of the word:

w D w0.akt /
�1u.akt /w1 ! t r0 yw0.akt /

�1t r Ou.akt /t
r1 yw1

! t r0CrCr1� rCr1 . yw0/�
rCr1C1.a�1

k /� r1C1. Ou/� r1C1.ak/ yw1;

where r0; r; r1 2 Z and

yw0 D yw0.a0; : : : ; ak; b1; : : : ; bl/;

Ou D Ou.a0; : : : ; ak�1; b1; : : : ; bl/;

yw1 D yw1.a0; : : : ; ak; b1; : : : ; bl/

are words such that t r0 yw0 D w0, t r Ou D u and t r1 yw1 D w1 in‰k . When we expand
� rCr1.a�1

k
/ and � r1C1.ak/ as words on a0, …, ak , the former ends with an a�1

k

which must cancel with the ak at the start of the latter. So � r1C1. Ou/, and therefore
Ou, freely equal the empty word. So u represents an element of hti and, by induction
hypothesis, freely reduces to the empty word, contrary to the initial assumption that
w.a0t; : : : akt; b1; : : : ; bl/ is reduced.

In the case w D w0.akt /u.akt /
�1w1, the shuffling process is

w D w0.akt /u.akt /
�1w1 ! t r0 yw0.akt /t

r Ou.akt /
�1t r1 yw1

! t r0CrCr1� rCr1. yw0/�
rCr1.ak/�

r1�1. Ou/� r1.a�1
k / yw1;

where t r0 yw0 D w0, t r Ou D u and t r1 yw1 D w1 in ‰k , as before. The first and last
letters of � rCr1.ak/�

r1�1. Ou/� r1.a�1
k
/ are ak and a�1

k
which cancel, so this subword

must freely reduce to the empty word. So � r.ak/�
�1. Ou/a�1

k
also freely reduces to

the empty word, that is, � rC1.ak/ Ou freely equals akak�1.
If r D 0 then this says that Ou freely equals the empty word and, as before, we have

a contradiction. Suppose that r > 0. Then Ou�1 D .akak�1/
�1� rC1.ak/ would be a

positive word on a0, …, ak�1 were we to remove all the b˙1
1 , …, b˙1

l
it contains. So,

as Ou�1t�r D u�1, Corollary 4.10 applies and tells us that u�1 would be a positive
word were we to remove all the b˙1

1 , …, b˙1
l

it contains. But r is the exponent sum of
the .a0t /

˙1, …, .ak�1t /
˙1 in u, and so we deduce the contradiction r � 0. Finally

we note that the case r < 0 also leads to a contradiction because if we replace w by
w�1 it becomes the case r > 0.
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4.4. Conclusion. We deduce from Proposition 4.8 that the word posited in Proposi-
tion 4.6 is the unique reduced word on a0t , …, akt , b1, …, bl that equals
an

k
a2ta1a

�1
2 a�n

k
in ‰k . This establishes that Dist‰k

ƒk
� Hk for all k � 2. So, by

Proposition 1.2 in [6], which says that Hk ' Ak for all k � 1, we have Dist‰k

ƒk
� Ak

for all k � 2. Added to Proposition 4.7, this completes the proof of Proposition 4.1.
Proposition 4.1 applies to the subgroup

ha0t; : : : ; akt; b1; : : : ; b8; c1; : : : ; c8; d i
of �k (presented as Qk of Section 2) and so, as we established �k to be hyperbolic
in Section 3, Theorem 1.1 is proved.
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