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Positive speed for high-degree automaton groups
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Abstract. Mother groups are the basic building blocks for polynomial automaton groups.
We show that, in contrast with mother groups of degree 0 or 1, any bounded, symmetric,

generating random walk on the mother groups of degree at least 3 has positive speed.
The proof is based on an analysis of resistance in fractal mother graphs. We give upper

bounds on resistances in these graphs, and show that infinite versions are transient.

The fractal mother graph G .1; 2; 8/.
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1. Introduction

The most interesting automaton groups, called polynomial automata, are classified
according to their degree. In [10] it was shown that all these groups are small in the
sense that they do not contain nonabelian free subgroups. It was asked whether all
these groups were amenable, a question that is still wide open.

In [2] (for degree 0) and [1] (for all degrees) it was shown that every polynomial
automaton group is contained in a mother group of the same degree. The mother
groups Md;n, defined precisely in Section 3, are a simple set of groups indexed by
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their degree d and the size of the alphabet m. Our main theorem shows that for d � 4

or d � 3, m � 3 the mother groups are large in the following sense.

Theorem 1. Every bounded, generating random walk on the mother groups with
d � 4 or d � 3, m � 3 has positive speed.

This is proved through Proposition 12 and Theorem 3. Theorem 1 is in contrast
with d D 0; 1 where the mother groups support bounded, generating random walks
with zero speed. ([2], [1].)

The proof of this theorem is based on the analysis of Schreier graphs of the natural
action of automata groups. These graphs are discrete versions of fractals, and indeed,
many classical fractals can be represented this way. Examples include the Sierpinski
gasket, the long-range graph of [4], the Basilica (see [6] and [3]) and other Julia sets.
The Schreier graphs G .d; m; n/ for the mother groups, called fractal mother graphs
can be described up to uniform quasi-isometry, as follows (the precise definition is
given in Section 3). The vertex set is f0; : : : ; m�1gn, and two vertices are connected
by an edge if they differ in a single digit, and this digit is followed by at most d C 1

nonzero digits. Figures of various fractal mother groups can be found throughout the
paper.

Theorem 2. The resistance between any two vertices in G .d; m; n/ is bounded above
by

c
�

m
m�1

�n
for d D 0;

cn3�d�logm.m�1/ for d D 1 or d D 2;

c log2 n for d D 3; m D 2;

c for d � 4 or d � 3; m � 3;

where c is a constant depending on d , m only.

This will be shown in Propositions 10 and 12. It is interesting to note that the
graphs G .0; 2; n/ are paths, and G .0; 3; n/ are close relatives of the Sierpinski gasket,
although different enough that the resistances are off by a power. See [8] for an
overview of analysis on such fractals.

In an upcoming paper we plan to show a logarithmic lower bound for d D 2 and
a polynomial lower bound for d D 1.

The graphs G .d; m; n/ have infinite versions, defined as above with n D 1. These
graphs have uncountably many connected components; the notation G .d; m; 1/

refers to the component of the vertex : : : 000. In this case, we show that for d � 4 or
d � 3, m � 3 every connected component is transient.

The second step of the proof is based on the ideas of [5]. In our setting we have
the following.
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The fractal mother graph G .2; 2; 8/.

Theorem 3. If G .d; m; 1/ is transient, then every bounded generating random walk
on the group Md;m has positive speed.

In fact, following the proof of [5], we show that the group has nonconstant bounded
harmonic functions, which is equivalent to positive speed, see [7], [11], [12] and also
the lecture notes [9].

Finally, we would like to state some open questions and conjectures. The one we
wish could be a theorem in this paper is

Conjecture 1. The graph G .3; 2; 1/ is transient.

This would take care of the missing case d D 3, m D 2.
Our bounds for d D 0, d � 4 and d � 3, m � 3 are sharp. We believe that the

following is true.

Conjecture 2. The bound for d D 1 is sharp.

In contrast, it seems that we have the following.

Conjecture 3. The maximal resistance in G .2; m; n/ grows slower than any power
of n.

In a future paper, we will show that G .2; m; 1/ is recurrent. This, however, does
not decide the following

Question. Do the degree 2 mother groups support generating random walks with
positive speed? Do they support generating walks with zero speed?

We have also observed, but have not been able to prove, the following. In the graph
G .d; m; n/ call the vertex 00 : : : 00 the root and the vertex 10 : : : 00 the antiroot.
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Conjecture 4. The root and the antiroot maximize the resistance in G .d; m; n/.

Showing this would simplify our present proof.

2. Automata and their groups

Basic definitions. Finite automata are the simplest interesting model of computing.
The space of words in alphabet f0; : : : ; m � 1g has a natural tree structure, with
fwxgx<m being the children of the finite word w, and the empty word ; being the
root. Let Tm denote this tree.

The fractal mother graph G .3; 2; 7/.

A finite automaton on m symbols is a finite set of states A with a map A !
Am � Sym.m/ sending a 7! .a0; : : : ; am�1; �a/. We will use the notation

a D hha0; : : : ; am�1ii�a:

An automaton acts on words in alphabet f0; : : : ; m � 1g sequentially. When the
automaton is in a state a and reads a letter x, it outputs x � �a and moves to state ax .
From this state the automaton acts on the rest of the word. Formally, for a word wx

(with the first letter from the right being the letter x) we have the recursive definition

.wx/ � a D .w � ax/.x � �a/: (1)

The first k symbols of the output are determined by the first k symbols read. Note
that the action is defined for both finite and infinite words, and that the action on
infinite words determines the action on finite words and vice versa. It follows that
each element a 2 A is an automorphism of Tm. The automaton group corresponding
to an automaton A is the subgroup of Aut.Tm/ generated by A.

The action (1) corresponds to the following multiplication rule:

hha0; : : : ; ad ii�hhb0; : : : ; bd ii� D hha0b0�� ; : : : ; am�1b.m�1/�� ii��:
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This multiplication rule can be used to define automaton groups without any reference
to automorphisms of the tree.

We use the conjugation notation ab D b�1ab:

The notion of first-level sections can be generalized to any level. If v 2 Tm is
a finite word and g 2 Aut.Tm/, then there is a word v0 of equal length to v and an
automorphism g0 2 Aut.Tm/ such that vw � g D v0.w � g0/, for every word w. This
g0 is called the section of g at v. Informally, g0 is the action of g on the subtree above
the vertex v. The section of g at v is denoted by g.v/.

The group Aut.Tm/ also acts on infinite geodesics starting from the root, called
rays; these correspond to one-sided infinite words in the alphabet. The set of rays is
called the boundary @Tm of Tm. The zero ray is the geodesic : : : 0000.

Activity growth of automaton groups. For any state a 2 A, the number of length-n
words v such that the section a.v/ is not the identity satisfies a certain linear recursion.
Thus this number grows either polynomially with some degree d or exponentially. We
define the degree of activity growth (in short, degree) of a to be d or 1, respectively.
The degree of an automaton group is the maximal degree of any of its generators.
Automaton groups are said to have bounded, linear, polynomial or exponential activity
growth when their degree is 0, 1, finite or infinite, respectively.

3. Mother groups

The mother group, denoted by Md;m, is defined as the automaton group generated
by the states

˛k;� D hh˛k;� ; ˛k�1;� ; 1; : : : ; 1ii; 0 � k � d;

˛�1;� D �;

ˇk;� D hhˇk;�; ˇk�1;�; 1; : : : ; 1ii; 1 � k � d;

ˇ0;� D hhˇ0;�; 1; : : : ; 1ii�;

where �; � 2 Sym.m/ are arbitrary, subject to 0 � � D 0. The number of states in
Md;m as defined here is mŠ.d C 1/ C .m � 1/Šd . The same group can be generated
with fewer states by taking � , � only in a minimal (2-element) set of generators of
Sym.m/ and stab.0/ � Sym.m/ respectively. This would give a generating set of
size 4d C 2.

The actions of ˛k;� and ˇk;� on a word have simple descriptions. Both read the
word and make no changes up to the .k C 1/th non-zero letter.

� If the first k C 1 nonzero letters from the right in a word are all 1, then ˛k;�

permutes the next letter by � . Otherwise it does nothing.
� If the first k nonzero letters from the right in a word are all 1, then ˇk;� permutes

the next nonzero letter by �. Otherwise it does nothing.
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Thus both affect only the .kC1/th non-zero letter and the letter immediately following
it.

Theorem 4 (Mother groups contain all, [1]). Every degree-d automaton group is
isomorphic to a subgroup of Md;m for some m.

Note that m is generally not the same as the degree of the tree on which the
automaton acts.

Level subgroups. Observe that the group of automorphisms of the first two levels
of Tm fixing 0 and its children is isomorphic to Sym.m/ o Sym.m � 1/. (We will
interpret elements in Sym.m � 1/ as acting on f1; : : : ; m � 1g.)

For each � 2 Sym.m/oSym.m�1/ and each word w in the symbols f1; : : : ; m�1g
let �w;� denote the element of Aut.Tm/ acting as follows: If the first jwj nonzero
letters from the right agree with w, then �w;� permutes the jwj C 1st nonzero letter
and the following letter by � . Otherwise �w;� does nothing. For example, for
� D .id; .01//o.12/ we have : : : 002020010��21;� D : : : 011020010, : : : 001020010�
�21;� D : : : 002020010 and : : : 002010010 � �21;� D : : : 002010010.

For a word w of length k, define the group Lw
m;k

generated by �w;� as � ranges
over Sym.m/ o Sym.m � 1/. Define the group Lk;m to be the group generated by the
Lw

k;m
for all words w of length k. Define further L�1;m D Sym.m/.

Later, we will consider random walks on the mother group whose step distribution
is a convex combination of uniform measures on the subgroups Lk;m for various k’s.

Lemma 5 ([1]). For each w, Lw
k;m

� Sym.m/ o Sym.m � 1/. The group Lk;m is

a subgroup of Mk;m and is the direct product of Lw
k;m

for w 2 f1; : : : ; m � 1gk .
Moreover, the mother group Mk;m is generated by the subgroups fLm;`g`�k :

Definition 6. The fractal mother graphs G .d; m; n/ are the Schreier graphs of the
mother group Md;m acting on level n of Tm with the generating set

S
k�d Lk;m

(counting multiplicity). These are regular graphs with vertex degree

deg.v/ D
dX

kD�1

jLk;mj D mŠ C
dX

kD0

.m � 1/k.m � 1/Š.mŠ/m�1

G .d; m; 1/ is the connected component of the zero ray of the Schreier graph of
the action of Md;m on the boundary. The figures in this paper depict various instances
of G .d; m; n/.

4. Basic resistance properties of fractal mother graphs

The vertices of G .d; m; n/ are the set of words in f0; : : : ; m � 1gn. There is a natural
embedding G .d; m; 1/ � G .d; m; 2/ � � � � � G .d; m; 1/ of the vertex sets of these
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graphs, given by adding zeros to the beginning of words. This embedding preserves
the graph structure in the sense that the graph induced by the vertices of G .d; m; i/

in G .d; m; i C 1/ is isomorphic to G .d; m; i/ with some loops erased.
We introduce some notation: The n-digit vertices o D 00 : : : 00 and Non.x/ D

x0 : : : 00 (x 2 f1; 2; �; m�1g) are called the root and x-antiroot of G .d; m; n/. Non.1/

is called simply the antiroot of G .d; m; n/ and denoted by Non. For w 2 G .d; m; n/

let #w denote the number of nonzero letters in w. Finally, let Rd;m;n.a; b/ denote
the resistance in G .d; m; n/ between vertices or vertex sets a, b.

Proposition 7. (a) For x 2 G .d; m; n/ we have

Rd;m;n.o; x/ �
X

sWxs 6D0

Rd;m;s.o; Nos/:

(b) For x; y 2 G .d; m; n/ we have

Rd;m;n.x; y/ �
nX

sD1

.1.xs 6D 0/ C 1.ys 6D 0//Rd;m;s.o; Nos/:

Proof. (a): Let x D xn : : : x1, and zs D xn : : : xs followed by s � 1 zeros. The
triangle inequality for resistances gives

Rd;m;n.o; x/ �
nX

sD1

Rd;m;n.zs�1; zs/:

The terms where xs D 0 are 0. To complete the proof, we need to show that

Rd;m;n.zs�1; zs/ � Rd;m;s.o; Nos/:

This is because the map (mapping words of length s to words of length n) that sends a
word v to xn : : : xk�1v is an injection of vertices and extends to an injection of edges
(apart from loops). Moreover,

o 7! zs and No`.xs/ 7! zs�1:

Thus by Rayleigh’s monotonicity we get

Rd;m;n.zs�1; zs/ � Rd;m;s.o; Nos.xs//

and the right-hand side equals Rd;m;s.o; Nos/ by symmetry.
(b) This follows from part (a) and the triangle inequality for resistances.

Let
Nr.d; m; n/ D max

x;y2G .d;m;n/
Rd;m;n.x; y/:
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Proposition8. (a)Forn0 � nandx; y < mn0

wehaveRd;m;n.x; y/ � Rd;m;n0.x; y/.
(b) There exists a constant c depending on m; d only so that for k � 1 we have

Nr.d; m; n C k/ � ck Nr.d; m; n/.

Proof. (a): This follows from Rayley’s monotonicity principle and the fact that, apart
from loops, G .d; m; n0/ is a subgraph of G .d; m; n/.

(b): It suffices to prove this for k D 1, the rest follow by induction. Consider
the vertices x < mn. Fix a letter b. Note that x 7! bx is a graph homomorphism
(except for loops). In particular, by Rayleigh’s monotonicity principle for x; y < mn

we have
Rd;m;nC1.bx; by/ � Rd;m;n.x; y/: (2)

Recall that Non is the antiroot 100 : : : 000 in G .d; m; n/. For letters a; b the triangle
inequality for resistances implies

Rd;m;nC1.ax; by/

� Rd;m;nC1.ax; a Non/ C Rd;m;nC1.a Non; b Non/ C Rd;m;nC1.b Non; by/:

There is an edge between a Non and b Non. So by (2) we have the upper bound

Rd;m;nC1.ax; by/ � Rd;m;n.x; Non/ C 1 C Rd;m;n.y; Non/ � .2 C c/ Nr.d; m; n/:

5. Flow construction

The goal of this section is to give an upper bound on the maximal resistance in
G .d; m; n/. We include the proof of the following simple fact for completeness.

Lemma 9. We have Nr.0; m; n/ � 2n � 1.

Proof. It suffice to prove that there is a path of length 2n � 1 to any n-digit number `.
By the symmetry of the mother group, it suffices to show this for numbers containing
the digits 0; 1 only; in particular, it suffices to show this for the m D 2 mother
group. For this, for the binary string x D xn : : : x1 consider the inverse Gray code
representation y D yn : : : y1 with bits yk D xn C � � � C xk . By checking how the
two generators act on the y, one sees that graph indexed by the y’s is the simple path
0; 1; 2; : : : 2n � 1 (with loops attached at the endpoints).

Proposition 10. We have c
�

m
m�1

�n � Nr.0; m; n/ � c0 �
m

m�1

�n
, where c, c0 depend

on m only.

Proof. First let d be general, and consider the current flow from o to the set of
antiroots NOn D fNon.1/; : : : Non.m � 1/g in G .d; m; n/. Note that the graph, o and xOn

are symmetric under the action of Sym.m � 1/n which changes the nonzero letters
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The fractal mother graph G .0; 3; 4/.

of the strings of each vertex. Since the current flow is unique, it must be invariant
under this action. In particular, if we identify vertices of the graph that are in the same
orbit, the resistances will not change (normally, they could only decrease by Raleigh’s
monotonicity). After this identification, we get a weighted version of G .d; 2; n/ with
vertices given by binary strings. Each vertex y is the image of .m � 1/#y vertices in
G .d; 2; n/. For d D 0 this is graph is a simple path (Lemma 9), and the resistance
between the endpoint can be computed explicitly. Here we estimate it by a quick
argument: each vertex has one or two incident edges. The weight of these edges is
within constants of the weight of the vertex. By the series formula, the resistance is
given by the sum over the edges of w.e/�1, which is therefore within constants of
the sum over the vertices of w.v/�1, that is

2n�1X
vD0

.m � 1/�#v D
� m

m � 1

�n

;

computed via the binomial formula. Finally, note that symmetry implies

Rd;m;n.o; xOn/ � Rd;m;n.o; Non/ � .m � 1/2Rd;m;n.o; xOn/

for the last inequality, note that the current flow to On has strength 1=.m � 1/ going
into Non, so the energy of .m � 1/ times this flow is an upper bound for the resistance
between o and Non. Finally, Proposition 7 (b) implies the bound on Nr .

One way to get a transient graph is to construct a product structure; for example
Z � Z � Z is transient. We would like to construct something that resembles the
product of the Schreier graphs of a degree d group and a degree d 0 group. It will turn
out to be a subgraph of the zero-ray Schreier graph of the mother group of degree d

for greater n.
Recall that Nr.d; m; n/ denotes the maximal resistance between vertices in

G .d; m; n/. The core of the argument is contained in the following proposition.



32 G. Amir and B. Virág

Proposition 11. For any nondecreasing sequence �s � 1 and n � 3 we have

Nr.d; m; n/ � c

n�2X
sD1

� Nr.d 0; m; b�sc/

sd�d 0�1
C Nr.d; m; s/

m�s

�
; (3)

where 0 � d 0 � d � 1 is an integer and c is a constant depending on m and d only.

Proof. We first assume that the �s are integers, �1 D � � � D �d D 1, and n � d C 2.
Let a, a0 be two vertices in G .d; m; n/. Thompson’s principle says that resistance
between two vertices equals the energy of the minimal energy unit flow between
them. We will construct a unit flow from a to a0 which has the right bounds. We will
construct this flow as a sum of many parts.

Let ak denote a with its lowest k digits erased. Let a�
k

denote ak with its lowest
digit permuted cyclically by .0 : : : m � 1/. Let � be the smallest number so that
�� C 1 C � � n; we note that � � d .

Recall that #y denotes the number of nonzero digits of y. For d � 1 � s < � let

Xs D fa�
�sCsC1x W 0 � x < m�s g;

where a�
�sCsC1x denotes the concatenation of a�

�sCsC1 and the �s-digit version of x.
Let

Ys D f0 � y < ms W #y D d � d 0 � 1g:
We will think of numbers in Ys as written in their base-m, s-digit form. Finally, define

X� D fx W 0 � x < mn��g:
For x 2 Xs and y 2 Ys we denote by x1y the obvious concatenation, and let Xt1Ys

denote the set of such concatenations; let Xt01Ys be defined similarly.
We now consider flows

a ! Xd�11Yd�1 ! Xd 01Yd�1 ! Xd 1Yd ! XdC101Yd

! XdC11YdC1 ! � � � ! X�01Y��1;

each transporting uniform measure from one set to uniform measure on the next.
These vertex sets and flows will not be disjoint, but we will be able to control overlaps.

Let � be the sum of these flows. Let �0 be the sum of the same flows constructed
for a0, and let N� be its reversal. Then � C N� is a unit flow from a to a0.

Let E.�/ denote the energy of the flow �, i.e.,
P

e �.e/2. To bound the energy of
�, we first bound the energy of its components; these alternate between two types.

Horizontal spread Xs�11Ys�1 to Xs01Ys�1. Fix y 2 Ys�1. Consider edges of the
form .a�

sC�sC2x1y; a�
sC�sC2.g:x/1y/ where g is a generator of degree at most d 0 and

x; g:x < m�sC2. The subgraph of G .d; m; n/ spanned by these edges is isomorphic
(up to loops) to G .d 0; m; �s C 2/ through the map x 7! a�

sC�sC2x1y.
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We call such edges horizontal. By Thompson’s principle for any x1 2 Xs�1 and
x2 2 Xs there exists a unit flow �h

s;x1;x2;y from x11y to x201y to along these edges
satisfying

E.�h
s;x1;x2;y/ � Nr.d 0; m; �s C 2/:

Let �h
s;y denote the average of these flows over all x1 2 Xs�1; x2 2 Xs . By convexity

of energy, we have
E.�h

s;y/ � Nr.d 0; m; �s C 2/:

We now average these flows over all y 2 Ys�1 to get the flow �h
s . Since these flows

have disjoint support, and since jYs�1j � csd�d 0�1 we get that

E.�h
s / � cs1Cd 0�d Nr.d 0; m; �s C 2/ � cs1Cd 0�d Nr.d 0; m; �s/:

The last inequality follows from Proposition 8 (a). The flow �h
s transports uniform

measure form Xs�11Ys�1 to uniform measure on Xs01Ys�1.
A trivial modification of the argument gives a flow �� from X��11Y��1 to

X�01Y��1 with energy bounded by

E.�h
� / � c�1Cd 0�d Nr.d 0; m; �� /:

Vertical spread, Xs01Ys�1 to Xs1Ys. Fix x 2 Xs . Consider edges of the form
.xys; xg � y/ where g is a generator of degree at most d , and y; g � y < msC1 and
y, g � y above are in their .s C 1/-digit form. The subgraph of G .d; m; n/ spanned
by these edges is isomorphic (up to loops) to G .d; m; s C 1/. We call such edges
vertical. By Thompson’s principle for any y1 2 Ys�1 and y2 2 Ys there exists a unit
flow �v

s;x;y1;y2
from x01y1 to x1y2 along these edges satisfying

E.�v
s;x;y1;y2

/ D Rd;m;sC1.01y1; 1y2/:

Let �v
s;x denote the average of these flows over all y1 2 Ys�1 and y2 2 Ys . By

convexity of energy, we have

E.�v
s;x/ � Nr.d; m; s C 1/:

We now average these flows over all x 2 Xs to get the flow �v
s . Since these flows

have disjoint support, we get that

E.�h
s / � 1

m�s
Nr.d; m; s C 1/ � c

m�s
Nr.d; m; s/:

The last inequality follows from Proposition 8 (a). The flow �v
s transports uniform

measure on Xs01Ys�1 to uniform measure on Xs1Ys .

We consider the flow from o to V4;s constructed piecewise as above, namely

� D �a C �h
d C �v

d C � � � C �v
��1 C �h

� :



34 G. Amir and B. Virág

Here �a a unit current flow from a to uniform measure on Xd�11Yd�1, and its energy
is bounded by some constant.

We first note that the flows �h
s for different s < � are vertex-disjoint. This is

because these flows move between vertices of the form x1y, with y 2 Ys�1 fixed.
As long as one can determine s from x1y, the vertex-disjointness follows. But since
#y D d � d 0 � 1, the .d 0 C 2/th nonzero digit from the right in x1y is in position s.

Similarly, we show that the flows �v
s are vertex disjoint for different s < � .

Again, these flows are vertex-disjoint. They move between vertices of the form xy

with y < msC1 is in s C 1-digit form, and x 2 Xs is fixed. This is why we permuted
a bit in a�: the highest digit in xy that differs from the digit at the same position in
a is exactly at position s C �s C 2. Since the map s 7! s C �s is strictly increasing,
the value of s C �s determines the value of s.

Note that the energy of the sum of flows
P

�i is bounded above by
P

miE.�i /

where mi is the number of flows (including itself) that the flow �i shares an edge
with. Breaking up the flow � into four parts, namely the sum of the horizontal flow
terms, the vertical terms, and �a as well as �� ,

E.�/ � 4E.�a/ C 4c

�X
sDd

Nr.d 0; m; �s/

sd�d 0�1
C 4c

��1X
sDd

Nr.d; m; s/

m�s
:

Note that the flow �a can be chosen so that its energy is bounded by a constant
depending on d , m only. We can remove the additive constants by increasing the
multiplicative one and using that r.d 0; m; �/ is bounded below. Then Thompson’s
principle gives

Rd;m;n.a; a0/ � E.� C N�/ � 2E.�/ C 2E. N�/

� c

�X
sDd

Nr.d 0; m; �s/

sd�d 0�1
C c

��1X
sDd

Nr.d; m; s/

m�s
:

Since � � n � 2, the inequality (3) follows for �s , n satisfying the assumptions at
the beginning of the proof. Using the fact that Nr.d 0; m; �/ is bounded below, and
Proposition 8 (b) it is straightforward to see that (3) holds with a modified constant c

for general �s , n.

The proof of the following standard fact is a simple exercise.

Fact. Let G be a bounded degree graph with a vertex o with an infinite sequence of
vertices whose resistance to o is bounded. Then G is transient.

Proposition 12. For d � 1, m � 2 we have

Nr.d; m; n/ �

8̂<
:̂

c for fd � 4; m � 2g or fd � 3; m � 3g;
c log2 n for fd D 3; m D 2g;
cs3�d�logm.m�1/ for f1 � d � 2g;
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where c depends on m, d only. In particular, in the first case, G .d; m; 1/ is transient.

Proof. Set d 0 D 0, and set

r.s/ D r.d; m; s/ D max
1�`�s

Nr.d; m; `/

to guarantee that r is nondecreasing. Proposition 11 together with Lemma 9 gives

r.n C 2/ � c

nX
sD1

�
m

m�1

��s

sd�1
C r.s/

m�s
:

Since we are free to choose �s , we will find the approximate minimizer of the right-
hand side. When the two terms are equal, we are off from the minimum by at most a
factor of two. The calculation gives the choice

�s D logm2=.m�1/.r.s/sd�1/

which is indeed nondecreasing and gives

r.n C 2/ � c

nX
sD1

r.s/1��

s.d�1/�
; � D .2 � logm.m � 1//�1:

Let f .s/ denote the summand on the right-hand side. We extend r to a piecewise
linear continuous function on Œ1; 1/. For this function we have

r.t/ � r.dte/ �
dte�2X
sD1

f .s/ ds �
Z dte�1

1

f .s/ ds �
Z t

1

f .s/ ds

for t � 3. In particular, adding a constant, we can make the inequality valid for all
t � 1:

r.t/ � c C c

Z t

1

r.s/1��

s.d�1/�
ds: (4)

Consider the solution of the differential equation

u0.s/ D 	
u.s/1��

s.d�1/�

given by

u.s/ D

8̂̂̂
<̂
ˆ̂̂̂:

�
��.1�s1�.d�1/�/

.d�1/��1

� 1
�

for .d � 1/� > 1;

.� 	 log.s//
1
� for .d � 1/� D 1;�

��s1�.d�1/�

1�.d�1/�

� 1
�

for .d � 1/� < 1:
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For 	 large enough (and greater than the constant in front of the integrand in (4)) we
have that u.2/ will be greater than the right-hand side of (4) evaluated at s D 2. For
such 	 we claim that u.t/ > r.t/ for all t � 2. Assume the contrary; since r , u are
continuous, then there is a smallest t � 2 so that u.t/ D r.t/. Therefore

r.t/ � c C c

Z t

1

r.s/1��

s.d�1/�
ds < u.2/ C 	

Z t

2

u.s/1��

s.d�1/�
ds D u.t/;

a contradiction. In terms of d and m, the inequality deciding the cases above is
d � 3 � logm.m � 1/. The claim of the corollary follows.

6. From transience to nontrivial Poisson boundary

Let K denote the subgroup of Md;m generated by all generators except those of
degree �1. Note that all elements of K fix the zero ray. Let H denote the subgroup
of K generated by all generators excepts those of degree �1 or degree d .

Proposition 13. For every g in the mother group, as n ! 1 the nth level section at
the zero ray is eventually constant and is in K. We call this germ.g/.

Note that germ.k/ D k for k 2 K.

Proof. We prove this by induction on jgj. Write

g D hhg0 D x; : : : ; gmn�1ii�
for the decomposition of g at level n. Assume that the claim holds for g, i.e., x 2 K;
we will show it for gs where s is a generator. Since x 2 K, we have 0:x D 0 and the
first-level section satisfies x.0/ D x. Then for a generator s D hhs0; : : : smn�1ii� we
have

gs D hhxy; : : :ii��

where y D s0:� is itself a generator or the identity. At level n C 1 we have the
expansion

gs D hhxy.0/; : : :ii� 0� 0:

Now for every generator y if y … K, then y.0/ D id. In this case we have xy.0/ D
x.0/ D x, and the level n C 1 expansion is of the form gs D hhx; : : :ii� 0� 0. Note
that x.0/ D x implies that the level sections of g at the zero ray remain x from level
n C 1 on.

Otherwise, if y 2 K, note that 0 � x D 0, and y.0/ D y, and therefore xy.0/ D
x.0/y.0�x/ D xy, so the level sections of g remain xy from level n on, the completing
the proof.
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We define lamp.g/ as the quotient of germ.g/ by the subgroup group generated
by all generators of degree at most d � 1. The function lamp. / takes values in the
coset space K=H .

Proposition 14 (Lighting a single lamp). Let g 2 M and let s be a generator. Then
we have

lamp.gs/ D
´

lamp.g/ lamp.s/ if g fixes the zero ray;

lamp.g/ otherwise.

Proof. We use the notation of the previous proof. The proof implies

germ.gs/ D germ.g/ germ.y/ (5)

(for the generator y, if y … K then germ.y/ D id).
If g fixes the zero ray, then 0:� D 0 and y D s, so the claim follows from (5).
If g does not fix the zero ray, then at a high enough level 0:� 6D � . Working on a

level where this happens and also the zero-ray section of g is stable, we get y D s0:� ,
and therefore y is of lower degree than s. Thus lamp.y/ D idH (trivial), and the
claim follows from (5).

We are now ready to prove Theorem 3, which states that if the Schreier graph of
the mother group the zero ray is transient, then no non-degenerate random walk with
finitely supported step distribution has the Liouville property.

Proof of Theorem 3. Note that transience is quasi-isometry invariant, and changing
generators is a quasi-isometry of the Schreier graph. Thus the Schreier graph for
the random walk Y1 : : : Yn in question is also transient. Thus Y1 : : : Yn in question
fixes the zero ray only finitely many times. In particular, lamp.Y1 : : : Yn/ stabilizes
at some random value L with probability 1.

We now claim that L takes all possible value in K=H with positive probability,
and hence the Poisson boundary is nontrivial. Indeed, let l 2 K=H with jl j D n.
Then with positive probability Y1 : : : Yn D l . Moreover, by transience of the Schreier
graph, the independent walk YnC1 : : : YnCk , k � 0 never fixes the zero ray for k � 1

with positive probability. In this case L D `.
We have shown that the Poisson boundary is nontrivial. Now, by the standard

construction, function x 7! Px.L D id/, where x is the starting point of the random
walk, is bounded, harmonic and nonconstant.
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