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Abstract. We consider a finite, aspherical, 2-dimensional Cohen–Macaulay simplicial complex
� and we find additional conditions that imply the universal cover z� has one end. In order to
find these additional conditions we use a form of “Zeeman Duality”. The context is an attempt
to better understand duality groups.
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1. Introduction

1.1. Themotivating question. Let � be a connected finite n-dimensional simplicial
complex. If the link of each i -simplex is (PL homeomorphic to) the sphere Sn�i�1

then the universal cover z� is an orientable PL n-manifold which therefore satisfies
Poincaré duality: H i

c . z�/ Š Hn�i . z�/. The same holds if we only assume that
the link of each i -simplex has the homology of Sn�i�1. In the case of interest in
group theory, z� is assumed to be contractible, so that � is a finite K.G; 1/-complex,
where G D �1.�; v/. Then Poincaré duality implies H i

c . z�/ Š 0 when i ¤ n and
H n

c . z�/ Š Z. This group G is an example of an n-dimensional Poincaré duality
group.

The motivation for this paper is the wish to provide an analogous set of state-
ments for an n-dimensional Cohen–Macaulay complex, i.e., a connected finite n-
dimensional simplicial complex � such that the link of each i -simplex has the ho-
mology of a non-trivial wedge of .n � i � 1/-spheres. Again, in the case of interest
in group theory, z� is assumed to be contractible, so that, again, � is a finite K.G; 1/-
complex. The question is: What more must one know in order to deduce H i

c . z�/ Š 0

when i ¤ n and H n
c . z�/ is torsion-free? If the answer is positive then G is an n-

dimensional duality group. For the definition of a duality group see [1] or [6]. (As
the name implies, duality groups satisfy a generalization of Poincaré duality; we will
have no need to make this duality explicit.)



70 R. Atanasov

Remark. (1) The hypothesis implies G is torsion-free and the requirement that
H 0

c . z�/ D 0 is equivalent to G being infinite. From now on, we assume G is
non-trivial.

(2) If an n-dimensional aspherical complex � satisfies H i
c . z�/ D 0 when i ¤ n,

then it has to be the case that H n
c . z�/ ¤ 0 (see e.g. Theorem 13.10.1 of [6]), so

that the geometric dimension of G is n. From now on we assume the geometric
dimension of G is n.

Certainly, as we will see, further hypotheses are needed in order for G to be a
duality group.

1.2. The 2-dimensional case. In this paper we only discuss the case n D 2. A
connected finite 2-dimensional simplicial complex � is a 2-dimensional Cohen–
Macaulay complex if the link of each vertex is non-empty and connected, and the
link of each edge is non-empty. As before we write G D �1.�; v/ where v is a vertex.
Since we are assuming H 0

c . z�/ D 0 and H 2
c . z�/ ¤ 0, the geometric dimension of

G must be 2. The question in Section 1.1 thus reduces to: When is it true that
H 1

c . z�/ D 0? This is equivalent to asking: When does the 2-dimensional group G

have one end? It is a theorem of Stallings that a finitely generated torsion-free group
has one end if and only if it does not decompose as a non-trivial free product. But we
are seeking something different: we are assuming that nothing is known about the
group G, and we wish to understand when we can deduce from the Cohen–Macaulay
property that z� has one end. (The strictly analogous statement for a closed 2-manifold
of positive genus is that, by Poincaré duality, its universal cover always has one end;
the fact that one knows the homeomorphism type is a result of geometry rather than
of algebraic topology.)

Our strategy is to first consider when a general contractible locally finite infinite
2-dimensional Cohen–Macaulay complex X has one end. We will also require that
the link of each vertex of X is 2-connected graph, i.e., it is a connected graph and
remains connected when the open star of any vertex is deleted. The main result of this
paper is Theorem 5.6. This theorem looks complicated and has many hypotheses,
but in the case where the complex X is the universal cover of a connected finite
2-dimensional complex � it reduces to the following:

Theorem1.1. Let�bea connectedfinite2-dimensional asphericalCohen–Macaulay
complex such that the link of every vertex is 2-connected (in the sense of graph theory)
and � does not consist of only one 2-simplex. Let S0 be the singular set of � (i.e., the
full subgraph generated by the edges which are faces of more than two 2-simplexes).
If each component of the boundary of a regular neighborhood of S0 �1-injects into
�, then z� has one end. In particular, �1.�; v/ is a 2-dimensional duality group.

That our task is non-trivial is shown by the following example:

Example 1.2 (Bestvina). Let � consist of two triangulated tori joined along a com-
mon edge. This complex is Cohen–Macaulay. The fundamental group of � is Z2�Z2
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which is not a duality group ( z� is not one-ended). The links of the vertices of the
common edge are two-petal roses, and the links of all other vertices are circles.
Hence � is Cohen–Macaulay. The links of the vertices of the common edge are not
2-connected (if we remove the common vertex in the two-petal rose together with the
edges that contain that vertex, the remaining part of the link is disconnected). The
singular set S0 in this complex consists only of one edge and neither component of
@N.S/ �1-injects into �.

Example 1.3. Let � consist of two triangulated tori joined along a common 2-
simplex. This complex is Cohen–Macaulay, and �1.�/ Š Z2 � Z2, which is not
one-ended. The link of each vertex is either a circle or the letter � . Hence the link of
each vertex of � is 2-connected. However, neither component of @N.S/ �1-injects
into �.

As a consequence of Theorem 1.1, we have Corollary 1.4 which provides nec-
essary and sufficient conditions for z� to have one end. Let the singular set S0

in � have components S1, S2; : : : ; Sn1
. We write N D Fn1

iD1 Ni where the Ni

(i D 1; 2; : : : ; n1) are pairwise disjoint regular neighborhoods of S1; S2; : : : ; Sn1

respectively. The boundary of N in � consists of circles Cj (j D 1; 2; : : : ; n2). The
closure in � of each component of � � N is a compact surface whose boundary
consists of some of the circles Cj (each circle Cj occurs exactly once as a boundary
of one surface). We denote these surfaces by Mk (k D 1; 2; : : : ; n3).

Corollary 1.4. Let � be a finite, 2-dimensional, aspherical, Cohen–Macaulay com-
plex such that the link of each vertex of � is 2-connected and � does not consist of
only one 2-simplex. Assume that no surface Mk is a disk. Then the following are
equivalent:

(i) Each Cj �1-injects into N .

(ii) z� has one end and semistable fundamental group at infinity.

Remark. In [2], Brady, McCammond, and Meier used Morse theory to deal with
the case when � is a finite, n-dimensional, non-positively curved complex. For any
simplex � , they defined a punctured link of � at p, denoted by pkl.�; p/, where p is
any point of lk � , to be the set obtained by removing from lk � all points within �

2
of

p. The punctured link of � is not in general a subcomplex of lk � , but deformation
retracts onto a maximal subcomplex of lk � that is contained in plk.�; p/. One of
the results in [2] is: Let � be a finite, non-positively curved complex of dimension
n. If for each cell � in X and for each p 2 lk � , the spaces lk � and plk.�; p/ are
.n � dim � � 2/-acyclic, then �1.�/ is a duality group. (Corollary 1.4. in [2])

Acknowledgement. The results of this paper were part of my dissertation Groups of
Geometric Dimension 2 written at Binghamton University. I would like to thank my
advisor Ross Geoghegan for his support and help while working on the dissertation
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and this paper. His enthusiasm and encouragement made all the difference in my
academic career. I would also like to thank Francisco J. Fernandez-Lasheras for
helpful conversations during the preparation of the paper.

2. Homology with coefficients in a local cohomology stack

The exposition in this section is based on the work of E. C. Zeeman [12] and reworked
in more detail by F. J. Fernandez-Lasheras in [5].

Let X be an oriented, n-dimensional, locally finite, simplicial complex; this means
that an orientation has been chosen for each simplex of X . Let R be a ring.

We find it convenient to follow [6] (Section 12.1), calculating simplicial coho-
mology from chains (rather than cochains) and coboundaries.

The number Œ!ˇ W �˛�, called the incidence number of the (oriented) simplices
!ˇ and �˛ , is defined as follows: If dim �˛ D i , dim !ˇ D i C 1, !ˇ � �˛ , and
i � 1, then Œ!ˇ W �˛� D 1 if the orientation of �˛ inherited from !ˇ agrees with the
orientation of �˛ . Otherwise Œ!ˇ W �˛� D �1. If �˛ is not a simplex of !ˇ , then
Œ!ˇ W �˛� D 0. This definition does not make sense for the case of edges and vertices.
We will make the following convention: if e is an (oriented) edge and v is a vertex of
e, then Œe W v� D 1 if v is the terminal vertex of e, and Œe W v� D �1 if v is the initial
vertex of e; if v is not a vertex of e, then Œe W v� D 0.

Let R.�/ denote the free left R-module generated by the (oriented) simplex � 2
X . Let C 1

q .X I R/ D Q
dim �Dq R.�/. Elements of C 1

q .X I R/ are denoted byP
dim.�˛/Dq m˛�˛ where m˛ 2 R, and they are called infinite simplicial q-chains (or

locally finite q-chains) in X with coefficients in R. The coboundary homomorphism
for infinite chains is @ W C 1

q .X I R/ ! C 1
qC1.X I R/ defined by

ı
� X

˛

m˛�˛

�
D

X
ˇ

� X
˛

m˛Œ!ˇ W �˛�
�
!ˇ

where dim �˛ D q and dim !ˇ D q C 1.
For oriented simplicial pairs .X; A/ let

C 1
q .X; AI R/ ´ ˚ P

m˛�˛ 2 C 1
q .X I R/ W m˛ D 0 whenever �˛ is

a q-simplex of A
�
:

The relative cohomology modules H �.X; AI R/ are calculated from the cochain
complex .C 1� .X; AI R/; ı/. Of course H q.X; AI R/ D Zq.X; AI R/=Bq.X; AI R/,
where

Zq.X; AI R/ D fc 2 C 1
q .X I R/ W ıc D 0 and the coefficient in c corresponding

to each q-simplex of A is 0g
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and

Bq.X; AI R/ D fc 2 C 1
q .X I R/ W c D ıd where d 2 C 1

q�1.X; AI R/g:
This way of defining H �.X; AI R/ can be found in [6] (Chapter 12).
The number of ends of X does not depend of the ring R (this follows from [6]

Theorem 13.5.5). Therefore, it is enough to work with Z2-coefficients and from now
on R D Z2.

By D.X/ we will denote the following category: the objects are the simplices
� 2 X , and a morphism � ! � is the relation � � � . The star of � 2 X is the set
stX � D f� 2 X W � [ � 2 Xg, the link of � in X is the set lkX � D f� 2 stX � W
� \ � D ;g, and the open star of � in X is the set VstX � D f� 2 X W � � �g. We

often omit the index X . Note that lk � and st � are subcomplexes of X , and Vst � is
not (in general).

Definition 2.1. The qth-local cohomology stack on X , q � 0 is the covariant functor
Lq W D.X/ ! Abelian G roups defined as follows:

Lq.�/ D H q.X; X � Vst.�//

where � is a simplex of X . If � is a simplex of � , i.e., if there is a morphism � ! � ,
then .Lq/�;� W Lq.�/ ! Lq.�/ is induced by the inclusion � � � .

Lemma 2.2. If � is a simplex of X then H q.X; X � Vst �/ Š zH q�dim ��1.lk �/.

Proof. First we note that .X � Vst �/ \ st � is homeomorphic to bd� � lk � , which
is homeomorphic to

Pdim �
.lk �/, where

Pdim � stands for the .dim �/th-suspension
of � . Then, by excision, we have

H q.X; X � Vst �// Š H q.st �; .X � Vst �/ \ st �/ Š H q
�

st �;
Xdim �

.lk �/
�
:

Since st � is contractible, we have

H q.X; X � Vst �// Š H q�1
�Xdim �

.lk �/
�

Š zH q�dim ��1.lk �/:

Corollary 2.3. If X is an n-dimensional Cohen–Macaulay complex then Lq.�/ Š 0

for q < n for any simplex � 2 X .

Proof. If � is a simplex of X , then zH q�dim ��1.lk �/ Š 0 when q � dim � � 1 <

dim lk � . Since X is pure, i.e., all of its maximum faces have dimension dim X , it
follows that dim.lk�/ D dim X � dim � � 1 ([4], Corollary 5.1.5, page 210), which
implies zH q�dim ��1.lk �/ Š 0 when q < dim lk � C dim � C 1 D n. Therefore
Lq.�/ D H q.X; X � Vst �/ Š 0 if q < n.
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We define a chain complex J�.X; Ln/ as follows:
Let

Jq.X; Ln/ ´
M

dim �Dq

Ln.�/; q � 0:

Define @L W Jq.X; Ln/ ! Jq�1.X; Ln/ as follows:

@L

� mX
iD1

aihi

�
D

mX
iD1

X
�i ��

ai Œ�i W ��.Lq/�i ;� .hi /

where hi 2 Lq.�i /,
Pm

iD1 aihi 2 Jq.X; Ln/, dim.�i / D q, dim.�/ D q � 1. Then
.Jq.X; Ln/I @L/ is a chain complex. We denote its homology by Hq.X; Ln/.

In the spirit of Zeeman [12], Lasheras [5] has proved the following generalization
of Poincaré Duality:

Theorem 2.4. Let X be an n-dimensional, locally finite, Cohen–Macaulay simplicial
complex. Then for all p 2 Z

Hp.X; Ln/ Š H n�p
c .X/:

In Zeeman [12] there is a version of this theorem when X is finite complex.

3. About H�.X; L2/

Let X be an oriented, 2-dimensional, path connected, locally finite Cohen–Macaulay
complex. We will present an alternative way of viewing H�.X; L2/.

Let K2, K1, and K0 be the free abelian groups generated by all pairs .�; �/, .�; e/,
and .�; v/ respectively, where � is a 2-simplex of X , e is an edge of � and v is a vertex
of � . Then .K�; @0/ is a chain complex, where the boundary is defined as follows:

@0.�; �/ D .�; @�/ ´ .�; e1/ C .�; e2/ C .�; e3/;

@0.�; e/ D .�; @e/ ´ .�; v1/ C .�; v2/:

Here, @ is the boundary homomorphism for simplicial homology, @� D Œ� W e1�e1 C
Œ� W e2�e2 C Œ� W e3�e3, and @e D Œe W v1�v1 C Œe W v2�v2.

We will use the following:

.ıe; e/ ´
X
��e

Œ� W e�.�; e/; .ıe; v/ ´
X
��e

Œ� W e�.�; v/:

Here .J�; @L/ is the chain complex from Section 2 used to define H�.X; L2/.
If Œ!� 2 Ji D L

dim �Di H 2.X; X � Vst �/ we denote the � -component by Œ!�� 2
H 2.X; X � Vst �/ and all but finitely many Œ!�� are zero. If only the � -component of
Œ!� is non-zero we abuse notation by writing Œ!�� 2 Ji .
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First we will see how @L works. Let Œ��� 2 J2 where � is a 2-simplex. Using
the definition for @L we have

@L.Œ��� / D
3X

iD1

Œ� W ei �Œ��ei
;

where e1, e2, and e3 are the edges of � .
Let Œ��e 2 J1 where � is a 2-simplex and e is an edge of � . Then

@L.Œ��e/ D Œ� W v1�Œ��v1
C Œ� W v2�Œ��v2

;

where v1, and v2 are vertices of e.
The projection maps �i W Ki ! Ji are defined by �i .�; �/ D Œ��� , i D 0; 1; 2.

Let Li ´ ker �i . Then .L�; @0/ is a chain complex.
We will consider the following diagram:

0 �� 0��

��

�� L1��

��

@0
�� L0��

��

�� 0

0 �� K2

�2
����

@0
�� K1

@0
��

�1
����

K0
��

�0
����

0

0 �� J2
@L �� J1

@L �� J0
�� 0

Figure 1

The columns are exact. The rows are chain complexes. We must show that the
diagram commutes.

We will give a simpler description of the abelian groups L1 and L2.

Lemma 3.1. The abelian groups L0 and L1 are generated by all pairs .ıe; v/ and
.ıe; e/ respectively, where e is an edge of X and v is a vertex of e; and L2 Š 0.

Proof. First we will show that L2 Š 0 by showing that ker �2 D 0.
Since J2 D L

dim �D2 L2.�/ D L
dim �D2 H 2.X; X � Vst �/, for each 2-simplex

� we will calculate H 2.X; X � Vst �/ from the following cochain complex:

0 ! C 1
0 .X; X � Vst �/ ! C 1

1 .X; X � Vst �/ ! C 1
2 .X; X � Vst �/ ! 0I

C 1
2 .X; X � Vst �/ is generated by � , and C 1

1 .X; X � Vst �/ D 0. Hence H 2.X; X �
Vst �/ is generated by Œ��, i.e., H 2.X; X � Vst �/ Š Z2. Let x ´ P

�2X m� .�; �/ 2
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K2. Then �2.x/ D P
�2X m� .Œ��� / and �2.x/ D 0 if and only if m� D 0 for all

2-simplices � . Hence, ker �2 D 0, and therefore L2 Š 0.

Next we will consider J1 D L
dim eD1 L2.e/ D L

dim eD1 H 2.X; X � Vst e/. For
each edge e, we will calculate H 2.X; X � Vst e/ from the cochain complex

0 ! C 1
0 .X; X � Vst e/ ! C 1

1 .X; X � Vst e/ ! C 1
2 .X; X � Vst e/ ! 0:

The abelian group C 1
2 .X; X � Vst e/ is generated by all 2-simplices � such that e is an

edge of � . For each edge e, the free abelian group C 1
1 .X; X � Vst e/ is generated by e.

Let x D P
m�;e.�; e/. Then �1.x/ D P

m�;e.Œ��e/. For each edge e that appears in
x, we will define xe to be the sum of those pairs from x that have second coordinate
e, i.e., xe ´ P

� m�;e.�; e/. Then �1.xe/ D P
� m�;eŒ��e . Hence �1.xe/ D Œ0�

if and only if
P

� m�;eŒ��e D Œ0� (this summation is in H 2.X; X � Vst e/). SoP
� m�;eŒ��e D Œ0� if and only if there is a constant me such that

P
��e m�;e� D

meıe. Therefore, xe 2 ker �1 if and only if xe D P
��e m�;e.�; e/ D me.ıe; e/.

Since x D P
e xe , and �1.x/ D P

e �1.xe/, it follows that the elements of ker �1

are finite sums of pairs of type .ıe; e/, i.e., L1 is generated by all pairs .ıe; e/ where
e is an edge of X .

Similarly we can show that L0 is generated by all pairs .ıe; v/ where v is a vertex
of X and e has v as a vertex.

Using Lemma 3.1 it is straightforward to show that the diagram commutes. We
omit the details.

Proposition 3.2. H1.K; Z2/ Š 0.

Proof. Let ˇ D P
��e m.�;e/.�; e/ 2 Z1.K/, i.e., @0ˇ D 0 (only a finite number of

coefficients m�;e are 1). Let m�;e D 1 for some 2-simplex � and some edge e of � .
Since @0.�; e/ D .�; v1/ C .�; v2/ where v1 and v2 are vertices of e, we know that
.�; v1/ and .�; v2/ are present (i.e., have non-zero coefficient) in @0ˇ. We will denote
by e1 and e2 the other two edges of � .

The only way to cancel .�; v1/ is if there is another term .�; v1/ in @0ˇ. We will get
another term .�; v1/ only if .�; e1/ is present in ˇ. Similarly, the only way to cancel
.�; v2/ is if .�; e2/ is present in ˇ. Hence, in ˇ we have the following three terms
.�; e/, .�; e1/, and .�; e2/ with coefficient 1. But .�; e/C.�; e1/C.�; e2/ D @0.�; �/.
So ˇ 2 B1.K/, i.e., each cycle in K1 bounds. Therefore H1.K; Z2/ Š 0.

Theorem 3.3. If X is an infinite, 2-dimensional, path-connected, Cohen–Macaulay
complex then H1.X; L2

Z2
/ Š kerfH0.L; Z2/ ! H0.K; Z2/g.

Proof. From the short exact sequence of chain complexes (Figure 1) we have the
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following long exact sequence:

0 �! H2.L; Z2/ �! H2.K; Z2/ �! H2.J; Z2/

�! H1.L; Z2/ �! H1.K; Z2/ �! H1.J; Z2/

�! H0.L; Z2/ �! H0.K; Z2/ �! H0.J; Z2/ �! 0:

By Proposition 3.2 we have H1.K; Z2/ Š 0. Hence, we have the following long
exact sequence

0 �! H1.J; Z2/ �! H0.L; Z2/ �! H0.K; Z2/ �! H0.J; Z2/ �! 0:

Therefore H1.X; L2
Z2

/ D H1.J; Z2/ Š kerfH0.L; Z2/ ! H0.K; Z2/g.

Because of Theorem 2.4 this gives a characterization of H 1
c .X I Z2/, i.e., the

number of ends of X .

4. 2-connected links

We are assuming that X is an infinite, oriented, 2-dimensional, path connected Cohen–
Macaulay complex. From now we also assume that X is acyclic with respect to
Z2-coefficients, i.e., zHi .X I Z2/ Š 0 for all integers i .

Our goal now is to determine what additional conditions on X are sufficient to
ensure H 1

c .X; Z2/ Š 0, or, using Theorem 2.4, to ensure H1.X; L2
Z2

/ Š 0. This is
equivalent to “X has one end”.

Let � be a graph with at least three vertices and let w be a vertex of � . We say
that a vertex w 2 � is a cut vertex of � if the removal of w and all edges containing
w causes an increase in the number of connected components of � . A graph � that
does not have a cut vertex is called a 2-connected graph. In Example 1.2, the links
of the vertices v1 and v2 are not 2-connected and the links of all other vertices are
2-connected.

Lemma 4.1. If the links of all vertices of X are 2-connected, then each edge of X is
a face of at least two 2-simplices.

Proof. Assume that there is an edge of X , denoted by e1, that is a face of only one
2-simplex. We denote by � the 2-simplex that has e1 as an edge, we denote the
vertices of � by v1, v2, and v3, and the other two edges by e2 and e3, where vi is the
vertex opposite ei in � . Then e3 is the only edge in lk v3 that has v2 as a vertex, and
v1 is also a vertex of that edge. If e2 is a face of at least two 2-simplices, then if we
remove the vertex v1 from lk v3 together with the edges that have v1 as a vertex, the
remaining part of lk v3 will not be connected; the vertex v2 is not connected to the
remaining part of the link. Hence v1 is a cut vertex, but this is not possible because
the link of each vertex of X is 2-connected (i.e., does not have any cut vertices).
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Therefore e2 is an edge of no other 2-simplex besides � . Similarly we can conclude
that e3 is an edge of no other 2-simplex besides � . Hence X consists of only one
2-simplex which is a contradiction since X is infinite and path connected.

If X is a finite simplicial complex, from the proof of previous lemma we have the
following corollary.

Corollary 4.2. If X is a finite, path connected simplicial complex and the links of all
vertices of X are 2-connected, then each edge of X is a face of at least two 2-simplices
or X consists of only one 2-simplex.

Now we will discuss the impact that the new condition “the link of each vertex
of X is 2-connected” has on the structure of the complex X . We will consider once
again the diagram in Figure 1. By Theorem 3.3 we are interested in kerfH0.L; Z2/ !
H0.K; Z2/g Š 0.

We will find necessary and sufficient conditions (Theorem 4.5) for a chain ˛ in
K0 to be in L0.

Let ˛ D Pm
kD1

P
�i �vk

nik.�i ; vk/. For each vertex vk we define

˛k ´
X

�i �vk

nik.�i ; vk/:

It follows that ˛ D P
k ˛k .

Since X is 2-dimensional Cohen–Macaulay complex, the link of each vertex vk

is a connected graph. Let e be an arbitrary edge of lk vk . Let �i be the 2-simplex of
Vst vk that has e as a face (this 2-simplex is unique). We will relabel the edges from
lk vk in the following way: we will label the edge of �i opposite vk by eik . Let

N̨k ´
X

�i �vk

nikeik :

The difference between ˛k and N̨k is that .�i ; vk/ is replaced by eik .
Let v and w be two vertices in X . A path joining v and w is a sequence of distinct

vertices (except that v may equal w) 	 W v D v0; v1; v2; : : : ; vn�1; vn D w such that
any two consecutive vertices are joined by an edge in X . If v D w, then the path is
a cycle.

The proof of the following proposition can be found in [3] (Theorem 13.5.3).

Proposition 4.3. The link of each vertex of X is 2-connected if and only if for each
vertex v 2 X , the link of v has the following property: for any two edges e and f of
lk v there is a cycle in lk v that contains e and f .

Lemma 4.4. Let ˛ D Pm
kD1

P
�i �vk

nik.�i ; vk/ 2 K0. Then ˛ 2 L0 if and only if
for each vertex vk that appears in ˛, N̨k is a (1-dimensional) coboundary in lk vk .
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Proof. Suppose that ˛ 2 L0. Then

˛ D
mX

kD1

X
ej �vk

n0
jk.ıej ; vk/

where nik D n0
j1k

C n0
j2k

, and ej1
and ej2

are the edges of �i that have vk as a

vertex. For fixed vk , N̨k D Pm
kD1

P
ej �vk

n0
jk

ılk vk
vjk , where vjk is the vertex of ej

different from vk , and ılk vk
denotes the coboundary in the cochain complex of lk vk .

Hence N̨k is a coboundary in lk vk .
Suppose that N̨k is 1-dimensional coboundary in lk vk for each vertex vk that

appears in ˛. Then, for fixed vk , N̨k D Pm
kD1

P
ej �vk

n0
jk

ılk vk
vjk . Hence, for fixed

vk , ˛k D Pm
kD1

P
e�vk

n0
jk

.ıej ; vk/ which is in L0. Since ˛ D P
k ˛k , it follows

that ˛ 2 L0.

Theorem 4.5. Let the link of each vertex of X be 2-connected. Then ˛ 2 L0 if
and only if for each vk that appears in ˛ and each cycle 	 of lk vk the sum of the
coefficients of N̨k corresponding to the edges of 	 is 0.

Proof. Suppose that ˛ 2 L0, i.e., ˛ D Pm
kD1

P
�i �vk

nik.�i ; vk/. Let vk be a vertex
appearing in ˛. By Lemma 4.4 , N̨k is a 1-dimensional coboundary in lk vk . Hence
N̨k D Pm

kD1

P
ej �vk

n0
jk

ılk vk
vjk , where vjk is the vertex of ej different from vk .

Let 	 be an arbitrary cycle of lk vk . If a vertex vjk that appears in N̨k lies on 	 , then
there are exactly two edges from 	 that have vjk as a vertex. Hence, the sum of the
coefficients corresponding to those two edges in N̨k is 0. Therefore, for each vertex
of 	 that appears in N̨k we have exactly two edges of 	 that have coefficient 1 in N̨k .
So the sum of the coefficients of N̨k corresponding to the edges of 	 , and therefore
on each cycle of lk vk , is 0. This proves “only if”.

Suppose now that, for each vertex vk that appears in ˛, the sum of the coefficients
from N̨k D P

nikeik that correspond to the edges that lie on each cycle of lk vk is
0. We will pick an edge from N̨k with non-zero coefficient, denoted by e0 (the edges
of X are already labeled; here we relabel them just for the purpose of this proof).
Denote the vertices of e0 by v0 and v1. Let 	0; 	1; : : : ; 	s be all the cycles starting
and ending at v0 and containing e0. The graph lk vk is covered by these cycles, i.e.,
every edge of lk vk lies on at least one cycle 	i , i D 0; 1; 2; : : : ; s (this follows from
Proposition 4.3). We will show that N̨k is a 1-dimensional coboundary in lk vk by
rewriting it using the cycles 	0; 	1; : : : ; 	s . We will start with the cycle 	0 and we
will write the terms from N̨k whose edges are on 	0 as a coboundary in 	0.

Let e0; e1; e2; : : : ; et.�0/ be the edges of 	0 and v0; v1; v2; : : : ; vt.�0/ be the ver-
tices of 	0 (as in Figure 2). If e1 is present in N̨k , then we can write e0 C e1 as ı�0

v1.
If e1 is not present in N̨k , then we can add e1 Ce1 to N̨k and we will have the previous
case. Then we will consider the edge e2, and “play the same trick” as with e1, and
so on. Since the sum of the coefficients of N̨k corresponding to 	0 is 0, we can write



80 R. Atanasov

111

0 1

e0

e1
e2

v0 v1

v2

vq

vj

e0
q 1

e0
j

Figure 2

the terms of N̨k that correspond to edges of 	0 as a coboundary of 	0, i.e.,

N̨k D
X
v2�0

ı�0
v C .the rest of N̨k/:

We will repeat the same process with 	1 but our goal now is to write the terms of
N̨k corresponding to 	0 and	1 as a coboundary of 	0 [ 	1. The cycle 	1 has common
edges with 	0 (at least e0 is a common edge). So we will start with the first term from
N̨k that lies on 	1 but not on 	0. We will use the notation of Figure 2. If ı�0

vj is
not in N̨k then we will pick the first edge from 	1 moving along 	1 counterclockwise
that has a non-zero coefficient in N̨k and using the same process as with the cycle 	0

we will write N̨k D P
v2�0[�1

ı�0[�1
v C .the rest of N̨k/. If ı�0

vj is in N̨k , then we
have two possibilities: either e0

j is in N̨k or not. If e0
j is in N̨k , then combining e0

j with
ı�0

vj we will get a term ı�0[�1
vj in N̨k . If e0

j is not in N̨k , then we will add e0
j C e0

j

to N̨k and get the case when e0
j is in N̨k . We will continue “moving” along 	1 and

rewriting the terms of N̨k . We need to consider a case when 	1 meets 	0 again. Let vq

be a vertex where 	0 and 	1 meet again. We must rule out the possibility that ı�0
vq is

in N̨k but e0
q�1 is not (or vice versa). Consider the cycle that contains the parts from

	0 and 	1 between vj and vq . The sum of the coefficients of N̨k corresponding to this
cycle is 0. Therefore ı�0

vq is in N̨k if and only if e0
q�1 is in N̨k .

We repeat the process just described until we use all cycles of 	0; 	1; : : : ; 	s .
Since each edge of lk vk lies on some cycle, then we use all the edges of lk vk

with the algorithm described above. At the end we will find that N̨k is written as a
coboundary, i.e., N̨k D P

vjk2lk vk
njkılk vk

vjk 2 L0. From Lemma 4.4 it follows
that ˛ 2 L0.

Let ˇ D Ps
j D1

P
�i �ej

mij .�i ; ej / 2 K1 and �.ˇ/ be the graph spanned by all
edges e that appear in ˇ. The next theorem gives a geometric interpretation of the
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chains in K1 whose boundaries are in L0; this result will be used in proving the main
result for the general case, Theorem 5.6. Again we refer to Figure 1.

Theorem 4.6. Assume that the link of each vertex v 2 X is 2-connected, ˇ DPs
j D1

P
�i �ej

mij .�i ; ej / 2 K1 does not contain terms of L1 (terms of the form

.ıe; e/), and @0ˇ 2 L0. Then the graph �.ˇ/ is finite and has no vertices of valence 1.

Proof. Suppose there is a vertex v2 of valence 1 in �.ˇ/. Let e be the edge of
�.ˇ/ that has v2 as a vertex, and let v1 be the other vertex of e (Figure 3). Let
@0ˇv2

´ P
�i �v2

ni2.�i ; v2/, i.e., @0ˇv2
is a sum only of those terms from @0ˇ that

have v2 as a second coordinate. Define @0ˇv2
´ P

�i �v2
ni2ei2, where ei2 is the

face of �i opposite v2 (ei2 is an edge from lk v2).

e

e12 e22

v1

v2

Figure 3

Since e is an edge of �.ˇ/, there exists at least one term with non-zero coefficient
in ˇ whose second coordinate is e, and the first coordinate of that term is a 2-simplex
that has e as an edge. Hence at least one edge of lk v2 that has v1 as a vertex has a
non-zero coefficient in @0ˇv2

. Denote one of these edges by e12. Since ˇ does not
contain any terms of form .ıe; e/, this means that at least one edge of lk v2 which has
v1 as a vertex is not present in @0ˇv2

, i.e., has a coefficient 0 in @0ˇv2
. Denote by e22

one of these edges. By Lemma 4.3, e12 and e22 lie on a cycle 	 . Since the valence
of v2 in �.ˇ/ is 1, all edges on 	 other than e12 and e22 have coefficient 0 in @0ˇv2

,
e22 has a coefficient 0 as well, and e12 has a coefficient 1. Therefore, the sum of the
coefficients on 	 is 1, which is not possible since @0ˇ 2 L0 and, by Theorem 4.5, the
sum of the coefficients on 	 must be 0. Hence there exists at least one more edge in
�.ˇ/ that has v2 as vertex different from e, i.e., the valence of v2 is at least two.

5. The Main Theorem

The following two examples suggest that we need further hypotheses on X .



82 R. Atanasov

Example 5.1. Let X be the simplicial complex obtained by triangulating f.x; y; z/ 2
R3 j x2 C y2 D 1g [ f.x; y; z/ j x2 C y2 � 1; z D 0g. This complex X is Cohen–
Macaulay. The link of each vertex is either homeomorphic to either S1 or the letter
� . Hence the link of each vertex is 2-connected. But H 1

c .X; Z2/ © 0, i.e., X is not
one-ended.

Example 5.2. Let X be a simplicial complex obtained by gluing two triangulated
planes along a line. This simplicial complex is Cohen–Macaulay and the link of each
vertex is 2-connected. This complex is one-ended, i.e., H 1

c .X; Z2/ Š 0.

Recall that an edge e of X is singular if it is a face of more than two 2-simplices.
By Lemma 4.1 the non-singular edges are those which are faces of exactly two 2-
simplices. One of the differences between these two examples is that the simplicial
complex in Example 5.1 has a cycle all of whose edges are singular, and the complex
in Example 5.2 does not.

We will introduce a new hypothesis on X . We will assume that X is an infinite,
2-dimensional, acyclic, locally finite, path connected Cohen–Macaulay simplicial
complex such that the link of each vertex is 2-connected and each cycle has a non-
singular edge.

Our goal is to show that X has one end, i.e., kerfH0.L; Z2/ ! H0.K; Z2/g Š 0,
which by Theorem 3.3, is equivalent to H1.X; L2

Z2
/ Š 0. Let i� W H0.LI Z2/ !

H0.KI Z2/ be induced by the inclusion i W L0 ,! K0. Let Œ˛0� 2 H0.LI Z2/ and let
i�.Œ˛0�/ D Œ0� (Figure 1). This means that ˛0 bounds in K, i.e., there exists a chain
ˇ0 2 K1 such that @0ˇ0 D ˛0. We want to show that ˛0 bounds in L, i.e., Œ˛0� D Œ0�.
Therefore we need to show that there exists a chain ˇ 2 L1 that is homologous to ˇ0

in K, i.e., @0ˇ0 D @0ˇ D ˛0.
Let ˇ0 D Ps

j D1

P
�i �ej

mij .�i ; ej / 2 K1. We may assume that ˇ0 is reduced
with respect to L1, i.e., ˇ0 ¤ ˇ0

0 C ˇ00
0 with ˇ00

0 2 L1 and each term in ˇ0
0 appears in

ˇ0. In other words, no subset of terms in ˇ0 add up to an element of L1. Since ˇ0

does not have any terms of form .ıe; e/, Theorem 4.6 implies that the graph �.ˇ0/

consisting of all edges that appear in ˇ0 does not have vertices of valence 1.
Let 	0 be a cycle in �.ˇ0/. There is a non-singular edge e1 on 	0. Let �0 be the

unique 2-chain that bounds 	0 (	0 is a 1-cycle in the sense of the simplicial homology
theory; since X is 2-dimensional and acyclic, there is a unique 2-chain �0 that bounds
	0). We will denote the support of �0 by C.	0/. Let e1 D �1 \ �2, where �1 and �2

are 2-simplices of X , �1 2 C.	0/, and �2 … C.	0/.
Our goal is to show that ˇ0 is homologous to an element of L1. Let

ˇ0
0 ´ ˇ0 C @.�1; �1/ D ˇ0 C .�1; e1/ C .�1; e2/ C .�1; e3/

where e1, e2, and e3 are edges of �1.
Let

ˇ1 ´ ˇ0
0 C .terms of ˇ0

0 that are in L1/: (5.3)
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Since we work with Z2 coefficients, ˇ1 does not have any terms of L1 and
@ˇ1 2 L0. By Theorem 4.6, the graph �.ˇ1/ does not have any vertices of valence 1.

Proposition 5.4. The edge e1 is not an edge of �.ˇ1/.

Proof. Since e1 is a non-singular edge of the graph �.ˇ0/ it follows that one of the
terms .�1; e1/ or .�2; e1/ is in ˇ0, but not both.

Case 1. Let .�1; e1/ be in ˇ0. Then

ˇ0
0 D ˇ0 C @.�1; �1/ D .ˇ0 C .�1; e1// C .�1; e1/ C .�1; e1/ C .�1; e2/ C .�1; e3/

so
ˇ0

0 D .ˇ0 C .�1; e1// C .�1; e2/ C .�1; e3/:

Since .�1; e1/ is in ˇ0, the term .�1; e1/ is not in .ˇ0 C .�1; e1//. Since ˇ0 does not
contain .�2; e1/, it follows that ˇ0

0 does not have any terms with second coordinate
e1. Thus ˇ1 does not have a term with a second coordinate e1. Hence e1 is not an
edge of �.ˇ1/.

Case 2. Let .�2; e1/ be in ˇ0. Then

ˇ0
0 D ˇ0 C @.�1; �1/ D .ˇ0 C .�2; e1// C ..�2; e1/ C .�1; e1// C .�1; e2/ C .�1; e3/

so
ˇ0

0 D .ˇ0 C .�2; e1// C .ıe1; e1/ C .�1; e2/ C .�1; e3/:

Since .�2; e1/ is in ˇ0, the term .�2; e1/ is not in .ˇ0 C .�2; e1//. The only term with
a second coordinate e1 in ˇ0

0 is .ıe1; e1/, and this term is not in ˇ1 since it is in L1.
Therefore ˇ1 does not contain any terms with a second coordinate e1, so e1 is not an
edge of �.ˇ1/.

We say that X is strongly 1-acyclic if for any finite subcomplex Y of X there
exists a finite subcomplex F such that Y � F and H1.F I Z2/ Š 0.

Proposition 5.5. Let X be an acyclic 2-dimensional simplicial complex that is
strongly 1-acyclic. Then for each finite graph � in X there exists a unique mini-
mal subcomplex C.�/ such that � � C.�/ and H1.C.�/I Z2/ Š 0.

Proof. Since X is strongly 1-acyclic, there exists a subcomplex F such that � � F

and H1.F I Z2/ Š 0. Let C.�/ ´ T
˛ F˛ where the intersection is over all such

subcomplexes F˛ that contain � . It is clear that � � C.�/. We need to show that
H1.C.�/I Z2/ Š 0. Let z be a 1-cycle in C.�/. Then z is a 1-cycle in F˛ for each
˛ 2 A. Assume that z bounds a 2-chain �˛1

in F˛1
and a 2-chain �˛2

in F˛2
. If

�˛1
¤ �˛2

, then �˛1
C �˛2

forms a non-zero 2-cycle in X which is not possible since
X is acyclic and 2-dimensional. Hence �˛1

D �˛2
.



84 R. Atanasov

If X is strongly 1-acyclic, we say an edge e of a finite subgraph � of X is free if
only one of the 2-simplices that have e as an edge is in C.�/.

Now we are ready for the main result in the general case when X is an infinite
complex. Again, we refer to Figure 1.

Theorem 5.6. Let X be an infinite, 2-dimensional, locally finite, acyclic, Cohen–
Macaulay simplicial complex with the following properties:

(i) The link of each vertex of X is 2-connected.

(ii) Any cycle in X has a non-singular edge.

(iii) X is strongly 1-acyclic.

If for all ˇ 2 K1 such that @0ˇ 2 L0, ˇ is reduced with respect to L1 and �.ˇ/ has
a non-singular free edge, then H1.X; L2

Z2
/ Š 0 (equivalently, X has one end).

Proof. Let ˇ0 2 K1 be such that @0ˇ0 2 L0 and ˇ0 is reduced with respect to L1.
Let e1 be a non-singular free edge of �.ˇ0/, let �1 and �2 be the 2-simplices of X

that have e1 as an edge with �1 2 C.�.ˇ0// and �2 … C.�.ˇ0//. Let e2 and e3 be
the other two edges of �1. We will define ˇ1 in the same way as we did in equation
(5.3). We will show that jC.�.ˇ1//j2 < jC.�.ˇ0//j2 (j � j2 denotes the number of
2-simplices in �).

From Proposition 5.4 it follows that e1 is not in �.ˇ1/. Since �1 2 C.�.ˇ0//, it
follows that e2; e3 2 C.�.ˇ0//. Hence, C.�.ˇ0// contains �.ˇ1/. By the minimality
of C.�.ˇ1// it follows that C.�.ˇ1// � C.�.ˇ0//.

We will show that �1 … C.�.ˇ1//. Since e1 is a free edge of C.�.ˇ0//, i.e., �1 2
C.�.ˇ0// and �2 … C.�.ˇ0//, by an elementary collapse operation on �1, C.�.ˇ0//

deformation retracts to a subcomplex C.�.ˇ0//0. Hence C.�.ˇ0//0 � C.�.ˇ0//,
�1 … C.�.ˇ0//0, and jC.�.ˇ0//0j2 < jC.�.ˇ0//j2. Since C.�.ˇ0// is Z2-acyclic,
it follows that C.�.ˇ0//0 is Z2-acyclic too. Since e1 is not an edge of �.ˇ1/, e2; e3 2
C.�.ˇ0//0 and all other edges of �.ˇ1/ are in C.�.ˇ0//0 (they are edges of �.ˇ0/,
so they are in C.�.ˇ0//0), it follows that �.ˇ1/ is contained in C.�.ˇ0//0. By the
minimality of C.�.ˇ1//, and the fact that H1.C.�.ˇ0//0I Z2/ Š 0, it follows that
C.�.ˇ1// � C.�.ˇ0//0, and jC.�.ˇ1//j2 � jC.�.ˇ0//0j2 < jC.�.ˇ0//j2. Now
we have

ˇ0 � ˇ1 D @0c1 C l1

where c1 2 K2; l1 2 L1 and jC.�.ˇ1//j2 < jC.�.ˇ0//j2.
We proceed by induction to find ˇ2, ˇ3, etc.
After the i th step we have

ˇi�1 � ˇi D @0ci C li (5.7)

where ci 2 K2; li 2 L1 and jC.�.ˇi //j2 < jC.�.ˇi�1//j2. Since C.�.ˇ0// is
finite, after some kth step we will get ˇk such that jC.�.ˇk//j2 D 0. Hence �.ˇk/ is
the empty graph, or every component of �.ˇk/ is a finite tree; the latter is not possible
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because �.ˇk/ does not have vertices of valence 1. Hence �.ˇk/ is the empty graph
and ˇk D 0.

If we add the equations (5.7) for i D 1; 2; : : : ; k we will get

ˇ0 � ˇk D
kX

iD1

@0.ci / C
kX

iD1

li :

Let ˇ D Pk
iD1 li . Then ˇ 2 L1. Since ˇk D 0 it follows that

ˇ0 � ˇ D
kX

iD1

@0.ci /:

Let i� W H0.LI Z2/ ! H0.KI Z2/ be induced by the inclusion i W L0 ,! K0. Let
Œ˛o� 2 H0.LI Z2/ and let i�.Œ˛0�/ D Œ0�. This means that ˛0 bounds in K, i.e., there
exists a chain ˇ0 2 K1 such that @0ˇ0 D ˛0.

But we have shown that there exists a chain ˇ 2 L1 that is homologous to ˇ0

in K, i.e., @0ˇ0 D @0ˇ0 D ˛0. Hence ˛0 bounds in L, i.e., Œ˛0� D Œ0�. Therefore
ker i� D 0, and, by Lemma 3.3, it follows that H1.X; L2

Z2
/ Š 0.

6. Application of the Main Theorem

We now apply Theorem 5.6 to the case where X is the universal cover of a finite,
2-dimensional, aspherical, Cohen–Macaulay simplicial complex such that the link of
each vertex is 2-connected. We will denote this finite complex by �. We wish to
understand when z� has one end. We assume that z� is a simplicial complex and that
p W z� ! �, the universal covering projection, is simplicial. We will abuse notation
by using the same notation for an abstract simplicial complex and for the associated
polyhedron.

Let S be the subgraph of z� generated by all singular edges. If S D ;, then
z� is homeomorphic to R2 (� is Cohen–Macaulay, and the links of all vertices are
connected). Hence, z� is one-ended. Therefore the case S D ; is trivial. From now
on we will assume that S ¤ ;.

Lemma 6.1. If S ¤ ;, then the following are equivalent:

(i) For every vertex v0 2 p.S/, i# W �1.p.S/; v0/ ! �1.�; v0/ is injective and
�1.p.S/; v0/ is non-trivial.

(ii) Each component of S is a non-compact tree.

Proof. (i) H) (ii): Let SQv0
be a the path component of S , with base point Qv0 over

v. We have �1.SQv0
; Qv0/ Š ker i# (by Theorem 3.4.9 [6]). Since i# is an injec-

tion, �1.SQv0
; Qv0/ Š f1g, which implies that each component of S is a tree. Since
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�1.p.S/; v0/ is non-trivial and p.S/ is a graph, this must be a free group, hence
infinite. Hence SQv0

is non-compact.
(ii) H) (i): Let Qv0 be a vertex over v0 and let T be the component of S that

contains Qv0. By (ii), T is a non-compact tree. Since p.T / is compact and T is a
non-compact tree, �1.p.T /; v0/ ¤ f1g. Let Œ!� 2 ker i#, where ! is a loop at v0 in
p.T / that bounds in �. Then, ! lifts to a loop z! in the tree T (by Theorem 3.4.9 [6])
which therefore bounds in T . Hence, ! bounds in p.T /, and ker i# Š f1g. Therefore
i# is an injection.

For the rest of the paper PL stands for “piecewise linear” and a general reference
is [10].

If P D jKj is a polyhedron and x 2 P , the link of x in P , well defined up to PL
homeomorphism, is lkK0 x where K 0 is a subdivision of K having x as a vertex. If
the link of each point of z� � S is connected, then z� � S is an open 2-manifold.

Lemma 6.2. If the link of each point of z� � S is connected, where S is the singular
set of z�, then z� � S is an open 2-manifold.

Proof. Let x 2 z� � S . Let z�0 be a subdivision of z� having x as a vertex. Then
lk z�0 x is a finite graph in which the link of each vertex consists of two points. Thus
lk z�0 x is a closed 1-manifold. Since the link of each point of z� � S is connected, it
follows that lk z�0 x is a circle. Hence z� � S is a 2-manifold without boundary.

If there were a component of z� � S that is compact, then that component would
be closed and open in z� which is not possible since z� is connected and S ¤ ;.
Therefore z� � S is an open 2-manifold.

If L is a subcomplex of z�, then the regular neighborhood N.L/ of L in z� is the
simplicial neighborhood of sd L in sd z�, i.e., N.L/ D S

v2sd L stsd z� v, where sd L

and sd z� denote the first barycentric subdivision of L and z� respectively.
Let M be a PL n-manifold. We say that a subpolyhedron P � M is collared

in M if there exists a closed neighborhood N of P in M such that .N; P / is PL
homeomorphic to .P 	 Œ0; 1�; P 	 f0g/ and P is bicollared in M if there exists
a closed neighborhood N of P in M such that .N; P / is PL homeomorphic to
.P 	 Œ�1; 1�; P 	 f0g/. We recall that if M is a PL n-manifold with boundary, then
@M is always collared. The following lemma is a standard PL topology exercise and
we will omit the proof.

Lemma 6.3. If z� � S is a PL 2-manifold and if N is a regular neighborhood of
S , then V ´ cl z�. z� � N / is a PL 2-manifold whose boundary @V ´ bd z� N is a
bicollared 1-manifold without boundary in z�.

From now on we will write N for a neighborhood of S that has bicollared bound-
ary, we write @N for bd z� N , and V ´ cl z�. z� � N /.
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Lemma 6.4. Let M be a component of V . Then

(i) @M ¤ ;;

(ii) if any component of @M is a line then M is non-compact;

(iii) if every component of @M is a line then M is contractible.

Proof. (i) Since S ¤ ;, by Lemma 6.3 any path from S to int z�.M/ meets @N , hence
@M . Therefore @M ¤ ;.

(ii) is obvious.
(iii) We will show that H1.M I Z/ Š 0. Since z� is a simply connected, every

1-cycle in M bounds in z� and is therefore homologous to a 1-cycle in @M . Since
every component of @M is a line, the only one 1-cycle in @M is 0. Hence, every
1-cycle in M is homologous to 0. By (i), M has the homotopy type of a connected
graph, so �1.M/ is free. Since H1.M I Z/ Š 0, and the rank of �1.M/ is equal to
the free abelian rank of H1.M I Z/, it follows that �1.M/ Š f1g.

Since @M ¤ ;, H2.M I Z/ Š 0, so by the Hurewicz Theorem, �2.M/ Š f1g.
Therefore M is contractible.

By Lemma 6.3 @N is a 1-manifold without boundary. So each component of @N

is a line or a circle. In the view of Lemma 6.4 from now on we will also assume that
every component of @N is a line.

Corollary 6.5. Each component of N0 ´ p.N /, of V0 ´ p.V /, and of @V0 ´
p.@V / �1-injects in �.

In this situation the components N0.˛/, V0.ˇ/, and @V0.˛; ˇ/ of N0, V0, and @V0

respectively are aspherical and each @V0.˛; ˇ/ meets one N0.˛/ and one V0.ˇ/. Thus
we have G decomposed as the fundamental group of a finite graph of groups, where
the vertex groups are G˛ D �1.N0.˛// and Hˇ D �1.V0.ˇ// and the edge groups
are K˛ˇ D �1.@V0.˛; ˇ//. Moreover, � is aspherical, i.e., z� is contractible. Thus
G acts on a Bass–Serre tree T , and by the usual construction we have a “structure
map” g W z� ! T where g�1 (each vertex) is a component of N or of V and g�1

(each edge) is a (component of @V ) 	Œ0; 1� glued at one end to a component of N

and at the other end to a component of V . This proves:

Lemma 6.6. Let N.˛/ be a component of N , and let V.ˇ/ be a component of V such
that @N.˛/ \ @V.ˇ/ ¤ ;. Then @N.˛/ and @V.ˇ/ have only one line in common.

Lemma 6.7. For any finite subcomplex Y of z� there exists a contractible subcomplex
K of z� which contains Y .

Proof. Let Y be a finite subcomplex of z�. We will show that there exists a finite
contractible subcomplex K of z� containing Y . In this proof N will denote a regular
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neighborhood of S . We may assume that z� is subdivided so that N , V , Y \ V , and
Y \ N are subcomplexes of z�.

The subcomplex Y only has non-empty intersection with a finite number of com-
ponents of V and of N . Let V.ˇ1/ have non-empty intersection with Y . Since V.ˇ1/

has countably many boundary components and Y is finite, it follows that Y may
have non-empty intersection only with a finite number of them, say with @V.˛1/ˇ1 ,
@V.˛2/ˇ1 ,…,@V.˛k/ˇ1 (it may happen that Y does not intersect any of the boundary
components of V.ˇ1/). Let N.˛1/ˇ1 , N.˛2/ˇ1 ,…,N.˛k/ˇ1 be the components of N

having @V.˛1/ˇ1 , @V.˛2/ˇ1 ,…,@V.˛k/ˇ1 as boundary components respectively. By
Lemma 6.6, @V.ˇ1/ has only one line in common with each of @N.˛i /

ˇ1 . Let Y.ˇ1/

be the subcomplex of Y that lies in . z��S/.ˇ1/[S.˛1/ˇ1 [S.˛2/ˇ1 [
 
 
[S.˛k/ˇ1

where . z� � S/.ˇ1/ is the component of z� � S that contains V.ˇ1/, and S.˛i /
ˇ1 is

the component of S that is in N.˛i /
ˇ1 for all i D 1; 2; : : : ; k.

Let Y.ˇ1/0 ´ Y.ˇ1/ \ V.ˇ1/ be a subcomplex of V.ˇ1/. There exists a con-
tractible subcomplex K.ˇ1/0 of V.ˇ1/ that contains Y.ˇ1/0, and K.ˇ1/0 \ @V.˛i /

ˇ1

is connected for all i D 1; 2; : : : ; k. Since K.ˇ1/0 \ @V.˛i /
ˇ2 is connected, it col-

lapses in the regular neighborhood N.˛1/ˇ1 onto a connected subtree T .˛i /
ˇ1 of

S.˛i /
ˇ1 . Let K.˛i /

ˇ1 be a contractible subcomplex of the regular neighborhood
N.˛i /

ˇ1 containing Y \N.˛i /
ˇ1 such that K.˛i /

ˇ1 \S.˛i /
ˇ1 is connected, and also

K.˛i /
ˇ1 \ @V.˛i /

ˇ1 is connected.
Since each intersection K.ˇ1/0 \ K.˛i /

ˇ1 is contractible for all i D 1; 2; : : : ; k,
K.ˇ1/ ´ K.ˇ1/0 [K.˛1/ˇ1 [K.˛2/ˇ1 [
 
 
[K.˛k/ˇ1 is contractible and contains
Y.ˇ1/.

Next we will do the same with the subcomplex Y.ˇ2/ of Y that lies in
. z� � S/.ˇ2/ [ S.˛1/ˇ2 [ S.˛2/ˇ2 [ 
 
 
 [ S.˛l/

ˇ2 where . z� � S/.ˇ2/ is the com-
ponent of z� � S that contains V.ˇ2/, and S.˛i /

ˇ2 is the component of S that is in
N.˛i /

ˇ2 for all i D 1; 2; : : : ; l . As with the construction of K.ˇ1/, there exists a
contractible subcomplex K.˛2/ that contains Y.˛2/.

There is at most one component of N that has non-empty intersection with both
V.ˇ1/ and V.ˇ2/ (this follows from Lemma 6.6). Suppose there exists a component
N.˛/ such that N.˛/ \ V.ˇ1/ ¤ ; and N.˛/ \ V.ˇ1/ ¤ ;, and let S.˛/ be the tree
that has N.˛/ as a regular neighborhood. Then K.ˇ1/ and K.ˇ2/ are either disjoint or
they intersect in a contractible subcomplex (their intersection is a connected subtree of
S.˛/), so their union is contractible. If such N.˛/ does not exist then K.ˇ1/[K.ˇ2/

is a disjoint union of contractible subcomplexes. In either case, K.ˇ1/ [ K.ˇ2/

contains Y.ˇ1/ [ Y.ˇ2/.
We continue this way. The algorithm is finite because Y is finite. At the end

we will get either a contractible subcomplex K that contains Y , or a disjoint union
of contractible subcomplexes whose union contains Y . In the latter case, we will
connect the components of K by segments, to get a contractible subcomplex K that
contains Y .

Corollary 6.8. z� is strongly 1-acyclic.
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Lemma 6.9. Let K be a finite 2-dimensional subcomplex of z�. Then K has a free
non-singular edge, i.e., there exists a non-singular edge e such that only one of the
2-simplices of which e is an edge is in K.

Proof. Suppose that K does not have any free edges. Let � be the 2-chain that is a
sum of all 2-simplices from K, i.e., � D P

�2K � (we work with Z2-coefficients).
For each non-singular edge e in K, both 2-simplices of which e is an edge are in �

because K does not have any free edges. Therefore, @� does not contain any non-
singular edges, i.e., all edges of @� are singular. Each component of the singular set S

is a tree. Since @� is a 1-cycle, @� is a sum of 1-cycles each supported in a component
of S \ K. But the only 1-cycle in a tree is the trivial one. Hence @� D 0 which
is a contradiction because z� is a 2-dimensional contractible simplicial complex and
there are no non-trivial 2-cycles in z�.

Our motivating question was: Let � be a finite, 2-dimensional, aspherical Cohen–
Macaulay simplicial complex. Under what hypotheses does z� have one end?

The following lemma is true in a more general case, not necessarily a complex
that is the universal cover of a finite complex.

Lemma 6.10. Let X be an infinite, 2-dimensional, path connected, Cohen–Macaulay
complex such that the link of each vertex is 2-connected and any cycle in X has a
non-singular edge. Then each component of S is an (infinite) non-trivial tree without
vertices of valence 1 in that tree.

Proof. Let S 0 be a component of S . Suppose that v is a vertex of S 0 with valence
1 in S 0. This implies that lk v is a graph with only one vertex, denoted by w, with
valence greater than 2. If we remove w from the link together with the edges from
lk v that have w as a vertex, we will disconnect lk v which is not possible since each
vertex of X is 2-connected. Therefore S 0 does not have any vertices of valence 1.
Since every cycle of X contains a non-singular edge, it follows that S 0 does not have
any cycles. Hence S 0 is a tree.

Lemma 6.11. Let � be a finite, 2-dimensional, connected simplicial complex. Let S0

be the singular set in � and assume that the link of each vertex of ��S0 is connected.
If each component C of @N.S0/ (which is homeomorphic to a circle) �1-injects into
�, then i# W �1.S0; v0/ ! �1.�; v0/ is injective for every vertex v0 2 S0.

Proof. Let ! W S1 ! S0 be a loop in S0 such that ! is homotopically trivial in �.
Let f W B2 ! � be a map (by a “map” we understand a “continuous function”) such
that the restriction fjS1 D !. Let S0;! be the component of S0 that contains !. We
think of .B2; S1/ as a PL pair. We may assume that f is a PL map. Let N.S0;!/ be a
regular neighborhood of S0;! , and let C1; C2; : : : ; Ck be all the boundary components
of @N.S0;!/ (C1; C2; : : : ; Ck are cycles). Since f maps the open 2-manifold B2 �
f �1.S0/ into the open 2-manifold ��S0, using transversality, we may make a small
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perturbation of f to get a map f1 W B2 ! � such that f �1
1 .C1 [ C2 [ 
 
 
 [ Ck/ is

a closed 1-manifold and fjf �1.S0/ D f1
jf �1.S0/

. Note f �1
1 .C1 [ C2 [ 
 
 
 [ Ck/ \

f �1
1 .S0/ D ;.

Let A � f �1
1 .C1 [ C2 [ 
 
 
 [ Ck/ be a cycle. Let R be the closed region of VB2

that lies inside A (R is a disk by Schönflies Lemma). Assume f1.A/ � C1. Since
C1 is �1-injective in �, we may redefine f1 so that f1.R/ � C1. Let A1 be a cycle
in VB2 that is disjoint from A but very close to A, does not intersect any cycles from
f �1

1 .C1 [C2 [
 
 
[Ck/, and A is in the closed region R1 that is inside A1. We want
to show that, with small changes on f1, we can get f1.A1/ \ C1 D ; (from now on
we will use often “small” changes on f1, but we will not use different notation; all
“new” maps will be again denoted by f1). C1 is bicollared, hence f1.R1/ is on one
side of C1 in the bicollared neighborhood of C1.

We will repeat the above on every cycle of f �1
1 .C1 [ C2 [ 
 
 
 [ Ck/. Then

f1.B2/ is either in the regular neighborhood N.S0;!/ or outside N.S0;!/. Since
f1

jS1
D !, it follows that f1.B2/ is in the regular neighborhood N.S0;!/. The regular

neighborhood N.S0;!/ strongly deformation retracts onto S0;! , so by changing the
map f1 again, we can get that f1.B2/ � S0;! . Therefore ! is homotopically trivial
in S0;! , which implies that S0;! �1-injects into �.

Theorem 6.12. Let � be a finite, 2-dimensional, aspherical, Cohen–Macaulay com-
plex such that the link of each vertex of � is 2-connected and � does not consist of
only one 2-simplex. Let S0 be the singular set in �. If each component C of the
boundary of a regular neighborhood of S0 �1-injects into �, then z� has one end. In
particular, �1.�/ is 2-dimensional duality group.

Proof. The link of each point of z�� zS0 is connected because z� is Cohen–Macaulay..
By Lemma 6.11, it follows that �1.S0; v0/ is non-trivial for every vertex v0 2 S0,
and i# W �1.S0; v0/ ! �1.�; v0/ is injective. Hence �1.�; v0/ is non-trivial, and z�
is infinite.

By Lemma 6.1, each component of zS0 is a non-compact tree. This is equiv-
alent with the property that every cycle in z� has a non-singular edge. Since the
link of each vertex of z� is 2-connected, it follows that every edge of z� is a face
of at least two 2-simplices (by Corollary 4.2). By Corollary 6.8 it follows that z�
is strongly 1-acyclic. Therefore, the conditions (ii) and (iii) of Theorem 5.6 are
satisfied.

It remains to check the last hypothesis of Theorem 5.6. Let ˇ be a chain in K1 that
does not have any terms of L1 and @0ˇ 2 L0 (Figure 1). We will show that the graph
�.ˇ/ (�.ˇ/ is the graph spanned by all edges that appear in ˇ) has a non-singular free
edge, i.e., there exists a non-singular edge of �.ˇ/ that is a face of two 2-simplices
�1 and �2 such that �1 2 C.�.ˇ// and �2 … C.�.ˇ//.

Suppose that �.ˇ/ does not have a non-singular free edge. Since �.ˇ/ does
not have any vertex with valence 1 (by Theorem 4.6), it follows that �.ˇ// has at
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least one cycle. Hence C.�.ˇ// is 2-dimensional. By Lemma 6.9, C.�.ˇ// has a
non-singular free edge e. By assumption, the edge e is not in �.ˇ/. Then, by an
elementary collapse, we would get a subcomplex whose first homology is trivial, and
contains �.ˇ/, which contradicts the minimality of C.�.ˇ//.

By Theorem 5.6, H1. z�; L2
Z2

/ Š 0, and by Theorem 2.4 H 1
c . z�I Z2/ Š 0. Hence

z� has one end.

Let S1, S2; : : : ; Sn1
be the components of the singular set S0 in � and Ni

(i D 1; 2; : : : ; n1) be the pairwise disjoint regular neighborhoods of S1; S2; : : : ; Sn1

respectively. We write N D Fn1

iD1 Ni . The boundary of N in � consists of cir-
cles Cj (j D 1; 2; : : : ; n2). The closure in � of each component of � � N is a
compact surface whose boundary consists of some of the circles Cj (each circle Cj

occurs exactly once as a boundary of one surface). We denote these surfaces by Mk

(k D 1; 2; : : : ; n3). Thus we express � as a graph of connected polyhedra; the vertex
polyhedra are the Ni s and the Mks, the edge polyhedra are the Cj s. Note that there
is at least one Mk because � has one free edge (Lemma 6.9) and N collapses onto S .
As a consequence of Theorem 6.12, we have the following corollary which provides
necessary and sufficient conditions for z� to have one end.

Corollary 6.13. Let � be a finite, 2-dimensional, aspherical, Cohen–Macaulay com-
plex such that the link of each vertex of � is 2-connected and � does not consist of
only one 2-simplex. Assume that no surfaces Mk is a disk. Then the following are
equivalent:

(i) Each Cj �1-injects into N .

(ii) z� has one end and semistable fundamental group at infinity.

Proof. It is obvious that this is true when S0 D ;. Assume S0 ¤ ;.
We choose a maximal tree in � , well behaved with respect to our graph-of-

polyhedra decomposition. ([6]). Assuming (i ), this gives a graph-of-groups decom-
position of �1.�/ in which the vertex groups are (non-trivial) finitely generated free
groups, and the edge groups are infinite cyclic (this is where we must rule out that any
Mk is a disk). By Britton’s Lemma each Cj �1-injects into �. Thus Theorem 6.12
implies that z� has one end.

For the converse, we noted that there is at least one Cj . Assume some Cj does
not �1-inject into N ; thus the inclusion Cj ,! N induces the trivial homomorphism
on �1. Then we have a decomposition of �1.�/ as the fundamental group of graph
of groups similar to the previous one except that some of the edge groups are trivial
instead of being infinite cyclic. The set S is non-empty, and Lemma 6.10 implies that
each component of N has non-trivial (free) fundamental group. Let M be the surface
having Cj in its boundary. Then the decomposition includes an edge whose vertex
groups are non-trivial while the edge groups are trivial. This is enough to ensure that
�1.�/ has more than one end.

We have proved that (i) is equivalent to:
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(ii0) �1.�/ is the fundamental group of a graph of groups where each vertex group
is free (hence semistable at each end) and each edge group is infinite cyclic
(hence finitely generated).

By the Main Theorem of [9], the properties in parentheses in (ii0) are sufficient to
imply that the group �1.�/ is semistable at infinity.

Remark. Perrin Wright, in [11], has shown that every finite, 2-dimensional poly-
hedron can be deformed to a finite fake surface. Triangulated fake surfaces are
Cohen–Macaulay and the link of each vertex of a fake surface is 2-connected. Hence,
if we consider a finite 2-dimensional, aspherical simplicial complex K, then K can
be deformed to a fake surface �. According to Theorem 6.12, z� has one end if each
component of the boundary of a regular neighborhood of the singular set S0 of �

(which are circles) �1-injects in �. The question that we are considering is to identify
the preimage of each of these circles in the simplicial complex K.

A. Zeeman’s spectral sequences

In this section we give a proof of Theorem 2.4. The proof is based on the work
of F. J. F. Lasheras [5] where he generalized Theorem 1 from [12] for locally finite
simplicial complexes (Theorem 1 in [12] is for finite simplicial complexes). In [12],
Zeeman generalized the Poincaré duality for manifolds. The exposition in this section
is based on [5], [8], and [7].

Let X be an n-dimensional, locally finite simplicial complex. The coefficients
are in a commutative ring R with 1 ¤ 0 and will be omitted. We define Br;s to be
a bigraded module in the following way: If 0 � s � r � n we define Br;s to be
the free abelian group generated by all pairs of simplices .�; �/ such that dim � D r ,
dim � D s, and � � � ; we define Br;s ´ 0 otherwise. We have:

d1 W Br;s ! BrC1;s; d1..�; �// ´ .ı�; �/;

d2 W Br;s ! Br;s�1; d2..�; �// ´ .�1/r.�; @�/;

d1 B d1 D 0 D d2 B d2;

d1 B d2 C d2 B d1 D 0:

Then fBr;sI d1; d2g is a double complex. We associate to this double complex a chain
complex fB�; dg defined as follows:

d ´ d1 C d2 W Bm ! Bm�1; d..�; �// ´ .ı�; �/ C .�1/r.�; @�/

where Bm ´ L
s�rDm Br;s .

There are two spectral sequences IE
� and IIE

� such that

IE
2
p;q D H p.Hq.BI d2/I Nd1/; 0 � q � p � n;

IIE
2
p;q D Hp.H q.BI d1/I Nd2/; 0 � p � q � n;
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and the first spectral sequence converges to Hq�p.BI d/, and the second one con-
verges to Hp�q.BI d/. The differentials Nd1 and Nd2 are induced by d1 and d2 respec-
tively. (Theorem 2.15, [8])

Lemma A.1. The spectral sequence IE collapses to an isomorphism

Hm.B/ Š H �m
c .X/:

Proof. Let C t ´ Hq.B t;�I d2/. Then

C t D Hq

� M
dim �Dt

B t;�I d2

�
Š

M
dim �Dt

Hq.B��I d2/:

The free abelian group B�� is generated by all pairs .�; �/ such that dim � D t ,
dim � D �, and � � � . Hence Hq.B��I d2/ Š Hq.C.�/I @/ where C.�/ is the
simplicial chain complex for � . Then C t Š L

dim �Dt R when q D 0, and C t Š 0

when q ¤ 0. Hence IE
2
p;0 D H p.Hq.BI d2/I Nd1/ Š H p.fC tgn

tD0I ı/ Š H
p
c .X/,

and IE
2
p;q Š 0 when q ¤ 0. On the other hand

0 Š IE
2�pC2;�1

d2

��! IE
2�p;0

d2

��! IE
2�p�2;1 Š 0:

Therefore IE
1�p;0 Š IE

2�p;0. Since IE
2
p;q Š 0 when q ¤ 0, it follows that IE

1
p;q Š

IE
2
p;q Š 0 when q ¤ 0. Since IE

2
p;q converges to Hq�p.BI d/, it follows that

IE
2�p;0 Š IE

1�p;0 Š Hp.BI d/. Therefore Hp.BI d/ Š H
�p
c .X/.

Lemma A.2. The spectral sequence IIE runs:

IIE
2
p;q Š Hp.X I Lq

X / H) H q�p
c .X/:

Proof. IIE
2
p;q D Hp.H q.BI d1/I Nd2/ converges to Hp�q.BI d/ which is isomorphic

to H
q�p
c .X/ by the previous lemma.

Let

Ct ´ H q.B�;t I d1/ D H q
� M

dim �Dt

B�
� I d1

�
Š

M
dim �Dt

H q.B�
� I d1/

where B�
� is the free abelian group generated all pairs .�; �/, where dim � D �,

dim � D t , and � � � . Hence H q.B�
� I d1/ Š H q.X; X � Vst � I ı/. Next

IIE
2
p;q D Hp

�n M
dim �Dt

H q.X; X � Vst �/
on

tD0
I d2

�
Š Hp.X I Lq

X /:

Hence IIE
2
p;q Š Hp.X I Lq

X / H) H
q�p
c .X/.

A path connected, finite dimensional, locally finite simplicial complex � isCohen–
Macaulay if for all � 2 �, zHi .lk �/ Š 0 for all i < dim.lk �/. It follows that if X is
Cohen–Macaulay complex, then for any simplex � 2 X we have zH i .lk �/ Š 0 for
all i < dim.lk �/.
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Next we will prove Theorem 2.4.

Theorem 2.4. Let X be an n-dimensional, locally finite, Cohen–Macaulay simplicial
complex. Then for all p 2 Z

Hp.X; Ln
X / Š H n�p

c .X/:

Proof. Since X is Cohen–Macaulay, it follows that

H q.X; X � Vst �/ Š zH q�dim ��1.lk �/ Š 0

when q ¤ n. Hence IIE
2
p;q Š 0 when q ¤ n, and IIE

1
p;q Š IIE

2
p;q Š 0 when q ¤ n.

Then

0 Š IIE
2
pC2;n�1

d2

��! IIE
2
p;n

d2

��! IIE
2
p�2;nC1 Š 0:

Therefore IIE
1
p;n Š IIE

2
p;n, i.e., Hp.X; Ln

X / Š IIE
2
p;n Š H

n�p
c .X/.
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