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Automorphisms of curve complexes on nonorientable surfaces

Ferihe Atalan and Mustafa Korkmaz

Abstract. For a compact connected nonorientable surface N of genus g with n boundary
components, we prove that the natural map from the mapping class group of N to the auto-
morphism group of the curve complex of N is an isomorphism provided that g +n > 5. We
also prove that two curve complexes are isomorphic if and only if the underlying surfaces are
diffeomorphic.
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1. Introduction and statement of results

1.1. The results. Let N be a compact connected nonorientable surface of genus g
with n holes (= boundary components) and let Mod(/N) denote the mapping class
group of N, the group of isotopy classes of all diffeomorphisms N — N. The
group Mod(N) acts on the curve complex C(N) on N (defined in Section 2) as
simplicial automorphisms. In other words, there is a natural group homomorphism
Mod(N) — Aut C(N). The main result of this paper is the following theorem.

Theorem 1. Let g +n > 5 and let N be a compact connected nonorientable sur-
face of genus g with n holes. Then the natural map Mod(N) — Aut C(N) is an
isomorphism.

Our second result is the classification of curve complexes on all surfaces, including
orientable surfaces. This is given below, and also stated as Theorem 4.6 in Section 4.

Theorem 2. Let ¥ and ¥, be two compact connected surfaces such that the curve
complexes C(X1) and C(X,) are nonempty and (X1, X7) is not an exceptional pair
(see Section 4 for exceptional pairs). Then the simplicial complexes C(X1) and
C(X,) are isomorphic if and only if the surfaces X1 and X, are diffeomorphic.
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1.2. History. The complex of curves on an orientable surface S was introduced
by Harvey [4]. It was shown by Ivanov [11] that if the genus of S is at least two,
then the natural map Mod*(S) — Aut C(S) is an isomorphism, with the exception
of a closed surface of genus two, in which case this map is onto and its kernel
is the cyclic subgroup generated by the hyperelliptic involution. Here, Mod™*(S)
denotes the extended mapping class group, the group of isotopy classes of all self-
diffeomorphisms of §. This result was extended to lower genus cases by the second
author [13], and also by Luo [15], who gave another proof in all cases. Theorem 1
extends this result to nonorientable surfaces.

Theorem 3 ([11], [13], [15]). Let S be a compact connected orientable surface of
genus g with n holes. Suppose that S is neither a sphere with at most four holes, nor
a torus with at most two holes, nor a closed surface of genus two. Then the natural
map Mod*(S) — Aut C(S) is an isomorphism. If S is a closed surface of genus
two, then this map is onto and the kernel is the subgroup of order two generated by
the hyperelliptic involution.

Using this result, Ivanov proved that any isomorphism between two subgroups
of finite index in Mod*(S) is the restriction of an inner automorphism of Mod*(.S),
concluding the outer automorphism group of a subgroup of finite index in Mod™*(S)
is finite (cf. [11], [13]). It is very likely that Theorem 1, or a version of it might be
used to prove the nonorientable version of this result. We hope to do this in a future
project.

As an another application, Ivanov [12] gave another proof of a theorem of Royden—
Earl-Kra: All isometries of the Teichmiiller space are induced by diffeomorphisms
of S. Ivanov [11] also gave another proof of the fact that the mapping class groups
are not arithmetic by using this theorem.

After the appearance of [11], [13] and [15], there have been many analogous
results: Schaller [20] studied the graph whose vertices are nonseparating simple
closed geodesics and whose edges are pairs of vertices intersecting once, Margalit
[16] the pants complex, Brendle-Margalit [3] the complex of separating simple closed
curves, Irmak—Korkmaz [9] the Hatcher—Thurston complex. In all these cases, the
natural action of the extended mapping class group induces an isomorphism to the
automorphism group of the complex. Irmak [5], [6], [7] showed that a superinjective
simplicial map of the complex of curves or of the complex of nonseparating curves
is induced by a diffeomorphism of the orientable surface.

This paper gives the first such result to study the mapping class groups of nonori-
entable surfaces. Recently in [8], Irmak used some of our results in this paper to
study superinjective maps of the curve complex on a nonorientable surface.

1.3. Idea of proof of Theorem 1. The injectivity of the natural map in Theorem 1
is easy; it follows from Theorem 3. The surjectivity, however, is the harder part, as
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in the proof of Theorem 3, and it occupies most of this article. The proof of it does
not follow from Theorem 3 right away, but we use it.

Our proof of surjectivity is by induction on the genus of the surface: We cut
the surface along a one-sided simple closed curve to decrease the genus by one and
use the connectedness of a graph whose vertices are one-sided simple closed curves.
For our purpose, it is convenient to consider a sphere as a nonorientable surface of
genus zero, so that the initial step of the induction holds by Theorem 3. The cutting
argument was first used by Ivanov in [11] to obtain his theorem for surfaces of at least
two boundary components from surfaces having at most one boundary component.
It has been used since then in many many instances. See, for example, [11], [21]
and [2].

In her PhD thesis [1] under the guidance of the second author, the first author
proved Theorem 1 for odd genus nonorientable surfaces, proving it first for surfaces
of genus one and then by using the cutting argument along two-sided simple closed
curves, which decreases the genus by two.

1.4. Outline of the paper. We now give an outline of the paper. In Section 2, we
give the necessary definitions and the preliminary information. In Section 3, we
define two graphs X(N) and X (N) whose vertices are isotopy classes of one-sided
essential (defined below) simple closed curves and whose edges are pairs of dual
vertices satisfying certain properties. We investigate the connectedness property of
these graphs in Theorem 3.9 and Theorem 3.10. In Section 4, we prove Theorem 2
(=Theorem 4.6) which states that, except for a few sporadic cases, two surfaces
(orientable or nonorientable) are diffeomorphic if and only if the corresponding curve
complexes are isomorphic. Section 5 shows that automorphisms of the curve complex
preserve the topological types of vertices. In Section 6, we prove the injectivity of
the map in Theorem 1. This is stated as Theorem 6.1. Section 7 is devoted to the
proof of Theorem 7.7, which proves the surjectivity of the map in Theorem 1. The
proof is by induction on the genus of the surface. In Section 8, we treat the cases not
covered by Theorem 1.

Acknowledgment. The authors would like to thank the referee for making several
valuable suggestions and corrections.

2. Basics of the curve complex

Let N be a compact connected nonorientable surface of genus g with n holes. Thatis,
N is a closed nonorientable surface of genus g from which the interiors of n disjoint
disks are removed. Recall that the genus of a nonorientable surface is the number of
projective planes in a connected sum decomposition. Equivalently, it is the maximum
number of disjoint simple closed curves in N whose complement is connected. (This
definition also holds for orientable surfaces.)
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2.1. Circles. A circle a on N is an unoriented simple closed curve. A circle is
called two-sided (respectively, one-sided) if a regular neighborhood of it is an annulus
(respectively, a Mobius strip). A circle is called trivial if it bounds either a disk, or
a disk with one hole, or a Mobius band. A nontrivial circle is a circle which is not
trivial.

If a is a circle, then we denote by N, the surface obtained by cutting N along a.
A circle a is nonseparating if N, is connected and separating otherwise. A one-sided
circle a is essential if either g = 1, or g > 2 and the surface N, is nonorientable.
We denote circles by the lowercase letters a, b, ¢ and their isotopy classes by «, 8, .

Let o be the isotopy class of a circle a. We say that « is nonseparating if a is
nonseparating. Similarly for separating, one-sided, two-sided or essential circles.

The geometric intersection number i(a, B) of two isotopy classes @ and B is
defined to be the minimum of the cardinality |a N b| of a N b witha € a, b € B.

2.2, Abstract simplicial complex. An abstract simplicial complex is defined as
follows (cf. [17]): Let V' be a nonempty set. An abstract simplicial complex K with
vertices V' is a collection of nonempty finite subsets of V', called simplices of K, such
that

e ifv € V, then {v} € K, and
e ifo € K and t C o0 is nonempty, then 7 € K.

The dimension dimo of a simplex o is |o| — 1, where |o| is the cardinality of o.
A g-simplex is a simplex of dimension ¢g. The supremum of the dimensions of all
simplices of K is the dimension of K.

A subcomplex L of an abstract simplicial complex K is called a full subcomplex
if whenever a set of vertices of L is a simplex in K, it is also a simplex in L.

If X; and X, are two abstract simplicial complexes, then the join of X; and X,
is the abstract simplicial complex X; » X, defined as follows: A simplex of X x X,
is either a simplex of X, or a simplex of X5, or the union of a simplex of X; and a
simplex of X».

2.3. The curve complex. The complex of curves C(S) on an orientable surface S
is the abstract simplicial complex whose simplices are sets of isotopy classes of non-
trivial circles which can be represented by pairwise disjoint curves. The complex of
curves C(N') on a nonorientable surface N is defined similarly; it is the abstract sim-
plicial complex whose vertices are the isotopy classes of nontrivial circles, and a set
of vertices {ag, &1, . .., 0ty } is declared to be a g-simplex if and only if g, &1, ..., 0ty
can be represented by pairwise disjoint curves, i.e., i («tj, ax) = Oforall0 < j, k <gq
(j # k). In particular, two distinct vertices o and § of C(N) are joined by an edge
if and only if their geometric intersection number is zero.

2.3.1. Dimension of the curve complex. The dimension of C(N) is 0 if N is the
projective plane with at most one hole. Itis equal to 1 if N is a (closed) Klein bottle.
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If the Euler characteristic of the nonorientable surface N of genus g with n holes is
negative, then a simple Euler characteristic argument shows that the maximal number
of disjoint nontrivial nonparallel circles on N is 2g 4+ n — 3. Hence, the dimension
of C(N)is2g +n —4.

If S is orientable of genus g with n holes with negative Euler characteristic and
if S is not a sphere with three holes, then the dimension of C(S) is 3g +n — 4. If
S is a torus, then the dimension of C(S) is 0. In the remaining cases, the complex
C(S) is empty.

2.3.2. Star, dual and link of a vertex. Let « be a vertex in C(N). The star St(x)
of « is defined to be the subcomplex of C (V) consisting of all simplices in C(N)
containing « and all faces of such simplices. The link L (o) of « is the full subcomplex
of C(N) whose simplices are those simplices of St(«) which do not contain «.

Two distinct vertices & and § are called dual if they have representatives inter-
secting transversally at one point, i.e., i (&, §) = 1. For a vertex « represented by a
one-sided circle, we define the dual D () of « to be the set consisting of vertices of
C(N) which are dual to «.

2.4. Curve complexes in low dimensions. If S is a sphere with n < 3 holes, then
there are no nontrivial circles on S, hence, C(S) is empty. If S is a sphere with four
holes, or a torus with at most one hole, then C(S) is infinite discrete.

If N is a projective plane with at most one hole, then C (/) consists of one vertex.
If N is a projective plane with two holes, then C (/) consists two vertices, the isotopy
classes of the circles ¢; and c; (cf. Figure 1 (i)). If N is a (closed) Klein bottle, then
C(N) has three vertices and one edge between two of these vertices. The vertices
are the isotopy classes of two one-sided circles, which are connected by the unique
edge, and the unique two-sided circle (cf. Figure 1 (ii)).

If N is a Klein bottle with one hole, then C(/N) has two connected components,
one of which consists of a vertex, the isotopy class of the unique two-sided circle
a. The other component is a regular tree with countably infinite vertices where each
vertex has valence two (cf. [19]).

C1

C2

@) (i)

Figure 1. The nontrivial circles (up to isotopy) on a real projective plane with two holes, and
on a Klein bottle. Here, the interiors of the disks with a cross inside are to be removed and the
antipodal points on each resulting boundary component are to be identified.
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2.5. Maximal simplices in the curve complex. We note that a simplex in an abstract
simplicial complex is maximal if it is not the proper face of any other simplex. We
recall that the maximum number of disjoint pairwise nonisotopic nontrivial circles on
aconnected orientable surface S of genus g with n boundary componentsis 3g+n—3,
whenever the Euler characteristic of S is negative.

Lemma 2.1. Let S be a connected orientable surface of genus g with n holes and
with negative Euler characteristic. If g = 0 suppose, in addition, that n > 4. Then
all maximal simplices in C(S) have the same dimension 3g + n — 4.

For nonorientable surfaces, however, the situation is quite different.

Lemma 2.2. Let N be a real projective plane withn > 2 holes. All maximal simplices
in C(N) have the same dimension n — 2.

Proof. Let n = 2. The complex C(N) consists of only two points. Hence, all
simplices are of dimension 0.

Let n > 3 and let 0 be a maximal simplex. Suppose that the dimension of o
is dimension ¢, so that o contains ¢ + 1 elements. Since the genus of the surface
is one, there is exactly one one-sided vertex, say o, contained in . By cutting N
along a for circle a representing o, we get the surface N,, a sphere with n + 1 holes.
Observe that 0 — {«} gives a maximal simplex in the curve complex C(N,) of N,.
By Lemma 2.1, the dimension of 0 — {«} is n — 3. Thus, ¢ — 1 = n — 3, concluding
that the dimension of o is ¢ = n — 2. O

Proposition 2.3. Let N be a connected nonorientable surface of genus g > 2 with
n holes. Suppose that (g, n) # (2,0). Leta, =3r +n—2and b, =4r +n—=21if
g=2r+1l,anda, =3r+n—4andb, =4r + n—4if g = 2r. Then there is a
maximal simplex of dimension q in C(N) if and only if a, < q < b,. In particular,
there are precisely |_%-| values which occur as the dimension of a maximal simplex,
where (%] denotes the smallest integer bigger than %.

Proof. Let g be an integer with a, < g < b,. Writeq = a, + s,sothat0 <s < r.
A maximal simplex of dimension ¢ in C(N) is shown in Figure 2.

We now prove the converse. Let 0 be a maximal simplex of dimension ¢g. Hence,
o contains g + 1 elements. Choose pairwise disjoint circles representing the elements
of o, and let N, denote the surface obtained by cutting N along these circles. Since
o is maximal, each connected component of Ny is a sphere with three holes (a pair
of pants).

Suppose that the number of one-sided vertices in ¢ is m, so that there are g + 1 —m
two-sided verticesin 0. Wenotethat ] <m < gifgisoddand0 <m < gif gis
even. Let k denote the number of components of N,. Since the Euler characteristic
of each component is —1, we see that

k=—x(N)=g+n-2,
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Figure 2. These curves together with any g 4+ n — 3 pairwise disjoint curves on the complement
of them give a maximal simplex of dimension ¢ = a, + s. The holes are not drawn.

where y(N) is the Euler characteristic of N. The number of boundary components
of Ny is 3k. On the other hand, when we cut N along the representatives of o, each
one-sided circle gives rise to one boundary component and each two-sided circle
gives rise to two boundary components in N,. It follows that

3dk=m+4+2(q+1—m)+n=3(g+n-2).

We see from this that
_3g+m
2
Ifg =2r+1theng = 3r+n—2+mT_1,wherel <m<2r+lor0 < '”T_l <r.

If g = 2r then ¢ =3r+n—4+%,wher60§m <2ror0< % <r.
The proposition follows. O

+n—4.

2.6. Mapping class group of a surface of genus one with two holes. Let N denote
the nonorientable surface of genus one with two boundary components d; and 9,
as shown in Figure 3. In the figure, a disk is glued along the boundary component
d. Fori = 1,2, choose an oriented arc /; whose endpoints lie on d; as in Figure 3.
Sliding d; along /; once gives a diffeomorphism of N, called a boundary slide, whose
isotopy class in Mod(/N) is denoted by v;. Note that v; reverses the orientation of 9;.

Let PMod(N) be the pure mapping class group of N, the subgroup of Mod(N)
consisting of isotopy classes of diffeomorphisms mapping each boundary component
to itself. Note that v; and v, are in PMod(N). The next theorem follows from the
proof of Corollary 4.6 in [14].
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Figure 3. Two representations of the boundary slide v.

Theorem 2.4 ([14]). Let N be a real projective plane with two boundary components
01 and 0,. The kernel of the natural homomorphism PMod(N) — Aut C(N) is
{1, v1v2}, where 1 denotes the isotopy class of the identity.

3. Two graphs on curves

Let N be a nonorientable surface of genus g with n holes. We recall that a one-sided
circle a is essential if either g = 1, or g > 2 and the surface N, obtained by cutting
N along a is nonorientable. Note that if g is even, then all one-sided circles on N
are essential.

We define a graph X (N) as follows: The vertices of X () are the isotopy classes
of one-sided essential circles on N. We connect two distinct vertices o and 8 in X(N)
by an edge if « and § are dual, i.e., they have representatives intersecting transversely
at one point.

We define a subgraph X (V) of X(NN) as follows: The vertices of X (N) are those
of X(N). Two distinct vertices o and j are connected by an edge in X (N) if  and
B have representatives ¢ and b intersecting transversely at one point such that

e either g > 4 and the surface N,y obtained by cutting N along a and b is
connected (Since N, and Nj are nonorientable, it is easy to see that N, p is
also nonorientable in this case.),

e or 1 < g < 3 and the Euler characteristic of one of the connected components
of N,up 1s at most —2.

We note that N, is disconnected if « is dual to 8 and 1 < g < 3. Notice also that
the graph X (N) is defined if g + n > 5.

If P and Q are two points on an oriented circle a on N, we denote by [P, O], the
subarc of a from P to Q. We denote by [P, Q], the arc [P, Q], with the reversed
orientation. If o and B are two oriented arcs such that the terminal point of « is the
initial point of B, then we denote by o * § the arc obtained by first traveling along o
and then along 8.

Let a be an oriented circle and b be any circle on N intersecting a at least twice.
Let P and Q be two distinct points in a N b. We say that b intersects @ at P and Q
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from the same (resp. opposite) side relative to the subarc [P, Q], if two orientations
of a regular neighborhood of [P, Q], given by a, b at the points P and Q agree
(resp. do not agree) for any orientation of 5. Note that this definition does not depend
on the orientation of b.

Lemma 3.1. Let N be a nonorientable surface of genus g > 1. Let a and b be two
one-sided oriented essential circles on N such that |a N b| > 2. Suppose that there
are two points P and Q in a N b adjacent along a such that the interior of [P, Q]
is disjoint from b and that b intersects a at P and Q from the same side relative to
[P, Qla- (There are always such points if |a N b| is even). Then there is a circle ¢ on
N such that

(1) c is one-sided and essential,
2) lenb| =1, and
B) [cNal <lanb|-—2.

Proof. A slight perturbation of the loop

[P.Qla * [Q. Plp x [P, Qla » [P. O],

is the required circle ¢ (cf. Figure 4). Note that Z,-valued homology class of ¢ is

equal to that of b, so that ¢ is one-sided and essential. O
LIt BT Y -SRI
R4 iy ! ! iy
’ I' AR\ lll 1y
1 L (N1
] ,' 1 ‘II :,’ 1+ I ‘|||
1 [ [N
C ¥ n bllc "
1 [ h
a vy ' [/

o ———

,
-
-
.
~
Sos-
—’_-
-
z
-
~
SSs-

Figure 4. The construction of the circle ¢ in the case b intersecting a at the adjacent points P
and Q from the same side.

Lemma 3.2. Let N be a nonorientable surface of genus ¢ > 1. Let a and b be two
one-sided oriented essential circles on N such that |a N b| > 3. Suppose that there
are three consecutive points P, Q and R in a N b along a such that b intersects a
[from opposite sides relative to [P, Ql, and [Q, R],4. Then there is one-sided circle ¢
on N such that

(1) c is one-sided and essential,
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2) l[eNb| =3, and
B) [cNal <lanb|—2.

Proof. Note that by assumption the interiors of the arcs [P, Q], and [Q, R], are
disjoint from b. By reversing the orientation of b if necessary, we may assume that
if we start to walk from P along b we reach Q before R.

A slight perturbation of the loop

[P.Qlp * [Q. Rla * [R, Plp x [P, Qla * [Q. R]p » [P, R],

is the required circle c¢. The circle ¢ is as in one of the pictures in Figure 5. Note
that Z,-valued homology class of ¢ is equal to that of b, so that ¢ is one-sided and

essential. O
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Figure 5. The construction of the circle ¢ when b intersects a from opposite sides at P, Q and
at 0, R.

Lemma 3.3. Let N be a nonorientable surface of genus g > 1. Let a and b be two
one-sided oriented essential circles on N such that |a N\b| = 3. Then there is a circle

¢ on N such that
(1) c is one-sided and essential,
) l[enb| =1, and
3) |cNal <1
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Proof. Suppose first that b intersects a from the same side at two consecutive points
P and Q on a. A perturbation of the loop

[PaQ]a*[Q’P]b*[P’Q]a*[P’Q]b

is the required circle ¢ (cf. Figure 4).

Suppose now that P, Q and R the intersection points of a and b that are consec-
utive along a, and that at every two adjacent intersection points on a, b intersects a
from the opposite side. By reversing the orientation of b if necessary, we may assume
that when we start to walk from P along b we reach Q before R.

Let us form the following circles on the surface N:

c1 =[P, Qlp » [P, Ql,.
2 =[0Q,R]p *ma’
c3 =[P, Qla * [0, Plp,
¢4 =[P, Rla » [R, Plp.
¢s = [Q. Rla * [R, Qlp.

We perturb each ¢; so that they intersect @ and b minimally. Such perturbations are
shown in Figure 6.
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Figure 6. The circles ¢, ..., cs.

If either ¢ or ¢, is one-sided, then it is the required circle. Note that ¢; and c;
are both disjoint from a, so that they are essential whenever they are one-sided.
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Suppose that ¢ and ¢, are both two-sided. Since [c1] + [c3], [c1] + [¢c2] + [c4]
and [cz] + [c¢5] are equal to [b] as Z,-valued homology classes, the circles ¢3, ¢4 and
c¢5 are all one-sided. (All homology classes in this proof are Z,-valued homology
classes.) All three circles c3, c4 and c5 satisfy (2) and (3).

If c3 is essential, then it is the circle we are looking for. If it is not essential,
then it is characteristic; that is, the complement of ¢3 in N is orientable. In this case
[c1] # 0. Then we look at the homology class of c¢;.

If [c2] # O then ¢4 is essential, and if [c;] = O then c5 is essential. O

Corollary 3.4. Let N be a nonorientable surface of genus g > 1. Let a and b be
two one-sided essential circles on N such that |a N b| > 2. Then there is a circle ¢
on N such that

(1) c is one-sided and essential, and
2) [eNb|<|anb|and|c Na| <|aNbl|.

Proof. Orient a and b arbitrarily. Then either there are two consecutive points on a
where b intersects a from the same side with respect to some subarc of a (there exist
such points if |a N b| is even), or there are three consecutive points P, Q, R on a
such that b intersects a from the opposite sides at P and Q and at Q and R. Now
the corollary follows from Lemmas 3.1, 3.2 and 3.3. O

Proposition 3.5. Let N be a nonorientable surface of genus 1. The graph X(N) is
connected.

Proof. 1fn < 1 then there is only one one-sided circle on N, so that X(N) consists of
only one vertex. If n = 2 then there are two one-sided circles on N and they intersect
at one point, so that X (N) consists of two vertices and an edge joining them.

We assume that n > 3. Let o and B be two distinct vertices of X(N) represented
by the circles @ and b that intersect minimally. It suffices to prove that there is a
sequence a = cg,C1,C2,...,Ck = b of one-sided circles such that |c;—y N¢;| = 1
forall 1 <i < k. We prove this by induction on |a N b|. Note that |a N b| > 1.

If |a N b| = 1 then there is nothing to prove. So suppose that |[a N b| > 2.
By Corollary 3.4 there is a one-sided circle ¢ on N such that |c N a| < |a N b|

and |c N b| < |a N b|. By induction, there are sequences a = ¢g,C1,...,¢ = €
and ¢ = dy,dy,...,ds = b of one-sided circles with the required property. Then
a=cg,C1,...,6, =do,d1,...,ds = b is the sequence we are looking for. O

Proposition 3.6. Let N be a nonorientable surface of genus 2. Let a; and a, be
two disjoint one-sided circles on N representing the vertices o1 and oy, respectively.
Then the graph X (N ) has two connected components such that each connected com-
ponent contains exactly one of oy and o;.

Proof. If two one-sided circles intersect at one point, then they represent the same
Z,-homology class on the closed surface N of genus 2 obtained by gluing a disk
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along each hole. It follows that «; and o, lie on different connected components of
X(N) since their Z,-homology classes in N are different. We will show that every
vertex in X(N) is connected to either oy or a». This will complete the proof.

If n = O then the conclusion of the proposition obviously holds since X(N)
consists of two points «; and ap. So we assume that n > 1. Note that all one-sided
circles on N are essential.

Let 8 be any vertex of X(N) represented by a one-sided circle b that intersects
ay and a, minimally. We claim that 8 is connected to either oy or ap in X(N). We
prove our claim by induction on |b Nay| + |b N az| = k. Note that the number k is
odd, so that one of |b N a;| and |b N a»| is even and the other is odd.

If £k = 1then |b Naj| = 1 for some j = 1,2. Then either B = «; or B is
connected to ; by an edge. Suppose that kK > 3. Then |b N aj| is even for some .
Without loss of generality assume that j = 1. If |b N ay| = 0 then b and a, lie on
the genus one surface N; obtained from N by cutting along a;. By Proposition 3.5,
B can be connected to o, (by a path all of whose vertices are represented by circles
disjoint from a;). If |b N a;| > 2 then we orient a; and b arbitrarily. There are
two points P and Q of |a; N b| such that the interior of the subarc [P, Q],, of a;
is disjoint from b and that b intersects a; at P and Q from the same side relative to
[P, Qla,- Now the one-sided circle ¢ constructed in Lemma 3.1 (where a is replaced
by ay) satisfies [c Nb| =1, |c Nay| < |bNaj| —2and |c Naz| = |bNay|. Thus
we have |c Naq| 4+ |c Nay| < k — 2. The vertex y represented by ¢ is connected
to B. By induction y is also connected to one of «; (in fact o). This finishes the
proof. O

Proposition 3.7. Let N be a nonorientable surface of genus 3. Let a1, a; and as
be three pairwise disjoint one-sided (hence essential) circles on N representing the
vertices a1, oy and as, respectively. Then the graph X(N) has three connected
components such that each connected component contains exactly one of a1, o
and 3.

Proof. As in the proof of Proposition 3.6, if two essential one-sided circles a and b
intersect at one point, then they represent the same Z,-homology class on the closed
surface N of genus 3 obtained by gluing a disk along each hole. It follows that o,
o> and a3 lie on different connected components of X(N) since their Z,-homology
classes in N are different. We show that every vertex in X (N ) is connected to either
o1, Or ap, or a3, which will complete the proof.

Let B be any vertex of X(N) represented by an essential one-sided circle b that
intersects ay, a, and a; minimally. We claim that 8 is connected in X(/N) to one of
a1, @y or 3. We prove our claim by induction on |b Nay|+ |[bNaz| + |bNas| = k.
Note that £ > 1.

Since b is essential, its Z,-homology class in N is one of [a1], [a2], or [a3]. Hence,
|bNaj|is odd for some j = 1,2,3 and |b Na;|is even fori # j. In particular k is
odd.
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If k = 1then |b Naj| =1 for some j = 1,2,3. Then either B = «; or B is
connected to ; by an edge. Suppose that k > 3. Then |b N aj| is even for some j
(There are two such j). Without loss of generality assume that j = 1. If [bNay| =0
then the curves b, a, and a3 lie on the surface Ny obtained by cutting N along a;.
Since N; is of genus two, by Proposition 3.6, 8 can be connected to o or a3 (by a
path all of whose vertices are represented by circles disjoint from a1). If [bNa;| > 2
then we orient @; and b arbitrarily. There are two points P and Q of |a; N b| such
that the interior of the subarc [P, Q],, of a; is disjoint from b and that b intersects
ap at P and Q from the same side relative to [P, Q],,. Now the one-sided circle
¢ constructed in Lemma 3.1 (where a is replaced by a) is essential and satisfies
leNbl=1,|cNay| <|bNay|—2,|cNaz| =|bNas|and |c Naz| = |b Nasz|.
Thus we have |c N ay| + |c Naz| + |c Nasz| < k — 2. By induction the vertex y
is connected to one of «;. Since y is also connected to B by an edge, the proof is
complete. O

Proposition 3.8. Let N be a nonorientable surface of genus g > 4. Then the graph
X(N) is connected.

Proof. Let «a and B be two vertices of X(N) represented by a and b respectively that
intersect minimally. We claim that there exists a sequence a = ag,d,d2,...,0, =
b of essential one-sided circles such that the circle a;_; intersects a; transversely
at one point. The proof follows from this. We prove this claim by induction on
k =lanb|.

Suppose first that k = 0, so that a and b are disjoint. Clearly, the surface N,
obtained by cutting N along a and b is connected. If N,p is nonorientable, there
is another essential circle d disjoint from both @ and b such that the complement of
a U b U d is nonorientable. Then it easy to find an essential circle ¢ representing the
Z»-homology class [a] + [b] + [d] such that ¢ intersects each of a and b at only one
point (cf. Figure 7 (i)). Then a, c, b is the required sequence. If N,y is orientable,
let e be any two-sided nonseparating circle on N disjoint from a and b. One can
easily find a one-sided essential circle d representing the Z,-homology class [b] + [e]
such that d intersects b at one point, d is disjoint from a, and the surface Ny, is
nonorientable (cf. Figure 7 (i1)). By the previous case, there is an essential circle ¢
such that a, ¢, d, b is the sequence we are looking for.

If k = 1 there is nothing to prove.

Suppose now that £k > 2. By Corollary 3.4, there exists an essential one-sided
circle ¢ such that |c Na| < |a N b| and |c N b| < |a N b|. By induction, there
are two sequences of essential one-sided circles a = ag,ay,...,ay = c and ¢ =
co,C1,...,c; = b such that any two adjacent circles in the sequences intersect once.
Thena = ag,ay,...,ay =c¢ = cp,C1,...,c; = b is the required sequence.

This completes the proof of the proposition. O

We collect the above results in the next theorem.
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(iii)

Figure 7. The surface N, is nonorientable in (i) and orientable in (ii). The complements
of a U ¢ and b U ¢ are connected in (iii) and in (iv).

Theorem 3.9. Let N be a nonorientable surface of genus g. Then the graph X(N)
(1) is connectedif g = 1org > 4,
(2) has g connected components if g = 2 or g = 3, one for each essential

generator of Hi(N;Z,), where N is the closed nonorientable surface of
genus g obtained from N by gluing a disk along each hole.

Theorem 3.10. Let g +n > 5 andlet N be a nonorientable surface of genus g with
n holes. Then the subgraph X (N) of X(N)

(1) is connectedif g = 1org >4,
(2) has g connected components if g =2 or g = 3.

Proof. Let o and 8 be two distinct vertices of X (N) such that « is connected to
by an edge in X(N). By Theorem 3.9, it suffices to prove that « is connected to
in X(N). Choose circles a € « and b € § with |[a N b| = 1. Let N,y denote the
surface obtained by cutting N along a U b.

Suppose first that g > 4. If N,yup is connected, there is nothing to prove. So
suppose that N, is disconnected. A regular neighborhood of @ Ub is a nonorientable
surface of genus one with two boundary components. Since g > 4, one of the
components of N, is either nonorientable of genus at least two or orientable of
genus at least one. In either case, one can find a one-sided essential circle c, as shown
in Figure 7 (iii) and (iv), such that ¢ intersects both a and b at one point and the
surfaces N,uc and Np, are connected. If y is the isotopy class of ¢, then the vertex
y is connected to both & and 8 by an edge in X (N).
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Suppose now that 1 < g < 3. Notice that N, has two connected components
and its Euler characteristic is 3 — g —n, which is less than or equal to —2. If g+n > 6
then the Euler characteristic of at least one of the components of N,p is less than —1,
so that « and § are connected by an edge in X (N). Hence, we have X(N) = X (N)
when g +n > 6.

If g + n = 5 and if the Euler characteristics of both components of N, are —1
then there is a one-sided essential circle ¢ intersecting both a and b at one point such
that one of the components has Euler characteristic —2 (cf. Figure 8). If y denotes
the isotopy class of ¢, then y is connected to both o and B by an edge in X (N).

This finishes the proof of the theorem. O

-
~

Figure 8. The isotopy class of ¢ is connected to the isotopy classes of @ and b by an edge in
X(N).

4. Classification of curve complexes

We prove in this section that two surfaces (orientable or nonorientable) are diffeomor-
phic if and only if their curve complexes are isomorphic provided that these surfaces
do not form one of the following pairs: A sphere with four holes and a torus with at
most one hole, a sphere with five holes and a torus with two holes, or a sphere with
six holes and a closed orientable surface of genus two. Here, we assume that the
curve complexes are nonempty.

Throughout this section, N will denote a compact connected nonorientable surface
of genus g with n holes.
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Remark 4.1. If S is a sphere with four holes or a torus with at most one hole, then the
curve complex C(S) is countably infinite discrete. Therefore, the curve complexes
of these surfaces are isomorphic. Similarly the curve complex of a sphere with five
(resp. six) holes and that of a torus with two holes (resp. a closed orientable surface
of genus two) are isomorphic.

Let us call a pair (X1, ¥5) of surfaces an exceptional pair if ¥ and X, are the
surfaces above such that they are not diffeomorphic but their curve complexes are
isomorphic.

Theorem 4.2 ([15], [13]). Let S and X be two connected orientable surfaces such that
(S, X) is not exceptional pair. The curve complexes C(S) and C(X) are isomorphic
if and only if S and % are diffeomorphic.

Theorem 4.2 was proved in [13] for surfaces of genus at most one and in [15] in
the above generality. The proof of this theorem follows from Theorem 3, since the
extended mapping class groups of nondiffeomorphic surfaces are not isomorphic.

If N and S are two surfaces and if ¢ : C(N) — C(S) is an isomorphism, then ¢
induces an isomorphism L(«x) — L(¢(«)) for any vertex o in C(N). We will use
this fact.

Lemma 4.3. Let N be a connected nonorientable surface and S a connected ori-
entable surface. Then C(N) and C(S) are not isomorphic.

Proof. 1If the genus of N is at least two, then there are maximal simplices of different
dimensions in C(N). On the other hand, all maximal simplices in C(S) have the
same dimension. Hence, C(N) and C(S) cannot be isomorphic.

Suppose that N is of genus one with n holes. If n € {0, 1,2} then C(N) is
nonempty finite, but C(S) is not.

If n > 3, then let a be a two-sided circle on N such that the components of N,
are a sphere D with n holes and a nonorientable surface M of genus 1 with two
holes. Let o denote the isotopy class of a. Then L(«) is isomorphic to the join
C(M)x C(D), where C(M) consists of only two points. The link of no vertex in the
curve complex of an orientable surface has such a decomposition. Therefore, C(N)
cannot be isomorphic to C(S). O

Lemma 4.4. Letr > 1. If N is a connected nonorientable surface of genus g = 2r
with n holes and M is a connected nonorientable surface of genus 2r + 1, then C(N)
and C(M) are not isomorphic.

Proof. Note that the curve complex of a connected surface is isomorphic to the disjoint
union of a closed interval (resp. infinite line) and a point if and only if the surface
is a Klein bottle (resp. a Klein bottle with one hole). It follows that if N is a Klein
bottle with at most one hole, then C (V) is not isomorphic to C(M). Hence, we may
assume that N is not a Klein bottle with at most one hole.
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Suppose that there is an isomorphism ¢: C(N) — C(M). We will arrive at a
contradiction.

Let us say that a vertex o on a nonorientable surface ¥ bounds a Klein bottle if
« is represented by a two-sided separating circle a such that one of the components
of 3, the surface obtained by cutting N along a, is a Klein bottle K with one hole.
Observe that if & bounds a Klein bottle K, then the link L () of « is isomorphic to the
join C(K) x C(K’) for some surface K’. Conversely, if the link L («) is isomorphic
to C(K) » C(K"), then o bounds a Klein bottle.

It follows from this observation that if & bounds a Klein bottle on N, then ¢(«)
bounds a Klein bottle on M.

Suppose that (g,n) # (4,0). Let oy, az,...,a, be vertices in C(N) such that
each «; bounds a Klein bottle and A = {oy, az,...,a,} is a simplex of dimension
r — 1. Then ¢(A) is a simplex of dimension r — 1 in C(M). The link of A is equal
to L(a1) N L(az) N --- N L(y), which is isomorphic to

C(Kl) * C(KZ) Kook C(Kr) * C(Sn+r)’

where each K; is a Klein bottle with one hole and S, 4, is a sphere with n + r holes.
On the other hand, the link of ¢(A) is isomorphic to

C(K1) x C(Kp) % ---x C(K,) » C(P),

for some nonorientable surface P of genus one. It is easy now to conclude that
C(S,+r) is isomorphic to C(P), which is impossible by Lemma 4.3.

Suppose now that (g,n) = (4,0). Let a be a circle bounding a Klein bottle and
let a be the isotopy class of a. The link of « is equal to

C(K1) » C(K>)

where each K; is a Klein bottle with one hole. Hence, the link of ¢ (o) is isomorphic
to
C(Ky) » C(K>).

But there is no such a vertex in C(M).
This contradiction finishes the proof of the lemma. O

Lemma 4.5. Let N (resp. M) be a connected nonorientable surface of genus g
(resp. h) with n (resp. m) holes. If C(N') and C(M) are isomorphic, then g = h and
n=m.

Proof. Suppose that C(N) and C(M) are isomorphic. Without loss of generality,
we assume that g < h.

By Proposition 2.3, we get [£] = ’7%—‘ Recall that [£] denotes the smallest

integer bigger than £. It follows that either g = /h, or g isevenand 7 = g + 1.
By Lemma 4.4, the latter case is not possible. Hence, g = h. By looking at the
dimensions of the complexes one can deduce that n = m. O
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We collect the results of this section in the next theorem.

Theorem 4.6. Let 31 and X5 be two connected surfaces such that C(X1) and C(X5)
are nonempty and (X1, X2) is not an exceptional pair. Then the curve complexes
C(X21) and C(X3) are isomorphic if and only if ¥1 and X, are diffeomorphic.

5. Topological types of vertices in C(V)

We prove in this section that automorphisms of the curve complex preserve the topo-
logical types of vertices. Recall that two vertices in C(N) have the same topological
type if there is a diffeomorphism mapping one to the other.

Theorem 5.1. Let N be a connected nonorientable surface of genus g with n holes.
The group Aut C(N) preserves the topological types of the vertices of C(N). That
is, if ¢ is an automorphism of C(N) and if o is a vertex of C(N), then o and ¢(at)
have the same topological type.

Proof. Let us denote by N ;‘ (resp. S é‘ ) the nonorientable (resp. orientable) surface
of genus g with k holes.

Let o be a vertex in C(N) represented by a circle a. The link L(«) of « is
isomorphic to the following complex:

* If o is one-sided and essential (N, is nonorientable), then the link L(«) is
isomorphic to the curve complex C (N, ;’fll).

e If o is one-sided and if N, is orientable (this occurs when g is odd), then the

link L () is isomorphic to C(S(”ng_ll)/z).

e If @ is two-sided nonseparating and if N, is nonorientable, then L () is iso-
morphic to C(N gf’fzz .

e If « is two-sided nonseparating and if N, is orientable (this occurs if g is

even), then the link L (o) is isomorphic to C (S (”g+_22) /2).

¢ Ifa bounds adisk with two holes, then the link L () is isomorphic to C (N, g{‘_l ).

e If o is separating and if the connected components of N, are N,i“ and
NZZiF1, then the link L(e) is isomorphic to the join C(Nf 1) « C(NJ 7).

Nn—l-‘rl

* Ifoisseparating and if the connected components of N, are S ,i“ and N, ",

then the link L (o) is isomorphic to C(S,i“) * C(N;:é,jl).

Since the links of vertices of different topological types are pairwise nonisomor-
phic, the proof of the theorem follows. O
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6. Injectivity of Mod(N) — Aut C(V)

We show in this section that the natural map Mod(N) — Aut C(N) is injective. Asin
the orientable case, the injectivity of this map is the easier part of the proof. The proof
will basically follow from the corresponding result in orientable case, Theorem 3, by
an induction on the genus of the surface. For this purpose we consider the sphere as
a nonorientable surface of genus zero.

Theorem 6.1. Let N be a connected nonorientable surface of genus g > 0 with n
holes. Suppose that g +n > 5. The natural map Mod(N) — Aut C(N) is injective.

Proof. The proof is by induction on the genus g. Theorem 6.1 holds true in the
case g = 0, by Theorem 3. Suppose now that g > 1, and that f is an element of
Mod(N) acting trivially on C(N), so that it fixes every vertex of C(N). Let F be a
diffeomorphism representing f.

Let a be a one-sided essential circle on N, so that the surface N, obtained by
cutting N along a is a nonorientable surface of genus g — 1 with n 4+ 1 boundary
components. Denote by « the isotopy class of a. Since f(«) = «, F(a) is isotopic
to a. Choose a diffeomorphism G isotopic to identity such that G(F(a)) = a. Let
H = G o F. Let H, be the diffeomorphism N, — N, induced by H. Clearly, the
isotopy class of H, acts trivially on C(N,). Note that the genus and the number of
boundary components of N, satisfy (g — 1) + (n + 1) > 5.

By induction, the diffeomorphism H, is isotopic to the identity of N,. One can
choose the isotopy so that it induces an isotopy N — N between H and the identity.
Hence, the diffeomorphism F, which is isotopic to H, is isotopic to the identity, so
that the map Mod(N) — Aut C(N) is injective. O

7. Surjectivity of Mod(N) — Aut C(V)

In this section, it is again convenient to consider the sphere as a nonorientable surface
of genus zero. In order to prove that the natural map Mod(N) — Aut C(N) is
surjective, we induct the genus of the surface. The initial case g = 0 is already
known by Theorem 3.

Before completing the proof, we need some preparation.

7.1. Preparation for the surjectivity

Lemma 7.1. Let g +n > 4 andlet N be a compact connected nonorientable surface
of genus g > 0 with n holes. Let d be one of the boundary components of N and
let F: N — N be a diffeomorphism with the property that F(d) = 0. If F(c) is
isotopic to c for all nontrivial circles ¢ on N, then F is isotopic to the identity. If F
and the isotopies are assumed to be the identity on 0, then F is isotopic to a power
of the Dehn twist ty.
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Proof. We prove our lemma by induction on the genus g. Once we prove the first
assertion, the second is clear.

As the first step of the induction, suppose that g = 0, so that N is a sphere with
n > 4 holes.

Letn > 5, so that N is a sphere with n holes. By assumption, the isotopy class
of F acts trivially on C(N). By Theorem 3, F is isotopic to the identity.

Letn = 4, so that N is a sphere with four holes. Let § be a boundary component
of N different from d. Choose a nontrivial circle ¢ such that d and § lie on the same
connected component of N., which is a pair of pants. Since F(c) is isotopic to ¢
and F(d) = 0, it follows that F(§) = §. It follows that F preserves all boundary
components of V. Since it fixes the isotopy class of each circle, it follows that F is
isotopic to the identity.

Suppose now that N is a nonorientable surface of genus g > 1 with n holes.
Let a be a one-sided circle on N. Since F(a) is isotopic to a by composing F with
a diffeomorphism isotopic to the identity we may assume that F(a) = a. Then
F induces a diffeomorphism H: N, — N, such that H(d) = d. By induction
hypothesis, H is isotopic to the identity on N,.

Let § denote the boundary component of N, so that N is obtained from N, by
identifying the antipodal points on §. Orient § arbitrarily. Since H is isotopic to the
identity, the diffeomorphism H preserves the orientation of §. The isotopy between
H and the identity can be chosen in such a way that it induces an isotopy between F
and the identity of N. O

Lemma 7.2. Let N be a sphere with three holes and let 0 be one of the boundary
components of N oriented arbitrarily. Let F: N — N be a diffeomorphism with
the property that F(0) = 0 and F preserves the orientation of d. Then either F is
isotopic to the identity or to the half twist o interchanging the other two boundary
components. If F and the isotopies are assumed to be the identity on 0, then F is
isotopic to a power of 0.

Proof. The lemma follows easily from the description of the mapping class group of
N, which is well known. O

Lemma 7.3. Let N be a nonorientable surface of genus one with two holes or a
Klein bottle with one hole. Let 0 be one of the boundary components of N oriented
arbitrarily and let F: N — N be a diffeomorphism with the property that F(3) = 0
and F preserves the orientation of 0. If F(c) is isotopic to c for all nontrivial circles
c on N, then F is isotopic to the identity. If F and the isotopies are assumed to be
the identity on 0, then F is isotopic to a power of the Dehn twist t;.

Proof. The second conclusion follows from the first. Suppose first that N is a pro-
jective plane with two holes. The mapping class group of N preserving each hole
consists of four elements, vy, v, V]V, and the identity (cf. Theorem 2.4). The map-
ping classes v; and v, do not act trivially on the curve complex and v, v, reverses
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the orientations of both boundary components of N. Hence, F' must be isotopic to
the identity.

Suppose now that N is a Klein bottle with one hole. Let a; and a, be two distinct
one-sided disjoint circles on N. Since F'(a;) is isotopic to a;, by composing F with a
diffeomorphism isotopic to the identity, we may assume that F(a;) = a;. Cutting N
along the one-sided circles a; and a», we get a pair of pants P such that F preserves
the orientation of 9, where F is the diffeomorphism of P induced from F. Hence,
F is orientation-preserving.

Let 6, and 85 be the boundary components of P coming from a; and a, respec-
tively. Orient 8; and 8, arbitrarily. Since F is orientation-preserving, it preserves the
orientation of each §; and is isotopic to the identity. We can choose the isotopy in
such a way that it respects the antipodal points on each §;, so that it gives an isotopy
between F and the identity on N. O

7.2. The main step in the proof. The following theorem is a crucial step in the
proof of the surjectivity of the natural map Mod(N) — Aut C(N).

Theorem 7.4. Let g-+n > 5andlet N be a compact connected nonorientable surface
of genus g > 1 withn holes. Let a and B be two distinct one-sided essential vertices
in C(N) such that they are connected by an edge in X (N). Let h be a mapping class
such that h(y) = y for all vertices y in (St(a) U D(a)) N (St(B) U D(B)). Then h
is equal to the identity.

Proof. We refer to Section 3 for the definition of X (N). Recall that for a one-sided
vertex y, the set D(y) consists of the vertices of C(/N) dual to y.

Leta and b be two circles representing « and §, respectively, such that a intersects
b transversely at one point. Let Ny be a regular neighborhood of @ U b. Note that
Nj is a real projective plane with two boundary components, say d; and d,. Let us
orient d; and d, arbitrarily.

If g > 4 then the surface obtained by cutting N along d; U d, is a disjoint union
of Ny and a nonorientable surface N;. If 1 < g < 3, then the surface obtained by
cutting N along dq U d5 is a disjoint union of Ny and two other surfaces N1 and N5.
Suppose that, for i = 1, 2, the surface N; is of genus g; with n; holes. Without loss
of generality, we may assume that g; + n; > g» + n,. Note that N; cannot be an
orientable surface of positive genus.

Let d; be the isotopy class of d; whenever d; is nontrivial. The vertex 0; is
contained in (St(a) U D(a)) N (St(B) U D(B)), so that h(d;) = 9;. Let H be a dif-
feomorphism in the class 4 such that H(d;) = d;. Then H induces diffeomorphisms
Hj: Nj — Nj foreach j =0, 1,2. We denote the class of H; by h;.

Suppose first that g > 4. By assumption, N; is connected and nonorientable. The
surface N; has two distinguished boundary components d; and d» and H1(d;) = d;.
Itis easy to see that the genus of Nyisg—3 > 1. Since g+n > 5,wehave g; +n; =
(g—3)+(n+2) > 4. ByLemma 7.1, H; is isotopic to the identity. In particular, H
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preserves the orientation of each d;. By Lemma 7.3, Hy is also isotopic to the identity.
It follows that H is isotopic to a product (Z4, )™ (t4,)™? for some integers m and m,
where 74, denotes a Dehn twist about d;. It is easy to find a one-sided essential circle
¢ on N which intersects d, d> and a only once and is disjoint from b (cf. Figure 9).
The isotopy class y of ¢ is contained in (St(«) U D(a)) N (St(B8) U D(B)). Since
h(y) = y, we must have m; = m, = 0. Hence, & is the identity.

Figure 9. The circle c is the case g > 4.

Suppose now that 1 < g < 3. We may assume that d; is a boundary component
of Nj. If one of N;, say N,, is an annulus, then we glue it to Ny, so that we assume
that the complement of d; U d> has two connected components, No and N;. Since
g1+ n1 > go + np, the Euler characteristic of N is less than or equal to the Euler
characteristic of N,. Since o and 8 are connected by an edge in X (N), the Euler
characteristic of N; is at most —2, so that g; + n1 > 4.

By Lemma 7.1, H; is isotopic to the identity. In particular, H preserves the
orientation of d1. By Lemma 7.3, Hj is isotopic to the identity, and hence H preserves
the orientation of d, as well. By composing H with a diffeomorphism isotopic to
the identity we may assume that H is the identity on Ny, so that H is isotopic to a
power of the Dehn twist 74, about d.

If g» + ny > 3 and (g2, n2) # (0, 3) then H; is isotopic to a power of the Dehn
twist 74, by Lemmas 7.1 and 7.3. Hence, H is isotopic to (t4,)™" (t4,)">.

If (g2, n2) = (0, 3) then H; isisotopic to a power of the half twist o by Lemma 7.2,
where ¢ interchanges two boundary components of N, other than d,. Hence, H is
isotopic to (f4,)"10™2.

If (g2,n2) = (1,1) then H; is isotopic to the identity since the mapping class
group of N, is trivial. Hence, H is isotopic to (t4,)™!.

It is easy to find a one-sided circle c; intersecting d; such that the isotopy class
y1 of ¢y is contained in (St(a) U D(a)) N (St(B) U D(B)) (cf. Figure 10). Since
H(c) is isotopic to the identity by hypothesis, we conclude that m; = 0. Similarly,
one may conclude that m, = 0 by using the circle ¢, on N intersecting d, and that
its isotopy class is contained in (St(a) U D(a)) N (St(B) U D(B)). O
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Figure 10. The circle ¢; if the genus of N; is zero or nonzero.

7.3. More preparation

Lemma 7.5. Let ¢ be an automorphism of C(N) and let « be an essential one-sided
vertexin C(N). If ¢ fixes all vertices in St(«), then it also fixes all vertices dual to «.

Proof. Let B be avertex dual to «. Let a be a circle representing « and let b be a circle
representing § such that b intersects a only once. Let T be a regular neighborhood
of a Ub.

If b is one-sided, then the surface T is a real projective plane with two boundary
components, d; and d,. If one of d; is parallel to a boundary component, we just
ignore it, and consider the other. Let §; and 8, denote the isotopy classes of d; and
d,, respectively. Let ¢ be a representative of ¢(8) intersecting d; and ¢ minimally.
Since 8; € L(a), we have ¢(8;) = ;. Since ¢(8) is connected by an edge to each §;
and to the isotopy class of each circle disjoint from 7', we conclude that ¢ lies on 7.
Up to isotopy, there are only two one-sided circles on 7; a and b. Since B # o, we
have ¢(8) # ¢(a) = o, concluding that ¢ is isotopic to b. Thus we get ¢(8) = B.

If b is two-sided, then the surface T is a Klein bottle with one boundary component,
say d. Let 6 denote the isotopy class of d. Let ¢ be a representative of ¢(f8)
intersecting d and a minimally. Since § € L(«), we have ¢(§) = §. Since p(p) is
connected by an edge to § and to the isotopy classes of circles disjoint from 7', we
conclude that ¢ lies on T'. Since c is two-sided and since up to isotopy there is only
one two-sided nontrivial circle on a Klein bottle with one hole (cf. [19]), we conclude
that ¢ is isotopic to b. Thus we get p(8) = B. O

Lemma7.6. Let ¢ be an automorphism of C(N) andlet Y be a connected component
of the graph X (N). Suppose that o(a) = o whenever o is contained in St(y) U D(y)
for some vertex y in Y. Then ¢ is equal to the identity.

Proof. Note that, by Theorem 3.10, the graph X (N) is either connected (if g # 2
or 3), or has two connected components (if g = 2), or has three connected components
(if g = 3). Let o be a vertex of C(N) represented by a circle a. In most cases,
depending on the topological type of o we find a vertex § in Y such that o €
St(B) U D(B). In the following S will denote the isotopy class of the circle b.
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Case 1. Suppose first that g = 1l or g > 4, sothat Y = )?(N). If a is one-
sided and essential, then let » = a. If a is one-sided but not essential (this occurs if
g > 4), or if a is two-sided and nonseparating, then let b be any one-sided essential
circle intersecting @ only once. In each of these cases, B is a vertex of X (N) and
a € St(B) U D(B), so that p(a) = «.

Suppose that a is separating. Then the surface N, has two connected components,
Np and N,. At least one of N;, say Nj, is nonorientable. If N; and N, are both
nonorientable, or the genus of Ny is at least two, then let b be any one-sided circle on
N such that its complement in N is nonorientable. If N, is a sphere with holes and
if the genus of N is 1, let  be a one-sided circle on N; (b is essential since g = 1).
In all these cases, S is a vertex in X(N),and o € St(B), so that p(x) = «.

Suppose that the genus of N; is 1 and N, is orientable of positive genus (so that
g > 4 and g is odd). Let P be a set consisting of a finite number of nonseparating
circles on N, and a finite number of one-sided circles on N; such that any circle
disjoint from P is isotopic to a. Since ¢ fixes the isotopy class of each element of P
and ¢(«) is connected to each of them by an edge in C(N), it follows that p(«) = «.

Case 2. Suppose now that g = 2. If a is one-sided, then it is essential. In this
case, either « is a vertex in Y, or there is a one-sided circle ¢ disjoint from a. Let
b = a in the first case, or b = c in the second case. Hence, § is a vertex ¥ and
a € St(B).

If a is two-sided and nonseparating, then one can easily find two disjoint one-sided
circles each of which intersects a only once. The isotopy class, 8, of one of these
two circles is a vertex in Y. We then get« € D(f).

Suppose that a is two-sided and separating. Let N; and N, be the components
of N,. One of these components, say Nj, is nonorientable. If both Ny and N, are
of genus one, choose a one-sided circle on each component. The isotopy class, §, of
one of these circles is a vertex in Y and we have a € St(8). If N; is of genus two,
let b be any one-sided circle on N; whose isotopy class B is a vertex in Y. Then we
have o € St(f).

We conclude that if g = 2 and if « is any vertex of C(V), then ¢(«) = .

Case 3. Suppose finally that g = 3. If a is one-sided and essential, then there
are two other one-sided essential circles a; and a, on N such that a, a; and a, are
pairwise disjoint. The isotopy class, 8, of one of these three circles is a vertex in Y.
Then we have o € St(f).

If a is one-sided and but not essential, then there are three pairwise disjoint one-
sided essential circles intersecting a only once. The isotopy class, 8, of one of them
must be a vertex in Y. Thus we have o € D(f).

If a is two-sided and nonseparating, then there is a vertex 8 in Y such that
ae D(B)ora e L(B).

Suppose now that a is two-sided and separating. Let N; and N, be the compo-
nents of N,;. One of these components, say Nj, is nonorientable. If both N; are
nonorientable, let b denote a one-sided circle disjoint from a such that its isotopy
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class B is a vertex in Y. Then o € St(8).

If N, is a sphere with holes, then let b denote a one-sided circle disjoint from a
such that its isotopy class f is a vertex in Y. Then o € St(B).

It follows that p(«) = « in all above cases. The only remaining case is that N;
is of genus 1 and N5 is a torus with holes.

If N, is a torus with holes, let P be a set consisting of a finite number of nonsep-
arating circles on N, and a finite number of one-sided circles on N; such that any
circle disjoint from P is isotopic to a. Since the isotopy class of each element of P
is fixed by ¢ and since ¢(«) is connected to each of them by an edge, we must have
o(a) = a.

This completes the proof of the lemma. O

7.4. Completing the proof of surjectivity. Finally, we are ready to prove the sur-
jectivity of the natural homomorphism Mod(N) — Aut C(N). In the following
theorem, it is convenient for us to consider the sphere as a nonorientable surface of
genus zero.

Theorem 7.7. Let N be a connected nonorientable surface of genus g > 0 with n
holes. Suppose that g +n > 5. Then the natural map ®: Mod(N) — Aut C(N) is
surjective.

Proof. We prove the theorem by induction on g. If g = 0 then N is a sphere with at
least 5 holes. By Theorem 3, the homomorphism & is surjective. Suppose that N is
a nonorientable surface of genus g > 1 and that the theorem holds for nonorientable
surfaces of genus g — 1. Let ¢: C(N) — C(N) be a simplicial automorphism. We
will prove that there is a mapping class # on N such that ¢(«) = h(«) for all vertices
a of C(N). For a mapping class & we denote the automorphism ® (%) of C(N) also
by h.

Let o be a vertex in C(N) represented by a one-sided essential circle a, so that
the surface N, obtained by cutting N along a is a nonorientable surface of genus
g — 1 with n + 1 holes. By Theorem 5.1, there is a mapping class f, such that
p(a) = fy(@). Let gy = £, ! o @, so that we have g, (a) = «.

Now, @, restricts to an automorphism @, : L(et) — L(«). Since L(o) is isomor-
phic to the complex of curves C(N,), we have an automorphism ¢, of the complex
of curves of N,. By induction, ¢ is equal to a map g, : C(N,) — C(N,) which is
induced by a diffeomorphism Gy: N, — N,. Let 3, be the boundary component of
N, coming from a. Let us identify d, with the unit circle so that antipodal points on
d, map to the same point of a under the identification map N, — N.

We claim that G4(9,) = 04. If n = 0 then 9, is the only boundary component
of N,. Thus there is nothing to show in this case. Suppose that n > 2. Let d; be a
boundary component of N. Choose another boundary component d,, and a circle ¢
disjoint from a such that ¢ bounds a disk with two boundary components, d; and 9.
Let y denote the isotopy class of ¢. Then any circle ¢’ representing ¢(y) = guo(y)
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bounds a disk with two boundary components 9 and 9, of N (and of N,). Note that
{Gy(01), G4(d2)} = {3/, d,}. Tt follows that G, permutes the boundary components
of N, that are also boundary components on N, and hence G4(3,) = 95. If n = 1
then by taking c as a circle bounding a Klein bottle K containing a such that ¢ is
disjoint from @ one can show that G4 (3,) = 9.

By composing G,, with a diffeomorphism isotopic to identity, we can assume that
G, maps antipodal points on the boundary 9, to antipodal points. Thus, G, induces
adiffeomorphism G, : N — N, which satisfies G4 (a) = a. If g, denote the isotopy
class of G, then ¢, agrees with g, on every vertex of St(c). The composition g, ! og,
fixes every vertex of St(«). By Lemma 7.5, ¢, fixes every vertex of St(x) U D(«).

Let hy = fy © gq, 0O that p(y) = hy(y) forall y € St(e) U D(«). That is, for
each one-sided essential vertex «, there is a mapping class /4 such that

¢ = hg on St(a) U D(a).

Let B be a one-sided essential vertex connected to o by an edge in the graph
X (N). We then have hy (y) = ¢(y) = hg(y) for all vertices y in (St(a) U D(x)) N
(St(B) U D(B)). By Theorem 7.4, we have hy = hg.

_ It follows that if « and B are two vertices in the same connected component of
X(N), then hy = hg.

Fix an essential one-sided vertex o in X (N ) and let /2 denote the mapping class Aq .
Let Y be the component of X (N) containing «. If 8 is a vertex of C(N) contained in
St(y) U D(y) for some vertex y of Y, then ¢(8) = h,(8) = h(B). By Lemma 7.6,
@(y) = h(y) for all vertices of C(N).

This concludes the proof of the theorem. O

8. Exceptional cases

In this last section, we look at the cases not covered by Theorem 1. Let ®: Mod(N) —
Aut C(N) denote the natural homomorphism.

If (g, n) = (1,0) then Mod(N) is trivial and the complex C (/) consists of only
one vertex, so that the map @ is an isomorphism.

If (g,n) = (1,1) then Mod(N) is (isomorphic to) the cyclic group Z, of order
two and C () consists of one vertex. Hence, ® is onto, but not one-to-one.

If (g,n) = (1,2) then Mod(N) is the dihedral group of order eight ([14], Corol-
lary 4.6). The complex C(N) consists of two vertices, so that its automorphism group
is Z». It follows from Theorem 2.4 that ® is onto and its kernel is Z, & Z,, generated
by v;v, and the braid interchanging two boundary components.

If (g,n) = (2,0) then Mod(N) is Z, @ Z,. The complex C(N) consists of three
vertices and one edge joining two one-sided vertices (see Section 2.4). The Dehn
twist about the unique two-sided nontrivial circle acts nontrivially on C(N). Hence,
the map @ is onto and its kernel is Z,.
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If (g,n) = (2,1) then C(N) is the disjoint union of a vertex (the isotopy class
of the unique two-sided circle a) and the real line £ on which a vertex is placed at
each integer point ([19]), so that Aut C(N) is an infinite dihedral group. The vertex
set on £ is {t‘]lc (B) : k € Z}, and té‘(,B) is connected to t"f“(ﬂ) for each k. Here,
is the isotopy class of any fixed one-sided circle. Thus, the Dehn twist #, acts as a
translation on £. Clearly, there is a mapping class acting as the reflection on £. Thus,
the map @ is onto. One can easily to find a nontrivial diffeomorphism of N acting
trivially on C (), so that ® is not one-to-one.

Suppose now that (g, n) = (3, 0). Let T be a torus with one boundary component
d. Assume that N is obtained from 7 by identifying the antipodal points on d. Ev-
ery diffeomorphism 77 — T is isotopic to a diffeomorphism which maps antipodal
points to antipodal points on d, so that it induces a diffeomorphism N — N. Iden-
tifying the extended mapping class group of 7 by GL(2, Z) gives a homomorphism
¥: GL(2,Z) — Mod(N). It is easy to see that ¥ is injective. Since the image d
in N of d is the unique (up to isotopy) one-sided circle whose complement is ori-
entable, the map v is also surjective, so that it is an isomorphism. The image of the
hyperelliptic involution of T acts trivially on the curve complex, in fact it is the only
such element. Thus, the kernel of the map ®: Mod(N) — Aut C(N) is isomorphic
to Z,.

Let us denote by § the isotopy class of d. Since any circle whose complement
in N is orientable is isotopic to d, the vertex ¢ is fixed by all automorphisms of
C(N). Note that all two-sided vertices are connected to §, so that the link L(§) of §
is naturally isomorphic to the curve complex C(T'). Also, given a two-sided vertex o
there exists a unique (one-sided) essential vertex o’ connected to «. It can be seen that
for any two two-sided vertices @ and §, i (&, B) = 1 if and only if the corresponding
essential vertices o’ and B’ are connected in C(N). Since an automorphism of the
curve complex of the torus T preserving the geometric intersection one property is
induced by a diffeomorphism of 7', it follows that all automorphisms of C(N) are
induced by diffeomorphisms of N. That is, the map @ is onto.

In the remaining four exceptional cases, the cases where g + n = 4, we do not
know whether the natural map Mod(N) — Aut C(N) is an isomorphism.
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