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1. Introduction

The notion of measure equivalence between groups was introduced by M. Gromov
[Gr], as an analog of quasi-isometry in the context of actions on measure spaces.
It has been widely studied since then, for example the works of Dye [D59], [D63],
Ornstein and Weiss [OW], and Furman [F] characterized the measure class of Z,
found to be exactly the infinite amenable groups. This motivates the study of which
groups are measure equivalent to the non-abelian free groups, Fn with n � 2 (which
are all virtually isomorphic, thus measure equivalent).

In this paper we will work with the notion of treeability, in the sense of Pemantle
and Peres [PP], which is equivalent to being measure equivalent to a free group, as
shown by G. Hjorth [H].

The concept of measure free factor (Definition 2.15) was introduced by D. Gabo-
riau in [G05], as a tool for the study of measure equivalence. He was able to find many
groups that are measure equivalent to the free group F2, by showing that this class is
closed under certain amalgamated products. Namely, those amalgamations A �C B

where C is a measure free factor of either A or B (see Theorem 2.18 for the precise
statement). In this work, Gaboriau [G05] poses the question of which elements of
F2 generate a cyclic measure free factor. He shows that such an element cannot be a
proper power, and also finds the first non-trivial example (see Theorem 2.16).

Gaboriau’s results were then used by M. Bridson, M. Tweedale and H. Wilton
[BTW] to prove that all elementarily free groups (an important subclass of the limit
groups defined by Z. Sela [S]) are measure equivalent to F2. This provides a wide set
of examples of groups in the measure equivalence class of F2, and it naturally raises
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the question of whether all non-abelian limit groups are in this class. The importance
of measure free factors in the study of this problem is explained in that same work
[BTW], and it arises from the structure of limit groups as iterated amalgamations
and HNN extensions, found by Z. Sela [S] and O. Kharlampovich and A. Myasnikov
[KhM98a], [KhM98b]. Thus, new measure free factors of free or limit groups give
rise to more limit groups in the measure class of F2.

This work advances the study of measure free factors of free groups, by finding
some new infinite families of elements ofFn that generate cyclic measure free factors
of Fn. Namely, we prove the following.

Theorem 5.1. Let F D hx; y1; : : : ; yki be a free group of rank k C 1. Then an
element of the form

w D xy1x
m1y�1

1 y2x
m2y�1

2 : : : ykx
mky�1

k

generates a measure free factor of F .

Theorem 5.2. Let G D F2 D ha; bi. Then an element of the form w D akbn for
k; n ¤ 0 generates a measure free factor of G.

Since conjugates of measure free factors are also measure free factors, Theo-
rem 5.2 gives that all the words of the form akbnap with n ¤ 0; k ¤ �p generate
measure free factors of F2. These give all the three-letter words of F2 that are not
proper powers, with the exception of akb˙1a�k (that generates a free factor), and
modulo exchanging a and b. Therefore, a three-letter word generates a measure
free factor of F2 exactly when it is not a proper power. In the special case of F2,
Theorem 5.1 says that the words of the form abamb�1 generate measure free factors
of F2.

This produces new examples of groups that are measure equivalent to a free group,
for instance the limit groups Fn �w Fn and Fn �w .hwi � Zm/, where w is one of the
elements mentioned in Theorems 5.1 or 5.2.

We also find measure free factors of some virtually free groups.

Theorem 6.1. Let G D ha1; : : : ; an; s1; : : : ; sk j sn1

1 D 1; : : : ; s
nk

k
D 1i Š Fn �

Zn1
�� � ��Znk

. Ifv 2 Fn generates ameasure free factor ofFn, thenw D vs
p1

1 : : : s
pk

k

generates a measure free factor of G for any p1; : : : ; pk .

The measure free factors obtained by Gaboriau [G05] are the boundary subgroups
of certain surface groups (orientable with positive genus, see Theorem 2.16). Theo-
rem 6.1 allows us to generalize this to boundary subgroups of some 2-orbifold groups
(with positive genus, see Corollary 6.2).

The paper is organized as follows. Section 2 covers the preliminary notions and
known results. First we give a brief introduction to Borel equivalence relations, tree-
ings and cost, in Section 2.1. Then, in Section 2.2, we recall the definitions and
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results of Gaboriau [G05] that concern measure free factors. We also define com-
mon measure free factors (Definition 2.19), which are necessary for Proposition 2.20,
a version for HNN extensions of Gaboriau’s theorem about amalgamations (Theo-
rem 2.18). Subsection 2.3 recalls the notions of induced and coinduced actions, and
contains the proof of Proposition 2.20. Section 3 is devoted to the main technical tool,
Theorem 3.2, which gives a way of passing to finite index subgroups in the problem
of showing that some cyclic subgroup is a measure free factor. This result is closely
related to the Kurosh theorem for Borel equivalence relations obtained by A. Alvarez
[A], but going in the converse direction. Theorem 3.2 is then used in Section 4 to
generalize the theorems of Gaboriau about the boundary subgroup of surface groups
(Theorem 2.16 and Corollary 2.17) to non-orientable surfaces (Lemma 4.1). We also
prove a version for slightly more general systems of disjoint simple closed curves
instead of the boundary subgroup (Proposition 4.2). Finally, Section 5 contains the
proofs of Theorems 5.1 and 5.2. Section 6 gives the proof of Theorem 6.1, as well as
Corollary 6.2 which generalizes Proposition 4.2 to the case of 2-orbifolds.

I would like to thank D. Gaboriau for useful discussion and suggestions.

2. Preliminaries

2.1. Treeings and cost. Here we review some of the theory of Borel equivalence
relations on standard Borel spaces, and the notion of cost, an invariant of an equiva-
lence relation preserving a probability measure. This material is covered in detail in
the book by Kechris and Miller [KM].

A standard Borel space is a measurable space X (a set X , together with a � -
algebra of subsets ofX ), which is isomorphic as a measurable space to a Borel subset
of the interval (with the � -algebra of Borel sets). When X is a standard Borel space,
we will refer to the subsets in its � -algebra as the Borel subsets of X . We will also
call an isomorphism of measurable spaces between standard Borel spaces a Borel
isomorphism.

It is a well-known result that X is a standard Borel space if and only if it is
isomorphic to a Borel subset of any Polish space (see for instance [K]). Thus products
of standard Borel spaces are again standard Borel spaces.

A Borel equivalence relation on the standard Borel space X is an equivalence
relation E � X �X which is a Borel subset of X �X .

Borel equivalence relations are one of the basic objects of this work. The main
example we will consider is when a group G acts on X by Borel automorphisms.
Then the equivalence relation EX

G , whose classes are the G-orbits, is Borel. It is
a fact that every Borel equivalence relation with countable classes comes from the
action of some group (Feldman–Moore Theorem, [KM], Theorem 15.1), but there is
no need to use this fact in the present work.

Now we turn to graphings, which play the role of generators for these equivalence
relations.
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Let X be a standard Borel space. A partially defined isomorphism on X is a map
' W A ! B , where A and B are Borel subsets of X and ' is a Borel isomorphism
between them. If ˆ D f'i W Ai ! Bigi2I is a family of partial isomorphisms,
the equivalence relation generated by ˆ is the minimal Borel equivalence relation
E � X �X containing the set

f.x; 'i .x// W x 2 Ai ; i 2 I g:
We will denote it by Eˆ.

Definition 2.1. A graphing for E is a family ˆ D f'igi2I of partially defined Borel
isomorphisms on X that generates E.

As the name suggests, a graphing defines a graph structure on each equivalence
class. Consider the graph with vertex set X and edges .x; 'i .x// for x 2 Ai , i 2 I .
Then its connected components are the equivalence classes of E, and this gives the
graph structure of each class.

As an example, let E D EX
G be the orbit relation induced by an action G Õ X .

If S D fsigi2I is a generating set for G, then the maps 'i W X ! X , 'i .x/ D si � x,
form a graphing for EX

G . In this case Ai D Bi D X for all i . The graph structure is
the same for every orbit and agrees with the Cayley graph of .G; S/.

Now let � be a finite measure on the standard Borel space X . We say that the
equivalence relation E preserves �, or is measure preserving (m.p.), if it admits a
graphing ˆ D f'i W Ai ! Big in which every transformation 'i preserves �, i.e.,
.'i /��jAi

D �jBi
. It is easy to check that every graphing of an m.p. equivalence

relation satisfies that property.
IfG Õ X is a Borel action, the orbit relationEX

G preserves� if and only ifG acts
by measure preserving Borel automorphisms ofX . In this case we say that the action
is m.p. When � is a probability measure, we call it probability measure preserving
(p.m.p.).

In the context of m.p. Borel actions, we want to relax the definition of a free action,
to mean free almost everywhere.

Definition 2.2. An m.p. Borel action G Õ X is called free if the set of x 2 X such
that g � x D x for a non-trivial g 2 G has measure zero.

The equivalence relations we will consider in the rest of the paper will be the ones
induced by free p.m.p. Borel actions, and their sub-relations.

For an m.p. equivalence relation, we can define its cost, an invariant introduced by
G. Levitt [L], and studied extensively by D. Gaboriau [G98], [G00]. In the analogy
between graphings and group generators, the cost would correspond to the rank.

Definition 2.3. Let X be a standard Borel space with a finite measure �.
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(1) Let ˆ D f'i W Ai ! Big be a measure preserving graphing. The cost of ˆ is

C�.ˆ/ D
X

i

�.Ai /:

(2) LetE be a Borel m.p. equivalence relation onX . The cost ofE is the infimum
of the costs of its graphings, i.e.,

C�.E/ D inffC�.ˆ/ W ˆ is a graphing for Eg:

If � > 0, it is clear thatC�� D �C� both for graphings and equivalence relations.
When � is a probability, we drop it from the notation, writing C for C�.

The cost also provides an invariant for groups.

Definition 2.4. The cost of a group G is the infimum of the costs C.EX
G / over all

free Borel p.m.p. actions G Õ X on standard Borel probability spaces.

The most important kind of graphings are treeings, which we define now. Treeings
are the analog of free bases for a free group, in the context of m.p. Borel equivalence
relations.

Definition 2.5. Let E be an m.p. Borel equivalence, and let ˆ be a graphing for E.
We say that ˆ is a treeing if the graph induced by ˆ on each class of E is a tree for
almost every class.

Not every m.p. Borel equivalence relation admits a treeing. If it does, it is called
treeable. As an example, consider the relationEX

G induced by a free m.p. Borel action
G Õ X , and the graphing ˆ given by a generating set S of G. In this case, ˆ is a
treeing if and only if G is a free group and S is a free basis. If G is not free, it is still
possible that EX

G may admit a treeing for some free m.p. Borel action. However, to
determine which groups do so is an open problem.

Definition 2.6. A groupG is treeable if there exists a free p.m.p. Borel actionG Õ X

such that EX
G is treeable.

The following theorems, due to Gaboriau, are the fundamental results in this
theory which we will employ throughout this paper.

Theorem 2.7 ([G00], Theorem 5). Let E be an m.p. Borel equivalence relation with
countable classes. If E is treeable and F � E is a sub-equivalence relation, then F
is also treeable.

Thus a subgroup of a treeable group is also treeable. There is a close relationship
between treeings and cost, given by the following theorems.
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Theorem 2.8 ([G00], Theorem 1). Let E be an m.p. Borel equivalence relation on
the standard Borel space X . If ˆ is a treeing for E then C�.ˆ/ D C�.E/.

If the cost is finite, the converse holds.

Theorem 2.9 ([G00], Theorem 1, Proposition I.11). Let E be an m.p. Borel equiva-
lence relation on the standard Borel space X , with C�.E/ < 1. A graphing ˆ for
E is a treeing if and only if C�.ˆ/ D C�.E/.

Theorem 2.10 ([KM], Proposition 30.5). Let G Õ X a free p.m.p. Borel action. If
EX

G is treeable then C.G/ D C.EX
G /.

Finally, we recall complete sections, which are often useful to compute cost.

Definition 2.11. Let E be a Borel equivalence relation on the standard Borel space
X . A complete section for E is a Borel subset A � X meeting every class of E.

IfE has countable classes and is m.p., then a complete section always has positive
measure. By disregarding sets of measure zero, we need only ask that a complete
section meets almost every class. If E is an equivalence relation on X , and A � X ,
one defines the restriction of E to A as follows:

EjA D f.x; y/ 2 A � A W .x; y/ 2 Eg:
The relationship between cost and complete sections is given by the formula

below.

Theorem 2.12 ([G00], Proposition II.6). LetE be an m.p. Borel equivalence relation
with countable classes, on the standard Borel measure space X . Let A � X be a
complete section for E. Then

C�.E/ D C�jA.EjA/C �.X n A/:

2.2. Measure free factors. Here we discuss the notion of measure free factors of
groups, which is the main subject of our study. Then we will turn to the problem of
finding such measure free factors, recalling the results of D. Gaboriau [G05]. First
we need the following definitions about equivalence relations.

Definition 2.13. Let E1, E2 be Borel equivalence relations on the standard Borel
space X . We say that E1 and E2 are orthogonal, and write E1 ? E2, if for every
cycle .xi /, i 2 Z2n, of elements of X such that

(1) .xi ; xiC1/ 2 E1 for all i odd,
(2) .xi ; xiC1/ 2 E2 for all i even,

we have that xi D xiC1 for some i .
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Definition 2.14. Let E be an m.p. Borel equivalence relation. We say that E is the
free product of the Borel sub-equivalence relations E1, E2, and write E D E1 �E2,
if

(1) E is generated by their union E1 [E2,
(2) there is a full measure set B so that E1jB ? E2jB . (i.e., E1 ? E2 for almost

every class of E).

The case for multiple factors is a clear generalization.
These definitions reflect the notion of free product for groups. Specifically, if

G Õ X is a free m.p. Borel action, and G splits as G D H � K, then it is easy to
check that EX

G D EX
H �EX

K .

Definition 2.15 ([G05], Definition 3.1). A subgroupH � G is a measure free factor
ofG if there exists a free p.m.p. Borel actionG Õ X on a standard Borel probability
space, and a Borel equivalence relation E 0 on X such that

EX
G D EX

H �E 0:

From the remark above, it is clear that if H is a free factor of G then it is also
a measure free factor. It is also an easy fact that the image of a measure free factor
by an automorphism of G is again a measure free factor of G. Free factors are not
the only examples of measure free factors, as shown by the following theorems of
Gaboriau.

Theorem 2.16 ([G05], Theorem 3.2). Let F D ha1; b1; : : : ; ag ; bgi be a free group
of rank 2g. Then the element w D Œa1; b1� : : : Œag ; bg � generates a measure free
factor of F .

Corollary 2.17 ([G05], Corollary 3.6). Let S be an orientable surface with boundary
of genus at least 1. Let �1; : : : ; �k be the boundary curves of S . Then the boundary
subgroup hŒ�1�; : : : ; Œ�k�i � �1.S/ is a measure free factor of �1.S/.

There is a slight abuse of notation in Corollary 2.17. The classes Œ�i � are not well
defined, as they depend on the choice of the paths from �i to the basepoint. Moreover,
it is assumed that those paths are simple arcs (i.e., they do not self-intersect), and they
do not intersect one another aside from the basepoint. Corollary 2.17 holds for
any choice of the classes Œ�i � under this assumption. We will make the same abuse
of notation when we consider the generalizations of this result, i.e., Lemma 4.1,
Proposition 4.2 and Corollary 6.2.

In general, finding measure free factors is hard. Gaboriau [G05] posed the problem
of finding which elements of a free group generate a cyclic measure free factor. It is
shown in [G05] that such an element cannot be a proper power.
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Measure free factors can be used to construct new treeable groups, via amalga-
mated products. The following is obtained by combining the arguments of Theo-
rem 3.13 and Theorem 3.17 in [G05].

Theorem 2.18. LetG D �1 �ƒ�2, where�i are treeable groups, andƒ is a measure
free factor of �1. Let alsoH � �2 be ameasure free factor of �2. ThenG is treeable,
andH � G is a measure free factor of G.

In particular, if ƒ is also a measure free factor of �2, then ƒ is a measure free
factor of the amalgamation G.

We would like to have a similar result for HNN extensions. Let G be a group,
H � G a subgroup and ˛ W H ! G an injective homomorphism. We define the
HNN extension G�H by the following presentation:

G�H D hG; t j tht�1 D ˛.h/ for h 2 H i:
To conclude that G�H is treeable we need stronger hypotheses: We still assume
that H is a measure free factor of G, but also that ˛.H/ is contained in a subgroup
H 0 � G so that H and H 0 are common measure free factors of G, as defined next.

Definition 2.19. Let G be a group, and H;K � G subgroups. Then H and K are
common measure free factors of G if there exists a free p.m.p. Borel action G Õ X

on a standard Borel probability space, and a Borel equivalence relationE 0 onX such
that

EX
G D EX

H �EX
K �E 0:

For more than two subgroups the definition is analogous. Notice that ifH andK
are common measure free factors, thenH \K D f1g unlessH D K, and moreover,
the subgroup generated by H and K in G is isomorphic to H � K. With similar
techniques to those involved in Theorem 2.18, we can prove the following.

Proposition 2.20. Let G be a treeable group, H , H 0, K be subgroups of G, and
˛ W H ! H 0 be an injective homomorphism. IfH ,H 0 and K are common measure
free factors of G, then the HNN extension � D G�H is treeable and K � � is a
measure free factor of � .

We give a proof of this in the next section. Considering common measure free
factors gives also a refinement of Theorem 2.18, which is obtained by the same
argument we will use for Proposition 2.20.

Proposition 2.21. LetG D �1 �ƒ�2, where�i are treeable groups. LetK � �1 and
assume that ƒ and K are common measure free factors of �1. Also let H � �2 be
a measure free factor of �2. Then G is treeable, andH andK are common measure
free factors of G.
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2.3. Induced and coinduced actions. In this section we present tools for extending
an action of a subgroup to an action of the overgroup. Specifically, if we have groups
H � G, and an actionH Õ X , we wish to construct an actionG Õ Y that contains,
in some sense, the action of H on X . These tools are the induced and coinduced
actions.

Definition 2.22. Let H � G be a subgroup and H Õ X be an action. Define

CoIndG
H X D f W G ! X W  .gh�1/ D h �  .g/ for h 2 H;g 2 Gg

with the action of G given by g �  .k/ D  .g�1k/ for g; k 2 G.

The coinduced action satisfies the following general properties, which are easy to
prove:

(1) The map p W CoIndG
H X ! X taking  to  .1/ is H -equivariant and surjec-

tive.
(2) If fgig is a set of representatives of G=H , then the map

CoIndG
H X ! XG=H ;  7! f .gi /ggi H ;

is a bijection.
(3) Let G act on XG=H as follows: if g 2 G, f 2 XG=H then put

.g � f /gi H D hfgj H where g�1gi D gjh
�1 for h 2 H:

With respect to this action, the map defined in (2) is an equivariant isomor-
phism.

(4) If H Õ X is free, then so is G Õ CoIndG
H X .

(5) If H Õ .X;�/ is a p.m.p. Borel action, then CoIndG
H X can be given the

product Borel structure and the product measure of XG=H . The action G Õ
CoIndG

H X is Borel and p.m.p.

Some of the interesting properties of an action are preserved under coinduction,
as the next lemma shows. It is the key for our applications of this construction.

Lemma 2.23. LetH � G, andH Õ X be a free p.m.p. Borel action with a graphing
ˆ that generatesEX

H . Let Y D CoIndG
H X . There exists a graphing ŷ that generates

EY
H and has C. ŷ / D C.ˆ/. Moreover, if ˆ is a treeing so is ŷ .

Proof. Let ˆ D f'i W Ai ! Big. By subdividing the sets Ai , we can assume that
'i .x/ D hi �x for hi 2 H and all x 2 Ai . Now define OAi D p�1.Ai /, yBi D p�1.Bi /

and O'i .y/ D hi � y for all y 2 OAi . Put ŷ D f O'ig. Then ŷ generates EY
H by

equivariance of the map p and freeness of the action H Õ X . Also, C. ŷ / D C.ˆ/

by definition of the product measure. Finally, if ˆ is a treeing, then ŷ must also
be a treeing, since a non-trivial cycle in the graphing ŷ would project under p to a
non-trivial cycle of ˆ in X .
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Lemma 2.24. Let G D G1 � G2, and let H1 and H2 be measure free factors of G1

and G2, respectively. ThenH1 andH2 are common measure free factors of G.

Proof. For i D 1; 2, let Gi Õ Xi be free p.m.p. Borel actions such that EXi

Gi
D

E
Xi

Hi
�E 0

i . Take Yi D CoIndG
Gi
Xi , and Y D Y1 � Y2 with the diagonal action. Then

we get EY
Gi

D EY
Hi

� E 00
i , where E 00

i is generated by y‰i , the graphing obtained as in
Lemma 2.23 from a graphing ‰i of E 0

i . Since G D G1 �G2 we have

EY
G D EY

G1
�EY

G2
D EY

H1
�E 00

1 �EY
H2

�E 00
2

which gives the lemma.

Proof of Proposition 2.20: Recall the notations of the proposition: H;H 0; K � G

are common measure free factors, ˛ W H ! H 0 is an injective homomorphism and
� D G�H is the corresponding HNN extension.

Let G Õ X be a free p.m.p. Borel action such that EX
G is treeable and EX

G D
EX

H � EX
H 0 � EX

K � E 0. This can be constructed by taking a diagonal action G Õ
X D X0 �X1 where EX0

G is treeable and EX1

G splits as the desired free product.
Let Y D CoInd�

G X . Take treeings ˆH , ˆK and ‰ for EX
H , EX

K and E 0 respec-
tively, which exist by Theorem 2.7, since EX

G is treeable. Consider ŷ
H , ŷ

K and y‰
as in Lemma 2.23, which are still treeings. By the same argument as in Lemma 2.23
(projecting by p), we can obtain that EY

G D EY
H � EY

H 0 � EY
K � E 00 where E 00 is the

equivalence relation generated by y‰. Finally, consider the Borel automorphism of Y
given by the action of the stable letter t , which we still denote by t , i.e., t W Y ! Y ,
where t .y/ D t � y.

Put 	 D ftg [ ŷ
H 0 [ ŷ

K [ y‰, which is a graphing on Y . We claim that 	 is a
treeing for EY

� .
First we see that 	 generates EY

� . It clearly generates EY
H 0 , EY

K and E 00. Also,
since EY

H 	 t�1EY
H 0 t , we see that 	 generates EY

G . Since � is generated by G and
t , it is now clear that 	 generates EY

� .
Now we see that	 induces no non-trivial cycles a.e. Suppose 
i1 : : : 
in.y/ D y

for y in a set of positive measure, and 
j 2 	 so that 
i1 : : : 
in is a reduced word on
	. This gives rise to a reduced word �i1 : : : �in with letters inG[ft; t�1g representing
1 in � . If all of its letters are in G, we get a contradiction, since ŷ

H 0 [ ŷ
K [ y‰ is a

treeing of a subrelation ofEY
G (each one is a treeing, and they are mutually orthogonal

since EY
G D EY

H �EY
H 0 �EY

K �E 00). If some �i equals t or t�1, that contradicts the
normal form for an HNN extension, since the treeing ŷ

H 0 [ ŷ
K [ y‰ generates an

equivalence relation which is orthogonal toEY
H , thus no element ofH appears in the

normal form of �i1 : : : �in .

Now we turn to the induced action. In our context, it is only useful for extensions
of finite index. However, it will be the main tool for the next section.
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Definition 2.25. Let H � G be a subgroup and H Õ X be an action. Define

IndG
H X D .X �G/=H;

where the quotient is by the right diagonal action of H (h � .x; g/ D .h�1 � x; gh/).
Let G act on X � G by left multiplication on the second coordinate. This induces
the action of G on IndG

H X .

These are the main properties of the induced action, whose proofs are straightfor-
ward:

(1) IndG
HX can be identified with X �G=H .

(2) If fgig is a set of representatives of G=H , then we can write IndG
HX D X �

G=H D S
i .X � fgiH g/, which is a union of disjoint copies of X .

(3) The inclusion X ! X � fH g � IndG
HX is H -equivariant. We call X0 D

X � fH g.
(4) IfH Õ X is p.m.p. and the index ofH in G is finite, then the union measure

(rescaled by the index of H in G) is an invariant probability measure on
IndG

HX .
(5) X0 is a complete section for the orbits of G on IndG

HX . Its translates are of
the form X � fgiH g D giX0.

(6) The restriction to X0 of the orbit equivalence of G on IndG
HX is the orbit

equivalence of H on X0 D X . In symbols

E
IndG

H
X

G jX0
D E

X0

H Š EX
H :

3. Lifting to finite covers

In this section we prove Theorem 3.2, which is the main tool in the proofs of our
results. Our general goal is to show that some element w 2 G of a treeable group G
generates a measure free factor ofG. This result will allow us to pass to a finite index
subgroupH ofG, replacing hwi by a suitable subgroup ofH . First we explain what
this suitable subgroup is, starting from the geometric viewpoint.

Let G be a group and H � G a subgroup of finite index n D ŒG W H�. Consider
a complex XG with �1.XG/ D G, and the n-sheeted covering space XH ! XG

corresponding to H � G. Recall that the conjugacy classes in G correspond to the
homotopy classes of closed curves in XG .

Let w 2 G and take a closed curve � in XG that represents the conjugacy class
of w. The pre-image of � in XH is a union of closed curves �1; : : : ; �k , where �i is
the union of mi lifts of � . In that sense, �i “covers" � with index mi . Each of these
curves �i defines a conjugacy class Œwi � in H , where we can write wi D g�1

i wmigi

for some gi 2 G.
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More explicitly, let p0 2 XG , p 2 XH be the basepoints (with p projecting to
p0), and letpi be a pre-image ofp0 so that �i can be obtained as the lift of �mi starting
at pi . Take a curve ˛i in XH going from p to pi , and let g�1

i 2 G D �1.XG ; p0/ be
the homotopy class of the projection of ˛i . Then we obtain Œ˛i�i˛

�1
i � D g�1

i wmigi .
Notice that the choice of ˛i corresponds to the choice of the representative gi in

the coset giH , which also corresponds to the choice of wi as representative of its
conjugacy class in H . On the other hand, the choice of pi corresponds to the choice
of gi in the right coset hwigi . Thus the gi form a set of representatives of the double
cosets in hwinG=H .

This motivates the following definitions.

Definition 3.1. Suppose H � G is a subgroup of finite index, and w 2 G.
(a) If g 2 G, let m.g/ be the minimum t such that g�1wtg 2 H . We will say

that the element g�1wm.g/g is the lift of w to H with respect to g.
(b) Let fg1; : : : ; gkg be a set of representatives of the double cosets in hwinG=H .

Put mi D m.gi /, and wi D g�1
i wmigi . Then we say that the set fw1; : : : ; wkg is a

complete lift of w to H .

This definition of lifts follows the one used by J. Manning (Definition 1.4 in [M]),
with the difference that here we have different complete lifts for the various choices
of double coset representatives, instead of defining it as a set of conjugacy classes. It
bears this same relationship with the more general notion of elevations, introduced
by D. Wise [W].

Theorem 3.2. Let G be a treeable group of finite cost. Let w 2 G, and H � G be
a subgroup of finite index n D ŒG W H�. Take fg1; : : : ; gkg, a set of representatives
of the double cosets in hwinG=H , and let K D hw1; : : : ; wki � H be the subgroup
generated by the corresponding complete lift of w toH . Assume that

(1) K is free of rank k, i.e., w1; : : : ; wk is a free basis of K,

(2) K is a measure free factor ofH .

Then hwi is a measure free factor of G

Proof. Let H Õ X be a free p.m.p. Borel action that realizes K as a measure free
factor of H , i.e., EX

H D EX
K �E 0, and that is treeable. This is possible by taking the

direct product of actions satisfying each condition. Consider the induced action of
G on Y D IndG

HX D X � G=H , and put Xi D X � fgiH g. Assume g1 2 H , so
X1 is the standard embedding of X into IndG

HX (that we called X0 in the properties
following Definition 2.25).

We can also assume that g1 D 1: replacing gi by gig
�1
1 changesK into g1Kg

�1
1 ,

which satisfies the same hypotheses.
Define 
i W X1 ! Xi by 
i .x/ D gi � x. Also take ˆ0 a treeing for E 0, which

exists sinceEX
H is treeable (here we identifyX1 withX via the standard embedding).
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Consider the graphing ˆ D fw; 
2; : : : ; 
kg [ˆ0. We will show that ˆ is a treeing
ofEY

G . This would giveEY
G D EY

hwi �E 00 (E 00 generated by f
2; : : : ; 
kg[ˆ0), thus
proving the result.

To see that ˆ generates EY
G , recall that X1 is a complete section and notice that

every translate of X1 is of the form wtgiX1 (since the gi are a set of representatives
of the double cosets in hwinG=H , the wtgiH cover all the cosets of G=H ). We get
that wtgiX1 D wtXi D wt
i .X1/, so we only need to show that ˆ generates the
restriction EY

G jX1
D E

X1

H . Take x 2 X1. Notice that

wi � x D g�1
i wmigi � x D 
�1

i wmi
i .x/

which is a word onˆ that is defined at x, since x 2 X1 andwmigi �x 2 Xi (noticing
that Xi D giX1 D gig

�1
i wmigiX1 D wmigiX1). Together with ˆ0, the elements

w1; : : : ; wk generateEX
H , so we obtain thatˆ generatesEX1

H . Thusˆ generatesEY
G .

Now, on one hand

C.EY
G / D .n � 1/�.X/C C.EY

G jX0
/ D .n � 1/�.X/C C.EX

H /

by the formula for a complete section (Theorem 2.12), so

C.EY
G / D .n � 1/�.X/C C.E 0/C k�.X/ D .nC k � 1/�.X/C C.E 0/

since K is free of rank k. On the other hand

C.ˆ/ D �.Y /C .k � 1/�.X/C C.ˆ0/ D .nC k � 1/�.X/C C.E 0/:

Thus, by Theorem 2.9, ˆ is a treeing of EY
G .

4. Curves on surfaces

Here we extend the results of D. Gaboriau on measure free factors of surface groups.

Lemma 4.1. LetS be a surfacewith boundary, and �1; : : : ; �k be its boundary curves.
If the genus of S is at least 1, then the boundary subgroup hŒ�1�; : : : ; Œ�k�i � �1.S/

is a measure free factor of �1.S/.

Proof. When S is orientable, this is Gaboriau’s result (Corollary 2.17). If S is non-
orientable with one boundary component, take the orientable double cover yS . By the
former case, the boundary components of yS generate a measure free factor of �1. yS/.
On the other hand, the boundary curves of yS are the lifts of the boundary curve of S
to this two-sheeted cover. So Theorem 3.2 applies.

In case there is more than one boundary component, write

�1.S/ D ha1; : : : ; ag ; c1 : : : ; ck�1i
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where the boundary classes are Œ�1� D a2
1 : : : a

2
gc1 : : : ck�1, and Œ�j � D cj �1 for

j > 1. We just showed that a2
1 : : : a

2
g generates a measure free factor of the subgroup

ha1; : : : ; agi. Since

�1.S/ D ha1; : : : ; agi � hc1 : : : ; ck�1i
we get that the boundary subgroup ha2

1 : : : a
2
g ; c1; : : : ; ck�1i is a measure free factor.

Proposition 4.2. Let S be a surface with boundary, and �1; : : : ; �k be its boundary
curves. Suppose that ˛ D f˛1; : : : ; ˛ng is a family of disjoint essential simple closed
curves on S , and S1; : : : ; St are the components of S cut along ˛. If Sj has genus at
least 1 for every j , then the subgroup

hŒ�1�; : : : ; Œ�k�; Œ˛1�; : : : ; Œ˛n�i � �1.S/

is a measure free factor of �1.S/.

Proof. Consider the graph of groups � induced by cutting S along ˛. For simplicity,
first consider the case where all the curves in ˛ are two sided. Then there is one
vertex for each component Sj , and one edge for each curve ˛i . The vertex groups are
�1.Sj /, and the edge groups are hŒ˛i �i. Let ˛i̇ be the sides of a tubular neighborhood
of ˛i . Then Œ˛i̇ � are the images of Œ˛i � in the adjacent vertex groups. Since each
Sj has genus at least one, Lemma 4.1 gives that the boundary subgroup of �1.Sj / is
a measure free factor of �1.Sj /. This boundary subgroup is freely generated by the
Œ˛i̇ � and the Œ�p� that lie in Sj . Now�1.S/ is obtained as an iteration of amalgamated
products and HNN extensions of the vertex groups �1.S/. Each such extension gives
the identification

Œ˛i � D Œ˛�
i � Œ˛i � D ti Œ˛

C
i �t

�1
i

where ti D 1 in the case of an amalgamation, and is a new generator in the case of
an HNN extension. Then Proposition 2.20 gives the proposition.

For the general case, let ˇ D f˛1; : : : ; ˛mg be the curves of ˛ that are cores of
Möbius bands in S . Cut S along ˇ, forming S jˇ , and apply the former case to it.
Notice that Œ˛2

i � for i � m are boundary curves of S jˇ . On the other hand, �1.S/ is
obtained from �1.S jˇ / by amalgamating hŒ˛i �i along Œ˛2

i � for i � m. Then the result
is obtained by Proposition 2.21.

5. Cyclic measure free factors of Fn

In this section we apply the results of the last section to find some cyclic measure free
factors of free groups.
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Theorem 5.1. Let F D hx; y1; : : : ; yki be a free group of rank k C 1. Then an
element of the form

w D xy1x
m1y�1

1 y2x
m2y�1

2 : : : ykx
mky�1

k

generates a measure free factor of F .

Proof. Let H D hx; c1; : : : ; cki be another free group on k C 1 generators, and put
v D xc1 : : : ck . Then we can obtain F as an HNN extension:

F D hH;y1; : : : ; ykjcj D yjx
mj y�1

j for j D 1; : : : ; ki:
The standard inclusion H ,! F maps v to w, so we may regard w as an element of
H . A natural complex with fundamental group H is a k C 2-punctured sphere S ,
whose boundary components represent x; c1; : : : ; ck and w D v D xc1 : : : ck . We
will identify these boundary curves with their representatives inH D �1.S/. Starting
from S , we can build a complex with fundamental groupF by attaching cylindersCi ,
glued toS by their boundary curves. More explicitly, one of the boundary components
of Ci is identified with ci , and the other is glued to x by an attaching map of degree
mi , so it represents xmi in the fundamental group. We call this complex X . Notice
that w is the only boundary component of S that was not attached to a cylinder inX .

Next we construct a finite cover yS ! S , proceeding as follows: Let p > 0 be
an integer with .p;mj / D 1 for all j D 1; : : : ; k and .p; k C 1/ D 1 (e.g. p prime,
large enough). Let yH be the kernel of the morphismH ! Zp sending the generators
x; c1; : : : ; ck to 1, and let yS be the cover corresponding to yH . Notice that it has index
p, and its boundary components are represented by Ox D xp , Ocj D c

p
j and yw D wp .

This is because the images of x, cj and w in Zp have order p. For these reasons we
obtain that yw D wp is a complete lift of w to yH . Now yS is a surface of positive
genus, so we may apply Lemma 4.1 to conclude that its boundary subgroup (which
is freely generated by Ox; Oc1; : : : ; Ock; yw), is a measure free factor of yH .

Now we extend yS to a p-sheeted cover yX ! X . Consider the standard p-sheeted
cover yCi ! Ci of each cylinder Ci , and glue each of its boundary components to
yS along the curves Oci and Oxmi respectively. Since .p;mi / D 1, the covering maps
yS ! S and yCi ! Ci agree on the glued boundaries, so they give rise to a covering
map yX ! X .

Let yF be the indexp subgroup ofF corresponding to the cover yX . Then yF \H D
yH , and yw D wp is also a complete lift of w to yF . By our construction of yX , we can

write yF as an HNN extension:

yF D h yH; l1; : : : ; lkj Ocj D lj Oxmj l�1
j for j D 1; : : : ; ki:

Now by Proposition 2.20, yw still generates a measure free factor in yF , and by
Theorem 3.2, we get that w generates a measure free factor of F .
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x c1 c2

w

x̂ ĉ1 ĉ2

ŵ

ŜS

X

p

X̂

C2

C1 Ĉ1
Ĉ2

m1 m2 11 m1 m2 1 1

Figure 1. Left: Sketch of the complex X for k D 2. The gluing maps are labeled by their
degrees. Right: The p-sheeted cover yX , sketched in the same fashion.

Theorem 5.2. Let G D F2 D ha; bi. Then an element of the form w D akbn for
k; n ¤ 0 generates a measure free factor of G.

Proof. It is enough to consider the case when k; n > 0, for one can apply the auto-
morphism taking a, b to asign.k/, bsign.n/. Also, we can assume k; n > 1, for if either
one equals 1, then w is already a free factor.

Let � be the rose on two petals, labeled by a and b respectively. So �1.�/ D G.
Consider the graph y� constructed as follows: It has kn vertices, labeled vj for
j 2 Zkn. As for the edges, for each j 2 Zkn there is an oriented edge labeled by
b going from vj to vj C1, and an oriented edge labeled by a going from vj to vj Cn.
The orientations and labeling of the edges give a projection map y� ! � , which is a
covering of index kn. Let H D �1.y�; v0/ be the corresponding subgroup of G.

Consider the lift to y� of a curve representing w in � . If it starts at vj 2 y� , then it
ends at vj Cn. This is because the lift of ak is closed, ending in vj , and the lift of bn

that starts at vj ends at vj Cn. Thus wk is the minimal power of w whose lift from vj

is a closed curve in y� . This holds true for any j , as the cover is normal.
Let t D 0; : : : ; n � 1 be a set of representatives of the cosets of nZkn Š Zk in

Zkn. Let �j be the lift of wk starting from vt , and let wt D Œˇt�tˇ
�1
t � where ˇt is

the lift of bt starting at v0. Then w0; : : : ; wn�1 are a complete lift of w to H .
Now we will write the wt in a suitable basis forH . Let T be the spanning tree of

y� consisting of all the edges labeled by b except .vkn�1; vkn/. Then the edges not
in T correspond to a free basis of H . Name them as follows: B will stand for the
generator corresponding to .vkn�1; vkn/, and at;i , for t D 0; : : : ; n � 1 and i 2 Zk ,
will stand for the edge going from the vertex vtCni to the vertex vtCn.iC1/. This
covers all edges not in T , observing that the edges labeled by a are arranged in n
cycles of length k, each spanning a coset of nZkn in Zkn.

Writing wt in this basis, we get

wt D .at;0 : : : at;k�2at;k�1/.at;1 : : : at;k�1at;0/ : : : .at;k�1at;0 : : : at;k�2/B:
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v4

v0

v5v1

v3

ba

v2

B

a0,2

a0,1
a1,0

a0,0

a1,2

a1,1

Figure 2. Left: An example of the cover y� for k D 3, n D 2. Right: The generators for H ,
where the bold edges form the spanning tree.

LetAt D at;0 : : : at;k�1. Thenwt is the product of all cyclic conjugates ofAt andB .
Let xt;i D .at;0 : : : at;i�1/

�1. Then B , At , xt;i , for t D 0; : : : ; n � 1 and
i D 0; : : : ; k � 2, also forms a free basis of H . In this new basis, wt reads as

wt D Atxt;0Atx
�1
t;0 : : : xt;k�2Atx

�1
t;k�2B:

Using the previous result (Theorem 5.1), we know that

vt D Atxt;0Atx
�1
t;0 : : : xt;k�2Atx

�1
t;k�2

is a measure free factor of Ht D hAt ; xt;i for i D 0; : : : ; k � 2i D hat;i for i D
0; : : : k � 1i. Now

H D H0 � � � � �Hn�1 � hBi:
So by Lemma 2.24 the subgroup M D hv0; : : : ; vk�1; Bi is a measure free factor of
H , and the given basis generates it freely. Since wt D vtB , then w0; : : : wk�1; B is
also a free basis ofM . SoK D hw0; : : : ; wn�1i is a measure free factor ofH , freely
generated by a complete lift of w. Theorem 3.2 finishes the proof.

Considering the conjugates of the words of the form akbn gives the following.

Corollary 5.3. An element of the formw D akbnap with k ¤ �p, n ¤ 0, generates
a measure free factor of F2 D ha; bi.

Observe that if n D 0 or k D �p then w D akbnap is either equal to akCp or
conjugate to bn. These cases are easy to deal with, we get that either w is a proper
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power or it generates a free factor (or is trivial). This allows us to prove that a three-
letter word (i.e., one of the form akbnap) generates a measure free factor when it is
not a proper power.

6. Measure free factors of virtually free groups

Finally, we consider measure free factors of the virtually free groups that are free
products of free groups and finite cyclic groups.

Theorem 6.1. Let G D ha1; : : : ; an; s1; : : : ; sk j sn1

1 D 1; : : : ; s
nk

k
D 1i Š Fn �

Zn1
�� � ��Znk

. Ifv 2 Fn generates ameasure free factor ofFn, thenw D vs
p1

1 : : : s
pk

k

generates a measure free factor of G for any p1; : : : ; pk .

Proof. We use induction on k. The base case k D 0 is trivial. For the inductive step,
consider the subgroup K generated by a1; : : : ; an; s1; : : : ; sk�1, and the subgroup
H generated by the conjugates Kj D s

j

k
Ks

�j

k
for j D 0; : : : ; nk � 1. The natural

presentation ofK is analogous to the one ofG, only with k�1 generators of torsion.
On the other hand, we shall see that H Š K0 � � � � �Knk�1 and has index nk in G.

To prove this we consider the complexX corresponding to the given presentation
of G. We use orbifold notation: X consists of a wedge of circles in correspondence
with the generators a1; : : : ; an; s1; : : : ; sk , where the circle for sj is capped by a disk
Dj with a cone-point of degree nj . ThenH corresponds to the nk-sheeted branched
cover yX ! X constructed as follows: Let yDk ! Dk be the branched covering given
by the map D ! D=z ! znk (identifying Dk and yDk with the unit disk D � C,
with the cone-point at 0). Let x0; : : : ; xnk�1 be the preimages of the basepoint of X
in yDk , andX0; : : : ; Xnk�1 be copies of the presentation complex ofK. We get yX by
wedging eachXj to yDk at xj , and the covering map yX ! X is the natural extension
of the branched cover yDk ! Dk .

Notice that the single preimage in yX of the cone-point of Dk has degree 1, i.e.,
is no longer a cone-point. So �1. yX/ Š �1.X0/ � � � � � �1.Xnk�1/, giving that
H D �.

yX/ Š K0 � � � � �Knk�1 and has index nk in G.
Now we will describe a complete lift for w. Let u D vs

p1

1 : : : s
pk�1

k�1
2 K, and

uj D s
j

k
us

�j

k
2 Kj for j D 0; : : : ; nk � 1. Consider also d D .pk; nk/ and

m D nk=d . The lift of wm to yX starting at xi is

wi D ui : : : uiC.m�1/pk

the product of the uiClpk
for l D 0; : : : ; m � 1, in that order. Then w0; : : : ; wd�1

form a complete lift of w to H .
For each i D 0; : : : ; d�1writeLi D �m�1

lD0
KiClpk

. By the induction hypothesis,
u generates a measure free factor of K, and so does uj in Kj by conjugation. Then
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s2

s1a2

a1

D2
4

n1

1

D̂2

X2

X1 X3

X X̂

D1

X0

n1

n1

n1

n1

x2

x1 x3

x0

Figure 3. Left: The complex X for n D 2, k D 2 and n2 D 4. Right: Sketch of the 4-sheeted
branched cover yX , and the subcomplexes Xi used in the proof.

the subgroup Mi � Li , generated by uiClpk
for l D 0; : : : ; m � 1, is a measure

free factor of Li , using Lemma 2.24. Observe that wi is a free factor of Mi , and
so it is a measure free factor of Li (this is an easy consequence of the definition of
measure free factor). Finally, since H D �d�1

iD0Li , the subgroup generated by the
complete lift w0; : : : ; wd�1 is free of rank d , and a measure free factor of H (again
by Lemma 2.24). We finish by applying Theorem 3.2.

This allows us to extend the results in Section 4 to the exact analogues for 2-
orbifold groups.

Corollary 6.2. Let S be a 2-orbifold with boundary, and �1; : : : ; �k be its boundary
curves. Suppose that ˛ D f˛1; : : : ; ˛ng is a family of disjoint essential simple closed
curves on S , and S1; : : : ; St are the components of S cut along ˛. If Sj has genus at
least 1 for every j , then the subgroup

hŒ�1�; : : : ; Œ�k�; Œ˛1�; : : : ; Œ˛n�i � �1.S/

is a measure free factor of �1.S/.

Proof. The arguments used in the proof of Lemma 4.1 and Proposition 4.2 allows us
to reduce the corollary to the case with only one boundary component (k D 1) and
no curves ˛i (n D 0). Then we can write �1.S/ as either

�1.S/ D ha1; b1; : : : ; ag ; bg ; s1; : : : ; sm j sn1

1 D � � � D snm
m D 1i

where Œ�1� D Œa1; b1� : : : Œag ; bg �s1 : : : sm, or

�1.S/ D ha1; : : : ; ag ; s1; : : : ; sm j sn1

1 D � � � D snm
m D 1i
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where Œ�1� D a2
1 : : : a

2
gs1 : : : sm. In both cases we conclude using Proposition 6.1,

together with Lemma 4.1.
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