Groups Geom. Dyn. 8 (2014), 97-134 Groups, Geometry, and Dynamics
DOI 10.4171/GGD/218 © European Mathematical Society

Rips induction: index of the dual lamination of an R-tree

Thierry Coulbois and Arnaud Hilion

Abstract. Let 7 be a R-tree in the boundary of the Outer Space CV y, with dense orbits.
The @-index of T is defined by means of the dual lamination of 7. It is a generalisation of
the Poincaré—Lefschetz index of a foliation on a surface. We prove that the @-index of T is
bounded above by 2N — 2, and we study the case of equality. The main tool is to develop the
Rips machine in order to deal with systems of isometries on compact R-trees.

Combining our results on the @-index with results on the classical geometric index of a
tree, developed by Gaboriau and Levitt, we obtain a beginning classification of trees.
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1. Introduction

The space of minimal, free and discrete actions by isometries of the free group Fy of
finiterank N > 2 on R-trees has been introduced by Culler and Vogtmann [CV86]. Its
projectivization is called Outer Space, and we denote it by CV . It has a Thurston-
boundary dCV y, which gives rise to a compactification CVy = CVy U dCVy.
Elements of this compact space CV y are projective classes [T'] of minimal, very
small actions by isometries of the free group Fx on R-trees 7' (see [CL95] and
[BF95]). The reader will find a survey on Outer Space in [Vog02].

In this article, we introduce and study the @-index indg (T') of R-trees T in dCV
with dense orbits. The @-index of an R-tree (see Section 5.2) naturally extends the
Poincaré—Lefschetz index of a foliation on a surface as explained below. The main
result of our paper regarding this @-index is:

Theorem 5.3. Let T be an R-tree with a very small, minimal action of Fy by
isometries with dense orbits. Then

inde(T) < 2N —2.

We also characterize the case of equality, see Section 4.5.
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This @-index characterizes dynamical properties of trees. Using it together with
the geometric index introduced by Gaboriau and Levitt [GL95] we obtain a classifi-
cation of trees.

Theorem 5.3 already has several important consequences.

First, it answers a question of Levitt and Lustig, see Remark 3.6 in [LL03], on the
finiteness of the fibres of the map @ (see below).

In our paper [CH10], we obtain a qualitative classification of fully irreducible outer
automorphisms of free groups which extends that of Handel and Mosher [HMO07] and
of Guirardel [Gui0O5]. The key point is to interpret the index of an iwip automorphism
[GJLLI8] as the @-index of its repelling tree in ICV y.

In our paper with P. Reynolds [CHR11] we define an induction analogous to
Rauzy—Veech for trees in dCV y. As we are working with systems of isometries on
compact trees, Theorem 5.3 is crucially used to ensure that there are points where to
start the splitting procedure.

1.1. Measured foliations on surfaces. Let X be a surface of negative Euler charac-
teristic, y(X) < 0, with a measured foliation ¥ (see [FLP79]). The foliation lifts to
a measured foliation % of the universal cover % of X. The space of leaves of % isan
R-tree T': the distance in the tree T is given by the transverse measure of the foliation
¥ (see for instance Chapter 11 of [KapO1]). This tree comes with a small action
of the fundamental group of ¥. When X has non-empty boundary, its fundamental
group is a free group Fy and T defines an element of CVy. The foliation ¥ has
k-prong singularities which give rise to branch points of valence k in the tree. Locally
the picture is as in Figure 1. We say that the foliation and the tree are dual to each
other.

NS =~

Figure 1. 3-prong singularity and the transverse tree (in bold). The local Poincaré-Lefschetz
index is —% and the local contribution to the @-index is 1.

A local index can be defined for each singularity P: the Poincaré—Lefschetz index.
In this paper, we rather consider minus two times this index: ind(P) can be defined
as the number of half-leaves reaching the singular point, minus two. Alternatively,
ind(P) is the valence of the corresponding point in the tree, minus two. Adding-up
over all singular points in X, we obtain the (global) index of the foliation, which turns
out to be equal to —2(X) (= 2N — 2 when 71(X) = Fy).
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Figure 2. Vertical foliation of the mapping torus of an interval exchange transformation. This
foliation has two singularities (in bold), each of Poincaré-Lefschetz index —% and local @-
index 1. The @-index of the foliation is 2. The surface is a torus with one boundary component:
its Euler characteristic is —1.

Interval exchange transformations provide examples of such foliated surfaces.
Indeed, the mapping torus of an interval exchange transformation is a surface (with
boundary), naturally foliated by the vertical direction, as in Figure 2. The transverse
measure of the foliation is given by the Lebesgue measure of the interval. We define,
in this case, the index of the interval exchange transformation as the index defined
above for this foliation and its dual R-tree.

1.2. Geometric trees. This surface situation has been generalized (see for instance
[Bes02]). Let us consider a finite family of partial isometries of an interval (or a finite
number of intervals, or even a finite tree). The suspension of these partial isometries
gives rise to a 2-complex B (which is not a surface in general), naturally foliated by
the vertical direction. As previously, the foliation can be lifted to the universal cover
of B, and the space of leaves of this foliation is an R-tree with an action of 1 (B)
by isometries. A tree obtained by such a construction is called a geometric tree. In
this situation, we can define two local indices: one for the tree, using the valence of
branch points, and one for the foliation, using the number of ends of singular leaves.
We would like to stress that, contrary to the case of a foliation on a surface, these two
indices do not agree, not even locally.

The first index has been introduced by Gaboriau and Levitt [GL95]. In this paper
we call it the geometric index, and denote it by indge,(7"). It is defined using the
valence of the branch points, of the R-tree 7', with an action of the free group by
isometries:

indgeo(T) = D indgeo(P).
[PleT/Fy

where the local index of a point P in T is

indgeo (P) = #(mwo(T ~{P})/ Stab(P)) + 2rank(Stab(P)) — 2.
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Gaboriau and Levitt [GL95] proved that the geometric index of a geometric tree is
equal to 2N — 2 and that for any tree in the compactification of Outer Space CV y the
geometric index is bounded above by 2N — 2. Moreover, they proved that the trees
in CV 5 with geometric index equal to 2N — 2 are precisely the geometric trees.

The second index is defined from the number of ends of singular leaves. To our
knowledge it has never been studied in its own right, although Gaboriau [Gab96]
gives a lot of relevant insights. In particular Gaboriau [Gab96], Theorem V1.1, gives
partial results to bound this index.

1.3. The @-index of an R-tree. Let T be an R-tree in the boundary of Outer Space
with dense orbits. We denote by 7 its metric completion, T its Gromov-boundary
at infinity. The set T =TudT equipped with the observers’ topology (a slight
weakening of the metric topology, see [CHL07]) is a compact set denoted Tobs.

Let P be a point in 7. The map @: dFy — T°% s the unique continuous
extension (see [CHLO7]) of the map

Fy >T, uw—u-P.

It does not depend on the choice of the point P.

The map @ can be easily understood in the special case of a tree 7" dual to a
foliation on a 2-complex B. Each leaf of the foliation of B is a point of the dual tree
T. A half-leaf of the foliation of B defines a point X € dFy = d;(B) and Q(X)
is the point of 7" defined by the leaf.

The general definition of the @-index of the tree T is given as follows:

indg(T) = Y max(0:indg(P)).
[PleT /Fn

where the local index of a point P in T is:
indg(P) = #(Q~1(P)/Stab(P)) + 2rank(Stab(P)) — 2.

Levitt and Lustig [LL0O3] proved that points in 7 have exactly one pre-image by
@ (see Proposition 5.2). Thus, only points in 7 contribute to the @-index of T.

Our main result states that the @-index of an R-tree in the boundary of Outer Space
is bounded above by 2N — 2. This answers the question of Levitt and Lustig ([LL03],
Remark 3.6) whether the map @: 9Fy — T has finite fibers (in the case where the
action is free).

In [CHLOS8] the dual lamination of 7" is defined: it is the set of pairs (X, Y) of
distinct points in the boundary dFF 5 such that @(X) = @(Y). More conceptually,
the @-index of T can indeed be understood in a more general context as that of its
dual lamination.

The limit set Q is the subset of T which consists of points with at least two
pre-images by the map @.
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We also describe the trees such that indg (T') = 2N — 2: these are the trees such
that all points of 7" have at least two pre-images by @.

Theorem 5.10. Let T be an R-tree in the boundary of Outer Space with dense orbits.
The @-index is maximal: indg(T) = 2N —2 ifand only if T is contained in the limit
set C2.

An R-tree dual to a foliation on a surface with boundary of negative Euler charac-
teristic, has maximal @-index. We call trees with maximal @-index trees of surface

type.

1.4. Compact systems of isometries. A traditional strategy to study a tree in the
boundary of Outer Space is

(1) describe any geometric tree by a system of isometries on a finite tree (or even
a multi-interval) and then use the Rips machine;

(2) approximate any tree by a sequence of geometric trees.

In particular Gaboriau and Levitt [GL95] proved in this way that the geometric index
of any tree in Outer Space is bounded above by 2N — 2.

In [CHLO9] a new approach was proposed: to describe an R-tree by a system of
isometries on a compact R-tree (rather than on a finite tree). The point here is that
any tree T in the compactification of Outer Space can be described by a system of
isometries on a compact R-tree: S4 = (K4, A) (where A is a basis of Fy and K4 is
a compact subtree of T'). This system of isometries encodes all of the original tree
T (together with the action of F). An index is defined in Section 2.3 for any such
system of isometries.

Theorem 5.7. Let T be an R-tree with a very small, minimal action of Fy by
isometries with dense orbits. The Q-index of T and the index of the induced system
of isometries Sy = (K 4, A), for any basis A, are equal:

indg (T) = i(SA).

The computation of the index of a tree is thus achieved by computing the index of
a system of isometries. We study system of isometries by themselves in Sections 2, 3
and 4.

We improve the classical Rips machine (see [GLP94], [BF95]) to work in the
context of systems of isometries on compact R-trees (or forests). The Rips machine
applied to a system of isometries returns a new system of isometries obtained by
erasing parts of the supporting forest. To each system of isometries we associate a
finite graph I', the index of which is given by the Euler characteristic. We study the
effect of the Rips machine on this graph: the Rips machine decreases the index of the
graph T'.
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Iterating the Rips machine infinitely many times, the sequence of associated graphs
T has a limit I'. The index of I is bounded above by the decreasing sequence of
indices. We prove that the index of the limit graph T is equal to the index of the
system of isometries. In fact, in the case of a Levitt system of isometries the graph
[’ can be viewed as a geometric realization of the dual lamination of the system of
isometries. We obtain

Theorem 2.2. The index of a system of isometries S = (F, A) with independent
generators is finite and bounded above by the index of the associated graph T'.

The above Theorem 5.10 follows from our characterization of systems of isome-
tries with maximal index:

Theorem 4.8. Let S = (F, A) be a reduced system of isometries with independent
generators, let T be its associated graph and T" be its limit graph. The following are
equivalent:

(1) The system of isometries S has maximal index.
(2) The graph T is finite.
(3) The Rips machine, starting from S, halts after finitely many steps.

Acknowledgment. We thank Martin Lustig for his constant interest in our work.
We are grateful to Vincent Guirardel and Gilbert Levitt for introducing us to mixing
properties of trees.

2. Systems of isometries

2.1. Definitions. We collect in this section basic facts from [CHLO09].

An R-tree, (T, d) is a metric space such that for any two points P, Q in T, there
exists a unique arc [P; Q] between them and this arc is isometric to the segment
[0:d(P, Q)].

A compact forest F is a metric space with finitely many connected components
each of which is a compact R-tree.

A partial isometry of a compact forest F is an isometry a: K — K’, between
two compact subtrees K and K’ of F. The domain of a is K, its range is K'. The
partial isometry a is non-empty if its domain is non-empty. The domain (and the
range) of a partial isometry needs not be a whole connected component of F. A
system of isometries S = (F, A) consists of a compact forest F' and of a finite set A
of non-empty partial isometries of F.

To such a system of isometries S we associate the oriented graph I" which has
the connected components of F as vertices and the non-empty partial isometries of
A as oriented edges. The edge a € A starts at the connected component of F' which
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contains its domain, and ends at the connected component of F' which contains its
range.

We regard the reverse edge a~! of the edge a € A as the inverse partial isometry
a~' ofa. Areduced path w in the graph I', given as a sequence of edges w = z; ... z,
with z; € A1 (such that z; | # z;~1), defines a (possibly empty) partial isometry,
also denoted by w: the composition of partial isometries z; o zp o -+ 0 z,,. We write
this pseudo-action on F on the right, i.e.

P(uov) = (Pu)v

for all points P € F and for all paths uv in I
The pseudo-orbit of a point P in F is the subset of ' which can be reached from
P:
{P -w | wreduced pathin I', P € dom(w)}.

A reduced path w in I is admissible if it is non-empty as a partial isometry of F.

An infinite reduced path X in I" is admissible if all its subpaths are admissible. The
domains of the initial subpaths of X are nested compact subtrees, their intersection
is the domain of X, denoted by dom(X).

A bi-infinite reduced path Z in I is admissible if all its subpaths are admissible. A
bi-infinite reduced path, Z = ...z_5z_1209z12> ..., has two halves which are infinite
reduced paths:

Z+ =Z1Z22 ..., Z_ZZO_IZ_l_ Z_n

The domain of Z is the intersection of the domains of its two halves. Equivalently, a
bi-infinite reduced path Z in I is admissible if and only if its domain is non-empty.

The limit set 2 of a system of isometries S = (F, A) is the set of elements of K
which are in the domain of a bi-infinite admissible reduced path in I'. The limit set is
the place where the dynamics of the system of isometries concentrates. Alternatively,
Q2 is the largest subset of F such that for each P € 2 there exists at least two partial
isometries a, b € AT with P -a and P - b in .

A system of isometries S = (F, A) has independent generators (compare Gabo-
riau [Gab97] and [CHLO09]) if the domain of any admissible infinite reduced path X
in I consists of exactly one point which we denote by @ (X):

dom(X) = {Q(X)}.

In this case, the domain of a bi-infinite admissible reduced path Z in I" also consists
of exactly one point which we also denote by @(Z).
If S has independent generators we have

Q ={P € K| @(Z) = P for some bi-infinite admissible Z}.

The restriction of a partial isometry a to the compact R-tree K (at the source) is the
(possibly empty) partial isometry x7a whichis defined foreach P € KNdom(a). The



104 T. Coulbois and A. Hilion

restriction of a to the compact R-tree K’ (at the destination) is the (possibly empty)
partial isometry arg which is defined for each P € dom(a) such that Pa € K'. The
restriction of the partial isometry to the compact R-trees K and K’ is the (possibly
empty) partial isometry gyarx- which is defined for each P € K N dom(a) such that
P-aisin K'.

2.2. Index of a graph. We denote by V(I") the set of vertices of a graph I" and by
E(T) its set of edges.

For a vertex x of a graph I' the valence vr (x) of x is the number of edges incident
to x. The index it (x) = vr(x) — 2 of x is its valence minus two.

The index i (I") of a finite connected graph I' is

i((T) = max (0; )" ey ir(x))
= max(0; 2(#E([) —#V(I")))
= max(0; —2x(I"))
= max(0; 2rank (7r1(T)) — 2),

where y(I') is the Euler characteristic of I". The index i (I") is a homotopy invariant
of the graph T.

v
U1 4

U2

U3

Figure 3. A graph of index 2, with vertices of indices i (v1) = 2, i(v2) = 0, i(v3) = 1 and
i(v4) =—1.

The index of a finite graph I is the sum of the indices of its connected components.

The core of a graph I' is the largest subgraph of I" without vertices of valence 0 and
1, we denote it by core(I"). The core of a graph is the union of all bi-infinite reduced
paths. Alternatively, if I is finite, the subgraph core(I") is obtained by recursively
erasing vertices of valence 0 and the vertices of valence 1 together with their incident
edges. The core of a graph may be empty: this is the case, for instance, when the
graph is a union finite of trees.

Our use of core is not that of Stallings [Sta83] (except in the case of finite graph),
but it agrees with the notion of normalization of Gersten [Ger83].

The index of a finite graph can be computed using its core with the easier formula:

(M) =i(core(l) = Y deore(r) (%)

x€V(core(T))
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We use this formula to define the index of an infinite graph I": The core does not
have vertices of valence 0 and 1 and thus we can compute the above (possibly infinite)
non-negative sum.

For a connected (possibly infinite) graph I' the index is thus

i(I') = i(core(I')) = max(0; #dI" + 2rank (71 (")) — 2)

where 0T is the set of ends of I'. If I is not connected we sum the above value for
each of its connected components.

A morphism of graphs t: T' — T maps vertices to vertices, edges to edges and
respects incidence.

We will need the following lemma in our proofs:

Lemma 2.1. Let t: T — T be a morphism between two finite graphs. Assume that
T is injective on edges. Then the index of T is smaller or equal to the index of T:

i(I") <i(D).

Proof. For each vertex x of I, the set of edges incident to the vertices in the fiber
=1 (x) injects in the set of edges incident to x. Thus

> in(x) <ir().
x’er—1(x)

Moreover, T maps the core of I'’ inside the core of T".
We get

M) =i(ore(M) = Y @) < D dcore(r)(x)

xeV(core(T’)) x€V(core(T))
=i(core(I")) = i(I). O

In particular, if T is a subgraph of a finite graph T",
i(T") <i().

2.3. Index of a system of isometries. Let F' be a compact forest and S = (F, A)
be a system of isometries. Let €2 be the limit set of S
For a point P in F, we define its index by

is(P)=#aec AT | P.a e Q}-2.

By definition of the limit set, for any point P in €2, there exists a bi-infinite reduced
admissible path Z = ...z_;z¢z; ... in " such that P € dom(Z). The edges z; and
2o~ ! send P inside ©, and thus the index of P is greater or equal to 0: ig(P) > 0.
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Conversely, if the index of a point P in F' is non-negative: is(P) > 0, then there
exists two elements a, b € AT!, suchthat P-a and P -b are in the limit set 2. As P-a
is in €2 there exists a bi-infinite reduced admissible path Z = ...z_jz¢zy... in T
such that P -a € dom(Z). Up to replacing Z by Z~! (the same bi-infinite path with
reversed orientation), we assume that z; # a~!. Symmetrically there exists a bi-
infinite reduced admissible path Z' = ...z ;zyz} ... inT suchthat P-b € dom(Z’)
and zj, # b~!. We getthat Z” = ...z’ ,zpbaziz> ... is a bi-infinite reduced path
in T’ with P € dom(Z") and thus that P is in the limit set :

PeQ < ig(P)>0.

The index of S is defined by

i(8) =) max(0;is(P) = Y is(P).

PeF PeQ

As there is a max in the first sum, and by the above equivalence, both sums are
non-negative and are well defined possibly as +oo.
The main result of this paper can now be stated.

Theorem 2.2. The index of a system of isometries S = (F, A) with independent
generators is finite and bounded above by the index of the associated graph T'.

2.4. Cayley graphs. Let S = (F, A) be a system of isometries and let I" be its
associated graph. Let P be a point in F' and K be the connected component of F
which contains P. Let I'y be the connected component of I" which contains K and
f‘o its universal cover.

The trajectory tree of P is the smallest subtree f(P) = f‘(P, S) of Ty which
contains all the admissible paths w based at K such that P is in the domain of w.

Let Stab(P) be the subgroup of the fundamental group 7y (I', K) of the graph I’
based at K of admissible paths w such that P - w = P. The group Stab(P) is a free
group that acts on the tree I'(P).

The Cayley graph I'(P) = T'(P, S) of P is the quotient of L(P) by the action of
the stabilizer Stab(P) (compare Gaboriau [Gab96]). Vertices of the Cayley graph of
P are in one-to-one correspondence with the elements of the pseudo-orbit of P in F
under the pseudo-group of isometries. The vertices of the core of the Cayley graph of
P are in one-to-one correspondence with the intersection w(P) of the pseudo-orbit
of P and the limit set 2.

The index of a vertex P’ in core(I'(P)) is equal to the index is(P’) of the point
P’ for the system of isometries S. Thus, we get that the index of the core of the
Cayley graph i (I'(P)) is equal to the contribution of the pseudo-orbit of P to the
index of S:

i(D(P)) =i(core(T(P)) = > is(P).

P’ew(P)
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Adding up, for all pseudo-orbits [P] we get
i(S) =Y _i(I'(P)).

[P]

3. Rips machine

3.1. Elementarystep. LetS = (F, A)be asystem of isometries on a compact forest
F. One step of the Rips machine produces a new system of isometries S’ = (F’, A)
defined as follows.

The forest F’ is the set of all elements of F which are in the domains of at least
two distinct partial isometries in A*!:

F' ={P € F | there exists a # b € A*! such that P € dom(a) N dom(b)}.

The set F’ has finitely many connected components which are compact R-trees be-
cause it is the finite union of all possible intersections dom(a) N dom(b) for all pairs
of distinct elements a, b of A*!.

For each partial isometry a € A and for each pair of connected components K¢, K
of F’, we consider the partial isometry, a’ = Kol4[k,» Which is the restriction of a
to Ko and K. The finite set A’ consists of all such non-empty partial isometries
Ko1K, of F'.

An elementary step of the Rips machine gives rise to a map t from the graph I'’
associated to the resulting system of isometries S’, to the original graph I". A vertex
K’ of T is a connected component of F’ and it is mapped by 7 to the connected
component T(K") of F which contains K'. Similarly an edge a’ of I'” is a non-empty
partial isometry @’ = g,ja[k, and it is mapped by 7 to the original partial isometry
a. The map t is a morphism of oriented graphs.

If w is an admissible reduced path in T/, the domain of T(w) contains the domain
of w and 7(w) is an admissible path in I". Moreover, the image 7(w) of an admissible
reduced path w in T is a reduced path of I'. Finally, if a bi-infinite reduced path Z
in T is admissible, then its domain is contained in F’, which leads to the following

Proposition 3.1. Let S be a system of isometries and S’ be the result of the Rips
machine. Then the limit sets and the indices of S and S’ are equal:

Q=Q and i(S)=i(S). O

3.2. Indices through the Rips machine. As explained previously, the Rips machine
defines a new system of isometries S’ = (F’, A’) starting from a system of isometries
S = (F, A) by erasing the subset E of the forest F' which consists of points which
belongs to at most one domain of partial isometries of A*1.

To better understand the Rips machine we decompose its elementary step into a
finite sequence of elementary moves. Instead of erasing £ in one step we successively
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erase subsets E; of E. This gives us a finite sequence of system of isometries starting
from S and ending at S’. The successive systems of isometries of this sequence differ
by an elementary move.

As F is a compact forest, the set £ may have infinitely many connected com-
ponents. We first describe a preliminary move which erases all the “peripheral”
ones. Then we are left with a finite forest to erase, which we erase in finitely many
elementary moves.

This decomposition of the Rips machine is used in the next proposition to prove
that the index of the associated graphs is decreasing.

Proposition 3.2. Ler S = (F, A) be a system of isometries and S’ = (F', A") be the
output of the Rips machine. Let T and T’ be the associated graphs.
Then the index i (") is smaller or equal than the index i (T").

Proof. Let E be the part of the forest F* which is erased by the Rips machine:
E=F~F ={P¢cF |#aec AT | P e dom(a)} < 1}.
Let Ec be the subset of £ which is in the convex hull of F':
Ec ={P € E| P €c[Q,R]forsome Q,R € F'},

and let Eg = E ~ E¢ be the complement of Ec in E.

Let Fo = F~Eg = F'UEc: Fyis the convex hull of the connected components

of F/in F:

Fo={P e F|P¢€[Q,R]forsome Q,R € F'}.
Thus Fjy has finitely many connected components, each of which is a compact R-tree:
Fy is a compact forest.

Let Ag be the set of all non-empty restrictions of partial isometries of A to partial
isometries of Fy. Let I'g be the graph associated to the system of isometries Sy =
(Fo, Ag) and let 79: 9 — I be the graph morphism defined as before. As Eqo does
not split connected components of F, the map t is injective and thus by Lemma 2.1,

i(Tp) = i(T")

(we note that this inequality can be strict if 7y is not onto).
As F’ has finitely many connected components, E¢ is a finite union of finite open
arcs of the form | P; Q[ where P and Q are two points of F’.

Lemma 3.3. The erased part Ec can be decomposed to get a partition
Ec=01Woa, W---Way,

where each «; is an open arc such that the number of connected components of
F; is exactly one plus the number connected components of F;_1, where for each
i=1,...,n,welet F; = F;_1 ~q;.
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Proof. Werecursively define «; by choosing a connected component C of F;_; which
contains at least two connected components of F’. Then we choose a connected
component K of F’ contained in C and which is not contained in the convex hull C’
of (C N F’) ~ K in C. We choose the open arc «; that joins K and C’. Removing
a; from F;_; splits the connected component C of F;_; into two new connected
components: K and C’. O

Let A; be the set of non-empty restrictions of partial isometries in A to F; and let
I'; be the graph associated to the system of isometries S; = (Fj, A;). As before we
get graph morphisms 7; : I; — I';_;. We observe that the last system of isometries
is the output of the Rips machine: S, = S’. The map t factors through the graphs
Ii:t=10110 01

We now proceed to prove that for eachi = 1,...,n, the index of I'; is lower or
equal to the index of I';_;. This will conclude the proof.

Going from S;_; to S; corresponds to one of the following elementary moves of
the Rips machine. For each i removing the arc ¢; from F;_; has one of the following
two effects on the graph I';_;:

(1) Split a vertex: a; joins two connected components, K and K’, of F;, and no
partial isometry in Aii_l1 is defined simultaneously on K and K’. Then the map t; is
injective on edges and, applying Lemma 2.1, the index of I'; is smaller or equal to
the index of I';_;.

HNH
s

e

(2) Split an edge: «; joins two connected components K and K’ of F;, and a partial
isometry a in Al.i_l1 is defined on K and K’ (and thus its domain dom(a) contains «;).
By definition of E no other partial isometry is defined on «;, in particular the range
of a is contained in F;. The graph morphism t; maps the two distinct vertices K and
K’ to the same vertex, K U o; U K', of I';_1, it maps the two edges a’ = g1a and

a” = gna which are the restrictions of @ to K and K’ to the same edge a of I';_;.

Ti

F;:

Figure 4. Split a vertex move.
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¢

] !

Figure 5. Split an edge move.

On all other vertices and edges, t; is one-to-one. Thus, 7; is a homotopy equivalence
and the index of I'; is equal to the index of I';_;. Indeed, ; is a folding in Stallings’
terminology [Sta83]. O

3.3. Iterating the Rips machine. Let Sy = (Fjp, Ap) be a system of isometries. By
repeatedly applying the Rips machine we get a sequence S, = (Fy, A,) of systems
of isometries. Of course the Rips machine may halt after some time, that is to say,
we do not exclude that S, +1 = S, for n big enough.

We also get graph morphisms 7, from the graph ', associated to S, to the
graph I, associated to S,,. Indeed, a partial isometry a, € A, is the restriction of
the partial isometry a = 79 o 7 - - - Ty—1 (@) in Ag to connected components of the
compact forest F,.

Lemma 3.4. The intersection Q2 of the nested sequence (Fy)neN of compact subsets
of Fy is equal to the limit set Q2¢ of the system of isometries Sy.

Proof. By Proposition 3.1, at each step n the limit sets 2,4, and €2, of the corre-
sponding system of isometries are equal. In particular €2y is contained in F,, at each
step n and thus in the nested intersection.

Conversely, let P be a point in the nested intersection 2 = (1), ¢ Fn. For any
n € N, P belongs to F,+; and by definition of the Rips machine, there exists at
least two distinct partial isometries a, and b,, defined at P in Anil. Thus P -a, and
P - b, are in F,. Up to passing to a subsequence we can assume that a, and b, are
the restrictions of two fixed and distinct partial isometries a and b in Ag“. We get
that for all n, P -a and P - b are in F},, which proves that P -a and P - b are also in
the nested intersection = ("), Frn. The set Q is a subset of Fy such that for any
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point P in €2, there exists at least two distinct partial isometries a and b in Ag“ such
that P -a and P - b are also in 2. This proves that Q2 is contained in the limit set ¢
of the initial system of isometries Sp. O

The limit graph T of the system of isometries So = (Fp, Ag) is the (possibly
infinite) graph whose vertices are the connected components of the limit set 2 and
whose edges are all possible restrictions of partial isometries in Ao to connected
components of 2. We denote by 7,: [ - T, the graph morphism that maps a
connected component C of €2 to the connected component of F;, that contains C, and
which maps an edge e of T to the partial isometry a,, € A, of which itis a restriction.

From the previous lemma and from the definition of an inverse limit, we deduce:

Lemma 3.5. The limit graph r of a system of isometries, So = (Fy, Ag), is the
inverse limit of the sequence of graphs (I'y),eN (together with the sequence of maps
(Tn)neN) associated to the sequence of systems of isometries (S, )neN obtained from
So by iterating the Rips machine. O

By definition of €2, the graph T does not have vertices of valence 0 or 1, and we
defined its index as the non-negative sum

iM= Y iz,

xeV(T)

Recall that, by Proposition 3.2, the sequence of indices (i (I',)),eN is decreasing.

Proposition 3.6. Let T be the limit graph of a system of isometries So = (Fp, Ao).
Then the index of T is smaller or equal to the index of Ty:

i(T) <i(To).

Proof. For any point P in €2, by definition, there exist at least two distinct partial
isometries a and b in Ag“ defined at P and such that P - @ and P - b also lie in Q2.
For any n € N, 2 is contained in F;: let C,, be the connected component of P in
F;,. There are at least two edges going out of the vertex C,, of I',, corresponding to
the restrictions of @ and b to C,. This proves that the image of r by 7, in I, does
not contain vertices of valence 0 or 1: 7, (f‘) is a subgraph of the core of I,.

Let O be a finite set of vertices of I'. Let © be a finite subgraph of [ that contains
Oy and all edges incident to elements of ®¢. The graph © exists because vertices of
[ have finite valence bounded above by twice the cardinality of Ag.

By Lemma 3.5, there exists n € N such that ® is mapped injectively by 7, into
I',. Arguing as in Lemma 2.1 and using the definition of the index of a graph, the
following inequalities hold:

D ip() = D i0(0) £ Y dcore(ry) (Fa(x)) < i(core(Ty)) = i(Th).

xE@O xE@o xG@O
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Using Proposition 3.2 we get that for any finite subset ®¢ of vertices of r

> i) =i(To).

xX€0q

Taking ®, arbitrarily large we finally get
i(F) <i(To). 0

A connected component K of €2 is called regular if it corresponds to a vertex
of valence 2 of the limit graph I". A connected component K of 2 is singular if it
corresponds to a vertex of valence at least 3 of .

Corollary 3.7. All connected components of [ are lines except atmost i (I'g). More-
over, there are at most i (I'g) singular connected components of 2. O

We are now ready to prove Theorem 2.2 in the special case where the Rips machine
never halts and digs holes everywhere.

Theorem 3.8. Let S = (F, A) be system of isometries and I be its associated graph.
Assume that the limit set 2 is totally disconnected. Then the index of S is bounded
above by the index of T.

Proof. As connected components of €2 are reduced to single points, the graph [ is
the disjoint union of all the cores of the Cayley graphs I"(P):

[ = [+ core(I'(P)).

[P]

Thus, the index of T' is equal to the index of S. The theorem now follows from
Proposition 3.6. 0

We turn back to the general case where the limit set has non-trivial (i.e. not
reduced to a single point) connected components.

Proposition 3.9. The limit set 2 of a system of isometries Sog = (Fy, Ag) has finitely
many non-trivial connected components.

Proof. By Corollary 3.7, there are finitely many singular connected components of 2.

Let K be a regular connected component of €2. Then there exists exactly two
distinct partial isometries a # b in Ao*! with non trivial restrictions a’ = K419
and b’ = g1brq to K and Q2. These are the partial isometries which give rise to the
two edges of r going out of the vertex K. By definition of €2, for each point P of
K there exists at least two partial isometries in 43! which map P inside Q. Thus P
lies in both the domains of @’ and b’ and thus dom(a’) = dom(b’) = K.
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Now, if the range K - a’ of a’ is also a regular connected component of 2 then a’
is an isometry between K and K - a’ and in particular they have the same diameter.
From the next lemma we get that there can only be finitely many non-trivial regular
connected components.

This proves that €2 only has finitely many non-trivial connected components.  [J

Lemma 3.10. Let K be a compact R-tree and (K;)ieN be a collection of disjoint
subtrees of K. Then

lim diam(K;) = 0.

1—>00

Proof. By contradiction, assume that there exists € > 0 such that (extracting a sub-
sequence) for all i, diam(K;) > ¢. Let P;, Q; be in K; with d(P;, Q;) > €. By
compactness of K, up to passing to a subsequence, the sequences P; and Q; converge
to P and Q respectively in K and d(P, Q) > e. For i big enough d(P;, P) < &/2
and d(Q;, Q) < ¢/2, from which we deduce that the segment [P;, Q;] contains the
midpoint of [P, Q], and therefore the segments [P;, Q;] and [P;, Q;] are not disjoint
for i and j big enough. A contradiction. O

3.4. Reduced systems of isometries. In this section we introduce an extra hypoth-
esis on the system of isometries. Under this hypothesis using the Rips machine is
considerably easier. For system of isometries on finite trees, such an extra hypothesis
was introduced by D. Gaboriau in [Gab96] where it appears in Proposition V.4 as
Property (*).

The set of extremal points 0K of a compact R-tree K is the set of points of K
that do not lie in the interior of an interval contained in K. Equivalently a point P is
extremal in K if K ~ {P} is connected. The tree K is the convex hull of its extremal
points:

kK= |J [P:P)

P,P’edK

We remark that 0K may fail to be compact.

Definition 3.11. Let So = (Fp, Ap) be a system of isometries. Let S; = (F1, A1)
be the output of the Rips machine. The system of isometries Sy is reduced if
(i) For any point P in Fy the tree of trajectories ['(P) is infinite.

(ii) For any partial isometry @ in AZ! the set of extremal points d dom(a) of the
domain of a is contained in Fj.

Lemma 3.12. The graph Iy associated to a reduced system of isometries does not
have vertices of negative index, that is to say of valence 0 or 1.

Proof. Let K be a connected component of F and let P be a point in K. From
condition (i), the tree of trajectories I'(P) is infinite and thus there exists at least one
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partial isometry a € Ag“ defined at P. Let now Q be an extremal point of dom(a).
From condition (ii), Q is in F; and thus belongs to at least another domain dom(b)
with b € A(“)—Ll, a # b. Thus, the vertex K of 'y has at least two outgoing edges a
and b. O

When dealing with the Rips machine, reduced systems of isometries are easier to
handle. The elementary moves “split a vertex” and “split an edge” are described in
the proof of Proposition 3.2.

Proposition 3.13. Let Sog = (Fy, Ag) be a reduced system of isometries. Let S1 =
(F1, A1) be the output of the Rips machine.

Then going from Sy to S only performs elementary moves of type “split an edge”,
and the map ©: I'y — Ty is a homotopy equivalence. In particular

i(Fo) = i(T).

Proof. In the proof of Proposition 3.2, starting with a reduced system of isometries,
we first get that Eq is empty. Indeed, let P be an extremal point of F* which is not
in F;. From condition (ii), P does not belong to any domain of a partial isometry
in A*! and thus its tree of trajectories consists in a single vertex, which contradicts
condition (i).

Then we get that no “split a vertex”” move can occur, because the removed points
in this move have a tree of trajectories which consists in a single vertex. O

We can now prove that the reduced condition is inherited while iterating the Rips
machine.

Proposition 3.14. Let So = (Fo, Ao) be a reduced system of isometries. Let S1 =
(F1, A1) be the output of the Rips machine. Then S is reduced.

Proof. For apoint P in Fy, the tree of trajectories of P with respect to S is obtained
from the tree of trajectories with respect to So by pruning off the terminal vertices.
Thus, if the latter is infinite, so is the former.

By contradiction, let Sy = (F5, A») be the output of the Rips machine applied to
S, let a1 be a partial isometry in A; and let P be an extremal point in d dom(a)
which is not in F,. Let ag be the partial isometry in Ao of which a; is a restriction.

As P is in dom(a;), and thus in Fj, there is at least another partial isometry
bo € Ap such that P is in the domain dom(bg). There exist two extremal points Q,
R in ddom(by) such that P lies in the segment [Q; R]. By hypothesis, O, R, as well
as Q - by and R - by lie in F;.

As P is an extremal point in d dom(a1), up to exchanging the two points Q and
R, we assume that Q is not in the domain of a; and that [P; Q] N dom(a;) = {P}.
Let (Q,) be a sequence of points in the open arc | P; Q| that converges to P.
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In the original system of isometries Sy, Q, has an infinite tree of trajectories, in
particular there exists a reduced admissible path ¢, - d,, of length 2 in Iy which is
defined at Q,. As I'y is a finite graph, up to passing to a subsequence we assume
that this path is constant: for any n the reduced admissible path ¢ - d is defined at
Q. As domains of partial isometries are closed, the point P is in the domain of ¢.d .
Since ¢! # d, by definition of the Rips machine, the point Pc is in F; and there
is a restriction c¢1 of ¢ in A; which is defined at P. As P is not in F, and as a; is
defined at P, the partial isometries ¢; and a; are equal. Thus for any integer n the
partial isometry ag is defined at @, and Qpa¢ is in F;. There are only finitely many
restrictions of ag to the connected components of F;. Thus a; is defined at some Q,,
and P is not an extremal point in d dom(a1). A contradiction. (|

We now state an equivalent characterization of reduced systems of isometries.

Proposition 3.15. A system of isometries So = (Fy, Ag) is reduced if and only if the
two following conditions hold:

(1) For any point P in F the tree of trajectories f‘(P ) is infinite.

(ii") For any partial isometry a in A*! the set of extremal points d dom(a) of the
domain of a is contained in the limit set Q.

Proof. As the limit set ¢ of Sy is contained in F; we get that condition (ii") implies
condition (ii).

Conversely, let So = (Fp, Ag) be a reduced system of isometries and let S,, =
(Fy, Ap) be the systems of isometries obtained by iteratively applying the Rips ma-
chine. From Proposition 3.14, S, is reduced. Let P be an extremal point of dom(ag)
for a partial isometry ag € Agﬂl. By condition (ii), P is in F; as well as P - ag, and
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thus there exists a restriction a; € Alil of ag such that P is an extremal point of
dom(a;). By induction for each n there exists a partial isometry a, in 45! such that
P is an extremal point in dom(a,) and thus P is in F,,. By Lemma 3.4 we conclude
that P is in the limit set Q. O

4. Computing the index of a system of isometries

4.1. Systems of isometries on finite trees. We translate and adapt in this section
Proposition 6.1 of [GLP94].

A finite tree is an R-tree which is the convex hull of finitely many of its points.
It has finitely many branch points and is the metric realization of a simplicial finite
tree. A finite forest is a metric space with finitely many connected components each
of which is a finite tree.

We remark that removing the branch points, such a finite forest gives a disjoint
union of finitely many intervals. The integral of a function defined on F is the integral
on this disjoint union of intervals (with respect to Lebesgue measure).

Let S = (F, A) be a system of isometries where F is a finite forest. The valence
of apoint P in F is

vs(P) = #{a € AT | P € dom(a)}.

We emphasize that in Section 2.3 we defined the index ig(P) by restricting partial
isometries to the limit set €2, and thus for a system of isometries we may have
is(P) < Us(P) —2.

The function P + vg(P) is a finite sum of characteristic functions of finite
subtrees. It is Lebesgue integrable.

We translate Proposition 6.1 of [GLP94] to get:

Proposition 4.1. Let S = (F, A) be a system of isometries with independent gener-
ators. Assume that F is a finite forest. Then [p_p(vs(P)—2) <0

Proof. The sum f peg Vs (P)istwice the sum of the Lebesgue measure of the domains
of the partial isometries in A. Itis denoted by 2£ in Section 6 of [GLP94] while |, _ - 2
is twice the Lebesgue measure of F' which is denoted there by 2m. O

4.2. Shortening systems of isometries. To use Proposition 4.1 in the broader con-
text of compact forests, we need a standard procedure to shorten a system of isometries
to a finite one.

Let F be a compact forest and let ¢ > 0. We define:

Fie ={P € F | thereexist P_,, P1, € F,P € [P_;, P1]
such that d(P, P—.) = d(P, P+.) = ¢}
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(i.e. P is the midpoint of the segment [ P_, P.] which has length 2¢).
The set of extremal points dF of a compact forest F is the union of the sets of
extremal points of the connected components of F.

Lemma 4.2. (i) Forany € > 0, for any connected component K of F', KN Fy; = Ky
is a finite tree (possibly empty).

(i) Forany ¢ > & > 0, Fy; C Fip.

(iii) U,sq Fre = F ~ OF. O

For any partial isometry a of F, we denote by a; its restriction to Fy.,. We denote
by A and S, the corresponding finite set of partial isometries and the restricted system
of isometries. We remark that if S’ has independent generators then S, also has.

4.3. Pseudo-surface systems of isometries. Let S = (F, A) be a system of isome-
tries, where F' is a compact forest and such that each point of F lies inside the domain
of at least two different partial isometries in A*!. In this case the limit set Q is equal
to F and the Rips machine does not do anything to S.

If, in addition, the system of isometries S has independent generators, we say that
it is pseudo-surface.

A key step in our proof of Theorem 2.2 is the following proposition which is
proved using Proposition 4.1 by shortening the system of isometry as in Section 4.2.
We note that the following proposition is obvious if F is a finite tree or a finite forest
(cf. for example [Gab96], Processus 11.3 5).

Proposition 4.3. Ler S = (F, A) be a pseudo-surface system of isometries. Then,
for any choice of three distinct partial isometries in AT the intersection of the three
domains contains at most one point of F.

Proof. By definition of pseudo-surface systems of isometries, for any P in F the
valence vg (P) is greater or equal to 2.

By contradiction we assume that there exist three distinct partial isometries a, b
and ¢ in A1 such that the intersection of their domains is strictly bigger than a point.
As domains are compact subtrees, there exists a non-trivial arc / which is contained
in the three domains:

vs(P)>3 forall P €.

For any & > 0 we consider the finite forest Fy, and the corresponding system of
isometries S,.

Let £ be the length of /. For any ¢ < £/3, the sub-arc J of I which is contained
in the domains of the partial isometries a,, b, and ¢, of A, contains the middle third
of I thus the length of J is bigger than £/3.

For such an ¢ > 0, Fj, is a finite forest by Lemma 4.2 and Proposition 4.1 holds:

I, = /P L, P =2 <0
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Let &, resp. M, be the set of points of F;, which contributes positively, resp.
negatively, to /:

Pe=1{P € Fys |vs,(P)>2} and Ny ={P € Fy;|vs,(P) =1}

As the points in J have valence at least 3, we get
[ wser-2zes
Pep:

and thus we have

0xLze3+ [ ws(P)-2)
PeNe
Our goal is to prove that the negative part goes to zero to get a contradiction. We only
need to prove that the Lebesgue measure of N, goes to zero.

We claim that N, has Lebesgue measure bounded above by SN2 ¢ where N = #A4
is the cardinality of A.

Let P bein N, then P is in F;, which means that P is the midpoint of a segment
[P—¢, Py¢] of length 2¢ in F. As S is pseudo-surface, there are at least two elements
ai,a, € A*! which are defined at P_, and at least two elements by, b, € AT! which
are defined at Py.. As P is in N, at most one of the four partial isometries a¢, dze,
bie, bae is defined at P. By switching the indices we can assume that a1, and by are
not defined at P. Taking ¢ sufficiently small ensures that the partial isometries a;,
and by, are not empty.

The domain of a;, and the point P_. lie in the same connected component of
F ~ {P}: else P would be located in a segment [P_,, P’] with P’ in the domain of
aie and P_, in the domain of a;, thus P would be in the domain of a;,. We argue
similarly for the domain of b1,.

We have thus proved that P is in the non-trivial arc joining the disjoint domains
of a1 and b1.. The point P_; is in the domain of @; and thus at distance less than ¢
of the domain of aq,. Thus P is at distance less than 2¢ from this domain. Hence,
the length of the arc joining the disjoint domains of a1, and by, is at most 4e¢.
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If, over all the possible pairs of partial isometries, we sum the lengths of the arcs,
we get that the volume of N is bounded above by QN(2N — 1)/2) x 4e. Which
proves the claim and concludes the proof. O

If the compact forest F = [ is an interval and if the system of isometries S =
(F, A) is pseudo-surface, Proposition 4.3 states that this is the classical case of an
interval exchange transformation and S is usually called surface. This justifies the
terminology of pseudo-surface system of isometries.

From Proposition 4.3, it is easy to deduce a rough bound of the index of a pseudo-
surface system of isometries.

Corollary 4.4. Let S = (F, A) be a pseudo-surface system of isometries. Then i(S)
is finite and bounded above by a constant depending only on the cardinality of A.

Proof. We denote, as before, by N = #A the cardinal of A. From the previous
proposition, there are at most (2?/ ) points in F' which belongs to the domains of at
least three different partial isometries in A*!. Each of these points has valence at
most 2N . Adding up we get that

i(S)=> is(P)= Y (vs(P)-2) < NQN - 1)(2N —2)*/3. O

PeF PeF

We now state a combinatorial lemma.

Let K be acompact R-tree and let X = (K,;)q4e4 be afinite collection of compact
subtrees of K. For such a collection, and for any point P € K we denote by vx (P)
the number of elements a of A such that P isin K.

Lemma 4.5. Let K = (Kg)qea be a finite collection of compact subtrees of a
compact R-tree K. Assume that

(1) for any choice of three distinct elements of A the intersection of the corre-
sponding subtrees is at most one point,
(2) any element P of K is in at least two compact subtrees K,, Ky (a # b € A).

Then
Y (x(P)—2) =#A4-2.

Pek

Proof. Let T be the convex hull in K of all elements P € K such that vy (P) > 3.
From our first hypothesis 7T is a finite tree. For each a € A the intersection T, =
K, N T is afinite tree. Let T = (T,)4e4 be the corresponding collection of finite
subtrees of 7. We have the equality

D x(P)=2)= ) (v7(P)-2).

PeK PeT
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Moreover T satisfies the same hypothesis as K: the intersection of three of its
elements is at most a point and any element of 7 is in at least two subtrees 7, and
Ty, a # b € A. We regard T and each T, as a simplicial tree by considering all
the branch points and extremal points as vertices. Each edge of the simplicial tree T’
belongs to exactly two trees T, and 7. Combinatorial computation gives

Y wr(P)=2)= Y (wr(P)=2)= Y Y lpeya,—2HV(T)

PeT PeV(T) PeV(T)acA
=Y > lpev, —2#E(T) -2
acA PeV(T)
=) #V(Ta) = Y #E(T,) -2
acA acA
=#A—2. O

We can now get the correct bound for the index of a pseudo-surface system of
isometries

Theorem 4.6. Let S = (F, A) be a pseudo-surface system of isometries and, let T’
be the associated graph. Then i(S) = i(T).

Proof. As S is pseudo-surface, at least two distinct partial isometries are defined at
each point of F'. Thus, the graph I does not have vertices of valence 0 or 1 and its
index is given by
iM)= > ir(K).
KeV(T)

Let K be a connected component of F and let B be the subset of A*! which
consists of partial isometries with domains inside K. The set B is also the set of
edges going out of the vertex K of the graph I" and thus

ir(K) =#B —2.
Let K be the collection of domains of elements of B. Thus for each point P in K
is(P) = vy (P)—2.
By Proposition 4.3, the collection X satisfies the hypothesis of Lemma 4.5 and we

get
> (vx(P)—2) =#B -2.

PekK
Thus the contribution of the points of K to the index of S is equal to the contribution
of the corresponding vertex of I':

> is(P) =ir(K).
PekK
Adding up for all connected components K of F, proves the theorem. O
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4.4. Proof of Theorem 2.2. Using Proposition 3.6, Theorem 2.2 is a consequence
of the following result.

Proposition 4.7. Let S = (F, A) be a system of isometries with independent gener-
ators. Let " be its limit graph. Then the index of S is equal to the index of T':

i(S) = i().

Proof. Let Q2 be the union of all non-trivial connected components of the limit set 2.
By Proposition 3.9, €2 has finitely many connected components, that is to say, 2 is a
compact forest. Let So = (€20, 4g) be the system of isometries which consists of the
restrictions of S to €2¢. By definition of the limit set, Sy is a pseudo-surface system of
isometries. By Proposition 4.3, the intersection the domains of three distinct partial
isometries of Ao~ contains at most one point.

For a vertex of corresponding to a connected component K (possibly a single
point) of 2 we can apply Lemma 4.5 to the collection given by the domains of the
edges going out of K to get:

in(K) = ) (vs(P) -2).

PekK

By Corollary 3.7, [ has finitely many vertices with index strictly positive (and these
indices are finite). Adding up for all these singular vertices of I', we get

i(8) =i). O

4.5. Systems of isometries with maximal index. From Theorem 2.2, we say that
a system of isometries S has maximal index if its index is equal to the index of its
associated graph I': i(S) = i(T).

The following proposition characterizes reduced systems of isometries with max-
imal index.

Theorem 4.8. Let S = (F, A) be a reduced system of isometries with independent
generators, let T be its associated graph, and T be its limit graph. The following are
equivalent:

(1) The system of isometries S has maximal index.

(2) The graph T is finite.

(3) The Rips machine, starting from S, halts after finitely many steps.

Proof. As before we denote by S, = (Fj, A,) the system of isometries obtained
after n steps of the Rips machine. By Proposition 3.13 and Proposition 3.14 the Rips
machine only performs “split an edge” moves and induces a homotopy equivalence
Tp: I'y41 — Iy at each step. And thus the index is constant:

i(Tn) = i(To) = i(T).
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Moreover at each step the graph I';, does not have vertices of valence 0 or 1.

3 = 2: If the Rips machine halts after step n, then I',4+1 = '), = [ is a finite
graph.

2 = 3: Conversely, at each step n the Rips machine only performs “split an
edge” moves. This move adds one edge to [, to get I',,+1. If the Rips machine never
halts, then the number of edges of I';, goes to infinity. As each of the t, is onto, we
get that [ is infinite.

3 = 1: If the Rips machine halts after finitely many steps: for n big enough

[ =Ty =T,

by Proposition 4.7, i (f' ) = i(S) and we get that S has maximal index.

1 = 3: Assume that S has maximal index: i (S) = i(f‘) =i().

We proceed as in the proof of Proposition 3.6. Let ®¢ be the finite subset of
vertices of I" with valence strictly bigger than 2. Let ® be the finite subgraph of r
which contains all edges incident to ®¢. The graph ® contains all the index of r:

i)=Y iel).
x€®q
For n big enough, 7, is injective on ® and thus for each vertex x in G
ie(x) <1ir,(Tn(x)).

We assumed that S is reduced and thus that I', does not have vertices of strictly
negative index. R
By maximality of the index, i (I') = i(I',) and thus we can compute

i)=Y io(x)= Y ir,Gx)+ > i, (»)=i(Tn).
x€@g x€Bg Y€V (Tn)~11(00)
We deduce that for each x in ®¢ and for all y € V(I',) ~ 7,(0Oy),
ie(x) = ir, (o (x)) and i1, (y) = 0.

The commutative diagram

A

r

Tn
1_‘n—l—l

Ly

restricts to graph isomorphisms between © and its images. Moreover, T,41(®) and
7,(®¢) contain all the vertices of strictly positive index of I';,1; and T, respectively.
Thus no “split an edge” move can occur when passing from I, to I',1; and thus the
Rips machine does not do anything to the system of isometries S,. O
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5. Trees

Throughout this section, 7 is an R-tree with a very small, minimal action of the free
group Fu of rank N by isometries with dense orbits.

5.1. Themap @. Let P beapointin 7, we consider the equivariantmap @p: Fy —
T,u +— u - P. This maps does not extends continuously to the boundary dFy of
Fy. To overcome this difficulty we weaken the topology on T by considering the
observers’ topology.

Let 7 = T U 9T be the union of the metric completion of T and its (Gromov)
boundary. T inherits from the metric on T a well defined topology. However, T is
not compact in general.

We consider on 7' the weaker observers’ topology and we denote by T this
topological space. A basis of open sets in Tobs ig given by the set of connected
components of 7 ~ { P} for all points P. This topology is Hausdorff and 7°* is a
compact space with the same connected subspaces than f, see [CHLO7].

Proposition 5.1 ((CHLO7]). Let T be an R-tree with a very small, minimal action
of Fn by isometries with dense orbits. There exists a unique map @ that is the
continuous extension from dF y to T of the map Qp :u +> u- P. The map @ does
not depend on the choice of a point P. O

This map @ was first introduced by Levitt and Lustig in [LLO3], [LLO8] with a
slightly different approach. In particular they proved

Proposition 5.2. Let T' be an R-tree with a very small, minimal action of Fy by
isometries with dense orbits. The map @ is onto T. The points P in T with strictly
more than one pre-image by @ are in the metric completion T of T (and not in the
(Gromov) boundary 0T).

It has been asked by Levitt and Lustig ([LL03], Remark 3.6) whether the map
Q: Fy — T has finite fibers (in the case where the action is free). We are going
to answer this question and to give a precise bound for the cardinal of the fibers. In
this purpose we need to make this question precise by the following definition of the
@-index.

5.2. The @-index. We denote by Stab(P) the stabilizer in Fy of a point P of T.

It is proved in [GL95] that Stab(P) is a finitely generated subgroup of Fy . The
subgroup Stab(P) is a free group and its boundary d Stab(P) embeds in the boundary
of Fy. For any element X € d Stab(P) C dFF i, Proposition 5.1 proves that @(X) =
P. Elements of d Stab(P) are called singular, and the other elements of the fiber
Q™1 (P) are regular. We denote by @ !(P) the set of regular points. As @ is
equivariant, Stab(P) acts on @~!(P) and on @, 1(P).



124 T. Coulbois and A. Hilion
The @-index indg (P) of a point P in T is defined by
indg(P) = #(Q, ' (P)/Stab(P)) + 2 rank(Stab(P)) — 2.
When Stab(P) is trivial this definition becomes
indg(P) = #Q~1(P) — 2.

The @-index only depends on the orbit [P] of P under the action of Fy and we
can define the @-index of the tree T by

indg(T) = ) max(0;ig([P])).

[P1eT/Fu

From Proposition 5.2, points in d7" have exactly one pre-image by @. Thus, only
points in 7 contribute to the @-index of 7.
The main goal of this section is to prove the following theorem:

Theorem 5.3. Let T be an R-tree with a very small, minimal action of Fy by
isometries with dense orbits. Then

indg(T) < 2N —2.

In the case of a free action of the free group Fy on T this gives the answer to
Levitt and Lustig’s question:

Corollary 5.4. Let T be an R-tree with a free, minimal action of F N by isometries
with dense orbits. Then, there are finitely many orbits of points P in T with strictly
more than 2 elements in their @-fiber @1 (P) and these fibers are finite. O

5.3. Dual lamination and compact heart. The double boundary of Fy is
’Fy = (0Fy x 0Fn) ~ A

where A is the diagonal. An element of 02F y is a line.
Using the map @, in [CHLO8], the dual lamination L(T) to the tree T is defined:

L(T) ={(X,Y) € 3°Fn | Q(X) = Q(Y)}.

From this definition, the map @ naturally induces an equivariant map @?: L(T) —
T. Itis proved in [CHLOS] that the map @? is continuous and its image is a subset
Q of T which we call the limit set.

We fix a basis A of F. Elements of F are reduced finite words in the alphabet
A%!. An element X of dFy is an infinite reduced words in A*!, we denote by X;
its first letter.
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The unit cylinder C4(1) of 3*Fy is
Ca(l) ={(X.Y) € #Fy | X; # Y1}.

Although 8F is not compact, the unit cylinder is compact and indeed a Cantor set.
In [CHLO9] the relative limit set of T with respect to A is defined:

Qa = Q3(L(T) N Cy()).

From the continuity of the map @2, the relative limit set 2 4 is a compact subset of T

The compact heart K 4 of T is the convex hull of €2 4.

For any element a of the basis A we consider the partial isometry (which we also
denote by a, but which we write on the right) which is the restriction of the action
ofa™:

KiNaKg— KsNa 'Ky, x+—>x-a=a'x.
We get a system of isometries S4 = (K4, A) as defined in Section 2.

In [CHLO9] it is proved that S encodes all the informations given by 7" and the

action of [Fy. To be more specific, we summarize results of [CHLO9] as follows:

Proposition 5.5 ((CHLO09)). Let T be an R-tree with a very small, minimal action of
Fn by isometries with dense orbits. Let A be a basis of Ty, let K 4 be its compact
heart and S 4 = (K 4, A) be the associated system of isometries. Then

(1) S4 has independent generators.

(2) For any word u € Fy, and for any point P € K4, u"' P € K4 if and only if
u is admissible for S 4 and P € dom(u). In this case P -u = u~' - P.

(3) For any element X € 0Fy, Q(X) = P € K4 if and only if X is admissible
and {P} = dom(X).

Proof. Assertion 1 is Lemma 5.1 of [CHLO09]. Assertion 2 is proved in Lemma 3.5
(1) and Corollary 5.5 and Assertion 3 is a consequence of Proposition 4.3, Lemma 4.7
and Corollary 5.5. O

We deduce that for an infinite reduced admissible word X the definition of @ (X) of
Section 2.1 agrees with the definition given by Proposition 5.1. Moreover the relative
limit set 24 of the R-tree T is equal to the limit set of the system of isometries S 4.

5.4. The compact heart of a tree is reduced. As explained in Section 3.4, reduced
systems of isometries (see Definition 3.11) considerably simplifies the use of the Rips
machine. Fortunately, in the context of R-trees, which we are studying, and thanks
to [CHLO09], we can work with reduced systems of isometries.

Proposition 5.6. Let T be an R-tree with a minimal very small action of Fy by
isometries with dense orbits. Let A be a basis of Fy, let Q2 4 be the relative limit
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set and K 4 be the compact heart of T. Let S4 = (K4, A) the induced system of
isometries.
Then the system of isometries S 4 is reduced.

Proof. By Proposition 5.2, the map @ is onto T: for any point P in K4 there exists
X € JFy such that @(X) = P. By Proposition 5.5, X is admissible and P is in
the domain of X. Thus, any point P of the compact heart K 4 has an infinite tree of
trajectories.

Let S; = (F1, A1) be the output of the Rips machine. Let a be a partial isometry
in A and let P be an extremal point of the domain of a. If P is an extremal point of
K 4, then, as K 4 is the convex hull of the relative limit set €2 4, we get that P is in
Q4 and thus in F;. If P is not an extremal point of K 4 there exists a sequence Q, of
points in F* which converges to P and which are not in the domain of a. The points
in the compact heart K 4 have infinite tree of trajectories, thus for each of these points
0O, there exists a partial isometry b, in A such that @, is in the domain of b,,. As A
is finite, up to passing to a subsequence we assume that all the Q,, are in the domain
of a partial isometry b in A. The domain of b is close and thus P is in the domain of
b. By definition of the Rips machine we get that P is in Fj. O

5.5. Proof of Theorem 5.3. Theorem 5.3 is a consequence of Theorem 2.2 and of
the following theorem which relates the @-index of 7" and the index of the system of
isometries S4 defined on its compact heart.

Theorem 5.7. Let T be an R-tree with a very small, minimal action of Fy by
isometries with dense orbits. Let A be a basis of Fn. The Q-index of T and the
index of the induced system of isometries S4 = (K4, A) on the heart K4 of T and
A are equal:

indg(T) =i(S4).

Proof. Let P be a point in T and [P] be its orbit under the action of Fy. By
Proposition 5.5, assertion 2, the intersection of the orbit [ P] and of the compact heart
K 4 is a pseudo-orbit (possibly empty) of the system of isometries S 4.

Assume that indg ([P]) > 0. There are at least two distinct elements X, Y in
the fiber @1 (P). Let u be the common prefix of X and Y, then X’ = u~!'X and
Y’ = u~'Y have different first letter and are in the pre-image by @ of P/ = u~!P.
By definition P’ is in the relative limit set 4 of the tree T'.

This proves that the @-index of 7' can be computed by considering only pseudo-
orbits in K 4:

indg(7) = Y max(0:indg([P])).
[PleK4/Fn

Let P be a point in K 4. By Proposition 5.5, the boundary at infinity of the tree
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of trajectories f‘(P ) is exactly @ 1 (P) and the discussion in Section 2.4 shows that
indg ([P]) = #(Q, ' (P)/Stab(P)) + 2rank(Stab(P)) — 2
= #0['(P) + 2rank(Stab(P)) — 2

= Y is(P).

P’e[P]NK 4

Adding up for all points P in K 4, proves the theorem. (|

5.6. Geometricindex of atree. Gaboriau and Levitt in [GL95] introduced the index
of T as follows.

Let P apointin 7T and let ro(7 ~ { P}) be the set of connected components of T
without P. The stabilizer of P acts on this set. The geometric index of P is

indgeo (P) = #(mmo(T ~ {P})/Stab(P)) + 2rank(Stab(P)) — 2.

This index is always non-negative because there are no terminal vertices in a minimal
tree. If the action of [F; on the tree T is free the above definition becomes simpler:

indyeo (P) = #70(T ~ {P}) — 2.

The geometric index is constant inside an orbit under the action of IFy. The geometric
index of T is then the sum of the indices over all orbits of points:

indgeo(T) = indgeo(P).
[PET/Fy

The following theorem is proved by Gaboriau and Levitt:

Theorem 5.8 ([GL9S5]). The geometric index of an R-tree with a very small minimal
action of the free group Fy is bounded above by 2N — 2. O

5.7. Botanic of trees. In this section we establish a beginning of classification of
trees in the boundary of Outer Space. Let T be an R-tree with a minimal very small
action of [Fy by isometries with dense orbits. Let A be a basis of Fy, let €2 4 be the
relative limit set, let K4 be the compact heart of T and let S4 = (K4, A) be the
associated system of isometries.

We first recall the existing terminology of geometric trees. The tree 7' is geometric
if it can be obtained from a system of isometries on a finite tree, as explained in the
Introduction (see for instance [Gab97, Bes02]). Geometric trees can be alternatively
characterized thanks to the following:

Theorem 5.9 ([GL95], see also Corollary 6.1 in [CHLO9]). Let T be an R-tree with
a minimal, very small action by isometries of Ty with dense orbits. The following
are equivalent:
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(1) T is geometricy
(2) the geometric index is maximal: indgeo(T) = 2N — 2;
(3) K4 is a finite tree. O

We now introduce more terminology. The tree T is of surface type if the Rips
machine, starting with the system of isometries S4 = (K4, A), halts after finitely
many steps. More precisely, a tree of surface type is:

* asurface tree if it is geometric (this terminology is justified by the fact that a
tree dual to measured foliation on a surface with boundary is a surface tree.),

* a pseudo-surface tree if it is not geometric.

(Note that the fact that a tree is pseudo-surface does not exactly correspond to the
fact that the system of isometries S4 = (K4, A) is pseudo-surface, according to the
definition given in Section 4.3).

By Theorem 4.8 and Theorem 5.7 we get the following characterization of trees
of surface type:

Theorem 5.10. Let T be an R-tree with a minimal, very small action by isometries
of ¥y with dense orbits. The tree T is of surface type if and only if its @-index is
maximal: indg(T) = 2N — 2. O

This proves in particular that being of surface type is a property of 7' and does not
depend on the choice of a basis A of the free group Fy .

The tree T is of Levitt type if its relative limit set €2 4 is totally disconnected (i.e.
the connected components of €2 4 are points). More precisely, a tree of Levitt type is

» Levitt if it is geometric (these trees were discovered by Levitt [Lev93] and are
also termed thin or exotic).

» pseudo-Levitt if it is not geometric.

We now prove that being of Levitt type is a property of 7" and does not depend on the
choice of a basis A of Fy.

Let L(T) be the dual lamination of the tree 7. The limit set Q of T is the image
in the metric completion 7 of L(T') by the map @2:

Q = Q>(L(T)).
Contrary to the relative limit set £2 4, the limit set €2 is in general not closed.

Theorem 5.11. The tree T is of Levitt type if and only if the limit set 2 is totally
disconnected.

Proof. By definition, the relative limit set Q4 = @2(L(T) N C4(1)) is a subset of
Q. Thus, if Q does not contain a non-trivial arc, 2 4 neither.
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Conversely, the double boundary of [F is the union of the translates of the unit
cylinder and

L(T) = | w@(T)NCa(l)) and Q= (] uQ4

uelF uelFy

In particular if 7 is a non-trivial arc in the limit set €2, it is the countable union of its
intersections with translates of the relative limit set €2 4. Using Baire’s Property for
I, we get that €2 4 contains a non-trivial arc. O

We remark that there are trees in the boundary of Outer Space which are neither of
surface or Levitt type. These are trees of mixed type, that is to say their relative limit
set 2 4 contains non-trivial arcs but have infinitely many connected components.

Remark 5.12. A general classification of systems of isometries, in particular a The-
orem a-la Imanishi to decompose trees of mixed type would be of interest. More
generally, the question of understanding the relationships between mixing properties
of trees, indecomposability of systems of isometries and minimality of laminations
seems to be natural. Together with Reynolds [CHR11] we prove that indecomposable
trees and minimal (up to diagonal leaves) laminations are dual to each other. In this
spirit, see also the work of Reynolds [Rey10].

5.8. Mixing trees. In this section we give sufficient hypothesis on a tree to enforce
that it is either of surface type or of Levitt type.
We first describe the limit set of trees of surface type.

Proposition 5.13. Let T be an R-tree with a minimal, very small action by isometries
of Fn with dense orbits. If the tree T is of surface type, then the limit set 2 is
connected and contains T .

Proof. As T is minimal, and as €2 is [F -invariant, we get that 2 is connected if and
only if €2 contains 7': 3
TCQCT.

If T is of surface type, the Rips machine starting with the system of isometries
S4 = (K4, A), halts after finitely many steps, and thus 2 4 = F,, for some n, where
F;, is the forest remaining after n steps of the Rips machine. The system of isometries
is reduced, hence the pseudo-orbit of each point in K 4 is infinite and thus meets F;,,
which proves that K4 C Fy .2 4. Moreover the orbit of each point in 7" meets K 4,
thus 7" € Fy K 4, which concludes the proof. O

A converse of this proposition that requires stronger hypothesis on 7 is proved in
Proposition 5.14.

A segment of an R-tree is a subset isometric to a compact real interval which is
not reduced to a point. The action of Fy on an R-tree T by isometries is arc-dense if
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every segment of 7' meets every orbit. Following [Mor88], the action is mixing if for
every segments / and J in T, the segment J is covered by finitely many translates
of I: there exists finitely many elements u1, ..., u, of Fx such that

JCulU---Uu,l.

Finally, Guirardel [Gui0O8] defined an action to be indecomposable, if for every seg-
ments / and J in T, the segment J is covered by finitely many overlapping translates
of I: there exists finitely many elements v, ..., u, of Fx such that

JCulU---Uu,l and u; Nu;4p isasegment, i = 1,...,r — 1.

It is obvious that an indecomposable action is mixing and, that a mixing action is
arc-dense. An arc-dense action has dense orbits and is minimal.

Proposition 5.14. Let T be an R-tree with a mixing action of ¥y by isometries.
Then T is either of surface type or of Levitt type.

Proof. Let A be abasis of Fyy, let €2 4 be the relative limit set, K 4 the compact heart
of T and S4 = (K4, A) be the associated system of isometries.

By contradiction assume that 7 is neither of surface type or of Levitt type. Then
by definition of Levitt type, 2 4 contains a non-trivial connected component and thus
a segment /.

Let So = S4 and let S, = (F},, A,) be the sequence of systems of isometries
obtained from S4 by applying the Rips machine. By definition of surface type, the
Rips machine runs forever.

Let Ey be the set of points of Fy = K 4 erased at the first step of the Rips machine:
Ey = Fo~ F;. As Sy is reduced, E is contained in the convex hull in F,, of F; and
is a finite union of finite trees and an open subset of Fj.

Let E, = F, ~ F,+1 be the subset of F}, erased at the n + 1 step of the Rips
machine. Let D,, be the subset of Eq defined by

D, ={P € Ey | thereisu € Fy, |u| =n, and Pu; € E;, fori =1,...,n}

where u; is the prefix of u of length i. By definition, for each n, D,+1 C D,. As
the Rips machine runs forever, D,, is a non-empty subset of Fjy. We distinguish two
cases.

First assume that the nested intersection of the open non-empty subsets D, is
non-empty and let Py € (),cny Dn. As Pp is in the open subset Ej it is not an
extremal point of F' and as T is arc-dense, there exists u € [Fy such that uPy € 1.
From Proposition 5.5, the partial isometry u~! is defined at Py and Pou~! = u Py is
in the relative limit set 2 4. By definition of the Rips machine, for n bigger than |u/|,
Py is not in D,,. A contradiction.
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Assume now that the nested intersection (), cpy D5 is empty and let Py be in the
nested intersection of compact subsets

Py e ﬂ Dn

Then, there exists ng, such that for n bigger than ng, Py is in D, ~ D,,. Recall
that Dno is a finite tree and let Q be a point of D,,. Then Q is not an extremal point
of K4 and let J = [Py, Q]. The segment J intersects all the D, forn € N. If Py is
in T (and not in T ~ T) then, as T is mixing, there exist uy, ..., U, € Fp such that

JCulU---Uu,l.

The partial isometries u1, ..., u, are not empty and for each k, up I N K4 = Iu]:1
thus, using Proposition 5.5,
JCTui'u---u Tt

Hence, for n bigge_r than all the lengths of the u;, J N D, is empty. A contradiction.

Thus, Poisin 7'~ T. We get that Py is an extremal point of Ey and, as Ey is open
in K4, Pgisin Eg ~ Eg. As Py is not in Ey there are at least two partial isometries
a,b € A*! defined at Py. One at least of @ and b is not defined in Ey, say a, and
thus is defined only at Py. Thus, in 7', there are at least two directions going out from

Py (one containing K 4 and the other containing a~'K 4). This contradicts the fact
that Poisin 7 ~T. O

Corollary 5.15. Let T be an R-tree with a mixing action of Fn by isometries. Let
Q be the limit set of T. The following are equivalent:

(1) T is of surface type.

(2) 24 has finitely many components (i.e. 2 4 is a forest).

(3) Q is connected.

(4) Q contains T, that is to say T C Q C T.

Proof. The equivalence of conditions 2 and 1 follows from the definition of surface
type. Conditions 3 and 4 are equivalent because 7" is minimal. We proved in Proposi-
tion 5.13 that condition 1 implies condition 3. From the dichotomy of Proposition 5.14
and from Theorem 5.11 we get that condition 3 implies condition 1 O

6. Botanic memo

In this section we give a glossary of our classification of trees for the working math-
ematician.
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Let T be an R-tree with a minimal, very small action of Fy by isometries with
dense orbits. We assume that the action is indecomposable or at least that 7" is not of
mixed type.

For a basis A of Fy, Q4 is the relative limit set and K4 = conv(£24) is the
compact heart. The compact heart K 4 is either a finite tree (and in the good cases an
interval) or not. This dichotomy is a property of 7" and does not depend of the choice
of a particular basis A of Fy .

As we assumed that T is indecomposable, €2 4 is either a compact forest, that is to
say it has finitely many connected components (and in the good cases 24 = K4 is
a tree) or totally disconnected (and in the good cases a Cantor set). This dichotomy
is a property of 7" and does not depend on the choice of a particular basis 4 of Fy.

The limit set of T is @ = @Q?(L(T)) = Fy - Q4. Itis either totally disconnected
(if 24 1is), or it is connected (if €24 is a forest): in the later case, €2 is a tree,
TCQCT.

For such a tree T we considered two indices: the geometric index indge,(7) and
the @-index indg (7). Both indices are bounded above by 2N — 2. We sum up the
terminology for 7" and the results of Section 5.7 in the following table.

geometric not geometric
K4 is afinite tree | K4 is not a finite tree
¢ ¢

indgeo(T) = 2N — 2 | indgeo(T) <2N —2

Qisatree (T C Q)

2 i
S . .
"g% Q2 4 is a finite forest surface pseudo-surface
9% 1}

indg(T) =2N -2
Q2 is totally disconnected

I3
§ R | Q24 is totally disconnected Levitt pseudo-Levitt
SRS ¢

indg(T) < 2N —2
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