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Abstract. In this paper we introduce the concept of a Cayley graph automatic group (CGA
group or graph automatic group, for short) which generalizes the standard notion of an automatic
group. Like the usual automatic groups graph automatic ones enjoy many nice properties:
these groups are invariant under the change of generators, they are closed under direct and free
products, certain types of amalgamated products, and finite extensions. Furthermore, the word
problem in graph automatic groups is decidable in quadratic time. However, the class of graph
automatic groups is much wider then the class of automatic groups. For example, we prove
that all finitely generated 2-nilpotent groups and Baumslag–Solitar groups BS.1; n/ are graph
automatic, as well as many other metabelian groups.
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1. Introduction

Automata theory has unified many branches of algebra, logic, and computer science.
These include group theory (e.g., automatic groups [16], branch and self-similar
groups [2], [38]), the theory of automatic structures [8], [30], [29], [46]), finite model
theory, algorithms and decidability, decision problems in logic [12], [43], model
checking and verification [49]. In this paper we use finite automata in representation
of infinite mathematical structures, emphasizing automata representations of groups
via their Cayley graphs.

The idea of using automata to investigate algorithmic, algebraic and logical aspects
of mathematical structures goes back to the work of Büchi and Rabin [12], [43].
They established an intimate relationship between automata and the monadic second
order (MSO) logic, where, to put it loosely, automata recognizability is equivalent to
definability in the MSO logic. Through this relationship Büchi proved that the MSO
theory of one successor function on the set N is decidable [12]. Rabin used automata
to prove that the MSO theory of two successors is decidable [43]. The latter implies
decidability of the first-order theories of many structures, for example: linear orders,
Boolean algebras, Presburger arithmetic, and term algebras [43].

In 1995 Khoussainov and Nerode, motivated by investigations in computable
model theory and the theory of feasible structures, used finite automata for repre-
sentation of structures [30], thus initiating the whole development of the theory of
automatic structures (e.g. see [30], [8], [46], [45]). Here a structure is called auto-
matic if it is isomorphic to a structure whose domain and the basic operations and
relations are recognized by finite automata. Automaticity implies the following three
fundamental properties of structures:

(1) The first order theory of every automatic structure is uniformly decidable [30]
[8];

(2) The class of automatic structures is closed under definability (with parameters)
in the first order logic and in certain extensions of it [8] [32] [35];

(3) There is an automatic structure (a universal automatic structure) in which all
other automatic structures are first-order interpretable [8].

There are many natural examples of automatic structures: some fragments of the
arithmetic, such as .NI C/, state spaces of computer programs, the linear order of the
rational numbers, the configuration spaces of Turing machines. However, not that
many groups are automatic in this sense. In particular (see Section 14), a finitely
generated group is automatic (as a structure) if and only if it is virtually abelian.

In modern group theory there are already several ways to represent groups by finite
automata. One of these is to consider finite automata with letter-by-letter outputs,
known as Mealy automata. Every such automaton determines finitely many length
preserving functions on the set of strings X� over the alphabet X of the automaton. If
these functions are permutations then they generate a group, called an automata group.
Automata groups enjoy some nice algorithmic properties, for instance, decidability
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of the word problem. These groups are also a source of interesting examples. For
instance, the famous Grigorchuk group is an automata group. We refer to the book
[3] for detail.

Another way to use finite automata in group representations comes from algorith-
mic and geometric group theory and topology. Ideas of Thurston, Cannon, Gilman,
Epstein and Holt brought to the subject a new class of groups, termed automatic
groups, and revolutionized computing with infinite groups (see the book [16] for
details). The initial motivation for introducing automatic groups was two-fold: to
understand the fundamental groups of compact 3-manifolds and to approach their
natural geometric structures via the geometry and complexity of the optimal normal
forms; and to make them tractable for computing.

Roughly, a group G generated by a finite set X (with X�1 D X ) is automatic
if there exists a finite automata recognizable (i.e., rational or regular) subset L of
X� such that the natural mapping u ! Nu from L into G is bijective, and the right-
multiplication by each of the generators from X can be performed by a finite automata.

This type of automaticity implies some principal “tameness” properties enjoyed
by every automatic group G:

(A) G is finitely presented.
(B) The Dehn function in G is at most quadratic.
(C) There is a constant k such that the words from L (the normal forms) of elements

in G which are at most distance 1 apart in the Cayley graph �.G; X/ of G are
k-fellow travelers in �.G; X/.

Most importantly, as was designed at the outset, the word problem in automatic
groups is easily computable (the algorithmic complexity of the conjugacy problem is
unknown):

(D) The word problem in a given automatic group is decidable in quadratic time.
(E) For any word w 2 X� one can find in quadratic time its representative in L.

Examples of automatic groups include hyperbolic groups, braid groups, mapping
class groups, Coxeter groups, Artin groups of large type, and many other groups. In
addition, the class of automatic groups is closed under direct sums, finite extensions,
finite index subgroups, free products, and some particular amalgamated free prod-
ucts. Yet many classes of groups that possess nice representations and algorithmic
properties fail to be automatic. Most strikingly, a finitely generated nilpotent group
is automatic if and only if it is virtually abelian. To this end we quote Farb [17]:
“The fact that nilpotent groups are not automatic is a bit surprising and annoying,
considering the fact that nilpotent groups are quite common and have an easily solved
word problem.” The book [16] and the survey by Gersten [18] also raise a similar
concern, though they do not indicate what could be possible generalizations. In the
view of the initial goals, nowadays we know precisely from Epstein–Thurston classi-
fication what are compact geometrisable 3-manifolds whose fundamental groups are
automatic [16]. The upshot of this classification, is that the fundamental group of a
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compact geometrisable 3-manifold M is automatic if and only if none of the factors
in the prime decomposition of M is a closed manifold modeled on Nil or Sol. Thus, it
turned out that the class of automatic groups is nice, but not sufficiently wide. In the
geometric framework the quest for a suitable generalization comes inspired by the fol-
lowing “geometric” characterization of automatic groups as those that have a regular
set of normal forms L � X� satisfying (C). Two main ideas are to replace the regular
language L with some more general language, and keep the fellow traveller property,
perhaps, in a more general form. Groups satisfying (C) with the formal language
requirement of rationality weakened or eliminated entirely are called combable. In
general combable groups are less amenable to computation than automatic groups.
We refer to the work of Bridson [10] for an account of the relation between combable
and automatic groups. On the other hand, a more relaxed fellow traveller property,
called asynchronous fellow travelers, was introduced at the very beginning, see the
book [16]. But Epstein and Holt [16] showed that the fundamental group of a closed
Nil manifold is not even asynchronously automatic. Finally, a geometric generaliza-
tion of automaticity, that covers the fundamental groups of all compact 3-manifolds
which satisfy the geometrization conjecture, was given by Bridson and Gilman in
[11]. However, as far as we know, these geometrically natural generalizations loose
the nice algorithmic properties mentioned above.

In fact, from the algorithmic standpoint, the properties (A) and (B) can be viewed
as unnecessary restrictions, depriving automaticity for a wide variety of otherwise
algorithmically nice groups such as nilpotent or metabelian groups.

In this paper we propose a natural generalization of automatic groups and intro-
duce the class of Cayley graph automatic groups. A finitely generated group G is
called Cayley graph automatic, or graph automatic or CGA for short, if it satisfies the
definition of an automatic group as above, provided the condition that the alphabet
X is a set of generators of G, is removed. (Notice that a similar idea of representing
group elements over an alphabet which is not a generating set for the group was used
in [20] to extend the range of groups with a Dehn algorithm.) Equivalently, a finitely
generated group is graph automatic if its Cayley graph is an automatic structure in the
sense of Khoussainov and Nerode. The former definition immediately implies that the
standard automatic groups are graph automatic. However, there are many examples
of graph automatic groups that are not automatic. These include Heisenberg groups,
Baumslag–Solitar groups BS.1; n/, arbitrary finitely generated groups of nilpotency
class two, and some nilpotent groups of higher class, such as unitriangular groups
UT.n; Z/, as well as many metabelian groups and solvable groups of higher class,
like T.n; Z/. Moreover, we do not have the restrictions (A) and (B) anymore. As
in the case of automatic groups the class of graph automatic groups is closed under
free products, direct sums, finite extensions, wreath products, and certain types of
amalgamated products, etc. This shows that the class of graph automatic groups,
indeed, addresses some concerns mentioned above, but whether the class is good
enough remains to be seen. Firstly, we do not know if every finitely generated nilpo-
tent group is graph automatic or not, in particular, the question if a finitely generated
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free nilpotent group of class 3 is graph automatic is still open. Likewise, we do not
know any geometric condition that would give a characterization of graph automatic
groups similar to property (C). On a positive side though there is a crucial algorithmic
result stating that again the word problem for graph automatic groups is decidable
in quadratic time, so property (D) is preserved. Moreover, there is a new “logical”
condition that gives a powerful test to check if a given group is graph automatic.
Namely, the group G is graph automatic if and only if its Cayley graph �.G; X/ is
first-order interpretable in an automatic structure or, equivalently, is interpretable in a
fixed universal automatic structure (see above and also Section 9 for definitions and
examples). In addition, there is a natural notion of a graph biautomatic group, which
generalizes the standard class of biautomatic groups, with similar algorithmic prop-
erties. For instance, the conjugacy problem in graph biautomatic groups is decidable.
In this case the proofs are simpler and more straightforward than in the classical one.
It seems it might be a chance to address the old problem whether automaticity implies
biautomaticity in this new setting, which might shed some light on the old problem
itself, but presently this is a pure speculation.

We would like to mention that quite often the same algorithmic problems on
automatic structures (say, groups) are approached differently in constructive model
theory and geometric group theory. In this paper we also aim to present the main
ideas and techniques in a unified form which makes them more available for use in
both areas.

2. Finite automata

We start with some notation and basic definitions from finite automata theory. Let
† be a finite alphabet. The set of all finite strings over † is denoted by †?, � is the
empty string. Usually, we use variables u, v, w for strings. The length of a string u

is denoted by juj. For a set X , P.X/ is the set of all subsets of X . The cardinality of
X is denoted by jX j.

Definition 2.1. A nondeterministic finite automaton (NFA for short) over † is a tuple
.S; I; T; F /, where S is the set of states, I � S is the set of initial states, T is the
transition function T W S � † ! P.S/, and F � S is the set of accepting states.

We use the letter M, possibly with indices, to denote NFA. One can visualize an
NFA M as a labelled graph, called the transition diagram of the automaton, such that
the states of M represent vertices of the graph, and there is a directed edge from a
state s to a state q labelled by � if and only if q 2 T .s; �/. These edges are called
� -transitions.

An NFA automaton M is called deterministic if the set T .s; �/ is a singleton for
each s 2 S , � 2 †, i.e., for each state s and each � 2 † there only one � -transition
in M at s.
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Let M be an NFA. A run of M on the string w D �1�2 : : : �n is a sequence of
states s1; s2; : : : ; sn; snC1 such that s1 2 I and siC1 2 T .si ; �i / for all i D 1; : : : ; n.
The automaton might have more than one run on the string w. These runs of the
automaton can be viewed as paths in the transition diagram labelled by w.

Definition 2.2. A given automaton M accepts a string w D �1�2 : : : �n if M has
a run s1; s2; : : : ; sn; snC1 on w such that snC1 2 F . The set of all strings L.M/

accepted by M is called the language accepted by M. A language L � †? is FA
recognizable if there exists an NFA M such that L D L.M/.

It is well known that the set of all NFA recognizable languages in †? forms a
Boolean algebra under the set-theoretic operations of union, intersection, and com-
plementation; and every NFA recognizable language is also recognizable by a deter-
ministic finite automata. For this reason, in general we do not distinguish between
deterministic and non-deterministic automata, and refer to them as finite automata
(FA for short). By the well-known Klenee theorem the class of FA recognizable
languages is the same as the class of regular languages. Therefore, we often refer to
FA recognizable languages also as to regular languages.

We now introduce automata recognizable relations over the set †?. To explain,
for a new symbol ˘ 62 † put †˘ D † [ f˘g. Then the convolution of a tuple
.w1; : : : ; wn/ 2 †?n is the string

˝.w1; : : : ; wn/

of length maxi jwi j over alphabet .†˘/n defined as follows. The k’th symbol of the
string is .�1; : : : ; �n/, where �i is the k’th symbol of wi if k � jwi j and ˘ otherwise.
For instance, for w1 D aabaaab, w2 D bbabbabbb, and w3 D aab, we have

˝.w1; w2; w3/ D
0
@a a b a a a b ˘ ˘

b b a b b a b b b

a a b ˘ ˘ ˘ ˘ ˘ ˘

1
A :

Definition 2.3. The convolution of a relation R � †?n is the relation

˝R D f˝.w1; : : : ; wn/ j .w1; : : : ; wn/ 2 Rg:

The convolution encodes relations in †?n into usual languages but over the alphabet
.†˘/n. This allows one to define FA recognizable relations in the standard way.

Definition 2.4. An n-ary relation R � †?n is FA recognizable if its convolution ˝R

is FA recognizable in the alphabet .†˘/n.

Intuitively, a finite automaton recognizing an n-ary relation R � †?n can be
viewed as a finite automaton with n heads. All heads read their own tapes and make
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simultaneous transitions. Therefore, finite automata over the alphabet .†˘/n are also
called synchronous n-tape automata on †. Sometimes, we refer to FA recognizable
relations in †?n as regular relations.

We will later on sometimes identify a tuple .w1; : : : ; wn/ with its convolution
˝.w1; : : : ; wn/, which is always clear from the context.

Example 2.5. The following linear orders on †? are FA recognizable:
� The lexicographic order: u �lex v if and only if either u D v or u is lexico-

graphically less than v.
� The prefix order: u �pref v if and only if u is a prefix of v.
� The length-lexicographic order: u �llex v if and only if either juj < jvj or

juj D jvj and u �lex v.

3. Automatic structures

In this section we introduce automatic structures, give several examples, and mention
some known results that will be used in the sequent. By a structure A we mean a
tuple

.AI P
n0

0 ; : : : ; P
nk

k
; f

m0

0 ; : : : ; f
mt

t /;

where A is a set, called the domain of the structure A; each P
ni

i is a relation of
arity ni on A; and each f

mj

j is a total operation of arity mj on A. These relations
and operations are often called atomic. The structure A is relational if it contains no
operations. Every structure A can be transformed into a logically equivalent relational
structure. This is done by replacing each atomic operation f

mj

j W Amj ! A with its
graph:

Graph.f
mj

j / D f.a1; : : : ; amj
; a/ j f

mj

j .a1; : : : ; amj
/ D ag:

The sequence of symbols P
n0

0 ; : : : ; P
nk

k
; f

m0

0 ; : : : ; f
mt

t is called a signature of the
structure. Below is one of the key definitions of this paper:

Definition 3.1. The structure A D .AI P
n0

0 ; : : : ; P
nk

k
; f

m0

0 ; : : : ; f
mt

t / is called auto-
matic if the domain A, all the predicates P

n0

0 , : : : , P
nk

1 , and the graphs Graph.f
m0

0 /,
…, Graph.f

mt
t / of all atomic operations in A are FA recognizable.

Here are some examples of automatic structures:

Example 3.2. The structure .1?I S; �//, where S.1n/ D 1nC1 and 1n � 1m iff
n � m for n; m 2 !, is automatic. In this example, the alphabet is unary.

Example 3.3. The structure .f0; 1g?I �lex; �pref ; �llex/, where the orders are defined
in Example 2.5, is automatic. Here, the alphabet is binary.
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Example 3.4. The structure .BasekI Addk/, where Basek D f0; 1; : : : ; k � 1g? �
f1; : : : ; k � 1g, is automatic. In this example each word w D x0 : : : xn 2 Basek is
identified with the number

valk.w/ D
nX

iD0

xik
i :

This gives a base-k-representation of natural numbers, where the least significant
digit comes first. The predicate Addk is the graph of the k-base addition of natural
numbers, that is Addk D f.u; v; w/ j valk.u/ C valk.v/ D valk.w/g. This structure
is isomorphic to the natural numbers with addition P D hN; Ci, known as Presburger
arithmetic.

Definition 3.5. A structure B is automata presentable if there exists an automatic
structure A isomorphic to B. In this case A is called an automatic presentation of B.

We would like to give several comments about this definition. The first is that
an automatic presentation A of a structure B can be viewed as a finite sequence
of automata representing the domain, the atomic relations, and operations of the
structure. The sequence is finite. Hence, automatic presentations are just finite
objects that describe the structure. The second is that if a structure B has an automatic
presentation, then B has infinitely many automatic presentations. Finally, in order to
show that B has an automatic presentation, one needs to find an automatic structure
A isomorphic to B. Thus, to show that B does not possess an automatic presentation
one needs to prove that for all automatic presentations A all bijective mappings
f W B ! A fail to establish an isomorphism. In a logical formalism the definition
of automaticity is a †1

1-definition in the language of arithmetic.
Every automatic structure has an automatic presentation over a binary alphabet.

Indeed, if † is an alphabet of an automatic presentation of a structure, there exists an
n such that † � f0; 1gn. Hence, we can represent each symbol from † by a binary
string of length n. This allows one to transform every FA-recognizable n-ary relation
over †? to an FA-recognizable relation over the set of all binary strings. Therefore,
from now on, if need be, one can assume that we consider binary alphabets only. By
this reason, the alphabets might not be mentioned explicitly.

Since we are mostly interested in the isomorphism types of the structures, we
often abuse our definitions and refer to automata presentable structures as automatic
structures. Below we give some examples of automatic (automata presentable) struc-
tures.

� The Boolean algebra B! of finite and co-finite subsets of N is automatic.
To show this, we encode elements of B! as finite binary strings in a nat-
ural way: if its i ’s component is 0 then i is not in the set, otherwise it is,
and the last digit shows that from this place on all the components are the
same (0 or 1). For example, the string 01101101 represents the infinite set
f1; 2; 4; 5; 7; 8; 9; 10; 11; : : : g and the string 0110110 represents the finite set
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f1; 2; 4; 5g. Under this encoding, B! is automata presentable. The alphabet
in this presentation of the Boolean algebra is binary.

� The additive group .Z; C/ is automata presentable over a binary alphabet.

� Finitely generated abelian groups are automata presentable. This follows from
the fact that such groups are finite direct sums of .Z; C/ and finite abelian
groups.

� Small ordinals of the form !n, where n 2 N, are automatic.

Below by Nxi we denote a tuple of variables, and by Nai a tuple of constants from the
domain A of a structure A. For a first-order formula �. Nx1; : : : ; Nxk/ in the language
of A, denote by �.A/ the set of all tuples . Na1; : : : ; Nak/ in the structure A that satisfy
� in A. We now give the following definition that will be used in this paper quite
often. For simplicity, we give it only for relational structures, in general, one can
either replace a given structure by its relational analog, or extend the definition to
accommodate operations (which is easy).

Definition 3.6. A relational structure B D .BI R1; : : : ; Rm/ is first-order inter-
pretable in a structure A if there are formulas

D. Nx/; �1. Nx1; : : : ; Nxk1
/; : : : ; �m. Nx1; : : : ; Nxkm

/

of the first order logic in the language of A such that:

(1) all tuples Nx, Nx1, : : : , Nxkn
of variables have the same length, and

(2) the structure .D.A/I �1.A/; : : : ; �m.A// is isomorphic to B.

The following is a foundational theorem in the study of automatic structures.
The proof of the theorem follows from closure properties of finite automata under
set-theoretic Boolean operations, the projection operation, and decidability of the
emptiness problem for automata. Recall that the emptiness problem asks if there
exists an algorithm to check if the language L.M/ of a given finite automaton M is
empty or not.

Theorem 3.7 (The Definability and Decidability Theorem, [8], [30], [32]). (1) There
is an algorithm that, given an automatic presentation of any structure A and a first-
order formula '.x1; : : : ; xn/, produces an automaton that recognizes the set �.A/.

(2) If a structure B is first-order interpretable in an automatic structure A then
B has an automatic presentation.

(3) The first-order theory of every automatic structure is decidable.

Note that there are several generalizations of this theorem for various extensions of
the first order logic FO. For example, one can add to FO the following two quantifiers:
9! (there exists infinitely many) and 9n;m (there exists m many modulo n), denoting
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the resulting logic as FO C 9! C 9n;m. The theorem above can be extended to this
more powerful logic (one can use arbitrary formulas from FOC9! C9n;m to interpret
B in A) [45], see also [35] for more generalizations.

We will be using the theorem above without explicit references. In particular in
the following case: Presburger arithmetic P D hN; Ci is an automatic structure by
Example 3.4, hence any structure definable in P is automatic, this is how we prove
some of our results. Furthermore, there are some universal automatic structures, i.e.,
automatic structures A such that a structure B has an automatic presentation if and
only if it is first-order interpretable in A. Consider the following two structures:

Example 3.8.
N2 D .NI C; j2/;

where C is the standard addition and xj2y , x D 2k & y D x �z for some k; z 2 N.

Example 3.9.
M D .†�I Ra.x; y/; x � y; el.x; y//a2†;

where † is a finite alphabet with j†j 	 2, Ra.x; y/ $ y D xa, x � y $ x is a
prefix of y, el.x; y/ $ jxj D jyj.

The following theorem gives a pure model theoretic characterization of automat-
ically presentable structures.

Theorem 3.10 ([8]). The structures N2 and M are universal automatic structures.
In particular, N2 and M are interpretable in each other.

4. Cayley graphs

In the next section we will introduce automaticity into groups through their Cayley
graphs. This section recalls the definition of Cayley graphs and some of their basic
properties.

Let G be an infinite group generated by a finite set X . There exists the standard
map from X? onto G mapping the words v into the group elements Nv. The word
problem for G (with respect to X ) is the following set:

W.G; X/ D f.u; v/ j u; v 2 X? & Nu D Nv in the group Gg:
The word problem for G is decidable if there exists an algorithm that given two words
u; v 2 X? decides if Nu D Nv. It is not hard to see that decidability of W.G; X/ does
not depend on a given finite set of generators for G.

The group G and the finite set X of generators determine the following graph,
called a Cayley graph of G, and denoted by �.G; X/. The vertices of the graph are
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the elements of the group. For each vertex g we put a directed edge from g to gx,
where x 2 X , and label the edge by x. Thus, �.G; X/ is a labelled directed graph.

We view a labelled directed graph � D .V; E/ with the labels of the graph from
a finite set † D f�1; : : : ; �ng as the following structure:

.V; E�1
; : : : ; E�n

/;

where each E� ; � 2 †, is a binary relation f.x; y/ j .x; y/ 2 E and the label of
.x; y/ is �g.

For the next lemma we need one definition from the theory of computable struc-
tures. We say that a †-labelled directed graph .V; E/ is computable if its vertex set V

can be enumerated V D fv0; v1; v2; : : : g in such a way that there exists an algorithm
to decide for any � 2 † and any two vertices vi ; vj 2 V if there is an edge from vi

to vj labelled by � .
Here are some basic properties of the Cayley graph �.G; X/.

Lemma 4.1. The Cayley graph �.G; X/ satisfies the following properties:

(1) The graph is connected (strongly connected if X�1 D X ), that is, between
any two vertices of the graph there is a path (directed path) connecting one to
another.

(2) The out-degree and the in-degree of each node is jX j.
(3) The graph is transitive, that is, for any two vertices g1 and g2 of the graph

there exists an automorphism ˛ of �.G; X/ such that ˛.g1/ D g2.

(4) The group of (label respecting) automorphisms of �.G; X/ is isomorphic
to G.

(5) The graph �.G; X/ is computable if and only if the word problem in G is
decidable.

Proof. The first four statements of the lemma are standard. The last statement of
the lemma needs an explanation. Assume that the word problem W.G; X/ in G is
decidable. Then there exists an algorithm that, given any two words w and v over X ,
decides if v D w in the group G. Now we construct the graph �.G; X/ as follows.
The vertex set V of the graph consists of all words v 2 X? such that any word w that
is equal to v in G is length-lexicographically larger than or equal to v. Clearly, this
set V of vertices is computable. Since the word problem is decidable in G, we can
use the algorithm for the word problem to decide if there exists an edge from v1 to
v2 labelled by x 2 X . This shows that �.G; X/ is a computable graph. Assume that
the Cayley graph �.G; X/ is computable. Then given any two words w1 and w2 in
X? one can effectively find two vertices v1 and v2 that represent w1 and w2 in the
graph, respectively. Then w1 D w2 in the group G if and only if v1 D v2. Hence
the word problem in G is decidable.
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5. Complete first-order theories of Cayley graphs

In this section we collect some known results about first-order theories of Cayley
graphs. This will have a direct relation with automaticity. Recall, that a complete
theory T in the first order logic is called @1-categorical if all models of T of car-
dinality @1 are isomorphic (see [24] for details). The lemma below shows that the
elementary theory of every infinite Cayley graph is @1-categorical. This result has
two consequences. The first one is that decidability of the word problem for G is
equivalent to decidability of the first order theory of the Cayley graph of G. The other
one will be discussed in due course.

We start with a lemma that is true for all locally finite labelled directed graphs. In
particular, the lemma can be applied to Cayley graphs. Recall that a (directed or not)
graph is locally finite if every vertex of the graph has finitely many edges incident to
it. Let � be a locally finite labelled and directed graph. For vertices x; y of the graph
� denote by d.x; y/ the length of the shortest undirected path from x to y. Then the
n-ball around a vertex x is the set

Bn.x/ D fy j d.x; y/ � ng;
which may be viewed as a directed labelled subgraph of � .

Lemma 5.1. Let �1 and �2 be locally finite labelled connected and directed graphs.
Assume that a and b are vertices of �1 and �2, respectively, such that for all n 2 N
there is an isomorphism from Bn.a/ to Bn.b/ sending a to b. Then there exists an
isomorphism ˛ W �1 ! �2 such that ˛.a/ D b.

Proof. Each of the n-balls Bn.a/ and Bn.b/ is a finite set. There are finitely many
isomorphisms from Bn.a/ into Bn.b/ that send a to b. Denote this set by In. By
assumption, In ¤ ; for all n 2 N. The restriction of each isomorphism ˛ 2 In onto
Bn�1.a/ gives an isomorphism ˛0 2 In�1. It is easy to see that the set I D [n2NIn

can be turned into a finitely branching infinite tree, where every automorphism ˛ 2 In

is connected by an edge to the isomorphism ˛0 2 In�1. Now by König’s lemma there
is an infinite path P in the tree, which determines an isomorphism from �1 to �2 that
sends a to b.

Recall that we view the Cayley graph �.G; X/ of a group G generated by a finite
set X D fx1; : : : ; xng as a structure

.V; Ex1
; : : : ; Exn

/;

where each Ex , x 2 X , is a binary relation on V such that uExv if and only if there
is an edge from u to v in �.G; X/ with label x.

Lemma 5.2. Let G be an infinite group generated by a finite set X . The elementary
theory of the Cayley graph �.G; X/ is @1-categorical.
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Proof. Fix an arbitrary element g of G and consider the n-ball Bn.g/ in the Cayley
graph �.G; X/. Since �.G; X/ is transitive Bn.g0/ is isomorphic to Bn.g/ for
all g0 2 G. The elementary theory of the graph �.G; X/ contains the following
sentences:

(1) The sentence ˆn;m stating that there are m distinct elements x such that Bn.x/

is isomorphic to Bn.g/, where m; n 2 N. Since G is infinite the sentence ˆm;n

holds in �.G; X/ for arbitrary m; n 2 N.
(2) The sentence ˆn, n 2 N, stating that for all x there is an isomorphism from

Bn.x/ onto Bn.g/ that sends x to g.

Denote by T .G; X/ the theory with axioms fˆn;m; ˆn j m; n 2 Ng. The theory
T .G; X/ has the Cayley graph �.G; X/ as its model, since the graph �.G; X/ satisfies
all the axioms of the theory. Hence T .G; X/ is consistent. Axioms ˆm;n also imply
that all models of T .G; X/ are infinite. Our goal is to show that any two models A

and B of this theory are isomorphic in case A and B have cardinality @1.
We note that both A and B are labelled directed locally finite infinite graphs. As

undirected graphs they are unions of connected components. Note that each such
component in the graphs A and B is countable since the graphs are locally finite.
This implies that both A and B are disjoint unions of their countable connected
components and the cardinality of the union is @1.

Now, we show that any two components of A and B are isomorphic. Indeed,
take two elements a 2 A and b 2 B, respectively. By the axioms of T .G; X/,
for each n 2 N there is an isomorphism from Bn.a/ to Bn.b/ that maps a to b.
Apply the lemma above to build an isomorphism from the component of a onto the
component of b. This shows that all components of the graphs A and B are pairwise
isomorphic. Therefore, we match the components of A with components of B, and
build an isomorphism from A to B. Thus, T .G; X/ is an @1-categorical theory.

It is worth to note that the lemma stays true if we remove the labels from the edges
of the Cayley graph �.G; X/. Namely, let �u.G; X/ be the directed graph obtained
from �.G; X/ by removing the labels from all the edges. Then the theory of the
unlabelled graph �u.G; X/ is @1-categorical. One can go even further and consider
the undirected unlabelled version of �.G; X/ – the result still holds.

The lemma above allows us to address decidability of the word problem for the
group G in terms of decidability of the theory T .G; X/.

Theorem 5.3. The word problem W.G; X/ in G is decidable if and only if the theory
T .G; X/ of the Cayley graph �.G; X/ is decidable.

Proof. Assume that the word problem in G is decidable. Our goal is to show that the
theory T .G; X/ is also decidable. It is clear that T .G; X/ is effectively axiomatizable
by the sentences ˆn;m and ˆn as follows from the proof of the lemma above. It is
known that every @1-categorical theory T without finite models is complete, that is,
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for any sentence � either � belongs to T or :� belongs to T [24]. From the lemma
above, we conclude that T .G; X/ is a complete first order theory. Since T .G; X/ is
complete, for every � either � or :� is deducible from the axioms ˆn;m and ˆn.
This implies decidability of T .G; X/.

Assume that the theory T .G; X/ is decidable. Clearly, �.G; X/ is a model of T .
Now we use the result of Harrington (and independently Khisamiev) that states the
following. If T is @1-categorical decidable theory then all of its countable models
are computable [23] [27]. We conclude that �.G; X/ is also a computable model of
T .G; X/1. This proves the theorem.

We would like to make the following comments and give references on the results
of this section. It is proved in the paper [1] that the theory of any given infinite Cayley
graph is strongly minimal. This implies @1-categoricity of the theory of each Cayley
graph. However, no connection is made between decidability of the word problem in
the group and decidability of the theory. Kuske and Lohrey establish this connection
in [34]. They prove that the word problem in a finitely generated group is decidable
if and only if the theory of the Cayley graph of the group is decidable. Moreover,
it is shown that the theory of the graph is exponentially more difficult than the word
problem and that this bound is sharp.

6. Cayley graph automatic groups: definitions and examples

In this section we introduce labelled automatic graphs and present several examples.
Let � D .V; E/ be a labelled directed graph. The labels of the graph are from a finite
set † D f�1; : : : ; �ng.

Definition 6.1. We view the graph � as the following structure:

.V; E�1
; : : : ; E�n

/;

where E� D f.x; y/ j .x; y/ 2 E and the label of .x; y/ is �g for � 2 †. We say
that the graph � is automatic if the structure .V; E�1

; : : : ; E�n
/ is automatic.

Here are examples of automatic graphs.

Example 6.2. Let T be a Turing machine. The configuration space of T is the graph
.Conf.T /; ET /, where:

(1) The set Conf.T / is the set of all configurations of T , and
(2) The set ET of edges consists of all pairs .c1; c2/ of configurations such that

T has an instruction that transforms c1 to c2.
1In fact, one can effectively build the graph �.G; X/ without referencing Harrington and Khisamiev’s

theorems. The reader can construct �.G; X/ as an exercise.
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The structure .Conf.T /; ET / is clearly an automatic directed graph since the transi-
tions .c1; c2/ 2 ET can be detected by finite automata.

The next example shows that the n-dimensional grid is also an automatic graph.

Example 6.3. Consider Zn as a labelled graph, where the labels are e1, : : : , en.
Identify each ei with the vector .0; : : : ; 0; 1; 0; : : : ; 0/, whose all components are 0

except at position i . For any two vectors v and w in Zn, put an edge from v to w

and label it with ei if v C ei D w. We represent each vector v 2 Zn as an n-tuple
.x1; : : : ; xn/ of integers each written in a binary (or decimal) notation. Under this
coding, the edge relation

Ei D f.v; w/ j v C ei D wg
is FA recognizable. Hence, the labelled graph Zn is automatic.

The next is a central definition of this paper that introduces automaticity for finitely
generated groups.

Definition 6.4. Let G be a group generated by a finite set X of generators. We say
that G is Cayley graph automatic if the graph �.G; X/ is an automatic graph.

We often refer to Cayley graph automatic groups as either graph automatic groups
or CGA groups. The regular language L that encodes elements of G is termed the
set of normal forms of G (relative to the given automatic presentation of G).

Here are several examples of CGA groups.

Example 6.5. Consider a finitely generated abelian group G. The group G can be
written as Zn

L
A, where A is a finite abelian group and n 2 N. The group G is

generated by A and the vectors e1, : : : , en in Zn. Using Example 6.3 and the fact
that A is finite, it is easy to show that the group G is graph automatic.

Example 6.6. The Heisenberg group H3.Z/ is the subgroup of SL.3; Z/ consisting
of all upper-triangular matrices:

X D
0
@1 a b

0 1 c

0 0 1

1
A :

The group has three generators:

A D
0
@1 1 0

0 1 0

0 0 1

1
A ; B D

0
@1 0 1

0 1 0

0 0 1

1
A and C D

0
@1 0 0

0 1 1

0 0 1

1
A :
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We can represent the matrix X as the convoluted word ˝.a; b; c/, where a, b and c

are written in binary. The multiplication of X by each of these generators can easily
be recognized by finite automaton. Indeed, the three automata that recognize the
multiplication by A, B , and C accept all the strings of the form ˝.˝.a; b; c/; ˝.1 C
a; b; c//, ˝.˝.a; b; c/; ˝.a; 1 C b; c//, and ˝.˝.a; b; c/; ˝.a; a C b; 1 C c//, re-
spectively. Thus, H3.Z/ is a graph automatic group.

Example 6.7. The example above can clearly be generalized to Heisenberg groups
Hn.Z/ consisting of all n � n matrices over Z which have entries 1 at the diagonal
and whose all other entries apart from first row or the last column are equal to 0.

The example below shows that the multiplication by a fixed matrix with integer
entries is an FA recognizable event.

Example 6.8. Let A be any n � n matrix with integer coefficients. The matrix A

naturally acts on the additive group Zn. This action is FA recognizable. This follows
from the fact that both the multiplication of integers by a fixed integer and the addition
on integers are FA recognizable.

Now we mention some properties of graph automatic groups that follow directly
from the definitions. We start with the following easy lemma.

Lemma 6.9. Let G be a graph automatic group over a generating set X . Then for
a given word y 2 .X [ X�1/� there exists a finite automaton My which accepts all
the pairs u; v 2 �.G; X/ with v D uy and nothing else.

Proof. Since �.G; X/ is automatic, for every x 2 X there exists an automaton Mx

such that for all u; v 2 �.G; X/, the automaton Mx detects if v D u � x. Now one
can use the automata Mx , x 2 X , to build a finite automaton My that recognizes all
u; v 2 �.G; X/ such that v D uy. This can be done through Theorem 3.7. Indeed,
there exists a formula �.w; v/ in the language of the Cayley graph �.G; X/ with free
variables u; v such that �.u; v/ holds in �.G; X/ if and only if v D uy in G. So the
binary predicate defined by �.u; v/ is FA recognizable in �.G; X/. Hence we can
build the desired automaton My .

The theorem below shows that the definition of graph automaticity is independent
on the generator sets. The proof is much simpler than the proof of the similar results
for standard automatic groups [16].

Theorem 6.10. If G is a graph automatic group with respect to a generating set X

then G is Cayley graph automatic with respect to all finite generating sets Y of G.

Proof. Consider a graph automatic graph �.G; X/. Let Y be any finite generating
set for G. Each y 2 Y can be written as a product x

k1

1 : : : x
kn
n of elements of X . We
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write this product as w.y/. By Lemma 6.9 the binary relation f.u; v/ 2 �.G; X/2 j
v D uyg is FA recognizable in �.G; X/ This proves that �.G; Y / is an automatic
graph. Note that we did not need to change the automatic representation of the vertex
set of the graph �.G; X/ in our proof.

7. Automatic versus graph automatic

In this section we recall the standard definition of automaticity introduced in [16],
and compare it with our definition of graph automaticity.

Definition 7.1 ([16]). A group G with a finite generating set X is automatic if

(1) There exists a regular subset L � X? such that the natural mapping v ! Nv,
v 2 L, from L into G is onto.

(2) The set WG D f.u; v/ j u; v 2 L & Nu D Nv in Gg is regular.
(3) For each x 2 X , there exists an automaton Mx that recognizes the relation:

f.u; v/ j u; v 2 L and Nu D vx in Gg:
The automaton M for L, and automata Mx are called an automatic structure for the
group G.

As mentioned in the introduction, automaticity of a group does not depend on a
generating set, automatic groups have decidable word problem (in quadratic time),
and they are finitely presented. The class of automatic groups is closed under finite free
products, finite direct products, and finite extensions. Examples of automatic groups
include free abelian groups Zn, hyperbolic groups, e.g. free groups, braid groups, and
fundamental groups of many natural manifolds. Examples of non-automatic groups
are SLn.Z/; UTn.Z/, Hn.Z/; n 	 3, the wreath product Z2 wr Z, non-finitely
presented groups, and Baumslag–Solitar groups.

There is a nice geometric property of automatic groups known as the fellow trav-
eller property [16]. To explain, let G be an automatic group. Then in the notation of
Definition 7.1 the following holds. There exists a constant K such that for any two
words w1; w2 2 L for which the corresponding paths end up in the Cayley graph
of G at most distance 1 apart if two travelers start at the vertex 1 and travel at the
same speed along the paths w1 and w2, then at any given time t during the travel, the
distance between w1.t/ and w2.t/ is uniformly bounded by K. In fact, the converse
is also true, so a group G is automatic if and only if there exists a regular subset
L � X? which maps onto G and satisfies the K-fellow traveller property for some
constant K.

We now recast the definition of graph automaticity through the following lemma
whose proof immediately follows from the definitions:
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Lemma 7.2. Let �.G; X/ be the Cayley graph of a group G generated by a finite set
X viewed as the structure above:

.V; Ex1
; : : : ; Exn

/:

Then G is graph automatic if and only if the following conditions hold for some finite
alphabet †:

� There is an FA recognizable language R � †� and an onto mapping � W R !
V for which the binary predicate E.x; y/ � R2 defined by E.u; v/ $ �.u/ D
�.v/ is FA recognizable,

� All the predicates Ex1
; : : : ; Exn

are FA recognizable with respect to the map-
ping �, that is, for each x 2 X the set

��1.Ex/ D f.u; v/ j u; v 2 R and �.u/x D �.v/g
is FA recognizable.

Thus, the definition of graph automaticity differs from the standard definition of
automaticity in only one respect. Namely, it doe not require that X D †. This
immediately implies the following simple result showing that all automatic groups
are graph automatic.

Proposition 7.3. Every automatic group is graph automatic.

However, the converse is not true. For instance, the Heisenberg group H3.Z/ is
graph automatic (Example 6.6), but not automatic (see [16]). Later we will give more
examples of such groups.

8. The word and conjugacy problems

Recall that the time complexity of the word problem in an automatic group is bounded
by a quadratic polynomial. The theorem below shows that graph automatic groups en-
joy the same property. They behave just like automatic groups in terms of complexity
of the word problem.

We prove first the following result which is interesting in its own right.

Lemma 8.1. Let † be a finite alphabet, n 2 N, D � .†�/n, and f W D ! †� be a
function whose graph is FA recognizable. Then there exists a linear time algorithm
that given d 2 D computes the value f .d/. Furthermore, there is a constant K such
that jf .d/j � jd j C K for any d 2 D, where jd j D maxfjdi j j i D 1; : : : ; ng for
d D .d1; : : : ; dn/ 2 .†�/n.
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Proof. To prove the lemma, lets us denote by M a finite automaton recognizing the
graph of f . Consider the set P of all paths (runs) in M labelled by words of the form
(̧d1; : : : ; dn; y/, where d D .d1; : : : ; dn/ 2 D and jyj � max jd j, starting from the
initial state q0. Let S be the set of all end states of paths from P . The membership
problem to the set S can be decided in time C � maxfjd1j; : : : ; jdnj; jy/jg, where C

is a constant. There are two cases for S :

Case 1: Suppose that the set S contains an accepting state s. Hence there ex-
ists a path from the initial state to s such that the label of the path is of the form
(̧d1; : : : ; dn; y0/ with jy0j � jd j. One can find such a path in linear time in the size of
the input d . Indeed, one can ignore the labels of the last coordinate of (̧d1; : : : ; dn; y/,
in which case the automaton M becomes non-deterministic, and find a path in S with
a label (̧d1; : : : ; dn; �/ that ends up in an accepting state. Notice that it takes time at
most O.jd j/, since we are looking for a shortest path (hence no self-intersections)
with this property in a fixed non-deterministic automaton. Reading off the last co-
ordinate along this path one can find y0 such that (̧d1; : : : ; dn; y0/ is accepted by M.
Notice that f .d1; : : : ; dn/ D y0 and jy0j � jd j.

Case 2. Suppose that the set S does not contain an accepting state. Then there
exists a state s 2 S and a shortest path from s to an accepting state s0 such that it is
labelled by .˘; : : : ; ˘; y00/ with jy00j � C 0, where C 0 is the number of states in M .
Let y0 be a string of length jd j D j ˝ .d1; : : : ; dn/j such that there is a path from q0

to s labelled by (̧d1; : : : ; dn; y0/. Then f .d/ D y0y00. Note that it takes linear time
in the size of the input d to find s0 and y0, and jy0y00j � jd j C C 0. This proves the
lemma.

Theorem 8.2. The word problem in graph automatic groups is decidable in quadratic
time.

Proof. Let G be a group for which the Cayley graph �.G; X/ is automatic. We may
assume that the regular subset R � †� (from the definition of graph automaticity
given in Lemma 7.2) represents elements of G bijectively, so the function � W R ! G

is a bijection. Let w D y1 : : : yn be a word in generators yi 2 X [ X�1. By Nw
we denote the element defined by w in G. We would like to find a representative
��1. Nw/ of Nw in L. To this end, denote by ui the unique representative in L of the
element Nwi , i D 0; : : : ; n (where Nw0 D 1), in particular, un D ��1. Nw/. Notice, that
for every y 2 X [ X�1 the function fy W L ! L defined by fy.u/ D ��1.�.u/y/

is FA recognizable. Hence by Lemma 8.1 for a given u 2 R one can compute
v D fy.u/ in time Cy juj for some constant Cy . Moreover, there is a constant K such
that jfy.u/j � juj C K for every u 2 L. Since the set X is finite we may choose
constants C D maxfCy j y 2 X [ X�1g and K D maxfKy j y 2 X [ X�1g. The
estimates above show that

juiC1j � jui j C K � � � � � ju0j C .i C 1/K:
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Hence one can compute un, by consecutively computing u1; u2; u3; : : : ; in time

nX
iD1

C.ju0j C iK/ D O.n2/;

as claimed. This proves the theorem.

Below we introduce a notion of a Cayley graph biautomatic group. Let G be a
group generated by a finite set X . Let �.G; X/ be the Cayley graph of G relative
to X . Consider the left Cayley graph � l.G; X/. It is a labelled directed graph with
the vertex set G such that there is a directed edge .g; h/ from g to h labelled by x

if and only if xg D h. The graph � l.G; X/ can be viewed as an algebraic structure
� l.G; X/ D .GI El

x1
; : : : ; El

xn
/, where a binary predicate El

xi
defines the edges with

the label xi in � l.G; X/.

Definition 8.3. A group G generated by a finite set X is Cayley graph biautomatic if
the graphs �.G; X/ and � l.G; X/ are automatic relative to one and the same regular
set representing G. Equivalently, G is Cayley graph biautomatic if and only if the
structure .GI E�1

; : : : ; E�n
; El

�1
; : : : ; El

�n
/ is automatic. Similar as above we often

refer to these groups as graph biautomatic groups.

Recall that the standard biautomatic groups (in the sense of [16]) are defined in
the following way. Let G be automatic group with respect to X . Let L � X? be a
part of automatic structure for G. We say that G is biautomatic if L�1 is a part of
automatic structure for G.

Proposition 8.4. Every standard biautomatic group is Cayley graph biautomatic.

Proof. Let G be a standard biautomatic group with a finite generating set X . Suppose
R � X� is a regular set such that G is automatic relative to R and R�1. It follows
that the Cayley graph �.G; X/ is automatic, so all the binary relations Exi

are FA
recognizable. We need to show that the relations El

�i
are also FA recognizable. Since

G is biautomatic the set of pairs .u; v/ 2 R2 such that u�1x�1 D v�1 for a given
x 2 X is FA recognizable, say by an automaton Mx�1 . Observe that u�1x�1 D v�1

if and only if xu D v. Rebuild the automaton Mx�1 into an automaton M l
x by

interchanging the sets of initial and final states in Mx , then reversing each edge in
Mx and changing each label x into x�1. Clearly, Mx�1 accepts a path with label
.u�1; v�1/ 2 R2 if and only if M l

x accepts a path labelled .u; v/ (in which case
v D xu). Hence M l

x recognizes El
x . This proves the proposition.

Theorem 8.5. The Conjugacy Problem in every graph biautomatic group G is de-
cidable.
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Proof. Let G be a graph biautomatic group generated by a finite set X . Let �.G; X/

be the Cayley graph of G relative to X , with the regular set R � †� representing the
domain. Cayley graphs �.G; X/ and � l.G; X/ are automatic. Fix two words p and
q in X�. By Lemma 6.9, applied to the automatic graphs �.G; X/ and � l.G; X/,
one has that the sets of pairs f.u; up/ j u 2 Rg and f.u; qu/ j u 2 Rg are FA
recognizable. Hence, the set

Sp;q D fu 2 R j up D qu 2 Gg
is FA recognizable. Indeed, the formula

ˆ.u/ D 9z..up D z/ ^ .qu D z//

defines the set Sp;q in the automatic structure .GI E�1
; : : : ; E�n

; El
�1

; : : : ; El
�n

/.
It follows, that p and q are conjugate in G if and only if Sp;q ¤ ;, which is de-
cidable.

Just as for automatic groups we do not, however, know if the Conjgacy Problem
for graph automatic groups is decidable.

9. Universal Cayley graphs

In this section we prove that the Cayley graph of a free group with two natural extra
predicates is universal. Recall that an automatic structure A is universal if every
other automatic structure B can be interpreted in A as defined in Definition 3.6.

Let F be a free group with basis A D fa1; : : : ; ang. We represent F by the set
F.A/ of all reduced words in A [ A�1. Recall that a word is reduced if it contains no
subwords of the form aa�1; a�1a where a 2 A. On the set F.A/ define the following
two predicates � and el :

x � y $ x is a prefix of y,

and

el.x; y/ $ jxj D jyj:
Denote by �free.A/ the Cayley graph �.F; A/ with two extra predicates � and el ,
i.e.,

�free.A/ D .F.A/I Ea1
; : : : ; Ean

; �; el/:

Now we prove the following theorem:

Theorem 9.1. The automatic structure �free.A/ is universal.
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Proof. It is easy to see that �free is an automatic structure. Indeed, the set F.A/ and
all the predicates in �free.A/ are clearly FA recognizable.

Consider the structure

M D .A�I Ra.x; y/; x � y; el.x; y//a2†;

defined in Example 3.9. By Theorem 3.10 M is a universal automatic structure. Since
interpretability is a transitive relation, it suffices to interpret the structure M in �free.A/

by first-order formulas. Notice, that the set A� is a subset of F.A/, consisting of all
words without “negative” letters a�1 when a 2 A. Furthermore, all the predicates
in M are restrictions of the corresponding predicates from �free.A/ onto A�. Hence,
it suffices to show that the subset A� is definable in �free.A/. Observe, first, that the
formula

ˆ<.u; v/ D 9z.z � v ^ z ¤ v ^ jzj D juj/
defines the binary relation juj < jvj in �free.A/. Now it is easy to see that the formula

ˆ.w/ D 8u8v.u � w ^ � _
a2A

Ea.u; v// ! juj < jvj�

defines A� in �free.A/. This proves the theorem.

10. Cayley graph automatic groups: constructions

Our goal is to show that graph automaticity is preserved under several natural group-
theoretic constructions.

10.1. Finite extensions. Let G be a group and H be a normal subgroup of G. We
say that G is a finite extension of H if the quotient group G=H is finite. It turns out
that graph automaticity preserves finite extensions:

Theorem 10.1. Finite extensions of Cayley graph automatic groups are again Cayley
graph automatic.

Proof. Let G be a finite extension of a graph automatic group H . Denote by

G=H D fHk0; : : : ; Hkr�1g
the set of all right cosets of G with respect to H . There exists a finite function g such
that for all 0 � i; s � r � 1, we have an equality:

Hki � Hks D Hkg.i;s/: (1)



From automatic structures to automatic groups 179

Suppose H is generated by a finite set h0; : : : ; hn�1, where h0 D 1. Equality (1)
implies that there are sequences g1.i; s/, : : : , gx.i; s/ and 0 � u1.i; s/; : : : ; ux.i; s/ �
n � 1 of integers such that

kiks D h
g1.i;s/

u1.i;s/
; : : : h

gx.i;s/

ux.i;s/
kg.i;s/:

Similarly, there are sequences f1.i; j /, : : : , fm.i; j / and 0 � v1.i; j /,: : : , vm.i; j / �
n � 1 of integers such that for 0 � i � r � 1 and 0 � j � n � 1 the following
equalities hold:

kihj D h
f1.i;j /

v1.i;j /
: : : h

fm.i;j /

vm.i;j /
ki :

This implies that for all s; i � r � 1, j � n � 1, and h 2 H one has

hki hj ks D h h
f1.i;j /

v1.i;j /
: : : h

fm.i;j /

vm.i;j /
kiks

D h h
f1.i;j /

v1.i;j /
: : : h

fm.i;j /

vm.i;j /
h

g1.i;s/

u1.i;s/
: : : h

gx.i;s/

ux.i;s/
kg.i;s/:

(2)

For h 2 H denote by Nh the unique word form a regular set R � †� representing h

under a fixed graph automatic presentation of H . Every element of G can be written
uniquely as a product hki for some h 2 H . We encode the elements hki of G as words
Nhki . Here we assume that the alphabet † does not contain symbols k0, : : : , kr�1. The
set of such words is clearly FA recognizable. Notice that the elements ks; hj altogether
generate G. The equalities (2) tell us that there are finite automata Mj;s that for every
hj , ks accept precisely all pairs of words of the form . Nhki ; w/, where w D hkihj ks in
G. Note that to build the automata Mj;s one needs to use: the original automata that
represent the group H , the sequences g1.i; s/, : : : , gx.i; s/ and u1.i; s/, : : : , ux.i; s/,
the sequences f1.i; j /, : : : , fm.i; j / and v1.i; j /; : : : ; vm.i; j /, the function g, and
the automata representing the multiplication by elements h

f .i;j /
v and h

g.i;j /
u in the

group H . This shows that the group G is graph automatic. The theorem is proved.

A simple corollary of the proof is the following:

Corollary 10.2. Finite extensions of graph biautomatic groups are again graph bi-
automatic.

10.2. Semidirect products. Let A and B be finitely generated groups and � W B !
Aut.A/ a homomorphism. As usual, the semidirect product of A and B relative to � ,
denoted AÌ� B , is a group G generated by A and B such that: A is normal in G, every
element g 2 G is uniquely presented as a product g D ba, where a 2 A; b 2 B ,
and multiplication is given by .ba/.b1a1/ D bb1ab1a1, where ab1 D �.b1/.a/. We
identify A and B with their images in G under monomorphisms: a ! 1Ba and
b ! b1A.

Recall that an automorphism ˛ 2 Aut.A/ is automatic if its graph is an FA
recognizable language.
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Theorem 10.3. Let A and B be graph automatic groups with finite sets of generators
X and Y , and � W B ! Aut.A/ a homomorphism. Assume that the automorphism
�.y/ is automatic for every y 2 Y . Then the semidirect product G D A Ì� B is
graph automatic.

Proof. Let R and S be regular sets that give graph automatic representations of
A and B . Since every element of G has a unique decomposition as ba, where
b 2 B; a 2 A, this gives a bijective encoding of elements of G as words sr , where
s 2 S; r 2 R. Observe, that G is generated by the set X [ Y . For any x 2 X

the relation .sr/x D s1r1 is obviously FA recognizable. Similarly, for each y 2 Y ,
we have .sr/y D syry and this relation is also FA recognizable, since the graph
f.r; ry/ j r 2 Rg is FA recognizable (because �.y/ is automatic). This proves the
theorem.

The following result is an immediate corollary of the theorem.

Corollary10.4. Thedirect product of twographautomatic groups is graphautomatic.

Consider the group G D .Z � Z/ ÌA Z, where A 2 SL.2; Z/. Here we mean
that the action of a generator, say t , of Z on Z � Z is given by the matrix A. Such
groups play an important part as lattices in the Lie group Sol D .R � R/ Ì R, where
t acts on R � R by a diagonal matrix diag.et ; e�t /. These groups are also interesting
in our context because of the following observation. If A is conjugate in GL.2; R/ to
a matrix diag.�; ��1/ for some � > 1, then G has exponential Dehn function, hence
G is not an automatic group [16], but it is graph automatic (see Proposition 10.5
below).

Proposition 10.5. The group G D .Z � Z/ ÌA Z is graph automatic for every
A 2 SL.2; Z/.

Proof. We first note that every matrix A 2 SL.2; Z/ gives rise to an FA recognizable
automorphism of Z � Z. See Example 6.8. Since the underlying groups Z, Z � Z
are graph automatic, by the theorem above the group G is graph automatic.

Alternatively, graph automaticity of G can also be shown via Theorem 3.7. Indeed,
the Cayley graph � of G is first-order interpretable in .ZI C/, which is automatic. To
see this, represent elements of G as triples .x; y; t/ 2 Z3. This set is FA recognizable.
Now observe that multiplication in G is given by

.x1; y1; t1/.x2; y2; t2/ D ..x1; y1/ C A.x2; y2/>; t1 C t2/:

Therefore multiplication of .x1; y1; t1/ by a fixed generator of G is definable in .ZI C/

as claimed.
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10.3. Wreath products. For the next theorem we define the restricted wreath prod-
uct of a group A by a group B . Let Ab be an isomorphic copy of A for each b 2 B .
Consider the direct sum of groups Ab denoted by K. Thus,

K D
M
b2B

Ab;

where elements of K are viewed as functions f W B ! A such that f .b/ D 1A for
almost all b 2 B . We write elements of K as .ab/. Each element c 2 B induces an
automorphism ˛c of K as follows:

˛c.ab/ D .abc/:

The wreath product of A by B consists of all pairs of the form .b; k/, where b 2 B

and k 2 K, with multiplication defined by

.b; k/ � .b1; k1/ D .bb1; ˛b1
.k/k1/:

Thus, the wreath product of A by B is simply the semidirect product of K D L
b2B Ab

and B relative to the homomorphism B ! Aut.K/ given by c ! ˛c .

Theorem 10.6. For every finite group G the wreath product of G by Z is graph
automatic.

Proof. We give an explicit automatic presentation of the wreath product. The ele-
ments of the wreath product are of the form

.i; .: : : ; g�n; g�nC1; : : : ; g�1; g0; g1; : : : ; gm�1; gm; : : : //;

where gj 2 G and i 2 Z. We refer to g0 as the element of G at position 0. We
can assume that gk is the identity 1G of the group G for all k < �n or k > m, and
g�n ¤ 1G and gm ¤ 1G . We can represent the element above as the following string

˝.i; g�n : : : g�1.g0; ?/g1 : : : gm/;

where i is written in binary. The alphabet of these strings is clearly finite since G

is a finite group. The symbol ? in this string represents elements of G at position
0. The generators of the wreath product are elements .0; g/ and .1; g/ represented
by the strings ˚.0; .g; ?// and ˚.1; .1G ; ?//, where g 2 G. Multiplication by these
generators works as follows:

˝.i; g�n : : : .g0; ?/ : : : gm/ � ˚.0; .g; ?// D ˝.i; g�n : : : .g0 � g; ?/ : : : gm/

and

˝.i; g�n : : : .g0; ?/ : : : gm/ � ˚.1; .1G ; ?// D ˝.i C 1; g0�nC1 : : : .g0
0; ?/ : : : g0

mC1/;

where g0
j C1 D gj for j 2 f�n; : : : ; mg. These operations can clearly be performed

by finite automata. The theorem is proved.
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The theorem above can be applied to construct many examples of graph automatic
groups that are not finitely presented. Hence, these give us another class of graph
automatic but not automatic groups.

Corollary 10.7. There exist graph automatic not finitely presented (and hence not
automatic) groups.

Proof. The restricted wreath product of a non-trivial finite group G by Z, by Theo-
rem 10.6, is graph automatic. Now we use the following theorem by Baumslag [6].
For finitely presented groups A and B , the restricted wreath product of A by B is
finitely presented if and only if either A is trivial or B is finite. Hence, for nontrivial
finite group G, the restricted wreath product of G by Z is not finitely presented but
graph automatic.

10.4. Free products. In this section we prove that graph automaticity is preserved
with respect to free products. The result follows from representation of elements of
the free product by their normal forms.

Theorem 10.8. If A and B are graph automatic groups then their free product A?B

is again graph automatic.

Proof. Since A and B are graph automatic we can assume that the elements of A and
B are strings over disjoint alphabets †1 and †2. Therefore, A \ B D f�g. A normal
form is a sequence of the type

g D g1 � g2 � : : : � gn;

where gi 2 A [ B , gi ¤ �, � 62 †1 [ †2, and the adjacent elements gi and giC1

are not from the same group A or B , where i 	 0. The set N of all normal forms is
FA recognizable. Every element in A 
 B is uniquely represented by some normal
form g in N and every normal form g 2 N gives rise to a unique element in A 
 B .
If a1; : : : ; an generate A and b1; : : : ; bm generate B then these elements together
generate the whole group A ? B . The multiplication by each of these generators can
be performed by finite automata using the automata given for the underlying groups
A and B . For instance, the automaton M that multiplies g 2 N by a generator a 2 A

can be described as follows. Given g; g0 2 N the automaton M reads ˝.g; g0/. The
aim is to detect if ga D g0 in G. Assume that

g0 D g0
1 � g0

2 � : : : � g0
n:

Notice that if gn 2 B then g0 must be of the form

g0 D g1 � g2 � : : : � gn � a:

And if gn 2 A then g0
n must be of the form

g0 D g1 � g2 � : : : � gn�1 � g0
n;
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where gna D g0
n in the group A. The last equality can be detected by a finite

automaton using the automaton that recognizes the multiplication by a in the group A.

10.5. Amalgamated products. Let A and B be groups. Let � be an isomorphism
from a subgroup HA of A into the subgroup HB of B . By H we denote the iso-
morphism type of the group HA. The amalgamated product of A and B by H ,
denoted by A ?H B , is the factor group of A ? B by the normal closure of the set
f�.h/h�1 j h 2 HAg. The amalgamated product A ?H B is viewed as the result of
identifying HA and HB in the free product A ? B . Below we show simple conditions
guaranteeing graph automaticity of amalgamated products.

Theorem 10.9. Let A; B be graph automatic groups and H a subgroup of A and B .
Suppose that one of the following conditions holds:

(1) The group H is graph biautomatic and A and B are finite extensions of H , or

(2) H is a finite subgroup of both A and B .

Then the amalgamated product A ?H B is graph automatic.

Proof. Assume that H is a graph biautomatic group, and A and B are finite extensions
of H . By Corollary 10.2, both A and B can be assumed to be graph biautomatic
groups. Moreover, we can assume that the set of elements of the subgroup H is a
regular language.

As in the proof of Theorem 10.8, we consider normal forms. Note that elements
of A and B are strings (under given automatic presentations) since A and B are
graph automatic. We also assume that the alphabets †1 and †2 of graph automatic
representations of A and B are disjoint.

We choose the set of representatives RA and RB of the cosets of H in A and
in B , respectively. These two sets are finite by the assumption. Let a1; : : : ; am

and b1; : : : ; bs be the strings from RA and RB , respectively. Note that for every
g 2 fa1; : : : ; am; b1; : : : ; bmg, by Lemma 6.9 and graph biautomaticity of A and B ,
the sets

f.u; v/ j u; v 2 A & ug D vg and f.u; v/ j u; v 2 A & gu D vg
are FA recognizable sets. Let � be a symbol not in †1 [ †2. Define an A-normal
form as a sequence

g1 � g2 � : : : � gn � z;

such that

(1) each gi belongs to either RA or RB , gi ¤ �,
(2) two consecutive gi and giC1 belong to distinct set of representatives, and
(3) z 2 HA.
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It is not hard to see that the set of all A-normal forms is a regular language that
we denote by N . This set determines elements of the amalgamated group A ?H B .
Moreover, each element in the amalgamated group has a unique representation in
A-normal form [9].

Let X and Y be finite set of generators for A and B , respectively. Our goal is now
to show that the multiplication of elements in N by each of the generator elements
from X [ Y is FA recognizable. We first consider the case when the generator is in
X . Take v 2 N of the form g1 � g2 � : : : � gn � z, and a generator x 2 X .

Assume that gn 2 RB . Using the fact that A is automatic, we can compute (the
string representing) the element z � x. Let w be the element z � x. We now find an
element a 2 RA such that w 2 aH . Hence, we can write the element w as a � h for
some h 2 H . Namely, w D a.a�1w/. Thus, we have the equality

vx D g1 � g2 � : : : � gn � a � a�1w:

From the above, since the underlying groups are biautomatic, we see that this is an
FA recognizable event, that is, the set

f.v; v0/ j v is of the form g1 � g2 � : : : � gn � z,

v0 2 N , gn 2 B , x 2 X , v0 D vxg
is FA recognizable.

Assume now that gn 2 RA. Since A is biautomatic the set

f.gn; w/ j w D gn � z � x; gn 2 RA; z 2 H; x 2 Xg
is FA recognizable. Now given w D gn � z � x, we can represent it as the product ah

for some a 2 RA and h 2 H . This is again an FA recognizable event. We conclude
that the set multiplication by x 2 X of elements in N can be recognized by finite
automata. The case when we multiply elements of N by the generators y 2 Y is
treated similarly.

Now we prove the second part of the theorem. Since H is finite the set of all left
co-sets with respect to H in both A and B is uniformly FA recognizable. In other
words, the sets

f.a1; a2/ j a�1
1 a2 2 H; a1; a2 2 Ag and f.b1; b2/ j b�1

1 b2 2 H; b1; b2 2 Bg
are FA recognizable languages. Therefore we can select regular sets RA and RB of
left-cost representatives of A and B , respectively. As above, one considers the set N

of normal forms. For each z 2 H and g 2 X [ Y , for each of the groups A and
B there exists a finite automaton that recognizes the language f.u; v/ j uzg D vg.
Therefore, since H is finite, we have that for each g 2 X [ Y the set

f.v; w/ j v; w 2 N; vg D wg
is FA recognizable. This proves the second part of the theorem.
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As an application we give the following result.

Corollary 10.10. The groups SL2.Z/ and GL2.Z/ are graph automatic.

Proof. The group SL2.Z/ is isomorphic to Z4 ?Z2
Z6. Similarly, the group GL2.Z/

is isomorphic to D4 ?D2
D6, where Dn is a dihedral group (see for instance [9]). By

the theorem above the groups SL2.Z/ and GL2.Z/ both are graph automatic.

Of course, the groups SL2.Z/ and GL2.Z/ are already known to be automatic
(see [16]).

11. Subgroups

In this section we describe a simple technique that is analogous, in some respect, to
the technique of quasi-convex subgroups in standard automatic groups. Let G be a
graph automatic group. Assume that R is a regular language representing the group
G via a bijection � W R ! G. A finitely generated subgroup H � G is called regular
if the pre-image ��1 is a regular subset of R. A similar definition describe regular
subgroups of graph automatic monoids.

Proposition 11.1. Let G be a graph automatic group or monoid and H a regular
finitely generated subgroup of G. Then H is graph automatic.

Proof. Suppose that R is a regular language representing the group G via a bijection
� W R ! G. Let XH be a finite generating set of H . Let XG be a finite generating
set of G containing XH . Since G is graph automatic it is automatic relative to XH .
Hence the binary predicates Ex are FA presentable in R. Their restrictions to ��1.H/

are FA presentable as well. Thus, H is graph automatic.

The following result, implied by the proposition above, turns out to be useful in
applications.

Corollary 11.2. Let Mn.Z/ be the multiplicative monoid of all n�n integer matrices.
If H is a regular finitely generated subgroup of Mn.Z/ then H is graph automatic.

Proof. It suffices to note that multiplication operation of matrices in Mn.Z/ by a
fixed n � n-matrix is an automatic operation.

12. Nilpotent Cayley graph automatic groups

In this section we show that there are many interesting finitely generated nilpotent
groups which are graph automatic. For this we need to introduce a particular technique
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of polycyclic presentations that initially comes from Malcev’s work on nilpotent
groups [37]. For the detailed exposition see the books [26], [25], [5].

Let G be a group, a D .a1; : : : ; an/ an n-tuple of elements in G, and ˛ D
.˛1; : : : ; ˛n/ an n-tuple of integers. By a˛ we denote the following product

a˛ D a
˛1

1 a
˛2

2 : : : a˛n
n :

Concatenation of two tuples a and b is denoted ab and a 1-tuple .x/ is usually denoted
by x.

Recall that every finitely generated abelian group A is a direct sum of cyclic
groups:

A D ha1i � � � � � hasi � hb1i � � � � � hbt i
where hai i is infinite cyclic, and hbi i is a finite cyclic group of order !.bi /. Every
element g 2 A can uniquely be represented in the form

g D a
˛1

1 : : : a˛s
s b

ˇ1

1 : : : b
ˇt

t (3)

where ˛i 2 Z and ǰ 2 f0; 1; : : : ; !.bj / � 1g. We call the tuple

a D .a1; : : : ; as; b1; : : : ; bt /

a base of A and the tuple �.g/ D .˛1; : : : ; ˛s; ˇ1; : : : ; ˇt / the coordinate of g in the
base Na. In this notation we write the equality (3) as follows g D a�.g/.

One can generalize the notion of base to polycyclic groups. Recall that a group G

is polycyclic if there is a sequence of elements a1; : : : ; an 2 G that generates G such
that if Gi denotes the subgroup hai ; : : : ; ani then GiC1 is normal in Gi for every i .
In this case

G D G1 	 G2 	 � � � 	 Gn 	 GnC1 D 1 (4)

is termed a polycyclic series of G. The sequence a D ha1; : : : ; ani is called a base
of G.

Let a D .a1; : : : ; an/ be a base of a polycyclic group G. Then the quotient
Gi=GiC1 is a cyclic group generated by the coset aiGiC1. Denote by !i the order
of the group Gi=GiC1 which is the order of the element aiGiC1 in Gi=GiC1. Here
!i D 1 if the order is infinite. We refer to the tuple !.a/ D .!1; : : : ; !n/ as the
order of a. Now set Z!i

D Z if !i D 1 and Z!i
D f0; 1; 2; : : : ; !i �1g otherwise.

Lemma 12.1. Let a D .a1; : : : ; an/ be a base of a polycyclic group G of order
!.a/ D .!1; : : : ; !n/ . Then for every g 2 G there is a unique decomposition of the
following form:

g D a
˛1

1 a
˛2

2 : : : a˛n
n ; ˛i 2 Z!i

: (5)

Proof. Let g 2 G. Since the quotient group G1=G2 is cyclic generated by a1G2 one
has gG2 D a

˛1

1 G2 for some unique ˛1 2 Z!1
. The element g0 D a

�˛1

1 g belongs to
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G2. Notice that .a2; : : : ; an/ is a base of G2. Hence by induction on the length of
the base there is a unique decomposition of g0 of the type

g0 D a
˛2

2 : : : a˛n
n ; ˛i 2 Z!i

:

Now g D a
˛1

1 g0 and the result follows.

In the notation above for an element g 2 G the tuple �.g/ D .˛1; : : : ; ˛n/ from
(5) is called the tuple of coordinates of g in the base a. Sometimes we write the
equality (5) as g D a�.g/.

Finitely generated nilpotent groups are polycyclic so they have finite bases as
above. Moreover, it is easy to see that an arbitrary finitely generated group G is
nilpotent if and only if it has a finite base .a1; : : : ; an/ such that the series (4) is
central, i.e., ŒGi ; G� � GiC1 for every i D 1; : : : ; n (here GnC1 D 1).

Now suppose G is an arbitrary finitely generated nilpotent group of nilpotency
class m. The lower central series of G is defined inductively by

G1 D G; G2 D ŒG1; G�; : : : ; GiC1 D ŒGi ; G�; : : :

By assumption, we have Gm ¤ 1 and GmC1 D 1. It follows that all the quotients
Gi=GiC1 are finitely generated abelian groups. Let di be a tuple of elements from
Gi such that its image in Gi=GiC1 under the standard epimorphism is a base of the
abelian group Gi=GiC1. Then the tuple a D d1d2 : : : dm obtained by concatenation
from the tuples d1; : : : ; dm, is a base of G. We refer to a as a lower central series
base of G.

Similarly, the upper central series of the group G is the sequence:

1 D Z0.G/ E Z1.G/ E Z2.G/ E � � � E ZiC1.G/ E � � � ;

where ZiC1.G/ is defined inductively as the set

ZiC1.G/ D fx 2 G j Œx; y� 2 Zi .G/ for all y 2 Gg:
In particular Z1.G/ is the center of G. Thus, the group ZiC1.G/ is the full preimage of
the center of the group G=Zi .G/ under the canonical epimorphism G ! G=Zi .G/.
If G is torsion-free then the quotients ZiC1.G/=Zi .G/ are free abelian groups of
finite rank. In particular, one can choose a tuple di of elements from ZiC1.G/ which
form a standard basis of the free abelian group ZiC1.G/=Zi .G/, where i D 1; : : : ; m.
The tuple a D dmdm�1 : : : d1 obtained as concatenation of dm, : : : , d1 is called an
upper central base of G. Notice that in this case !i D 1 for each i D 1; : : : ; n.
Such bases are called Malcev’s bases of G.

Now we give the following important definition that singles out special type of
polynomials needed to perform the multiplication operation in finitely generated
nilpotent groups of nilpotency class 2.
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Definition 12.2. We say that p.x1; : : : ; xn; y1; : : : ; yn/ is a special quadratic poly-
nomial in variables x1; : : : ; xn and y1; : : : ; ym if

p.x1; : : : ; xn; y1; : : : ; yn/ D †i;j ˛ij xiyj C †iˇixi C †j 	j yj ;

where ˛i;j , ˇi , 	j are constants from Z.

In tuple notation we write p.x; y/, where x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/.
If ˛ and ˇ are tuples of integers, then f .˛; ˇ/ denotes the value of f obtained by
substituting x ! ˛; y ! ˇ. Similarly, for a tuple of polynomials f .x; y/ D
.f1.x; y/; : : : ; fk.x; y//, we write f .˛; ˇ/ to denote .f1.˛; ˇ/; : : : ; fk.˛; ˇ//. The
following lemma indicates the use of special quadratic polynomials in calculating the
group operation in a finitely generated group of nilpotency class at most 2.

Lemma 12.3. Let G be a finitely generated 2-nilpotent group with a lower series
base a D .a1; : : : ; an/. There exist a tuple of special polynomials f .x; y/ D
.f1.x; y/; : : : ; fn.x; y// with x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/ such that
for any tuples of integers ˛; ˇ 2 Zn one has

a˛ � aˇ D af .˛;ˇ/:

Proof. Since G is a 2-nilpotent group then G > ŒG; G� > 1 is the lower central series
of G. In particular, ŒG; G� is a subgroup of the center Z.G/ of G. Let !.a/ be the
order of the lower series base a D .a1; : : : ; an/. By definition of the base a, we have
that a is a concatenation of two tuples d1 D .a1; : : : ; as/ and d2 D .asC1; : : : ; am/

such that d2 is a base of the abelian group ŒG; G�. For tuples ˛ D .˛1; : : : ; ˛n/,
ˇ D .ˇ1; : : : ; ˇn/ 2 Zn consider the following product

a
˛1

1 a
˛2

2 : : : a˛n
n � a

ˇ1

1 a
ˇ2

2 : : : aˇn
n : (6)

Since G is 2-nilpotent all the commutators Œa
˛i

i ; a
ˇ1

1 � are in the center of G, so

using equalities a
˛i

i a
ˇ1

1 D a
ˇ1

1 a
˛i

i Œa
˛i

i ; a
ˇ1

1 � one can rewrite the product (6) in the
following form:

a
˛1Cˇ1

1 a
˛2

2 : : : a˛n
n a

ˇ2

2 : : : aˇn
n …n

iD2Œa
˛i

i ; a
ˇ1

1 �: (7)

By induction on the length of the base, we can assume that there are special quadratic
polynomials, say g2. Nx; Ny/; : : : ; gn. Nx; Ny/, where Nx D .x2; : : : ; xn/, Ny D .y2; : : : ; yn/,
such that

a
˛2

2 : : : a˛n
n a

ˇ2

2 : : : aˇn
n D a

g2.˛;ˇ/
2 : : : agn.˛;ˇ/

n :

Notice that for 2-nilpotent groups the equalities

Œa
˛i

i ; a
ˇ1

1 � D Œai ; a1�˛i ˇ1
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hold for every ˛i , ˇ1. So

…n
iD2Œa

˛i

i ; a
ˇ1

1 � D …n
iD2Œai ; a1�˛i ˇ1 :

Since Œai ; a1� 2 ŒG; G� one has Œai ; a1� D a
ısC1;i

sC1 : : : a
ıni
n for some ıj i 2 Z. There-

fore

…n
iD2Œa

˛i

i ; a
ˇ1

1 � D …n
iD2.a

ısC1;i

sC1 : : : aıni
n /˛i ˇ1

D …n
iD2a

ısC1;i ˛i ˇ1

sC1 : : : aıni ˛i ˇ1
n

D a
†n

iD2
ısC1;i ˛i ˇ1

sC1 : : : a†iD2ıni ˛i ˇ1
n :

Observe that hj .x1; : : : ; xn; y1/ D †iD2ıj ixiy1 are special quadratic polynomials
in x and y, so

…n
iD2Œa

˛i

i ; a
ˇ1

1 � D a
hsC1.˛;ˇ/

sC1 : : : ahn.˛;ˇ/
n

Combining the latter one with the equality (7) one gets that the initial product (6)
is equal to

a
˛1Cˇ1

1 a
g2.˛;ˇ/
2 : : : ags.˛;ˇ/

s a
gsC1.˛;ˇ/ChsC1.˛;ˇ/

sC1 agn.˛;ˇ/Chn.˛;ˇ/
n ;

which proves the lemma.

Theorem 12.4. Every finitely generated group G of nilpotency class at most two is
graph automatic.

Proof. We prove the theorem by cases.

Case 1: If G is abelian then our Example 6.5 shows that G is graph automatic.

Case 2: Assume that G be a finitely generated torsion free 2-nilpotent group. Fix
an arbitrary upper central Malcev’s base a of G. We use notation from Lemma 12.3
throughout the proof. Every element g 2 G can be uniquely represented by its tuple
of coordinates �.g/ relative to the base a. The set of coordinates of elements of G

�.G/ D f�.g/ j g 2 Gg D Z!1
� � � � � Z!n

D Zn

is in bijective correspondence with G. This set is clearly definable by first-order
formulas in the Presburger arithmetic P D hN; Ci. By Theorem 3.7, the set is FA
recognizable.

Now we prove that the Cayley graph � of G relative to the generating set
fa1; : : : ; ang is interpretable in P . It suffices to show that for a given generator
ai the set of pairs

f.�.g/; �.gai // j g 2 Gg
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is first order interpretable in P for each ai . To this end let g 2 G and �.g/ D
.˛1; : : : ; ˛n/. By Lemma 12.3 there exist a tuple of special polynomials f .x; y/

such that

gai D af .�.g/;"i /; (8)

where "i D .0; : : : ; 0; 1; 0; : : : ; 0/ (all components are equal to 0, except for the is,
which is equal to 1). Therefore,

f.�.g/; �.gai // j g 2 Gg D f.�.g/; f .�.g/; "i // j g 2 Gg:

Notice, that f .�.g/; "i / D .f1.�.g/; "i /; : : : ; fn.�.g/; "i / and every fj .�.g/; "i /

is a fixed linear function in �.g/ since f , by Lemma 12.3, is a special polynomial.
Each linear polynomial is first order definable in P . Therefore the set

.˛; fj .˛; "i // j ˛ 2 Zng

is first order definable in P for every j D 1; : : : ; n. Hence the set

f.˛; f .˛; "i // j ˛ 2 Zng

is also first order definable in P for every i D 1; : : : ; n. All these are FA recognizable
by Theorem 3.7. Thus G is graph automatic.

Case 3. Let G be an arbitrary finitely generated 2-nilpotent group. Then the set
of all torsion elements in G forms a finite subgroup Tor.G/ of G. If k is the order
of Tor.G/ then the subgroup Gk generated by fgk j g 2 Gg is a finitely generated
torsion-free 2-nilpotent subgroup of G such that quotient G=Gk is finite. So G is a
finite extension of Gk . By Case 2 the group Gk is graph automatic. By Theorem 10.1,
the original group G is also graph automatic. This proves the theorem.

There are finitely generated nilpotent graph automatic groups which are not 2-
nilpotent. For instance, the group Hn.Z/, where n > 3, as proved in Example 6.7 are
graph automatic. The following provide other examples of graph automatic nilpotent
groups of class > 2.

Example 12.5. The following groups are graph automatic:

� Let UT.n; Z/ be the group of upper triangular matrices over Z (with 1 at the
diagonal).

� The group UTm.n; Z/ that consists of all matrices from UT.n; Z/ such that
the first m � 1 diagonals above the main one have all entries equal to 0.

Proof. The proof follows from Proposition 11.2.
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13. Solvable graph automatic groups

13.1. Baumslag–Solitar groups. The Baumslag–Solitar groups BS.m; n/, given
by presentations

BS.m; n/ D ha; b j a�1bma D bni;
play an important role in combinatorial and geometric group theory. It is well known
that the groups BS.m; n/, for m ¤ n, are not automatic (if n D m they are automatic)
[16]. It is also known that BS.m; n/ are all asynchronously automatic [16]. In this
section we prove that the Baumslag–Solitar groups BS.1; n/ are graph automatic
groups for all n 2 N.

Theorem 13.1. The Baumslag–Solitar groups BS.1; n/ are graph automatic for
n 2 N.

Proof. To simplify our exposition we consider only the group B.1; 2/. We prove this
theorem through the action of this group on the real line R. We represent the elements
a and b of the group BS.1; 2/ as linear functions ga W R ! R and gb W R ! R given
by ga.x/ D 2x and gb.x/ D x C1. Let G be the group generated by ga and gb . The
group multiplication on G is composition of functions. We show first that the group
G is isomorphic to BS.1; 2/ via the isomorphism induced by the mapping a ! ga

and b ! gb .

Claim 13.2. The elements ga and gb satisfy the identity g�1
a gbga D g2

b
.

Indeed, given a real number x 2 R, we have the following equalities:

g�1
a gbga.x/ D gbga

�
1

2
x

�
D ga

�
1

2
x C 1

�
D x C 2 D g2

b.x/:

For the next claim recall that ZŒ1=2� is the set of all dyadic numbers, that is,
numbers of the form i=2j , where i; j 2 Z.

Claim 13.3. Each g 2 G is a linear function of the form ax C b, where a D 2n and
b 2 ZŒ1=2�.

The proof of the claim is by induction on the length of words over a; b representing
elements of G. For ga and gb the claim is obvious. Suppose g 2 G is in the form
2nx C m=2k . We need to show that the functions gga, gg�1

a , ggb , and gg�1
b

are also
of the same form. This can be shown through easy calculations. For instance,

gga.x/ D ga.g.x// D ga.2nx C m=2k/ D 2nC1 C m=2k�1;

and

ggb.x/ D gb.g.x// D gb.2nx C m=2k/ D 2nC1 C .m C 2k/=2k :

The next claim shows that every function of the form 2nxCm=2k can be generated
by the functions ga and gb . This reverses the claim above.
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Claim 13.4. Assume that g is a function of the form 2nx C m=2k . Then g D
gn

a.gk
agm

b
g�k

a /.

Indeed, first note the following equality:

gk
agm

b g�k
a .x/ D gm

b g�k
a .2kx/ D g�k

a .2kx C m/ D x C m=2k :

Now it is easy to see that

gngk
agm

b g�k
a .x/ D gk

agm
b g�k

a .2nx/ D 2nx C m=2k D g:

These claims show that the groups BS.1; 2/ and G are isomorphic. The isomor-
phism is induced by the mapping a ! ga and b ! gb . So, we identify these two
groups.

Now we give a representation of the Cayley graph for BS.1; 2/ with the generators
a and b. Consider a function g 2 G of the form 2nx C m=2k , where k 	 0. We can
always assume that m is odd if k > 0. Thus, we can represent the element g as the
(convoluted) string ˝.n; m; k/. We put the following conditions on these strings:

(1) n and m are integers written in binary.
(2) The integer k is written in unary.
(3) If k is the empty string (thus k represents 0), then m 2 Z. Otherwise, m is

odd.

We denote this set of strings by D. It is clear that D is finite automata recognizable
set. It is also clear that the mapping D ! G given by .n; m; k/ ! 2nx C m=2k is a
bijection.

The multiplication by generators ga and gb of elements g D 2nx C m=2k of G

is now represented on D as follows:

.n; m; k/ !a .n C 1; m; k � 1/ and .n; m; k/ !b .n; m C 2k; k/:

It is clear that the multiplication by a is recognized by finite automata. The multi-
plication by b is also finite automata recognizable because k is represented in unary.

13.2. Other metabelian groups. We have shown in Section 10.2 that the groups
G D .Z � Z/ ÌA Z are graph automatic, where A 2 SL.2; Z/. This can clearly be
generalized to higher dimensions:

Proposition 13.5. A group G D Zn ÌA Z, where A 2 SL.n; Z/ is graph automatic.

Proof. The argument from Proposition 10.5 can be applied here as well.
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13.3. Non-metabelian solvable groups. Let T.n; Z/ be the group of triangular
matrices of size n � n over the integers Z. So, matrices in T.n; Z/ have all zeros
below the main diagonal.

Proposition 13.6. The group T.n; Z/ is graph automatic.

Proof. This follows from Proposition 11.2.

Another interesting example comes from Theorem 10.6.

Example 13.7. Let K be a solvable finite group. Then by Theorem 10.6 the wreath
product K by the group Z is Cayley graph automatic. It is clear that G is solvable of
the solvability class at least the class of K.

14. Finitely generated FA presentable groups

The Definition 3.1 suggests that automaticity into groups can also be introduced by
requiring that the group operation is FA recognizable. In this section we do exactly
this by considering groups .G; �/ in which the group operation � is automatic. We
recast the definition:

Definition 14.1. We say that a group G is FA presentable if the following conditions
are satisfied:

� The domain of G is FA recognizable set.

� The graph of the group operation, that is, the set f.u; v; w/ j u � v D wg is FA
recognizable.

Note that the definition does not require that G is finitely generated. Examples of
FA presentable groups are the following:

� The additive group of p-adic rational numbers: ZŒ1=p�.

� Finitely generated abelian groups.

� The infinite direct sum
L

G of a finite group G.

For abelian (not necessarily finitely generated) FA-presentable groups see [39] [40]
[48]. We also mention a recent result of Tsankov that the additive group of rational
numbers is not FA presentable. The proof uses advanced techniques of additive
combinatorics [48].

Our goal is to give a full characterization of finitely generated FA-presentable
groups. Our proof follows Thomas and Oliver [42]. We start with the following
definition.
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Definition 14.2. A group is virtually abelian if it has a normal abelian subgroup of
finite index.

An example of virtually abelian group is D! , the infinite dihedral group. One can
view this group as the automorphism group of the graph that looks like a bi-infinite
chain.

Lemma 14.3. Finitely generated virtually abelian groups all are FA presentable.

Proof. Let G be a finitely generated virtually abelian group. It is easy to see that
there exists a finitely generated abelian torsion free normal subgroup A of G which
has a finite index, say n, in G. We can assume that A is isomorphic to Zk . Let x1,
: : : , xk be the generators of Zk . For simplicity of exposition we assume that k D 2

(a similar argument works in the general case).
Let t1, : : : , tn be all representatives of the quotient group G=Zk . Every element

g 2 G can be written as tix
a1

1 x
a2

2 where a1; a2 2 Z and i 2 f1; : : : ; ng. Since Zk

is normal, we also have the following list of equalities for some fixed integers c1;1;j ,
c1;2;j , c2;1;j and c2;2;j :

x1tj D tj x
c1;1;j

1 x
c1;2;j

2 and x2tj D tj x
c2;1;j

2 x
c2;2;j

2 where j D 1; : : : ; n:

In addition, there are integer constants ci and cj such that ti tj D tkx
ci

1 x
cj

2 for all
i; j D 1; : : : ; n. Taking all these into account we can now perform the group operation
on G as follows:

tix
a1

1 x
a2

2 � tj x
b1

1 x
b2

2 D ti tj x
a1c1;1;j Ca2c2;1;j Cb1

1 x
a1c1;2;j Ca2c2;2;j Cb2

2

D tkx
ci

1 x
cj

2 x
a1c1;1;j Ca2c2;1;j Cb1

1 x
a1c1;2;j Ca2c2;2;j Cb2

2 :

All these operations can now be performed by finite automata. This proves the lemma.

The next lemma again suits a more general case of monoids. A monoid is a
structure .M I �/, where � is an associative binary operation on M .

Lemma 14.4. If .M I �/ is an automatic monoid then for all m1; : : : ; mn 2 M the
following inequality holds true:

jm1 : : : mnj � maxfjmi j j i D 1; : : : ; ng C C � log.n/;

where C is a constant.

Proof. Let C be the number required by the Constant Growth Lemma (see Lem-
ma 8.1). By the lemma we have

jm1 � m2j � maxfjm1j; jm2jg C C .#/
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for all m1; m2 2 M . So, for n D 1; 2 the lemma is obvious. For n > 2 we write
n D n1 C n2 with n1 D n=2. Consider the elements

x D m1 : : : mn1
and y D mn1C1 : : : mn:

From the induction assumption we have the following inequalities:

jxj � max
1�i�n1

jmi j C C � log.n1/ and jyj � max
n1<i�n

jmi j C C � log.n1/:

Therefore from the inductive assumption and .#/ we have

jx � yj � maxfjxj; jyjg C C � maxfjmi j j i D 1; : : : ; ng C C � log.n/:

Thus, we have the desired inequality.

Let X D fg1; : : : ; gkg be the set of generators of the group G. For each element
g 2 G, let ı.g/ be the minimum n such that g D a1 : : : an in the group G, where
each ai 2 X . Now we define the following:

Gn D fg 2 G j ı.g/ � ng and gr G .n/ D jGnj:
The function gr G is called the growth function of the group G.

Lemma 14.5. If G is FA-presentable then its growth function is bounded by a poly-
nomial.

Proof. By Lemma 14.4, for each g 2 Gn we have ı.g/ � C log.n/, where C is a
constant. Therefore there is a constant C1 such that

gr G.n/ � j†jC log.n/ � 2C1 log.n/ � nC1 :

This proves the lemma.

Now we need two deep results from group theory. The first is the theorem of
Gromov stating that finitely generated groups with polynomial growth are all virtu-
ally nilpotent [21]. The second comes from the theorems of Romanovski [44] and
Noskov[41], stating that a virtually solvable group has a decidable first order theory
if and only if it is virtually abelian. Virtually nilpotent groups are virtually solvable.
Thus,we have proved the following:

Theorem 14.6. A finitely generated group is FA-presentable if and only if it is virtually
abelian.

Since all virtually abelian groups are graph automatic we have the following result:

Corollary 14.7. Every finitely generated FA-presentable group is graph automatic.
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