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Abstract. We prove that if the fundamental group of an orientable finite volume hyperbolic
3-manifold has finite index in the reflection group of a right-angled ideal polyhedron in H3

then it has a co-final tower of finite sheeted covers with positive rank gradient. The manifolds
we consider are also known to have co-final towers of covers with zero rank gradient.
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1. Introduction

Let G be a finitely generated group. The rank of G is the minimal cardinality of a
generating set, and is denoted by rk.G/. If Gj is a finite index subgroup of G, the
Reidemeister–Schreier process ([LS]) gives an upper bound on the rank of Gj :

rk.Gj / � 1 � ŒG W Gj �.rk.G/ � 1/:

Recently Lackenby introduced the notion of rank gradient ([La1]). Given a finitely
generated group G and a collection fGj g of finite index subgroups, the rank gradient
of the pair .G; fGj g/ is defined by

rgr.G; fGj g/ D lim
j !1

rk.Gj / � 1

ŒG W Gj �

We say that the collection of finite index subgroups fGj g is co-final if
T

j Gj D f1g,
and we call it a tower if Gj C1 < Gj .

In some particular cases it is easy to determine rank gradient, for example:

(1) When G is a free group, the rank gradient of any pair .G; fGj g/ is positive.
(2) The same is true if G is the fundamental group of a closed surface S with

�.S/ < 0;
(3) If G � F2, where F2 is the free group on two generators then, using (1), one

can find a tower (not co-final) of subgroups with positive rank gradient;
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(4) If G is virtually abelian or if G is the fundamental group of a virtually fibered
3-manifold then there are towers with zero rank gradient. In the latter case we
consider the subgroups coming from the cyclic covers of the fibered manifold.

(5) SL.n; Z/, n > 2, has zero rank gradient with respect to towers of congruence
subgroups ([Ti], [La1]).

However, determining the rank gradient of a co-final tower is very hard in general.
For example, the following question is the motivation for this note:

Question 1. Does there exist a torsion free finite covolume Kleinian group G with a
co-final tower fGj g such that rgr.G; fGj g/ > 0?

The main result of this note provides infinitely many such examples. To state it
we introduce some notation.

If M1 is an orientable finite volume hyperbolic 3-manifold, we call the family of
covers fMj ! M1g co-final (resp. a tower) if f�1.Mj /g is co-final (resp. a tower).
By rank gradient of the pair .M1; fMj g/, rgr.M1; fMj g/, we mean the rank gradient
of .�1.M1/; f�1.Mj /g/.

Theorem 3.1. Let M1 be an orientable finite volume hyperbolic 3-manifold whose
fundamental group has finite index in the reflection group of a totally geodesic right-
angled ideal polyhedron P1 in H3. Then there exists a co-final tower of finite sheeted
covers fMj ! M g with positive rank gradient.

This theorem relates to the work of Abért and Nikolov ([AN]), and in particular
to a question about cost of group actions ([Ga]).

Question 2. Let G be finitely generated and fGj g be a co-final tower of normal
subgroups of G. Does rgr.G; fGj g/ depend on the tower fGj g?

We remark that the manifolds in Theorem 3.1 are known to have towers of covers
with zero rank gradient. Agol proved in [Ag] that if the fundamental group of a 3-
dimensional manifold satisfies an algebraic condition, called RFRS, then it virtually
fibers. He also proved in [Ag] that the manifolds of the type considered in Theorem 3.1
are virtually RFRS. Therefore, given M1 as in Theorem 3.1, it is possible to find a
tower f�j g with rgr.�1.M1/; f�j g/ D 0.

The main idea of the proof of Theorem 3.1 is as follows: given P1 as in the
theorem, construct a collection of polyhedra fPj g whose reflection groups have finite
index 2j �1 in the reflection group of P1. If one is given an orientable hyperbolic
3-manifold M1 whose fundamental group has finite index in the reflection group of
P1 then M1 has at least as many cusps as the number of vertices of P1. We may find
manifold covers Mj ! M1 so that Mj is a 2j �1-sheeted covering and has at least as
many cusps as the number of ideal vertices of Pj . We then show that the Pj can be
chosen so that the number of its vertices is of the same magnitude as 2j .
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The paper will be organized as follows: Section 2 sets up notation and we recall
a characterization of right-angled ideal polyhedra using Andreev’s theorem ([An]).
We then show how the construction of the family fPj g will be done. In Section 3 we
prove Theorem 3.1. Section 4 contains all the technical results we need to estimate
rk.�1.Mj //. In Section 5 we show how to construct fPj g so that the family fMj g is
co-final. The idea for this appears in [Ag] (Theorem 2.2) and we include a proof here
for completeness. Section 6 contains some final remarks and further questions.

Ackowledgements. I am very grateful to my thesis advisor, Alan Reid, for his
extraordinary guidance and unwavering support. I am also thankful to Ian Agol,
Grant Lakeland and Mark Norfleet for helpful conversations. The author was partially
supported by CAPES/Fulbright Grant BEX 2411/05-9.

2. Set up

An abstract polyhedron P1 is a cell complex on S2 which can be realized by a convex
Euclidean polyhedron. A labeling of P1 is a map

‚ W Edges.P1/ ! .0; �=2�:

The pair .P1; ‚/ is a labeled abstract polyhedron. A labeled abstract polyhedron is
said to be realizable as a hyperbolic polyhedron if there exists a hyperbolic polyhedron
P1 such that there is a label preserving graph isomorphism between the 1-skeleton of
P1 with edges labeled by dihedral angles and the 1-skeleton of P1 with edges labeled
by ‚.

Let P1 be a totally geodesic right-angled ideal polyhedron in H3 (that is, faces of
P1 are contained in hyperplanes and all vertices of P1 lie in the boundary at infinity
S21, where we here we consider the ball model for H3). We consider the 1-skeleton
of P1 as a graph �1 � S2 with labels �e D �=2. Let ��

1 be its dual graph. A
k-circuit is a simple closed curve composed of k edges in ��

1 . A prismatic k-circuit
is a k-circuit � so that no two edges of �1 which correspond to edges traversed by �

share a vertex. Andreev’s theorem for right-angled ideal polyhedra in H3 ([An], see
also [At]) can be stated as:

Theorem 2.1. Let P1 be an abstract polyhedron. Then P1 is realizable as a right-
angled ideal polyhedron P1 if and only if

(1) P1 has at least 6 faces;

(2) vertices have valence 4;

(3) for any triple of faces of P1, .fi ; fj ; fk/, such that fi \ fj and fj \ fk are
edges of P1 with distinct endpoints, fi \ fk D ;;.

(4) there are no prismatic 4-circuits.



146 D. Girão

The above theorem implies that the 1-skeleton of P1 is a 4-valent graph. The
faces can therefore be checkerboard colored. Reflecting P1 along a face f1 gives a
polyhedron P2 which is also right-angled, ideal and totally geodesic with checker-
board colored faces (see figure below). We construct a sequence of polyhedra
P1; P2; : : : ; Pj ; : : : recursively, whereby Pj C1 is obtained from Pj by reflection
along a face fj . The faces of Pj C1 are colored accordingly with the coloring of the
faces of Pj .

The notation for the remainder of the paper is as follows: the number of vertices
in the face fj is denoted by Sfj

and �fj
denotes the reflection along fj . Bj and

Wj represent the maximal number of ideal vertices on a black or white face of the
polyhedron Pj , respectively. Vj denotes the total number of vertices on Pj .

Throughout, the construction of the polyhedra Pj will be done in an alternating
fashion with respect to the color of the faces: P2j is obtained from P2j �1 by refection
along a black face and P2j C1 is obtained from P2j by reflection along a white face.

Figure 1. Polyhedron P1 reflected along central black face yields P2.

3. Main theorem

In this section we prove:

Theorem 3.1. Let M1 be an orientable finite volume hyperbolic 3-manifold whose
fundamental group has finite index in the reflection group of a right-angled ideal
polyhedron P1 in H3. Then there exists a co-final tower of finite sheeted covers
fMj ! M g with positive rank gradient.

Our construction of the family fMj g was inspired by the proof of Theorem 2.2
of Agol’s paper ([Ag]). The proof that this family can be made co-final is given in
Section 5 (following [Ag]).

Proof of Theorem 3.1. Consider the family of polyhedra fPj g obtained from P1 as
described above. Denote by Gj the reflection group of Pj and observe that Gj C1
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is a subgroup of Gj of index 2. G1 acts on H3 with fundamental domain P1. The
orbifold H3=G1 is non-orientable, and may be viewed as P1 with its faces mirrored.
The singular locus is the 2-skeleton of P1. Each ideal vertex of P1 corresponds to a
cusp of H3=G1.

Let M1 be an orientable cusped hyperbolic 3-manifold such that �1.M1/ has
finite index in G1. Let Mj ! M1 be the cover of M1 whose fundamental group
is �1.Mj / D �1.M1/ \ Gj . Since ŒGj W Gj C1� D 2, we must have Œ�1.Mj / W
�1.Mj C1/� � 2. Also note that since vol.Pj / D 2j �1vol.P1/, for all but finitely
many j (at most ŒG1 W �1.M1/�) we must have Œ�1.Mj / W �1.Mj C1/� D 2. We may
thus assume that Œ�1.Mj / W �1.Mj C1/� D 2. By mirroring the faces of Pj , it may
be regarded as a non-orientable finite volume orbifold (as described before). This
implies that Mj ! Pj is an orientable finite sheeted cover for j D 1; 2; : : : .

Note that Œ�1.M1/ W �1.Mj /� D 2j �1. Thus to show that the family fMj ! M1g
has positive rank gradient we will establish that rk.�1.Mj // grows with the same
magnitude as 2j .

By “half lives half dies”, an easy lower bound on the rank of the fundamental group
of an orientable finite volume hyperbolic 3-manifold is the number of its cusps. Since
the cusps of Pj correspond to its ideal vertices and the number of cusps does not go
down under finite sheeted covers, it must be that Mj has at least as many cusps as the
number of ideal vertices of Pj .

Recall that Bj and Wj are the maximal number of ideal vertices on a black or
white face of the polyhedron Pj , respectively, and Vj is the total number of vertices
on Pj . The claims below (proved in Section 4) give us the estimates we need for Vj

in terms of V1, B1 and W1.

Claim 1. V1 � B1 C W1 � 1.

Claim 2. For any j � 6, Vj � 2j �1V1 � 2j �1.B1 C W1/ C 2j �1 C 2j �2.

Given these, we argue as follows:

rgr.M1; fMj g/ D lim
j !1

rk.�1.Mj // � 1

Œ�1.M1/ W �1.Mj /�

� lim
j !1

Vj � 1

2j �1

� lim
j !1

2j �1V1 � 2j �1.B1 C W1/ C 2j �1 C 2j �2 � 1

2j �1

� lim
j !1

2j �1.B1 C W1 � 1/ � 2j �1.B1 C W1/ C 2j �1 C 2j �2 � 1

2j �1

� lim
j !1

2j �2 � 1

2j �1
D 1

2

which proves the theorem.
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4. Lower bounds on number of ideal vertices of Pj

We now proceed to prove Claims 1 and 2. This requires several preliminary results.

Lemma 4.1. Let Pj C1 be obtained from Pj by reflection along a face fj . Then
Vj C1 D 2Vj � Sfj

.

Proof. Here we abuse notation and write v 2 fj if v is an ideal vertex of the face fj

and write v … fj otherwise. Note that if v … fj , then v yields two vertices on Pj C1,
namely, v and �fj

.v/. If v 2 fj , then it yields a single vertex (v itself).
If v … fj , then, by the observation above, v yields two ideal vertices on Pj C1.

Since a total of Sfj
ideal vertices lie in fj and Vj � Sfj

do not, it must be that that

Vj C1 D 2.Vj � Sfj
/ C Sfj

D 2Vj � Sfj
:

Recall also that the construction of the family of polyhedra fPj g is made in an
alternating fashion with respect to the color of the faces: P2j is obtained from P2j �1

by refection along a black face and P2j C1 is obtained from P2j by reflection along
a white face.

Corollary 4.2. For j � 1,

(1) V2j � 2V2j �1 � B2j �1, and

(2) V2j C1 � 2V2j � W2j .

Proof. P2j is obtained from P2j �1 by refection along a black face f2j �1, thus
Sf2j �1

� B2j �1. By the lemma, V2j D 2V2j �1 � Sf2j �1
and therefore V2j �

2V2j �1 � B2j �1 . The second inequality is similar.

With the notation established above we now find lower bounds for the Vj in terms
of V1; B1 and W1. First we need to find upper bounds for Bj and Wj in terms of B1

and W1. To do this in a way that will fit our purposes we establish two properties of
the family fPj g. As before, denote by �fj

the reflection along the face fj .

Lemma 4.3. (1) If Pj is reflected along a white (resp. black) face fj , all black faces
f� adjacent to fj yield new black faces Qf� on Pj C1. The number S Qf�

of ideal vertices

on Qf� is 2Sf�
� 2 .

(2) A face f� not adjacent to fj yield two new faces, f� itself and �f .f�/, both
with Sf�

vertices.

Proof. For the first property, reflecting f� along fj gives a face �fj
.f�/ in Pj C1

adjacent to f�. The dihedral angle between f� and �f .f�/ is � . Thus, on Pj C1, they
correspond to a single face denoted by Qf�. The number of ideal vertices on Qf� is
exactly 2Sf�

�2. The second property should be clear. See figure 1 for an illustration
of these properties.
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As an immediate consequence we have

Corollary 4.4.

(1)

´
B2j D B2j �1;

W2j � 2W2j �1 � 2:

(2)

´
B2j C1 � 2B2j � 2;

W2j C1 D W2j :

We are now in position to estimate the values Bj and Wj in terms of B1 and W1.

Theorem 4.5. With the notation as before we have

(1) W2j C1 D W2j � 2j W1 � Pj

lD1
2l , and

(2) B2j C2 D B2j C1 � 2j B1 � Pj

lD1
2l .

Proof. We proceed by induction. By Corollary 4.4 these statements are true for j D
1. Suppose they are also true for j � n. We now want to estimate B2nC3 D B2nC4

and W2nC2 D W2nC3. The hypothesis is that

W2j C1 D W2j � 2nW1 �
nX

lD1

2l

and

B2nC2 D B2nC1 � 2nB1 �
nX

lD1

2l :

P2nC2 is obtained from P2nC1 by reflection along a black face, denoted by f . White
faces on P2nC1 adjacent to f yield new white faces on P2nC2 with at most 2W2nC1�2

vertices, by Corollary 4.4. But

2W2nC1 � 2 � 2
h
2nW1 �

nX
lD1

2l
i

� 2 D 2.nC1/W1 �
nC1X
lD1

2l

which gives the desired result for W2nC2 and W2nC3. Finally, P2nC3 is obtained
from P2nC2 by a reflection along a white face, again denoted by f . Since black faces
of P2nC2 have at most B2nC2.D B2nC1/ vertices, black faces of P2nC3 will have at
most 2B2nC1 � 2 vertices, again by Corollary 4.4. But

2B2nC1 � 2 � 2
h
2nB1 �

nX
lD1

2l
i

� 2 D 2.nC1/B1 �
nC1X
lD1

2l :

This establishes the result for B2nC3 and B2nC4.
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Theorem 4.6. With the notation as before, and for j � 3,

(1) V2j � 22j �1V1 �B1

P2j �2

lDj �1
2l �W1

P2j �2

lDj
2l CP2j �1

lDj C2
2l C2j C2, and

(2) V2j C1 � 22j V1 � B1

P2j �1

lDj
2l � W1

P2j �1

lDj
2l C P2j

lDj C2
2l C 2.

Proof. Lower bounds estimates for V1; : : : ; V7 are found recursively. V1, V2, V3, V4

and V5 do not fit these formulas but V6 and V7 do. The statement is then true for j D 3.
We now proceed by induction, using the previous proposition and Corollary 4.2.
Suppose it is true for j � n, n � 3. We want to show this holds true for j D n C 1.
By Corollary 4.2, V2nC2 � 2V2nC1 � B2nC1. The hypothesis is that

V2nC1 � 22nV1 � B1

2n�1X
lDn

2l � W1

2n�1X
lDn

2l C
2nX

lDnC2

2l C 2:

We also know that

B2nC1 � 2nB1 �
nX

lD1

2l

Thus

V2nC2 � 2V2nC1 � B2nC1

� 2
h
22nV1 � B1

2n�1X
lDn

2l � W1

2n�1X
lDn

2l C
2nX

lDnC2

2l C 2
i

�
h
2nB1 �

nX
lD1

2l
i

D 22nC1V1 � B1

2n�1X
lDn

2lC1 � W1

2n�1X
lDn

2lC1 C
2nX

lDnC2

2lC1 C 22 C
nX

lD1

2l

D 22nC1V1 � B1

2nX
lDn

2l � W1

2nX
lDnC1

2l C
2nC1X

lDnC3

2l C 2nC1 C 2

which establishes .1/ for 2.n C 1/ D 2n C 2.
We use the exact same idea and the estimate for V2nC2 to establish (2) for

2.n C 1/ C 1 D 2n C 3.

Corollary 4.7. For any j � 6,

Vj � 2j �1V1 � 2j �1.B1 C W1/ C 2j �1 C 2j �2:

Hence Claim 2 in the proof of Theorem 3.1 is proved. We now prove

Claim 1. V1 � B1 C W1 � 1.
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Proof. Let fb and fw be black and white faces of P1 with maximal number of vertices,
i.e., Sfb

D B1 and Sfw
D W1.

Case 1: The faces fb and fw are not adjacent. Here we get V1 � B1 C W1 and
the claim follows.

Case 2: The faces fb and fw are adjacent. Since fb and fw share exactly 2
vertices we see that V1 � B1 CW1 �2. Suppose we have equality. Then every vertex
of P1 must be a vertex of either fb or fw . Recall that we can visualize the 1-skeleton
of P1 as lying in S2. Label the vertices of P1 by fv1; : : : ; vkg. The assumption is that
all these vertices lie in the boundary of the disk D D .fb [ fw/ � S2. By Andreev’s
theorem, P1 has at least 6 faces, every face is at least 3-sided and all vertices are
4-valent. Denoting by F1 and E1 the number of faces and edges of P1 respectively
we have the relation V1 � E1 C F1 D 2. Since vertices are 4-valent we also have
E1 D 2V1. From these relations and F1 � 6, we get V1 � 4. At two of the vertices,
say v1 and v2, three of the emanating edges lie in D and one does not. Denote the
ones that do not lie in D by e1 and e2, respectively. At all other vi we have two edges
that lie in D and two that do not. Denote the latter by ei , e0

i . We have a total of
2.k � 2/ C 2 D 2k � 2 edges not in D. The problem we have now is combinatorial:

Given the disk D0 D S2 �D and the points v1; : : : ; vk 2 @D0, k � 4, is it possible
to subdivide D0 by 2k � 2 edges in a way that exactly one edge emanates from both
v1 and v2 and exactly two edges emanate from v3; : : : ; vk in such a way that no pair
of edges intersect and every face on the subdivision of D0 is at least 3-sided (here we
also consider sides coming from the boundary)?

A simple argument will show that the answer to this question is negative. Orient
the boundary of D0 counterclockwise. Starting at v1, draw the edge e1 emanating
from it. The other endpoint of e1 is some vertex vi1 . Consider the vertices contained in
the segment Œv1; vi1 � � @D0 in the given orientation. If there are no vertices at all, then
we must have a 2-sided face, which is not possible. Therefore, by relabeling, we may
assume v2 is the first vertex between v1 and vi1 . Observe that the edges emanating
from v2 are trapped between the edge e1 and @D0. Draw an edge e2 emanating from
v2 with the second endpoint vi2 . It must be that vi2 also lies in Œv1; vi1 �, or else we
find a pair of intersecting edges. As above, there must be a vertex in the segment
Œv2; vi2�. By repeating the above argument eventually we find a 2-sided face, which
is not possible. Therefore it must be that V1 > B1 C W1 � 2.

5. Co-finalness

In this section we provide a way of choosing the black or white faces on the polyhedra
Pj along which it is reflected in such a way that the resulting family fMj g of manifolds
is co-final. The main result of this section, Theorem 5.1, appears as part of the proof
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of Theorem 2.2 of [Ag]. We include a proof here for completeness. To better describe
this construction we need to change notation slightly by adding another index.

Start with P1 and relabel it P11. Reflect along a black face f11 obtaining P12. Let
�f11

represent such reflection. Observe that if f is adjacent to f11, then f [�f11
.f /

corresponds to a single face on P12. We call f and �f11
.f / subfaces of f [�f11

.f /.
Next reflect P12 along a white face f12, which is also a face of P11 or contains a face
of P11 as a subface, obtaining P13. We construct a subcollection P11; : : : ; P1k1

of
polyhedra such that

(i) If P1j is obtained from P1.j �1/ by reflection along a white (black) face then
P1.j C1/ is obtained from P1j by reflection along a black (white) face.

(ii) Whenever possible, the face f1j must be a face of P11 or contain a face of P11

as a subface.
(iii) No faces of P11 are subfaces of P1k1

.

Now set P1k1
WD P21.

Suppose Pn1 has been constructed. Construct the subcollection of polyhedra
Pn1; : : : ; Pnkn

such that

(i) The reflections were performed in a alternating fashion with respect to the
color of the faces;

(ii) Whenever possible, the face fnj must be a face of Pn1 or contain a face of Pn1

as a subface.
(iii) No faces of Pn1 are subfaces of Pnkn

.

Now set Pnkn
WD P.nC1/1. Inductively we obtain a collection of polyhedra

P11; P12; : : : ; P1k1
WD P21; : : : ; P2k2

WD P31; : : : ; Pnkn
WD P.nC1/1; : : :

satisfying (i), (ii) and (iii) above.
Let Gij be the reflection group of Pij and let Mij be the cover of M11 whose

fundamental group is �1.Mij / D �1.M11/\Gij . Co-finalness of the family fMij !
M11g is an immediate consequence of

Theorem 5.1. Let Gij be as above. Then
T

ij Gij D f1g.

In order to prove this theorem we consider the base point for the fundamental
group of each Pij (viewed as orbifolds with their faces mirrored) to be the barycenter
x0 of P11.

Proof of Theorem 5.1. Set Rij D inf�f`.�/g, where � is an arc with endpoints
in faces (possibly edges) of Pij going through x0. Note that, by construction,
limi!1 Rij D 1. For a non-trivial element g 2 G11 set Rg D inf Œ˛�Dgf`.˛/g,
where ˛ is a loop in P11 based at x0 and Œ˛� represents its homotopy class. Let ˛g

be a loop in P11 based at x0 such that Œ˛g � D g and `.˛g/ � Rg C 1.
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We claim that for sufficiently large i one cannot have g 2 Gij . In fact, if ˛ij is any
nontrivial loop in Pij based at x0, then this loop bounces off faces of Pij , yielding an
arc �ij through x0. Therefore `.˛ij / � `.�ij / � Rij . Since covering maps preserve
length of curves, this implies that if i is large enough no such ˛ij maps to ˛g . Thus
it is not possible to find a loop representative for g in Pij .

6. Final remarks

Question 3. Is it possible, in our setting, to obtain a co-final tower of regular covers
fMj ! M1g with positive rank gradient?

A positive answer to this would be very relevant, as it implies that Question 2 has
a negative answer. However, the tower constructed in Theorem 3.1 cannot consist of
normal subgroups. To see this we argue as follows: using the main theorem in [Ma] we
can find a sequence f�j g of hyperbolic elements, �j 2 Gj , whose translation lengths
are bounded above by 2:634. Since there exist at most finitely many conjugacy classes
of hyperbolic elements of bounded translation length in G1, it must be that an infinite
subsequence f�jk

g lie in the same conjugacy class in G1. Let � be a representative
of this class and gjk

2 G1 be such that �jk
D gjk

�g�1
jk

. If the tower fGj g consists
of normal subgroups, then � 2 Gjk

, contradicting the fact that fGjk
g is co-final.

These covers are actually far from being normal: the Lück Approximation Theorem
([Lu]) implies that these covers do not even satisfy a weaker condition (called Farber
condition). See [Fa] for details.

Question 3 is relevant also because of the following result (see [AN]):

Theorem (Abért–Nikolov). Either the rank vs. Heegaard genus conjecture (see be-
low) is false or Question 2 has a negative solution.

If an orientable 3-manifold M is closed, a Heegaard splitting of M consists of
two handlebodies H1 and H2 with their boundaries identified by some orientation
preserving homeomorphism. Recall that the genus of, say, @H1 gives an upper bound
on the rank of �1.M/. If M is not closed, these decompositions are given in terms of
compression bodies, again denoted by H1 and H2. In order to obtain useful bounds
on the rank of �1.M/ we restrict ourselves to those decompositions in which H1, for
instance, is a handlebody. Note that if this is the case, then the genus of @H1 is again
an upper bound for the rank of �1.M/. Recall that the Heegaard genus of M is the
minimal genus of a Heegaard surface.

Another concept due to Lackenby is that of the Heegaard gradient ([La2]). Given
a orientable 3-manifold M and a family fMj g of finite sheeted covers, we define the
Heegaard gradient of fMj ! M g by

Hgr.M; fMj g/ D lim
j !1

��.Sj /

dj
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where dj is the degree of the cover Mj ! M and Sj is a minimal genus Heegaard
surface for Mj .

Note that if rgr.M; fMj g/ > 0, then Hgr.M; fMj g/ > 0. The problem that is
related to the work of Abért and Nikolov is that of the growth ratio between rank and
Heegaard genus:

Conjecture. Let M be a finite volume hyperbolic 3-manifold and fMi ! M g a
family of finite sheeted covers. Then

rgr.M; fMig/ > 0 if and only if Hgr.M; fMig/ > 0:

Our results provide examples for which this is true. In ([La2]) Lackenby showed
that if �1.M/ is an arithmetic lattice in PSL.2; C), then M has a co-final family of
covers (namely, those arising from congruence subgroups) with positive Heegaard
gradient. In [LLR] Long, Lubotzky and Reid generalize this result by proving that
every finite volume hyperbolic 3-manifold has a co-final family of finite sheeted
regular covers for which the Heegaard gradient is positive. These results were also
motivation for this note.

We remark that very recently Tao Li ([Li]) announced examples of closed finite
volume hyperbolic 3-manifolds for which the rank is smaller than its Heegaard genus.
Whether such examples existed was a long standing question in hyperbolic 3-manifold
theory.

A natural question that arises from our results is for which other categories of
finite volume hyperbolic 3-manifolds they hold. For instance:

Question 4. Is it true that given a right-angled polyhedron P1 (not necessarily ideal)
and a manifold M1 such that �1.M1/ has finite index in the reflection group of P1,
then there exists a co-final tower fMj ! M1g of finite sheeted covers with positive
rank gradient?

In our setting the ideal vertices played an important role as they were used to
find lower bounds on the rank of the fundamental groups. If the polyhedron P1 has
vertices which are not ideal then we need to find another way of estimating the rank
of the associated manifolds. Ian Agol has suggested a way for doing this. We are
currently working on appropriate bounds for the rank in this case and will include it
in a future work.

We also remark that Lackenby ([La1]) observed that very often it is possible to
find towers with positive rank gradient. The problem here is that these towers are not
co-final.

Theorem 6.1. Let M be a compact irreducible 3-manifold with non-empty boundary,
other than an I -bundle over a disk, annulus, torus or Klein bottle. Then �1.M/ has
a tower of finite index subgroups with positive rank gradient
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