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Semigroups arising from asynchronous automata

David McCune

Abstract. In this paper we study semigroups of transformations of free monoids (and trans-
formations of the corresponding tree boundaries) that arise from asynchronous automata. We
introduce a subclass of asynchronous automata that we call “expanding automata”. We show
that every free partially commutative monoid is a synchronous automaton semigroup, and ev-
ery free partially commutative semigroup is an expanding automaton semigroup. We show
that undecidability arises in the actions of these semigroups on trees. In particular, in the class
of asynchronous automata there is no algorithm which detects the presence of coincidence
points and there is no algorithm which detects the presence of fixed points. We show that the
classes of semigroups that arise from synchronous, expanding, and asynchronous automata are
distinct classes of semigroups. We end the paper by covering some basic algebraic theory of
these semigroups, with an emphasis on subgroups.

Mathematics Subject Classification (2010). 20M20; 20M35, 20B27.

Keywords. Automaton, asynchronous, semigroup.

1. Introduction

Automaton groups (groups of automorphisms of labelled rooted trees generated by
automata) have received systematic study since the 1980’s. In particular, this class
has been shown to contain many examples of groups with fascinating properties.
For example, in 1983 Grigorchuk demonstrated an infinite finitely generated torsion
group that was the first known group of intermediate growth (see [3]). Indeed, almost
all known groups of intermediate growth are automaton groups. For an introduc-
tion to automaton groups, see Nekrashevych’s book [11] or the survey paper [5] by
Grigorchuk and Suni¢.

The automata used to generate automaton groups are invertible synchronous au-
tomata. Recently, many generalizations of automaton groups have been studied,
all of these generalizations arising from generalizations of invertible synchronous
automata. If we allow invertible synchronous automata to have infinitely many
states, then groups generated by such automata are called self-similar. An intro-
duction to these groups can be found in Nekrashevych’s book [11]. In [15], Slupik
and Sushchansky study semigroups arising from partial invertible synchronous au-



200 D. McCune

tomata. Cain, Reznikov, Sushchansky, Silva, and Steinberg investigate automaton
semigroups, which are semigroups that arise from (not necessarily invertible) syn-
chronous automata (see [1], [12], and [14]). In [4], Grigorchuk et al. study groups
arising from asynchronous automata. In this paper we investigate semigroups arising
from asynchronous automata, and thus this paper contributes to the study of semi-
groups generated by automata.

In Section 2 we give all relevant definitions. We define a new subclass of asyn-
chronous automata which we call “expanding automata” (an expanding automaton
is an asynchronous automaton in which the range of the output function is the free
semigroup generated by the alphabet, not the free monoid). We then define the semi-
groups associated with the different types of automata. Briefly, if & is a type of
automaton (e.g. synchronous or expanding), then a /2 automaton semigroup is a
semigroup that arises from a J automaton and which acts as transformations of a
free monoid. Similarly, a d-# automaton semigroup is a semigroup that arises from a
& automaton and which acts as partial transformations of the boundary of the regular
rooted tree that is associated with a free monoid. We finish Section 2 by showing
that each free partially commutative monoid is a synchronous automaton semigroup
(Theorem 2.5), and refer the reader to [10] by the author for a proof that each free
partially commutative semigroup is an expanding automaton semigroup.

In Section 3 we investigate the dynamics of the actions of these semigroups on
regular rooted trees. In Lemma 3.1, we show that there is no algorithm that takes as
input as expanding automaton + and two states ¢ and r of 4 and decides whether or
not ¢ and r have a coincidence point in the corresponding tree (if f, g: X — Y, then
a coincidence point is a point x such that f(x) = g(x)). Lemma 3.1 also shows the
analogous result for the action on the boundary of the tree. We also show in Section 3
that there is no algorithm which takes as input an asynchronous automaton < and a
state ¢ of # and decides whether or not ¢ has a fixed point in the corresponding tree.
For this theorem, we again prove the analogous result for the action on the boundary
of the tree. These last two results can be found in Theorem 3.3. We conclude Section 3
by demonstrating an algorithm that will find any fixed points of a transformation of
the boundary of a tree where the transformation arises from an expanding automaton
(Proposition 3.4).

In Section 4 we turn to describing the algebraic theory of these semigroups. We
begin by showing that all of the various classes of semigroups are distinct classes.
In particular, in Theorem 4.1 we show that synchronous automaton semigroups, ex-
panding automaton semigroups, d-expanding automaton semigroups, asynchronous
automaton semigroups, and d-asynchronous automaton semigroups are each a dis-
tinct class of semigroups. This theorem is proved through six propositions (Proposi-
tions 4.2—4.7). In Proposition 4.2 we give an infinite class of expanding automaton
semigroups that are not synchronous automaton semigroups. In Proposition 4.3 we
use residual finiteness to show that the class of expanding automaton semigroups
is strictly contained in the class of asynchronous automaton semigroups. In Propo-
sition 4.5 we show that the class of expanding automaton semigroups is strictly
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contained in the class of d-expanding automaton semigroups. In Proposition 4.6 we
use the bicyclic monoid (the monoid with presentation Mon{a, b | ab = 1)) to prove
that the class of d-expanding automaton semigroups is strictly contained in the class
of d-asynchronous automaton semigroups. We conclude section 4 by showing that
the class of asynchronous automaton semigroups is strictly contained in the class of
d-asynchronous automaton semigroups (Proposition 4.7).

In Section 5 we continue to study the basic algebraic theory of these semigroups,
with an emphasis on subgroups. In Proposition 5.1 we show that expanding automa-
ton semigroups are residually finite, and in Proposition 5.2 we show that the bicyclic
monoid is not a submonoid of any d-expanding automaton semigroup. In Proposi-
tion 5.4 we show that a group G is a d-expanding automaton semigroup if and only
G is an automaton group. In Proposition 5.5 we show that if S is a d-expanding
automaton semigroup with a unique maximal subgroup G, then G is a self-similar
group. This Proposition has as a corollary (Corollary 5.6) that if # is an invertible
synchronous automaton, then the group of units of the semigroup generated by A
is a self-similar group. We conclude the paper by showing that if S is an asyn-
chronous automaton semigroup and G is a subgroup of S, then G is residually finite
(Proposition 5.7).

2. Definitions and examples

In this section we state the various definitions and notations required. We also give
our first class of examples—we show that every partially commutative monoid and ev-
ery partially commutative semigroup arise as asynchronous automaton semigroups.
In particular, we give synchronous automata generating each free partially commu-
tative monoid. We then refer the reader to Theorem 3.4.11 of [10] by the author for
asynchronous automata giving each free partially commutative semigroup.

2.1. Automata and semigroups. We now define four different types of automata
that we will use in this paper and the following. We first note that our definition of
“automaton” differs from the definition found in the classical literature on automata.
Hopcroft and Ullman in their book [7] refer to the automata in this paper as a specific
kind of “transducer”. We use “automaton’ rather than “transducer” in order to agree
with the literature on automaton groups.

Given a set 3, let =T denote the free semigroup generated by X, let £* denote
the free monoid generated by X, and let ¥* denote the set of right-infinite words
over ¥. We will always denote the identity element of a free monoid by the empty
word @. Given a word w € X* and a natural number n € N, let w” denote the word
w...w, where w is written »n times.

To avoid ambiguity when presenting semigroups and monoids, we will use
Sg(X|R) to denote a semigroup presentation and Mon(X |R) to denote a monoid
presentation.
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Definition 2.1. An asynchronous automaton is a quadruple 4 = (Q, X, t, 0) where
Q is afinite set of states, X is a finite alphabet, 7 : Q x 3 — Q is atransition function,
and 0: Q x ¥ — X* is an output function.

We view an asynchronous automaton A = (Q, X,,0) as a directed labelled
graph with vertex set Q and an edge from ¢; to ¢, labelled by o|w if and only if
t(q1,0) = g2 and 0(q1,0) = w. If an edge of an automaton is labelled by o |w, we
call o the input letter of the edge and we call w the output word of the edge.

Each state ¢ € Q induces a function f;: £* — X* in the following way. Let
w € ¥*, and write w = 07 ...0,. Then f;(w) is the word obtained by feeding
01 ...0y, into the automaton as an input path (i.e., a path in the graph over the input
letters) starting at ¢ and recording the corresponding outputs. By abuse of notation,
we identify f,; with g as context should eliminate confusion.

Similarly, each state ¢ € Q induces a (possibly) partial function f*: £ — X¢.
Given aright-infinite word n € £, f”(n) is computed as in the previous paragraph:
we view 7 as an infinite path in the automaton starting at ¢ and f,”(n) is defined to

be the corresponding output path. We write ¢ for f;°, and we let Q £ denote the set

19“ 1q € 0}
Example 2.2. Consider the automaton 4 = (Q, X, ¢, 0) defined by
Q ={a,b}, X =101j,
t(a,0)=a, t(a,1)=>b, t(b,0)=1t(0b1)=b,
0(a,0) =00, o(a,1)=1, ob,00=0, o, 1)=1.

See Figure 1 for the graphical representation of 4. To compute a(0010), for
example, we view the word 0010 as a path in the automaton starting at @ over the input
letters. The corresponding output path is 000019 = 00001, and hence a(0010) =
00001. Similarly, »(0010) = 0010 = 1.

0100 111 olg
111

Figure 1. The automaton from Example 2.2.

To consider the action of ¢® and b® on X?, note that a®(111---) = 111--- =
b®(111---). On the other hand, a®(000---) = 000--- while 4b*(000---) =
@@ --- =0, and so b*(000- - -) is undefined.
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The set ©* can be identified with a regular rooted tree of degree |X|, where the
vertices of the tree are labelled by elements of X*. The root vertex is labelled by @
and a vertex labelled w has |X| children whose labels are wo for each o0 € X. We
do not distinguish between a vertex and its label unless context calls for a distinction.
The action of a state ¢ on X* can thus be visualized as a transformation of the
corresponding tree, where ¢ sends the vertex w to the vertex ¢g(w). Note that g
induces a prefix-preserving transformation of ¥*, i.e., if v is a prefix of w in X* then
q(v) is a prefix of g(w). Furthermore, ¢(@) = @.

The set X* can be identified with the boundary of the tree corresponding to X*.
Let k = |X|. Then X¢ is a metric space with the distance between two rays n
and y defined by d(n,y) = k="l where |5 A y| is the length of the longest
common prefix of 7 and y. The space ¢ with this metric is homeomorphic to the
Cantor set (its topology is the Tychonov product topology on =N, where X has the
discrete topology). Hence a transformation g® can be viewed as a continuous partial
transformation of the boundary of a tree. For more details, see Section 2 of [4].

Let A = (Q, X,t,0) be an asynchronous automaton. There is a natural ho-
momorphism ¢4: O — p-pT(X*), where p-pT(Z*) denotes the semigroup of
prefix-preserving transformations of £* that fix §. Similarly, there is a natural ho-
momorphism ¥4 : (Q¥)* — End dX*, where End 9X* denotes the semigroup of
continuous partial transformations of the boundary of the tree. This leads to the
following definition.

Definition 2.3. Let A = (Q, X, t, 0) be an asynchronous automaton. Then the asyn-
chronous automaton semigroup corresponding to 4, denoted S(+4), is the image of
¢ 4. The 0-asynchronous automaton semigroup corresponding to #, denoted 95 (A),
is the image of ¥ 4. A semigroup S is an asynchronous automaton semigroup if there
exists an asynchronous automaton 4 with S = S(+). Similarly, a semigroup S is a
d-asynchronous automaton semigroup if there exists an asynchronous automaton <

with § = 3S ().

Example. Let 4 be the automaton from Example 2.2. We compute S(-4) and 0.5 (A).

To compute S(+), first note that the range of b is {1}* and b fixes this set. Thus b
is idempotent. Since a also fixes {1}*, we have ab = b. Let w € {0, 1}*, and write
w = 0M 1" O™ 17 Letr = Y *_, n;. Then

ba(w) = b(0*"'17) = 1" = b(w),

and so ba = b. Finally, note that a is not periodic as a”(0) = 0%"'. Thus S(+4) is
the free semigroup of rank 1 with a zero adjoined, i.e.,

S(A) = Sg(a,b | b2 = b,ab = ba = b).

To compute dS (), note that the range of b in {0, 1}* is 111--- and b® fixes
111---. Hence b* is idempotent. Since a® fixes 111---, b® is a zero element in
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the semigroup. Note that a® is not periodic as (a®)”(0111---) = 02" 1---. Hence
S (A) = S(A).

In the previous example, 0S(4) = S(4). In general, this is not the case. To give
a quick example, let 8 = ({a}, {0},¢, 0) where t(a,0) = a and o(a, 0) = 00. Then
S(B) is the free semigroup of rank 1 but .S (B) is the trivial semigroup. However,
it is straightforward to show that for any automaton A, 95 (+4) is a quotient of S(+A).

We now give the remaining necessary definitions. An expanding automaton is
an asynchronous automaton in which the range of the output function is £ (rather
than X*). In the graphical representation of an expanding automaton, @ is never an
output word. A synchronous automaton is an asynchronous automaton in which the
range of the output function is . In the graphical representation of a synchronous
automaton, the output words are words of length one (i.e., the output words are output
letters). An invertible synchronous automaton is a synchronous automaton in which,
for each state g, the restricted function o|yxx : ¢ X ¥ — X is a permutation of X. In
the graphical representation of an invertible synchronous automaton, for every state
each letter of X appears once and only once as an output letter.

Analogous to Definition 2.3, an expanding automaton semigroup is a semigroup
S such that there exists an expanding automaton + with S(A) = S. A semigroup
S is a d-expanding automaton semigroup if there exists an expanding automaton 4
with 0S(A) = S. A synchronous automaton semigroup is defined similarly. Tt is
known that if A is a synchronous automaton then S(4A) =~ 0S5(+4) (see Lemma 2.2
of [1]), so we do not discuss d-synchronous automaton semigroups. In the previous
literature, synchronous automaton semigroups are simply referred to as “automaton
semigroups”; we use the longer name to avoid ambiguity in the context of asyn-
chronous automata. If 4 is an invertible automaton, then the states of the automaton
induce graph automorphisms of the corresponding tree, and hence the states are invert-
ible. Thus an automaton group is a group associated with an invertible synchronous
automaton.

An automaton A = (Q, X, 1, 0) is infinite-state if |Q| = |N|. If &P is a type of
automaton, then a semigroup S is a &P self-similar semigroup if S = S(A) where A
is a # automaton and A is allowed to be infinite-state. A 0-P self-similar semigroup
is defined analogously.

Let T; denote the transformation semigroup on d objects andlet ¥ = {1,...,d}.
We write an element ¢t € Ty as [ky,...,kg] where t(i) = k;. Let f € p-pT(Z¥).
Then f decomposes as

f=1m.... fa) (1)

where 7 € Ty and, foreachi € X, f; € p-pT (X*) is characterized by the equation
fiw) = 1¢(i) fi(w) for all w € X*. The function f; is called the section of f
at i. For any v € X*, we inductively define the section of f at v as the function f,
where f,, is characterized by the equation f(vw) = f(v) fy(w) for all w € £*. In
terms of an automaton A4 = (Q, X,¢,0), if ¢ € Q then g, = t(q, o). Similarly, for
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any v € X7, g, is the state of 4 such that there is a path from ¢ to g, where the
label of the path over the input letters is v. Thus when presenting automata we may
just give the decompositions of the states as in Equation 1, as this is a quicker way
of presenting an automaton than writing out the transition and output functions. For
example, consider the automaton from Example 2.2 (see Figure 1). Then ag = @ and
ay = b,and so t(a,0) = a and t(a, 1) = b. Similarly o(a,0) = 00, o(a,1) =1,
t(b,0) = b, and so on.
Let f =17 (f1,..., fa) and g = 1¢(g1....,8q)- Then

fog=[fe(D),.... f(re@D](fro1)&1: - fro(a)8a)- (2)

Given an automaton A = (Q, X,t,0) and an element s € S(A) where s ¢ Q,
Equation 2 allows us to construct a new automaton 8 such that s is a state of 8 and
S(8B) = S(A). Thus, in many of the proofs below we will assume without loss of
generality that a given element of an asynchronous automaton semigroup is a state
of the given automaton. Finally, note that (f o g)® = f“ o g, and so we can make
the same assumptions when considering d-asynchronous automaton semigroups.

2.2. Free partially commutative monoids. In this section, we give automata gen-
erating each partially commutative monoid. A free partially commutative monoid is
a monoid with presentation Mon(xy,...,x, | R) where R C {(x;xj,x;x;) | 1 <
i,j < n}. Afree partially commutative semigroup is defined analogously.

Let M be a free partially commutative monoid with presentation Mon (X |R). We
begin by defining the shortlex normal form on M. First, if v € X*, |v| will always
denote the length of v in X™*. Order the set X by x; < x; whenever i < j. If
v,w € X*, letv < w if and only if |v| < |w| or, if |[v] = |w|, v comes before w in
the dictionary order induced by the order on X. This is called the shortlex ordering
on X *. To obtain the set of shortlex normal forms of M, for each w € M choose
a word w’ € X™* such that w = w’ in M and w’ is minimal in X* with respect
to the shortlex ordering. We remark that it is immediate from this definition that a
word w € X* is in shortlex normal form in M if and only if for all factorizations
x = ybuaz in M where y,u,z € X*, a and b commute, and a < b, there is a letter
of u which does not commute with a.

For any w € X™, let w(x;, x;) denote the word obtained from w by erasing
all letters except x; and x;. We write w(x;) to denote the word obtained from w
by deleting all letters except x;. We will need the following lemma regarding free
partially commutative monoids.

Lemma 2.4. Let M be a free partially commutative monoid generated by X =
{X1,...,Xn}, and let v,w € X* such that v and w are in shortlex normal form in
M. Suppose that

(D) v(x)| = |lw(x;)| for 1 <i <nand
(2) v(x;,x;) = w(x;, xj) in X* whenever 1 < i, j <n and x; and x;
do not commute.
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Thenv =win M.

Proof. Let v,w € M be words satisfying |v(x;)| = |w(x;)| for all i. This implies
that the number of occurrences of x; as a letter of v equals the number of occur-
rences of x; as a letter of w. In particular, [v| = |w|. Write v = x;, ...x;, and
w = Xxj; ...Xj, with v, w in shortlex normal form. Suppose that x;; < x;,. Then
v(x;,, Xj,) # w(xi,,x;,;)in X*, and condition (2) in the hypotheses implies that x;,
and x;, commute. Condition (1) implies that x;, is aletter of v and x;, is aletter of w,
and so we write v = x;, V1 X}, V2 where vy does not contain x;, as a letter. Similarly,
write w = xj, w1x;, w2. Condition (2) implies that x;, commutes with every letter
of wy. Since x;; < xj;, we have that w was not in lexicographic normal form. Thus
Xi, £ Xj,, and symmetry implies x;, £ x;,. So x;; = xj,. Inductively continuing
the argument implies that x;, = x;, forall 1 <t <k. O

Theorem 2.5. Every free partially commutative monoid is a synchronous automaton
semigroup.

Proof. Let M be a partially commutative monoid generated by X = {x1,...,x,}.
Let N = {{i,j} | x; and x; donotcommute}. Let A = {a;.....a,}, B =
{b1,....b,},C ={cij |i <jand{i,j} € N},and D = {d;; |i < jand{i,j} €
N} be four alphabets where C, D are in bijective correspondence with N. We
construct an automaton Ay, with state set O := {y1,..., yu, 1} over the alpha-
bet X = AU B UC U D such that S(Aps) = M as follows. Let 1 be the sink state
that pointwise fixes ¥*. For each i, define

t(yi,a;) =1 forall j, t(yi,bj) = {f’ z ;j

and
o) = {2120 = {120
aj, I # . bj. i # ]

By construction, the subautomaton consisting of the states y; and 1 over the
alphabet {a;, b; } is the adding machine automaton (see Figure 1.3 of [11]) for all ;.
Note that for any k > j, y/(a}’) # y¥(a*), and so the semigroup corresponding
to this subautomaton is the free monoid of rank 1 for all ;. Thus each y; acts non-
periodically on {a;, b; }* for all i. Furthermore, if i # j then y; induces the identity
function from xX* to xX* where x € {a;, b;}.

We now complete the construction of . Fix i < j with {i, j} € N, and let
keNsuchl <k <mandk #1i, j. Define

t(yi.cij) =yj, tQi.dij) =y, t(y;.cj) =y, t(y;,dij) =y;,

o(yi.cij) =dij, o(yi.dij) =cij, o0(y;.cij) =cij, o(yj,dij) =dij.
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1(Vkscij) =t (V. dij) = 1,
o(yk.cij) = cij, t(yk.dij) = dj.
For all other i’, j’ such that {i’, j'} € N and i’ < j’, define the output and transition
function analogously. Figure 2 gives the automaton «4 ;s where M is the free partially

commutative monoid Mon(y1, y2, ¥3 | Y1¥2 = Y2¥1, Y1¥3 = y3)y1) (we omit the
arrow on the identity state).

Figure 2. An automaton giving the monoid Mon(y1, y2, y3 | y1¥2 = ¥2V1, Y1¥3 = Y3V1)-

For each {i, j} € N, the subautomaton of 4y, corresponding to the states y;
and y; over the alphabet {c;;, d;;} is the “lamplighter automaton” (see Figure 1.1 of
[6]). Grigorchuk and Zuk show in Theorem 2 of [6] that this automaton generates the
lamplighter group, and in particular in Lemma 6 of [6] they show that the states of
this automaton generate a free semigroup of rank 2. Thus y; and y; generate a free
semigroup of rank 2 when acting on {c;;, d;; }*, and hence the semigroup generated
by y; and y; in S(sAps) is free of rank 2.

Letl <i,j <nbesuchthat{i, j} £ N. By construction of /s, y; and y; have
disjoint support, i.e., the sets {w € * | y;(w) # w} and {w € X* | y;(w) # w}
are disjoint. Thus if x; and x; commute in M, then y; and y; commute in S ().
So S(sAyr) is a quotient of M .

Let v, w € O such that v and w are written in shortlex normal form when con-
sidered as elements of M. Suppose that w(y;) # v(y;) for some i. By construction
of Ay, for any i # j we have y; acts as the identity function on {a;, b;}*. Thus
the action of v and w on {a;, b;}* is the same as the action of v(y;) and w(y;),
respectively, on {a;, b; }*. So w(y;) # v(y;) implies that v # w in S(#Ays). Hence
v = w in S(sAps) implies that w(y;) = v(y;) forall i.

Suppose now that there exist {r,s} € N such that v(y,, ys) # w(yr, ys). If
t # r,s, then y, acts like the identity function on {c,s, drs}*. Thus the action of v
and w on {c,s, d,s}* is the same as the action of v(y,, ys) and w(y,, ys), respectively,
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on {cys,drs}*. So v(yr,ys) #Z w(yr, ys) implies that v # w in S(sAy). Thus if
v = w in S(Ax) then v(y,, ys) = w(yy, ys) in Q* for all {r,s} € N.

The last two paragraphs have shown thatif v = w in S(#), then v and w satisty
the hypotheses of Lemma 2.4. Hence v = w in M, and the result follows. O

It is shown in Proposition 4.3 of [1] that the free semigroup of rank 1 is not a
synchronous automaton semigroup. The free semigroup of rank 1 is a free partially
commutative semigroup, so not all free partially commutative semigroups are syn-
chronous automaton semigroups. However, it is currently unknown if any other free
partially commutative semigroups are not synchronous automaton semigroups. In
particular, in [1] Cain provides synchronous automata giving each free semigroup
of rank at least 2 and each free commutative semigroup of rank at least 2, so there
are large classes of free partially commutative semigroups that arise in the class of
synchronous automaton semigroups. In any case, the author provides expanding au-
tomata that give each free partially commutative semigroup in Theorem 3.4.11 of
[10]. The proof scheme is essentially that of the proof of Theorem 2.5.

3. Dynamics of asynchronous automaton semigroups

The goal of this section is to show that there is no algorithm which takes as input an
asynchronous automaton +4 over an alphabet ¥ and an element s € S(+) and decides
whether or not s has a fixed point in . We show the analogous statement for 0-
asynchronous automaton semigroups, i.e., we show that there is no algorithm which
takes as input an asynchronous automaton #4 over an alphabet ¥ and an element
s € 0S5(4A) and decides whether or not s has a fixed point in X®. These results
show that the actions of asynchronous automaton semigroups are more complicated
than the actions of automaton groups, as there is an algorithm that takes as input an
automaton group G and an element ¢ € G and decides whether or not g has a fixed
point in the corresponding tree. There is also an algorithm which decides whether
or not g, has a fixed point in the boundary of the corresponding tree. These two
algorithms for automaton groups are straightforward.

Let f, g be maps X — Y. A point x € X is a coincidence point of f and g
if f(x) = g(x). We begin this section by showing that there is no algorithm that
decides if two elements of an expanding automaton semigroup have a coincidence
point.

Before we show the results regarding coincidence points, we mention that Grigor-
chuk et al. show in Proposition 2.8 of [4] that the uniform word problem is decidable
for d-asynchronous automaton semigroups. We show in Section 4 below that every
asynchronous automaton semigroup is a d-asynchronous automaton semigroup, and
hence the uniform word problem is decidable for the class of asynchronous automaton
semigroups. Thus there is an algorithm that takes as input a d-asynchronous automa-
ton semigroup S over an alphabet X and s;,s, € S and decides whether or not



Semigroups arising from asynchronous automata 209

s1(n) = s2(n) for all n € X®. We show below that there is no algorithm that takes as
input an d-expanding automaton semigroup S over an alphabet ¥ and 51, 5, € S and
decides if there exists an infinite word 1 € X% such that s1(n) = s2(). Lemma 3.1
is therefore interesting in its own right, as it shows that a decision problem that is
obtained from slightly tweaking the word problem turns out to be undecidable.

Lemma 3.1. There is no algorithm which takes as input an expanding automaton
A = (0, X,t,0)and states q,r € Q anddecides whether ornot q andr (respectively
q® and r®) have a coincidence point in ¥ (respectively ).

Proof. We show undecidability by embedding the Post Correspondence Problem. Let
X = {x1,..., X, beanalphabet, andlet V = (vy,...,v,) and W = (wy, ..., wy)
be two lists of words over X. Let Y = {1,...,n} € N and Z = {z1,z5} be
alphabets such that X N Y N Z = @. Undecidability of the Post Correspondence
Problem implies that, in general, we cannot decide if there is a sequence (y1,..., y¢)
of elements of Y such that vy, vy, ... Uy, = Uy Uy, ... Uy,.

We build an expanding automaton Ay, y,w over the alphabet ¥ := X UY U Z
as follows. Let the state set Q of Ax,y,w be {a, b}, and let

t(q,0)=gq forall g€ Q, 0 € X,

o(a,i)=v; for 1 <i <n, o(a,0)=2z; foroceX-Y,
o(b,i)=w; for 1 <i <n, o(b,o)=12z, forceX—Y.

Figure 3 shows sx yw where X = {s,1},V = (st,15%,t%),and W = (s2,1sts,2%5).

-2
1]st 2|ts 3|t - 1|11;1:53|t25
zlz, sfz, slz, 1z,
Zl, 1z, Zlz, 7l

Figure 3. The automaton 4y y.yw where X = {s,t}, V = (st,ts%,t?), and W =
(sz,tsts,tzs).

Note that for any w € £*, a(w) does not contain the letter z,; similarly, b(w)
does not contain the letter z;. Now if w € X* contains a letter of X U Z, then
we know a(w) # b(w) since a(w) contains the letter z; and b(w) contains the
letter z5. Thus if there is a word w € X* such that a(w) = b(w), then w € Y*.
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By construction of Ay yw, if y = y1y2...y» € Y* and a(y) = b(y), then
Uy, Vy, ... Vy, = Uy Uy, ...Uy,. Thus the expanding automaton Ay y,y simulates
Post’s problem, and since we cannot decide the Post Correspondence Problem, we
cannot decide if there is a word w € Y * with a(w) = b(w). This proves part (1).

It is shown by Rouhonen in [13] that the infinite Post Correspondence Problem
is undecidable. That is, there is no algorithm that takes as input two lists of words
Vi,...,Vy and wy,...,w, over an alphabet X and decides if there is an infinite
sequence (ix)g—, such that v; vj, - -+ = w;; Wi, .. .. Thus, using the same expanding
automata and logic as above, the corresponding decision problem on the boundary is
also undecidable. O

We now show that undecidability arises when trying to understand the fixed point
sets of elements of asynchronous automaton semigroups. If w € A* for a set A, let
Prefy (w) denote the prefix of w of length k.

Definition 3.2. Let A* be a free monoid. A subset C C A™ is a prefix code if
(1) C is the basis of a free submonoid of 4™,
(2) ifc € C, then Prefi(c) € C forall 1 <k <|C|.

The prefix code Post correspondence problem is a stronger form of the Post Corre-
spondence Problem. The input of the prefix code Post Correspondence Problem is two
lists of words vy, ..., v, and wy, ..., w, over an alphabet X such that {vy,...,v,}
and {wq, ..., wy} are prefix codes. A solution to the problem is a sequence of indices
(ix)1<k<m with 1 < iy < n such that v;, ...v;,, = wj, ...w;,,. Rouhonen also
shows in [13] that this form of Post’s problem is undecidable. We use the prefix code
Post problem to prove the following:

Theorem 3.3. There is no algorithm that takes as input an asynchronous automaton
A over an alphabet X and a state q of A and decides whether or not q (respectively
q®) has a fixed point in S (respectively ).

Proof. Let ¥ be an alphabet and let C,D € X* be prefix codes where C =
{c1,....cm} and D = {d1,...,dm}. Let Ax c,p be the expanding automaton
with states ¢, d that we constructed in the proof of Proposition 3.1. Then 4Ax c.p
is an expanding automaton over the alphabet X := {1,...,m} U X U {z1, z»} such
that o(c,i) = ¢; and o(d,i) = d;. We build an asynchronous automaton B over the
alphabet X with a state ¢’ such that ¢’c is the identity function from {1,...,m}* to
{1,...,m}*. We know that there is a function ¢’: £* — {1, ..., m}* such that ¢’c is
the identity because {ci, ..., cn} generates a free monoid, so ¢ induces an injection
from {1,...,m}* to &*.

We begin construction of B by starting with a single state ¢/, and then attaching
a loop based at ¢’ such that the input letters of the loop read the word ¢; when read
starting at ¢’. We define the corresponding output word, when read starting at ¢/, to be
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(@)!e11=11. In other words, the first |¢;|—1 edges of the loop have the form x |@, and the
last edge of the loop has the form x|1. Next, we attach a loop at ¢’ such that the input
letters of the loop when read starting at ¢’ read the word ¢, and the corresponding
output word is (9)/¢2712. If ¢; ad ¢, have a non-trivial common prefix, then the
resulting automaton with two loops is not deterministic. In this case, we “fold” the
maximum length common prefixes together, resulting in a deterministic automaton.
We iteratively continue this process until we can read the words ¢y, ..., ¢, as input
words starting at ¢/, and ¢’(¢;) = i for all i. Note that we can do this process since ¢;
is not a prefix of ¢j forany i # j. At this step in the construction of B, B is a partial
asynchronous automaton, i.e., given a state of ¢ of 8, the domain of g is not all of
X*. However, we do have ¢’c is the identity function {1, ..., m}* — {1,...,m}*
by construction of B. In order to make 8 an asynchronous automaton, for each state
q in B and each letter x € X such that 7(¢q, x) is undefined, let #(¢,x) = ¢g and
o(q,x) = 0.

Recall that in the proof of Lemma 3.1, in general we cannot find w € {1, ..., m}*
such that ¢c(w) = d(w) because such a w is a solution to the Post Correspondence
Problem. By construction of B, any w € {1,...,m}* such that ¢’'d(w) = w =

¢’c(w) is a solution to the prefix code Post Correspondence Problem. Now ¢’d is an
element of the asynchronous automaton semigroup generated by the states of Ax ¢ p
and 8. Thus, undecidability of the prefix code Post Correspondence Problem implies

part (1).

In[13], Ruohonen shows that the that there is no algorithm which takes as input two
lists of words vq,...,v, and wy, ..., w, over an alphabet X such that {vy,...,v,}
and {wy, ..., w,} are prefix codes and decides whether there is an infinite sequence of
indices (ix )3, suchthatv; vj, - -+ = w;, wj, . ... Thus, using the same constructions
and logic as above, the corresponding decision problem on the boundary is also
undecidable. O

We close this section by showing that there is an algorithm that decides whether
or not an element of a d-expanding automaton semigroup has a fixed point in the
boundary of the corresponding tree. To do so, we need the following definition: if +4
is an automaton, then an inactive path in 4 is a path in #4 such that each edge of the
path has a label of the form o|o (we also count the empty path as inactive). The logic
of the following proof can mostly be found in Section 2.1 of Lothaire’s book [9].

Proposition 3.4. There is an algorithm that takes as input an expanding automaton
A = (0, X,t,0) and a state g € Q and decides whether or not g® has a fixed point
in X%,

Proof. Suppose first that there is an inactive circuit in # that is accessible from g via
an inactive path. Then the infinite word obtained from traveling along the inactive
path and then winding around the inactive circuit is a fixed point of g.

Suppose next that there is an edge coming from ¢ with a label of the form o|ow
where w € £, Then a quick induction shows that ¢” (¢) is a prefix of ¢" (o) for
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all n € N. Inductively, write ¢"(0) = cwwy ... w,—1 Where g(lcwwy ... wy—3) =
OWwy ... Wy—p. Let n = Owwyiwy ..., ie., n = lim,_ o ¢”(0). Note that 7 is an
infinite word because + is an expanding automaton. Then 7 is a fixed point of g,
and in fact 7 is the only fixed point of ¢ that begins with the letter o (see Section 2.1
of [9], where Lothaire uses the same procedure to obtain the Thue—-Morse sequence).

The previous paragraphs show that if (a) there is an inactive circuit accessible
from ¢ via an inactive path or (b) there is a state ¢’ with an edge of the form o|ow
where w € X1 such that ¢’ is accessible from ¢ via an inactive path, then ¢® has a
fixed point in £“. We show that the converse is also true.

Suppose that neither (a) nor (b) holds. Since (a) does not hold, there are finitely
many inactive paths in # beginning at g. Let g1, ..., gm be the terminal vertices of
the inactive paths. Since condition (b) does not hold, for each 1 < i < m every edge
beginning at ¢; has a label of the form o|o’w, where 0/ € ¥ — {0} and w € T*.
Thus g® does not have a fixed point, and we have shown the converse. O

We conclude this section with the following remark, which reiterates one of the
ways in which a state of an expanding automaton can have a fixed point on the
boundary of the corresponding tree.

Remark 3.5. Let A = (Q, X,t,0) be an expanding automaton and let ¢ € Q. If
there is an edge coming from ¢ with a label of the form o|ow for some w € X7,
then ¢ has exactly one fixed point in 0 .

4. Distinguishing classes of semigroups

The goal of this section is to distinguish the various classes of semigroups. In partic-
ular, we show the following theorem.

Theorem 4.1. Let SAS denote the class of synchronous automaton semigroups, EAS
denote the class of expanding automaton semigroups, 0EAS denote the class of 0-
expanding automaton semigroups, AAS denote the class of asynchronous automaton
semigroups, and 0AAS denote the class of d-asynchronous automaton semigroups.

Then
SAS € EAS <€ AAS

N N
IEAS < 0AAS.

We break the proof of Theorem 4.1 into five propositions below. Each proposition
deals with one of the strict containments in the above theorem.

Proposition 4.2. The class of synchronous automaton semigroups is strictly con-
tained in the class of expanding automaton semigroups.
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Proof. Let m,n € N — {1}, and let S,, , denote the semigroup with semigroup
presentation (a,b | b™ = b",ab = b). We show that S, , is not a synchronous
automaton semigroup for any distinct m,n, but S, , is an expanding automaton
semigroup for any distinct m, n.

Note that for any distinct m,n € N with m < n, the rewriting system defined by
the rules ab — b and b” — b™ is terminating and confluent. Thus {b7a* | j =
1,...,n—1, k € N} is a set of normal forms for Sy, ,, and so a” # a® in Sy, , for
any distinct r, s € N (i.e., a is not periodic).

We begin by showing S, , is not a synchronous automaton semigroup. Fix
1 <m < n. Let Ay, = (Q,X,¢,0) be a synchronous automaton such that
S (#Am,n) is generated by two elements a and b with b = b" and ab = b. We show
that a is periodic in S (4, »). Without loss of generality, we assume that a and b are
both states of A, ,. Let 01 € X be such that there exists a minimal number n > 0
with a" (01) = 07. Since the action of a is length-preserving, there must exist such a
o1. Let {01, ...,0,-1} be the orbit of o7 under the action of @ where a(0;) = 0j4+1
forl <i <n-—2anda(o,—1) = 01.

First suppose that ag; = a™ foreachl < j <n—1. If m; > 1forsome j, then
(@™)g; = a"' where ny > mj, (a"l)aj = a2 where n, > ny, and so on. In this
case, a will have infinitely many sections, which cannot happen since a is a state of
a finite automaton. Thus m; = 1 for all j. Note that if a¥ (o) = oy for some k > 0
and o € X, then the same logic implies that if a;, = a” for some r then r = 1. Thus
we see that if 0 € X and the section of a at a¥ (0) is a power of a for all k, then the
section of a at a¥ (o) is a for all k > 0. Suppose that a; = a forall ¢ € X. Since
the action of a is length-preserving, there exist distinct r, s € N such that t] = 7.
Then, as the only section of a is a, we have a” = a°.

Suppose now that there is a letter 0 € X such that there exists ¢’ in the forward
orbit of o under the action of @ where a,’ & (a). Since ab = b and b is periodic, there
exist distinct mqy, ny € N with ngy > mg such that (a™o), = (amﬁJrk(nﬁ_m“))g for
any k € N. To see that this is true, let # be the minimal number such that the orbit of
a' (o) under the action of a is a cycle. Since the action of a is length-preserving, there
must exist such a #. Suppose that there is a k € N such that k > ¢ and the section
of a at a® (o) is b'a’ for some i € N and j € N U {0}. Then the relation ab = b
implies that for any k¥’ > k we have (a¥'), = b’ a’ for some i’. Periodicity of b
then implies that there are mqy,n, > k as desired. Suppose, on the other hand, that
the section of a at a” (o) is in (a) for all » > ¢. Let ¢ be the maximal number such
that the section of a at a®(o) is notin {(a) and let p € N. Then (a°*?), = a"? (a®),
for some n, € N and the relation ab = b implies that (a°*?), = (a),. In this
case welet mgy = candng = c + 1.

Let & = {0 € £ | (a")s & (a) for some r}. By the preceding paragraph, for
eacho € S choose mq,ny € N such that (™) = (a™otk(o—n0))  Since g acts
in a length-preserving fashion, there exist distinct 71, , such that 72! = 71T+~
for all kK € N. Thus we can choose distinct s,¢ € N such that 7,5 = T s+x¢—s and



214 D. McCune

(@)s = (@*Tk=9) forallo € £ and k € N. We claim that a® = a’. To see
this, let § € X. If n € S, then the choice of s and ¢ implies that (a*), = (a’)y.
Fix § ¢ S. Then (a*)s = a® and (a')s = a’, so the choice of s and ¢ implies that
T(as)s = Ual)s- Ifne i, then

(@)sy = @)y = (@")y = (@")sy-
Ifn¢ S then (a®)sy = a® and (a')s, = a’, and so T(a%)sy

w € X* and write w = 07 ...0y,. Suppose there is an i € N such that o; € T and
01,...,0i_1 € X — 2. Then

= U(at)y,- Similarly, let

(as)w = (as)cri...an = (at)(r,n..an = (at)w-

On the other hand, if w € (¥ — f))* then 7(4s),, = Tas = Tyt = T(4r),,. Thus
a® = a', and so S(An ) is not Sy ».

Fix 1 <m < n,and let ¥ = {01,...,0,} be an alphabet. Let 4, , be the
automaton over the alphabet X with states ¢ and b (which depend on m, n) defined
by

a = [0101,02,...,04(a,...,a), b=1(b,...,b)

where

Oi+1, 1 =i <n,
wp(0i) = 5 i
mos - .

Then b™ = b" in S(Am ). Note also that the range of b is {02,...,0,}*, and a
fixes this set. So ab = b. Now fix i, j € N such thati < n. Then bial (o)) =
bi(0?') = 02’ . Thus b'a’ = b*a' in S(Am ) ifand onlyifi = k and j =/, and
we have S(Am.n) = Smon- ]

Recall that the bicyclic monoid is the monoid with presentation B := Mon({(a, b |
ab = 1). This monoid is not residually finite (see chapter 5 of [9] by Lallement),
and in Proposition 5.1 below we show that expanding automaton semigroups are
residually finite. Thus B is not a submonoid of any expanding automaton semigroup.
We use this fact to distinguish the class of expanding automaton semigroups from the
class of asynchronous automaton semigroups.

Proposition 4.3. The class of expanding automaton semigroups is strictly contained
in the class of asynchronous automaton semigroups.

Proof. We show the proposition by demonstrating an asynchronous automaton that
gives the bicyclic monoid.

Consider the asynchronous automaton given in Figure 4. We show that S(+4) has
presentation Mon({a, b | ba = 1), and so S(+A) is the bicyclic monoid.

Note that e pointwise fixes {0, 1}*, and hence e is an identity element of S(+A). Let
w € {0, 1}*. Then ba(Ow) = H(00w) = Ow and ba(lw) = b(11w) = lw. Hence
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Figure 4. The automaton from Proposition 4.3.
ba = e. On the other hand, ab(0) = a(@) = @, and so ab # e. Corollary 1.32 of the

book [2] by Clifford and Preston then implies that S(+A) is the bicyclic monoid. [

Let N? denote the free semigroup of rank 1 with a zero adjoined, i.e., N* =
Sg(a,b | b*> = b,ab = ba = b). We show below in Proposition 4.5 that N°
is not an expanding automaton semigroup, but that N is a d-expanding automaton
semigroup. First, we need the following lemma.

Lemma 4.4. N° is not a synchronous automaton semigroup.

Proof. Suppose S is a synchronous automaton semigroup over an alphabet ¥ =

{o1,...,0,} such that S is generated by two elements a and b with ab = ba = b
and b?> = b. We use the same idea of the proof of Proposition 4.2 to show that a is
periodic.

Let 0 € X. Suppose that the section of a at a”(0) = b for some n. Then
(@")e = (a"1k), for all k € N. If the section of a at a” (o) is a power of a for all
n, then (as in the proof of Proposition 4.2) the section of a at a” (o) is a for all n.

LetS ={o X | (@")o = b for some r}. As in the proof of Proposition 4.2, we
can choose s and ¢ such that 7,5 = 7, and (a®)y = (a’), forall o € . Then the
logic of the proof of Proposition 4.2 shows that a® = a’. O

Proposition 4.5. The class of expanding automaton semigroups is strictly contained
in the class of 0-expanding automaton semigroups.

Proof. First we show containment. Let A = (Q, X, ¢, 0) be an expanding automaton.
Let x be a symbol not in ¥, and let ¥’ = ¥ U {x}. We construct a new automaton
B =(0,%,t',0)suchthat S(B) =~ S(+4)and IS(B) = S(B). If (¢,0) € O x X,
define t'(q,0) = t(q,0). Foreach g € Q, lett'(g,x) = ¢. Similarly, for each
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(g.0) € O x X let 0'(q,0) = 0(q,0) and 0'(g,x) = x. Then S(B) = S(A).
Let g1,92 € Q* be distinct elements of S(+4). Then there is a w € X* such that
q1(w) # q2(w). Now g1 (wx®) = q1(w)x® # q2(w)x® = g2(wx®), and so q;
and ¢, are distinct elements of 0.5(8). Since dS(B) is a quotient of S(B), we have
shown that S(B) = dS(B).

We now show that N is not an expanding automaton semigroup. Let S =
(a,b | b> = b, ab = ba = b) be the free semigroup of rank 1 with a zero
adjoined, and suppose S were an expanding automaton semigroup corresponding to
the automaton A = (Q, X,¢, 0). Since b is idempotent, b fixes range(b). Hence the
set & = {o € ¥ | b(0) = o} is non-empty. Since b is the only idempotent of S,
bs = b forall6 € %.

Leto € & — 3, and suppose that by = a” for some n > 0. Let w € £*. Then
b(ow) = b(o)a™(w). Since b fixes range(b), we have that b(b(ocw)) = b(o)a" (w).
We also have that b fixes (o) and the section of b at b(o) is b. Thus b fixes a” (w),
and (as w is arbitrary) ba” = a" in S. But ba” = b, which implies that a” is
idempotent. Since a” is not idempotent in S, we have b, = b for all o € X. Note
that b must be a state of 4 as powers of a cannot multiply to obtain b. Thus, in the
graphical representation of «A, all edges going out of b are loops based at b. Note
also that @ must be a state of .

LetI’ ={0 € ¥ : |a™(0)| = 1 for all m}. The equation ab = b implies that
a fixes range(b), and so I" is nonempty. In +4, for each state ¢ in (a) and y € T’
there is an arrow labeled by y|p coming out of ¢ where p € T'. Let w € I'* with
W = Y1...Yk. Suppose that [a(w)| > 1. Then w, as a path in 4 based at a, must
enter the state b. Choose i maximal so that y; ... y;_1 is a path such that the initial
vertex of each edge is not the state b. Then a(w) = y;...y; where y, € I for

l<m<i—1landy,, € S* fori <m < k. Since a fixes *, la™(w)| = |a?(w)]
for all n > 2. Thus for any w € T'*, |a/=!(w)| = |a* (w)| for any k > |Z|.
Suppose that |a(o)] = 1 for all 0 € X. Then the same logic as in the proof

of Proposition 4.2 shows that either a is periodic or has infinitely many sections
(note that the proof does not use that the periodic element acts in a length-preserving
fashion). Sotheset ¥’ = {0 € ¥ : |a(o)| > 1} is nonempty. Let ¢’ € X/, and
write a(0’) = o1...0y, where 0; € X. Suppose that 0; = ¢’ for some i. Then
b(a(c")) = b(oy1...0,) = b(01)...b(0m) = b(c”), and so |b(a(c"))| > |b(c”)], a
contradiction. Thus ¢’ is not a letter of a(¢”). The same calculation also shows that
o’ is not a letter of a” (¢”) for any n and that ¢’ is not a letter of a(o;) for any i.
Letw € X* and write w = 07 ... 0%. Suppose thato; & I" for somei. Then every
edge in # with input label o; has an output label without o; as a letter. Thus a” (w)
does not contain o; as a letter for any n. If a(w) € T'*, then as mentioned above a
will act in a length-preserving fashion on a!=!(w). Suppose that a(w) ¢ T'* where
oj & isaletter of a(w). Thena?(w) does not contain o; or o; as aletter. Continuing
inductively, we see that a!Zl(w) € T*. Thus there is an m € N such that a acts in
a length-preserving fashion on a”(w) for any w € X*, ie., [a™(w)| = |aF(w)|
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for k > m and any w € X*. This induces a length-preserving action of S on I'*,
contradicting Lemma 4.4. Hence N is not an expanding automaton semigroup.

To see that N? is a 0-expanding automaton semigroup, consider the automaton
given by the wreath decomposition a = [01, 11](b,a),b = [01,01](b, b). Then the
range of b® is n := 010101 - - -. By construction of the automaton, a® fixes 1 and so
ab = b. Since the range of b® is a single point, b?a® = b®. Finally, note that a®
is not periodic as (a®)"(1n) = 12", i.e., 17 has an infinite forward orbit under the
action of a®. Thus the semigroup generated by a® and b is N©. O

Proposition 4.6. The class of 0-expanding automaton semigroups is strictly con-
tained in the class of 0-asynchronous automaton semigroups.

Proof. Containment follows from the definitions of the kinds of automata. We show
in Proposition 5.2 that the bicyclic monoid is not a submonoid of any d-expanding
automaton semigroup, thus to show strict containment we show that the bicyclic
monoid is an a d-asynchronous automaton semigroup.

Let 4 be the automaton from Figure 4. Then e® is an identity element of 0.5 (+A).
Let n € X®. Then b®a®(0n) = b®(00n) = On and b®a®(1n) = b*®(11n) = 1.
Hence 6®a® = e®. On the other hand, a®b®(0111---) = a®(111---) = 111---,
and so a®?b® # e®. Thus Corollary 1.32 of [2] implies that d.S(+) is the bicyclic
monoid. O

Proposition 4.7. The class of asynchronous automaton semigroups is strictly con-
tained in the class of boundary asynchronous automaton semigroups.

Proof. To show containment, the logic and constructions are the same as those at the
beginning of the proof of Proposition 4.5.

To see that the containment is strict, note that Grigorchuk et al. in [4] demonstrate a
d-asynchronous automaton semigroup S such that Thompson’s group F is a subgroup
of S (see section 5.2 of [4]). Recall that F is an infinite simple group, and so F is
not residually finite. Thus S is not an asynchronous automaton semigroup, because
we show in Proposition 5.7 below that subgroups of asynchronous semigroups are
residually finite. O

At this time, we are unsure of the relationship between the class of d-expanding
automaton semigroups and the class of asynchronous automaton semigroups. We can
say that the class of asynchronous automaton semigroups is not contained in the class
of d-expanding automaton semigroups because the bicyclic monoid only appears in
one class, but we are unsure whether or not something stronger is true.

5. Algebraic theory

We now turn to studying the algebraic properties of semigroups given by asynchronous
automata.
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5.1. Residual finiteness and the absence of the bicyclic monoid
Proposition 5.1. Expanding automaton semigroups are residually finite.

Proof. Let S be an expanding automaton semigroup over the alphabet ¥ and let
a,b € S witha # b. Foreachm € N, let L(m) = {w € ¥* : |w| = m}, i.e,
L(m) is the mth level of the tree X*. Since a and b are distinct, there is n € N such
that @ and b act differently on L(n). Let

n' = max{|a(w)|, |b(w)| : w e L(n)}

and let £ = (U:’;1 L(i )) U {$}. Finally, let T'(£) denote the semigroup of trans-
formations £ — &£. Since £ is finite, 7'(£) is a finite semigroup. Define a homo-
morphism p: S — T(£) by p(s) = f where f($) = $ and

s(x), sx)ed,

flx) = {$, s(x) € &£.

Since a and b act differently on L (n), construction of p ensures that p(a) and p(b)
are distinct in T'(£). O

Proposition 5.2. Let S be a 0-expanding automaton semigroup. Then the bicyclic
monoid is not a submonoid of S.

Proof. Let A = (Q, X, t,0) be an expanding automaton and let S = dS(4). Sup-
pose that there exists elements a, b, c € S such that ¢ =c,ac =ca =a,bc =
bc = b, and ba = c. We show that ab = ¢, and hence the subsemigroup generated
by a, b, and ¢ is not the bicyclic monoid.

Since ca = a and cb = b, c fixes range(a) and range(b). Thus range(a) <
range(c). Since ba = c, b(range(a)) = range(c). Because c¢ is a continuous
transformation of X%, range(c) is a compact subset of X¢. Since + is an expanding
automaton, b is either an isometry or a contraction mapping of range(c). Thus if
range(a) < range(c), then b(range(a)) < range(c). Hence range(a) = range(c).
Thus both a and b are isometries on range(c), and therefore ab = ¢ onrange(c). Let
n & range(c). Then bab(n) = b(n) = bc(n). Since ab(n), c(w) € range(c) and b
acts injectively on range(c), we have ab(n) = ¢(n). Thus ab = c. O

Since the bicyclic monoid is not a submonoid of any d-expanding automaton
semigroup, an element s of d-expanding automaton semigroup is left invertible if and
only if s is right-invertible.

Remark 5.3. Let S be a 0-expanding automaton semigroup and let M be a submonoid
of S with identity 1. If a,b € M and ab = 1, then ba = 1. In other words, an
element s of a monoid arising from an expanding automaton is left invertible if and
only if s is right invertible.



Semigroups arising from asynchronous automata 219

5.2. Groups. In this section we investigate the subgroup structure of d-expanding
automaton semigroups and asynchronous automaton semigroups. First, some nota-
tion: let A = (Q, X, ¢, 0) be an invertible synchronous automaton. Then the inverse
automaton for 4, denoted by A ™!, is the automaton with state set 9!, alphabet X,
transition function #~!, and output function 0~!. The transition and output functions
are definedby 1~ (¢!, 0) = ¢, !ifandonlyift(q1,0) = gaando~ (g7, 01) = 02
if and only if 0(q, 02) = o1. This automaton is called the inverse automaton because
gq~! is the automorphism that pointwise fixes X*. Let AT! denote A U A ™.

Proposition 5.4. A group G is a 0-expanding automaton semigroup (respectively 0-
expanding self-similar semigroup) if and only if G is an automaton group (respectively
self-similar group).

Before we begin the proof, recall that an inactive path in an automaton A =
(0, Z,t,0) is a (possibly empty) path in 4 such that every edge on the path has a
label of the form o|o.

Proof. Let G be an automaton group corresponding to the invertible synchronous
automaton 4 := (Q, X,¢,0). Construct a new automaton 8 = 4 U A~!. Then
dS(B) = G and B is an expanding automaton. Thus G is an expanding automaton
semigroup.

Conversely, let 4 be an expanding automaton such that dS(+4) := G is a group.
Let e be a state of + such that e® is the identity element of G. Since e® is idempotent,
e? fixes its range in X“. In order for e to have a fixed point in X¢, there must exist
either (a) an inactive circuit in 4 accessible from e via an inactive path or (b) an
edge in + with a label of the form o |ow for some w € T accessible from e via an
inactive path (see Remark 3.5 above).

Letg € Q. Since ¢“ € G, range(¢®) = range(e®) and ¢® acts bijectively on
range(e®).

Since e? is the only idempotent of S, any inactive path in +# that begins at e must
also end at e. So any fixed point of e® that arises from condition (a) above must
define a path in # that never leaves e.

Suppose there is an edge y in 4 such that y begins at e and y has a label of the
form o |ow for some w € X7, i.e., e® has a fixed point arising from condition (b)
above. Recall from the proof of Proposition 3.4 that, in this case, e has precisely
one fixed point in ¢ X®. Furthermore, all words in 0 X“ must be mapped to this
fixed point by e® because e® is idempotent. Hence the range of (e,)® is a single
point, and hence (ey)® is idempotent. Thus y must be a circuit at e. Suppose there
is another circuit at e with a label of the form §|6 where § € X. Now e® has a unique
fixed point x in 0 X?, and all other words in o ¥“ must be mapped to x by e®. But
e®(0886---) = owdds--- and e“(00688---) = owowdds---. Thus if e® has
a fixed point arising from condition (b) above, then e® does not have a fixed point
arising from condition (a) above. Hence, in the case that e® has a fixed point arising
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from condition (b), we have that e® has only finitely many fixed points. This implies
that G is a finite group, and any finite group is self-similar.

Now suppose that e® has a fixed point in X¢ arising from condition (a) above.
Then there is a subalphabet S such that for all & € I there is a circuit of the form
6|6 at e. In addition, the range of e® is S and hence G acts bijectively on T,
Let ¢ € Q and suppose that there is an edge coming from ¢ of the form 6 |w where
&,w € * and w has length greater than 1. Then ¢® is a contracting map on s,
Since +4 is an expanding automaton, every element of G is either a contraction or
an isometry of . Since ¢ is compact, this would imply that g ¢ G. Hence
if there is an edge in the automaton of the form &|w where 6, w € f), then w has
length 1. Thus G =~ dS(8B), where B is the invertible synchronous subautomaton of
A corresponding to f], and hence G is an automaton group.

None of the above work used the finiteness of the automaton, and hence the
corresponding proposition for self-similarity is also true. O

We can use the ideas of the previous proof to show the following proposition.

Proposition 5.5. Let S be a d-expanding automaton semigroup with a unique maxi-
mal subgroup G. Then G is self-similar.

Proof. Let A = (Q,X,t,0) be an expanding automaton such that dS(+4) has a
unique maximal subgroup G. Let e be a state of 4 such that e® is the unique
idempotent of d.S(+). As in the proof of Proposition 5.4, if there is an edge coming
out of e with a label of the form o |cw with w € X+, then e® has finitely many fixed
points and hence G is a finite group. Hence we assume that there is a subalphabet )
of ¥ such that e(8) = 6 and ez = e forall & € %, and thus if 7 € = is a fixed
point of e® then 1 € s,

Leto € 3 and let g € G. We assume without loss of generality that there is a
state ¢ € Q such that g = g. Write e = te(ey,....e,) and ¢ = 74(q1.....qn).
Then 74(0) € 3 and so er,(c) = e. Thus Equation (2) implies

qdo = (eq)s = €z,(0)qo

and, as e stabilizes o,
4o = (9€)o = goeo-

Hence ¢ (¢5)® = (¢5)%e® = (¢5)® forany o € s

Let h = g~ !, and assume without loss of generality that there is a state r € Q
such that r,, = h. Write r = (rq,...,r,)7, and let 0 € X. By the same logic as
above, e“(r4)? = (rg)?e® = (ry)®. Since hg = e we have

((rQ)U)w = (rrq(a)CIo)w = (ea)a) =e?.

Since (¢5)® is left-invertible, Remark 5.3 implies that (¢,)® is invertible. Therefore
(go)? € G forallo € X.
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Continuing inductively, we see that (¢,)® € G for all v € range(e). Similar to
the proof of Proposition 5.4, we can consider the action of G only on $®. Thus
G is an expanding self-similar semigroup, and Proposition 5.4 implies that G is a
self-similar group. (|

If 4 is an invertible synchronous automaton, then S(<A) has at most one idem-
potent, namely the idempotent that pointwise fixes the corresponding tree. Hence
Proposition 5.5 has the following corollary.

Corollary 5.6. Let A be an invertible synchronous automaton. Then the group of
units of S(A) is self-similar.

We conclude this section by showing that subgroups of asynchronous automaton
semigroups are residually finite.

Proposition 5.7. If G is a subgroup of an asynchronous self-similar semigroup, then
G is residually finite.

Proof. Let A = (Q, X,t,0) be an asynchronous automaton where | Q| can be infi-
nite, let S = S(+), and let G be a subgroup of S. Let e denote the identity element
of G. Since e is idempotent, e fixes range(e). Since G is a group, G acts bijectively
on range(e).

If v,w € %, write v < w if v is a proper prefix of w. Let L(n) denote the set
of elements v € range(e) such that there exists a chain @ < vy < --- < v,—1 < v of
maximal length where v; € range(e) forall1 <i <n —1.

Let g € G. Then g(@) = 0. Since g acts bijectively on range(e), g cannot send
any point of range(e) to @. Let v € L(1). Then there is a point w € range(e) such
that g(w) = v. If w & L(1), then let w; € L(1) be proper prefix of w. Since
g(w) = v and g acts in a prefix-preserving fashion, g(w;) = @ or g(w1) = v. In
either case, g does not act bijectively on range(e). Thus w € L(1). Since L(1) is
finite, g induces a permutation of L (1). Inductively, g induces a permutation of L ()
for all n.

Let Stab(L(n)) = {g € G | g(v) = vforallv € L(n)}. The previous paragraph
implies that Stab(L(#n)) is a finite index, normal subgroup of G. If / is a non-trivial
element of G, then there must exist a word v € L(m) for some m such that 2(v) # v.
Thus Stab(L (m)) is a finite index, normal subgroup that does not contain /, and so
G is residually finite. O
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