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The girth alternative for mapping class groups
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Abstract. The girth of a finitely generated group G is defined to be the supremum of the
girth of its Cayley graphs. Let G be a finitely generated subgroup of the mapping class group
Mod†, where † is an orientable closed surface with a finite number of punctures and with a
finite number of components. We show that G is either a non-cyclic group with infinite girth
or a virtually free-abelian group; these alternatives are mutually exclusive. The proof is based
on a simple dynamical criterion for a finitely generated group to have infinite girth, which may
be of independent interest.
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1. Introduction

Let † be an orientable closed surface with a finite number of punctures and with a
finite number of components. The mapping class group of †, denoted by Mod†,
is the group of isotopy classes of the group HomeoC.†/ of orientation preserving
homeomorphisms of†. Mapping class groups have been studied in complex analysis,
low-dimensional topology, and geometric group theory for more than a century.

Mapping class groups share many properties with lattices in linear groups. One
analogy between linear groups and mapping class groups can be seen in the following
famous dichotomy regarding their subgroups, known as the Tits-alternative for linear
groups and mapping class groups respectively.

Theorem ([30]). Let k be a field, and let G be a finitely generated subgroup of
GL.n;k/. Then G either contains a non-abelian free subgroup or is virtually solv-
able; moreover, these alternatives are mutually exclusive.

Theorem ([12], [20]). Let † be an orientable closed surface with a finite number of
punctures and with a finite number of components, and let G be a finitely generated
subgroup of Mod†. ThenG either contains a non-abelian free subgroup or is virtually
free-abelian; moreover, these alternatives are mutually exclusive.
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Some refinements and variations of the Tits alternative are known for linear groups
and mapping class groups, such as the Margulis–Soı̆fer theorem on maximal sub-
groups of linear groups [19] and the analogous result by Ivanov for mapping class
groups [12]. This article demonstrates that the structural analogy between these
groups can also be witnessed in the girth of a finitely generated subgroup.

Recall that the girth of a graph is the length of the shortest graph cycle, if any,
in the graph. The girth of a Cayley graph has been studied extensively, particularly
in its relationship to expansion properties; see, for example, [7], [8], [16], [18]. In
[27], Schleimer introduced the girth of a finitely generated group G, denoted by
girth.G/ in this article, to be the supremum of the girth of Cayley graphs of G over
all finite generating sets. The qualitative difference between groups with finite girth
and groups with infinite girth is evident in observations of Schleimer [27] and the
work of Akhmedov [3]. In particular, Akhmedov gave the following girth alternative
for linear groups, which shows that the dichotomy between finite girth and infinite
girth coincides essentially with the dichotomy in the Tits alternative for linear groups.

Theorem ([3]). Let k be a field, and let G be a finitely generated subgroup of
GL.n;k/. Then G is either a non-cyclic group with infinite girth or a virtually
solvable group; moreover, these alternatives are mutually exclusive.

Our result is the following analogous girth alternative for mapping class groups,
showing that the dichotomy between subgroups with finite girth and the ones with
infinite girth again coincides essentially with the dichotomy in the Tits alternative.

Theorem 1. Let† be an orientable closed surface with a finite number of punctures
and with a finite number of components, and let G be a finitely generated subgroup
of Mod†. Then G is either a non-cyclic group with infinite girth or a virtually
free-abelian group; moreover, these alternatives are mutually exclusive.

In the general context of finitely generated groups, the property of having infinite
girth is neither stronger nor weaker than the property of containing non-abelian free
subgroups; see §2 and references therein. Hence, the girth alternative is, a priori,
neither stronger nor weaker than the Tits alternative; indeed, Akhmedov recently an-
nounced [4] that the girth alternative holds for subgroups of PLC.I /, i.e., the group
of orientation-preserving piecewise-linear homeomorphisms of a closed interval, al-
though the Tits alternative fails for subgroups of PLC.I /.

As we shall see, for mapping class groups, the girth alternative is a slightly more
intricate manifestation of underlying structural properties that are responsible for
the Tits alternative. Our proof of Theorem 1 capitalizes on Proposition 2 below, a
criterion for a group to have infinite girth, which generalizes and reformulates the
work of Akhmedov [3]; Proposition 2 is quite versatile and can be applied to many
classes of groups for which the Tits alternative is known to hold [21].
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Proposition 2. Let G be a group acting on a set X , with a finite generating set
S ´ f�1; : : : ; �ng. Suppose there exist elements �; � 2 G, subsets U� ; U� � X , and
a point x 2 X , such that

(1) x 62 .U� [ U� / [
[

"D˙1

n[
iD1

�"
i .U� [ U� /,

(2) �k
�
fxg [ U� [

[
"D˙1

n[
iD1

�"
i .U� /

�
� U� for all k 2 Z � f0g, and

(3) �k
�
fxg [ U� [

[
"D˙1

n[
iD1

�"
i .U� /

�
� U� for all k 2 Z � f0g.

Then G is a non-cyclic group with girth.G/ D 1.

One difficulty in proving Theorem 1 is that Proposition 2 cannot be readily applied
to a subgroup G < Mod† when † is disconnected or when G is reducible; see §4
for the definition of reducible subgroups. Moreover, unlike the Tits alternative, it is
not sufficient to prove the statement of Theorem 1 for a finite index subgroup of G;
it is not known if a group G has infinite girth when G has a finite index subgroup
with infinite girth. To work around these issues, we will study the structure of the
subgroupG < Mod† carefully with Ivanov’s theory [13]; some aspects of his theory
that were essential in the proof of the Margulis–Soifer theorem for Mod†, which is
much stronger than the Tits alternative, are crucial in our work as well.

For the special case of irreducible subgroups of Mod† of a connected surface
†, the girth alternative was obtained independently by Yamagata [31]; see §4 for the
definition of an irreducible subgroup. Her result is equivalent to our Proposition 15
in §5, and her proof is based on a criterion for a group to have infinite girth, somewhat
similar to, but weaker than, Proposition 2.

Outline. In §2, we review some results on the girth of finitely generated groups,
and give the proof of Proposition 2, which is a reminiscent of the classical ping-pong
argument. In §3 and §4, we review the properties of elements and subgroups of
Mod† from Thurston’s theory [29], [6], and Ivanov’s theory [13], and collect a few
observations that are necessary for the application of Proposition 2 in the proof of
Theorem 1. Finally, in §5, we prove Theorem 1.

Conventions. Throughout the article, a surface†will always be an orientable closed
surface with a finite number of punctures and possibly with a finite number of com-
ponents; for brevity, such a surface will be referred to as a finite-type surface without
boundary. We emphasize that, by definition, an element of Mod† may permute the
punctures and the components of †.

A simple closed curve on† is said to be peripheral if it bounds a closed disk with
one puncture in its interior. A multi-loop on † is a pairwise disjoint collection of
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simple closed curves on †, and it is said to be essential if each component is neither
null-homotopic, peripheral, nor parallel to another component.

Acknowledgements. The author is grateful for numerous invaluable comments and
suggestions from multiple referees to improve the exposition. The results in this article
appeared as a section in the author’s dissertation [21] at University of California,
Davis; the author would like to thank Dmitry Fuchs, Misha Kapovich, and his advisor
Joel Hass for carefully reading the original exposition of this work and providing
insightful comments. Finally, the author would also like to thank Joel Hass, Dave
Futer, and Igor Rivin for encouraging him to make this work publicly available in the
present format.

2. Girth of finitely generated groups

The girth of a graph G , denoted by girth.G /, is the combinatorial length of the shortest
nontrivial cycle in G if there is such a cycle, and is set to be infinity if there is no
nontrivial cycle in G . Using the girth of Cayley graphs, Schleimer introduced in [27]
the notion of the girth of a finitely generated group. Throughout the article, we will
always assume that a group is finitely generated.

Definition. Let G be a group. For each generating set S of G, let G .G; S/ be the
Cayley graph ofG with respect to S . The girth of the groupG, denoted by girth.G/,
is defined to be girth.G/ ´ supSfgirth.G .G; S//g, where the supremum is taken
over all finite generating sets S of G.

Clearly, every free group has infinite girth, and every finite group has finite girth;
it is also easy to see that an abelian group has finite girth unless it is infinite-cyclic.
In this section, we discuss criteria for the girth of a group to be finite or infinite.

2.1. Subgroups and quotients. We first collect a few results from [27] and [3] on
the relationship between the girth and homomorphisms.

Lemma 3 ([27]). If a group G surjects onto a finite-kernel quotient G0 with
girth.G0/ < 1, then girth.G/ < 1.

Lemma 4 ([27]). If a group G contains a finite-index subgroup G00 < G with
girth.G00/ < 1, then girth.G/ < 1.

Proposition 5 ([3]). If a group G surjects onto a non-cyclic quotient G0 with
girth.G0/ D 1, then girth.G/ D 1.

It should be noted that there exists a group with finite girth, containing a subgroup
with infinite girth; more specifically, Akhmedov [2], §4, observed that Olshanskii’s
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result [25], §34–35, can be reformulated to produce a group with finite girth, con-
taining an infinite-index non-abelian free subgroup. Akhmedov has also shown that a
group has infinite girth if it contains a finite-index non-abelian free subgroup [3], §2.
However, it is not known in general if a group has infinite girth when a finite-index
subgroup has infinite girth. In the proof of Theorem 1, instead of studying the girth
of finite-index subgroups, we look for a surjection of the given group onto another
group with infinite girth and apply Proposition 5.

2.2. Criterion for finite girth. Generalizing the fact that every abelian group G 6Š
Z has finite girth, Schleimer obtained a useful criterion for a group to have finite girth
[27]. Recall that a group G is said to satisfy a law if there is a word w.x1; : : : ; xn/

on n letters such that w.�1; : : : ; �n/ D 1 in G for any �1; : : : ; �n 2 G.

Theorem 6 ([27]). If a group G satisfies a law and G 6Š Z, then girth.G/ < 1.

Since every solvable group satisfies a law, Theorem 6 and Proposition 4 together
yield the following corollary which is relevant to the girth alternative.

Corollary 7. If a group G is virtually solvable and G 6Š Z, then girth.G/ < 1.

More generally, every uniformly amenable group satisfies a law [14]. There
are also non-amenable groups satisfying some law, such as Tarski Monster groups
[23], [24], many free Burnside groups [1], and Olshanskii–Sapir groups [26]. By
Theorem 6, these groups all have finite girth. We note that there also exists a group
with finite girth, satisfying no law; as mentioned in §2.1, there exists a group with
finite girth, containing a non-abelian free subgroup, see [2], §4, and [25], §34–35,
and such a group clearly satisfies no law.

2.3. Criterion for infinite girth. The proof of the Tits alternative for linear groups
and mapping class groups, as well as for other classes of groups, use variations of
the so-called ping-pong lemma to construct a non-abelian free subgroup; the classical
lemma goes back to the work of Blaschke, Klein, Schottky, and Poincaré; see, for
example, [15]. The following formulation was given in [30].

Proposition 8 ([30]). Let G be a group acting on a set X . Suppose there exist
elements �; � 2 G, subsets U� ; U� � X , and a point x 2 X , such that

(1) x 62 U� [ U� ,

(2) �k.fxg [ U� / � U� for all k 2 Z � f0g, and

(3) �k.fxg [ U� / � U� for all k 2 Z � f0g.
Then h�; �i is a non-abelian free subgroup of G.
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Proof. Observe inductively that any nontrivial reduced word in �˙1 and �˙1 takes
x 2 X � .U� [ U� / into U� [ U� via the action of h�; �i, showing that the word
cannot represent the identity element ofG. This is the classical ping-pong argument.

In the study of the girth of groups, it is instrumental to have a criterion for a group
to have infinite girth. Generalizing and reformulating the ideas appearing in the work
of Akhmedov [3], we give the following criterion, as stated in §1.

Proposition 2. Let G be a group acting on a set X , with a finite generating set
S ´ f�1; : : : ; �ng. Suppose there exist elements �; � 2 G, subsets U� ; U� � X , and
a point x 2 X , such that

(1) x 62 .U� [ U� / [
[

"D˙1

n[
iD1

�"
i .U� [ U� /,

(2) �k
�
fxg [ U� [

[
"D˙1

n[
iD1

�"
i .U� /

�
� U� for all k 2 Z � f0g, and

(3) �k
�
fxg [ U� [

[
"D˙1

n[
iD1

�"
i .U� /

�
� U� for all k 2 Z � f0g.

Then G is a non-cyclic group with girth.G/ D 1.

Since � , � , U� , U� , and x 2 X in Proposition 2 satisfy the conditions in Propo-
sition 8, we see that � and � generate a non-abelian free subgroup h�; �i < G.
Proposition 2 applies to many groups which are known to contain non-abelian free
subgroup by some version of the ping-pong argument; in the present work, we focus
on the application of Proposition 2 to mapping class groups. The criterion can also
be applied to non-elementary convergence groups, subgroups of Out.Fn/ containing
strongly irreducible elements, many CAT.0/ spaces, and some groups acting on trees;
some results on the girth of these groups are collected in [21].

Although every group that satisfies Proposition 2 contains a non-abelian free
subgroup, the property of having infinite girth and the property of containing a non-
abelian free subgroup are generally independent of each other. As we have noted in
§2.1, there exists a group with finite girth, containing a non-abelian free subgroup,
[2], §4, [25], §34–35. On the other hand, there also exists a group with infinite
girth, containing no non-abelian free subgroups [2], §2. Thompson’s group F is
another example of a group with infinite girth [9], [5], containing no non-abelian free
subgroup [10].

Proof of Proposition 2. Let M be a positive integer, and we aim to find a new gen-
erating set OS forG such that girth.G .G; OS// � M . Let P D fp1; : : : ; png be a set of
positive integers such that pi > M for all i and jpi � pj j > M for all distinct i; j .
Let O�i ´ �pi�i�

�pi for each i . The set OS ´ f�; �; O�1; : : : ; O�ng clearly generatesG.
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Let w be a nontrivial reduced word in OS [ OS�1 of length less thanM with respect to
OS [ OS�1. We can write w as

w D u1 O�"1

i1
u2 O�"2

i2
: : : O�"s

is
usC1

where "` 2 f˙1g and the subword u` D u`.�; �/ is a (possibly empty) reduced word
in f�˙1; �˙1g. If u` is an empty word and i`�1 D i` for some `, we must have
"`�1 D "`. For otherwise, a cancellation occurs and contradicts the assumption that
w is a reduced word in OS [ OS�1.

Now, regarded as an element of G, w can be expressed as

w D u1 O�"1

i1
u2 O�"2

i2
: : : O�"s

is
usC1

D v1�
"1

i1
v2�

"2

i2
: : : �

"s

is
vsC1

where v` D v`.�; �/ is a reduced word in f�˙1; �˙1g for ˇ`�1u`˛`, with convention
˛sC1 D ˇ0 D 1, and

˛` D
´
�pi` if "` D C1;
�pi` if "` D �1; ˇ` D

´
��pi` if "` D C1;
��pi` if "` D �1:

The idea of the proof is to apply the ping-pong argument to w to show that w cannot
represent the identity element of G. Provided with suitable initial points in X , the
ping-pong argument applies easily to the strings v`. What we need to show is that
we can pass each �"`

i`
in the ping-pong argument; in other words, we need to check

that �"`

i`
takes the terminal point from the ping-pong rally v`C1 to a suitable initial

point for the ping-pong rally v`. We will see that our choice of pi prevents excessive
cancellations, and we can indeed pass each �"`

i`
under the conditions (2) and (3) in

the statement of the proposition.

Claim 1. For each `, v` is not an empty word. If "` D C1, then the last letter of v`

is �˙1 and the first letter of v`C1 is �˙1. If "` D �1, then the last letter of v` is �˙1

and the first letter of v`C1 is �˙1.

Proof of Claim 1. Let us show that, if "` D C1, then v` is a non-empty word ending
with �˙1. Since "` D C1, we have ˛` D �pi` and ˇ` D ��pi` . There are three
cases to consider: (i) u` is an empty word; (ii) the last letter of u` is �˙1; or (iii) the
last letter of u` is �˙1.

Case (i): If u` is empty, then v` is the reduced word for ˇ`�1˛`, and hence

v` D

8̂<
:̂
�pi` if ` D 1;

��pi`�1�pi` if ` ¤ 1 and "`�1 D C1;
��pi`�1

Cpi` if ` ¤ 1 and "`�1 D �1:
In the last subcase, since "` D C1 ¤ �1 D "`�1, we must have i` ¤ i`�1 as noted
before. Thus, we must have jpi` � pi`�1

j > M , and it follows that v` is a nontrivial
power of � . In all subcases, v` is indeed a non-empty word ending with �˙1.
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Case (ii): If the last letter of u` is �˙1, then there is no cancellation between u`

and ˛` D �pi` as a word in f�˙1; �˙1g. Hence, v` is again a non-empty word ending
with �˙1.

Case (iii): Finally, suppose the last letter of u` is �˙1. If u` is not a power of � ,
then u` D : : : �q�p for some q and p. So, u`˛` D : : : �q�pCpi` . Note that we must
have jpj < M . For otherwise, the length of u` as a word in OS [ OS�1, and thus the
length of w as a word in OS [ OS�1, is at leastM ; this contradicts with the assumption
on the length of w. Now, jpj < M and pi` > M together imply pCpi` ¤ 0. Thus,
the last letter of v` must be �˙1. If u` is a power of � , say u` D �p , then

v` D

8̂<
:̂
�pCpi` if ` D 1;

��pi`�1�pCpi` if ` ¤ 1 and "`�1 D C1;
��pi`�1

CpCpi` if ` ¤ 1 and "`�1 D �1:
In the first two subcases, v` ends with a nontrivial power of � , because jpj < M and
pi` > M imply p C pi` ¤ 0. In the third subcase, we must have i` ¤ i`�1, and
hence jpi` �pi`�1

j > M . It now follows from jpj < M that �pi`�1
CpCpi` ¤ 0,

and v` is again a nontrivial power of � . Thus, in all subcases, v` is again a non-empty
word ending with �˙1 as desired.

This concludes the proof that, if "` D C1, then v` is a non-empty word ending
with �˙1. The analogous arguments show that, if "` D C1, then v`C1 is a non-empty
word beginning with �˙1. The symmetric arguments show that, if "` D �1, then v`

is a nonempty word ending with �˙1 and v`C1 is a non-empty word beginning with
�˙1.

Claim 2. If the last letter of vsC1 is �˙1 and y 2 fxg [ U� [ S
"D˙1

Sn
iD1 �

"
i .U� /,

or if the last letter of vsC1 is �˙1 and y 2 fxg [ U� [ S
"D˙1

Sn
iD1 �

"
i .U� /, then

w.y/ 2 U� [ U� .

Proof of Claim 2. We will prove the claim by induction on s. If s D 0, w D v1 is
merely a reduced word in �˙1 and �˙1. In this case, w.y/ 2 U� [ U� follows from
the classical ping-pong argument as in the proof of the Free Subgroup Criterion.

Now, as the induction hypothesis, suppose that the claim is true for s � 1 � 0,
and let w D v1�

"1

i1
v2�

"2

i2
: : : �

"s

is
vsC1. Suppose "s D C1 for now, so that the first

letter of vsC1 is �˙1 by Claim 1. Then we have vsC1.y/ 2 U� by the classical
ping-pong argument, and we obtain y0 ´ �isvsC1.y/ 2 �is .U� /. Now, also by
Claim 1, the last letter of vs is �˙1. Thus, applying the induction hypothesis to
w0 ´ v1�

"1

i1
v2�

"2

i2
: : : �

"s�1

is�1
vs and y0, we see that w.y/ D w0.y0/ 2 U� [ U� . The

"s D �1 case is analogous.

Since x 62 U� [U� by the assumption andw.x/ 2 U� [U� by Claim 2, it follows
that w cannot represent the identity element in G. Namely, any non-empty word in
OS that represents the identity element of G must be of length at leastM with respect

to OS . Hence, girth.G/ � girth.G .G; OS// � M .
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3. Elements of mapping class groups

We review some aspects of the Nielsen–Thurston classification of elements of Mod†,
for an orientable finite-type surface † with @† D ¿. An isotopy class A of an
essential multi-loop on † is a reduction system for � 2 Mod† if � fixes A. An
element in Mod† is reducible if it admits a non-empty reduction system A, and is
irreducible otherwise; it is periodic if its order is finite, and is aperiodic otherwise.
There are three mutually exclusive types of elements in Mod†: (i) periodic elements,
(ii) aperiodic irreducible elements, and (iii) aperiodic reducible elements.

This trichotomy was studied by Nielsen for tori [22], and by Thurston more
generally for other surfaces [29]. The theory was further developed by Birman,
Lubotzky, and McCarthy [6], [20], and by Ivanov [12], [13], Chap. 2–8, leading to
the proof of the Tits alternative for Mod†. For the rest of this section, we assume that
each component of † has negative Euler characteristic.

3.1. Canonical reduction of reducible elements. Suppose that A is a reduction
system for an element � 2 Mod†, and let †A ´ † � A where A is a multi-loop
representing A; note that†A is again an orientable finite-type surface with@†A D ¿,
and � induces a mapping class �A.�/ 2 Mod†A

, called the reduction of � along
A. We say that an element of Mod† is neat if it takes each component of † to itself
and each puncture of † to itself; adopting the terminology from [6], we say that an
element � 2 Mod† is adequately reduced if there exists a neat nontrivial power �m

whose restriction to each component of † is either (i) trivial or (ii) aperiodic and
irreducible. A reduction system A of an element � 2 Mod† is said to be an adequate
reduction system if the reduction �A.�/ is adequately reduced.

By Thurston’s classification theorem [29], Thm. 4, every element � 2 Mod† is
either an adequately reduced element or an aperiodic reducible element with non-
empty adequate reduction systems. For an aperiodic reducible element � , there is a
canonical choice of a non-empty adequate reduction system, [6], Thm. C, [13], §7.4,
§7.11; it is indeed the unique minimal adequate reduction system for the element � .
We call such a system the canonical reduction system for � , and denote it by C� , or
simply by C if the reference to � is clear from the context.

3.2. Adequately reduced elements. We recall the description of adequately reduced
elements based on Thurston’s theory. In particular, we review the dynamical prop-
erties of aperiodic irreducible elements, acting on the spaces of projective measured
foliations on a surface.

Connected surfaces. Suppose for now that † is connected, and write g.†/ and
n.†/ for the genus and the number of punctures of†. It follows from the discussion
in §3.1 that an element � 2 Mod† is adequately reduced if and only if it is (i) periodic
or (ii) aperiodic and irreducible. We summarize Thurston’s characterization [29] of
aperiodic irreducible elements; the details can be found in [11], Exp. 8–9.
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Thurston introduced the space PMF.†/ of projective measured foliations on †,
homeomorphic to a sphere of dimension 6g.†/ C 2n.†/ � 7. The mapping class
group Mod† acts on PMF.†/ as homeomorphisms. An element � 2 Mod† is said
to be pseudo-Anosov if the fixed-point set Fix.�/ � PMF.†/ of the action of �
on PMF.†/ consists of precisely two points in PMF.†/. An essential property of
a pseudo-Anosov element � is that its action on PMF.†/ exhibits the north-south
dynamics with one of the fixed points as an attractor, denoted by FC

� , and the other
as a repeller, denoted by F�

� ; more precisely, for any pair of disjoint neighborhoods
UC

� of FC
� and U�

� of F�
� , we have �˙N

�
PMF.†/ � U�

�

� � U�̇ respectively for
all sufficiently large N . It turns out that aperiodic irreducible elements of Mod† are
precisely pseudo-Anosov ones [29], Thm. 4. If �; � 2 Mod† are pseudo-Anosov
elements, then Fix.�/ D Fix.�/ or Fix.�/ \ Fix.�/ D ¿ in PMF.†/ [13], §5.11;
we say that � and � are independent if Fix.�/ \ Fix.�/ D ¿.

Disconnected surfaces. Let us now allow† D F
i †i to be disconnected, where†i

denotes each component. With some care, the space PMF.†/ of projective measured
foliations on† can be defined as the join of PMF.†i /, [13], [20]. However, as in the
work of Ivanov [13], Chap. 6, it is sufficient and more convenient for our purposes to
consider the space

PMF].†/ ´
G

i

PMF.†i /

and the action of Mod† on it as homeomorphisms. A neat element in Mod† takes
each component PMF.†i / � PMF].†/ to itself under this action.

An element of Mod† is said to be pseudo-Anosov if there exists a neat power
�m whose restriction to each component †i is a pseudo-Anosov element in Mod†i

.
The action of such a power �m on each component PMF.†i / � PMF].†/ ex-
hibits the north-south dynamics with respect to the fixed points F˙

�mj†i
2 PMF.†i /.

Moreover, � fixes
S

i FC
�mj†i

and
S

i F�
�mj†i

setwise, respectively, and the action

of � on PMF].†/ exhibits the north-south dynamics with respect to these sets;
more precisely, for any pair of disjoint neighborhoods UC

� of
S

i FC
�mj†i

and U�
� ofS

i F�
�mj†i

, we have �˙N .PMF].†/ � U�
� / � U�̇ for all sufficiently large N . If

�; � 2 Mod† are pseudo-Anosov elements, then for each i , Fix.�/ \ PMF.†i / D
Fix.�/ \ PMF.†i / or Fix.�/ \ Fix.�/ \ PMF.†i / D ¿; we say that � and � are
independent if Fix.�/ \ Fix.�/ D ¿, i.e., Fix.�/ \ Fix.�/ \ PMF.†i / D ¿ for
all i .

Recall that an element � 2 Mod† is adequately reduced if there exists a neat
nontrivial power �m whose restriction to each component †i is either (i) trivial
or (ii) aperiodic and irreducible. Clearly, � is periodic if the restriction of �m to
each †i is trivial; also, � is pseudo-Anosov if the restriction of �m to each †i is
aperiodic and irreducible. Generally, an adequately reduced element may be neither
periodic nor pseudo-Anosov; the restrictions of �m to some components can be
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trivial while the restrictions of �m to other components are aperiodic and irreducible.

4. Subgroups of mapping class groups

We review some aspects of Ivanov’s classification [13], Chap. 5–9, of subgroups of
Mod†, for an orientable finite-type surface†with @† D ¿. An isotopy class A of an
essential multi-loop is a reduction system forG < Mod† if it is a reduction system for
every element � 2 G, i.e., if every element � 2 G fixes A. A subgroupG is reducible
if it admits a non-empty reduction system A, and is irreducible otherwise. There
are three mutually exclusive types of subgroups in Mod†: (i) finite subgroups, (ii)
infinite irreducible subgroups, and (iii) infinite reducible subgroups. This trichotomy
parallels and generalizes the one appearing in the Nielsen–Thurston classification;
an element � 2 Mod† is (i) periodic, (ii) aperiodic and irreducible, or (iii) aperiodic
and reducible, if and only if the cyclic subgroup h�i < Mod† is (i) finite, (ii) infinite
and irreducible, or (iii) infinite and reducible, respectively.

Ivanov’s classification theory for subgroups of Mod†, strictly speaking, is much
deeper than what is required in the proof of the Tits alternative for Mod†. However,
it played an essential role in his proof of stronger theorems such as the analogue of
Margulis–Soifer theorem [12], [13]. In our proof of the girth alternative, we will also
need to utilize Ivanov’s classification theory. For the rest of this section, we assume
that each component of † has negative Euler characteristic.

4.1. Canonical reduction of reducible subgroups. A reduction of a subgroup of
Mod† can be defined in a manner analogous to the reduction of an element of Mod†.
If A is a reduction system for G < Mod†, then the reduction �A.�/ 2 Mod†A

is well defined for each � 2 G, where †A is defined as in §3.1. The assignment
� 7! �A.�/ indeed defines the reduction homomorphism

�A W G ! Mod†A

whose kernel is a free-abelian group generated by Dehn twists along some components
of A; the image �A.G/ is called the reduction of G along A. We say a subgroup
G < Mod† is neat if it consists of neat elements; pushing the analogy further, we say
that a subgroup G < Mod† is adequately reduced if there exists a neat finite-index
normal subgroup G0 C G whose restriction to each component of † is either (i)
trivial or (ii) infinite and irreducible. IfG is an adequately reduced group with a neat
finite index subgroup G0 C G as in the definition, then, for any finite-index normal
subgroup G00 C G, a neat finite-index subgroup G0 \G00 C G00 guarantees that G00
is also adequately reduced.

Every subgroupG < Mod† indeed contains a neat finite-index normal subgroup.
In practice, we almost always consider a particular family of such subgroups. For
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each integer m � 3, we consider the natural homomorphisms

Mod† ! Aut.H1.†I Z// ! Aut.H1.†I Z=mZ//

and let Mod†.m/ be the kernel of this composition of homomorphisms. Mod†.m/

is clearly a finite-index normal subgroup of Mod†, and a classical theorem of Serre
[28] says that Mod†.m/ is torsion-free. For each subgroup G < Mod†, we set
G.m/ ´ G \ Mod†.m/; it is a torsion-free finite-index normal subgroup of G.
Ivanov made finer observations [13], §1.2, §1.6, on elements of Mod†.m/ and their
reductions: every element � 2 Mod†.m/ is a neat element whose restriction to each
component of† is trivial or aperiodic; furthermore, for every reduction system A of
� 2 Mod†.m/, the reduction �A.�/ is a neat element in Mod†C

whose restriction
to each component of †A is trivial or aperiodic. In particular, for every subgroup
G < Mod†, G.m/ C G is a neat finite-index normal subgroup of G.

Lemma 9 (Cf. [13], §7.11). Suppose G < Mod† is adequately reduced. Then for
every integerm � 3 the restriction ofG.m/ to each component of † is either (i) trivial
or (ii) infinite and irreducible.

Proof. If G < Mod† is adequately reduced, the finite-index normal subgroup G.m/
is also adequately reduced; hence, there exists a neat finite-index normal subgroup
G0 C G.m/ such that the restriction of G0 to each component is either (i) trivial or
(ii) infinite and irreducible. Since G.m/ is neat and its restriction to each component
†i is either trivial or infinite, Lemma follows.

By Ivanov’s classification theorem [13], §7.11, every subgroup G < Mod† is
either an adequately reduced subgroup or an infinite reducible subgroup with non-
empty adequate reduction system. For an infinite reducible subgroup G, there is
a canonical choice of non-empty reduction system [13], §7.2–7.4; it is indeed the
unique minimal adequate reduction system for the subgroup G [13], §7.18. We call
such a system the canonical reduction system for G, and denote it by CG , or simply
by C if the reference to G is clear from the context.

4.2. Adequately reduced subgroups. We now give a description of adequately
reduced subgroups based on Ivanov’s theory. Some of the material is not entirely
explicit in his exposition [13], Chap. 9; we shall extract and gather the relevant
statements, and record a few consequences which we will utilize in the next section.

Connected surfaces. Suppose for now that † is connected. Ivanov showed that
G.m/ C G contains a pair of independent pseudo-Anosov elements � and � ifG.m/
is irreducible and not infinite-cyclic [13], §5.12; high powers of� and � then generates
a non-abelian free subgroup of G.m/ C G in the proof of the Tits alternative.
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Theorem 10 (Cf. [13], §5.12). Fix an integer m � 3. Let † be a connected surface
and let G < Mod† be an adequately reduced subgroup. Then one of the following
statements holds:

(0) G.m/ C G is trivial, and G is finite;

(1) G.m/ C G is infinite-cyclic, and G is virtually infinite-cyclic;

(2) G.m/ C G contains an infinite number of pairwise independent pseudo-
Anosov elements.

Hence, ifG is neither finite nor virtually infinite-cyclic, then, for any finite collection
'1; : : : ; 'n 2 G.m/ C G of pseudo-Anosov elements, there exists a pseudo-Anosov
element  2 G.m/ C G such that  and 'j are independent for all j .

Remark. Since† is connected, it follows from Lemma 9 thatG.m/ is either (i) triv-
ial or (ii) infinite and irreducible. If G.m/ is infinite and irreducible, G.m/ contains
a pseudo-Anosov element [13], §5.9; so, if G.m/ is infinite-cyclic, and hence irre-
ducible, it follows that it is generated by a pseudo-Anosov element.

Proof. We assume G.m/ is neither trivial nor infinite-cyclic; by Lemma 9, G.m/ is
irreducible. Hence, by Ivanov’s result [13], §5.12, mentioned earlier, there exists
a pair of independent pseudo-Anosov elements �; � 2 G.m/. For each k 2 Z, let
 k ´ �k���k 2 G.m/; it is a pseudo-Anosov element with Fix. k/ D �k.Fix.�//.
For k ¤ 0, Fix.�k/\Fix.�/ D Fix.�/\Fix.�/ D ¿ and hence Fix. k/\Fix.�/ D
�k.Fix.�// \ Fix.�/ D ¿. Then, more generally for k ¤ `, Fix. k/ \ Fix. `/ D
�`.�k�`.Fix.�/// \ �`.Fix.�// D �`.Fix. k�`/ \ Fix.�// D ¿; namely, ‰ ´
f k j k 2 Zg � G.m/ is a pairwise independent collection of pseudo-Anosov
elements. Hence, for any finite collection '1; : : : ; 'n 2 G.m/ of pseudo-Anosov
elements, there exists  2 ‰ such that Fix.'j / \ Fix. / D ¿ for all j .

Disconnected surfaces. We now allow the surface † D F
i †i to be disconnected,

where †i denotes each component. Ivanov showed that G.m/ C G contains a
pair of independent pseudo-Anosov elements � and � if the restriction of G.m/ to
each component †i is irreducible and not infinite-cyclic [13], §6.4. Generally, the
restriction of G.m/ to each component of † falls into one of the three cases in
Theorem 10. An adequately reduced group G can be regarded as a hybrid of these
three cases; this gives rise to a partition of † into three subsurfaces.

Lemma 11 (Cf. [13], §9.10). Fix an integer m � 3, and let G < Mod† be an
adequately reduced subgroup. Consider a partition † D †Œ0� t †Œ1� t †Œ2� where
each subsurface †Œ`� is defined as follows:

(0) the subsurface†Œ0� is the union of all components†i such that the restriction
of G.m/ to †i is trivial;

(1) the subsurface†Œ1� is the union of all components†i such that the restriction
of G.m/ to †i is infinite-cyclic;
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(2) the subsurface†Œ2� is the union of all components†i such that the restriction
of G.m/ to †i is neither trivial nor infinite cyclic.

Then every element � 2 G preserves this partition, i.e., �.†Œ`�/ D †Œ`� for each `;
hence, the restriction of G to †Œ`� is well defined for each `.

The partition in Lemma 11 played no role in proving the Tits alternative for Mod†,
while it serves as a critical step in proving the Margulis–Soifer theorem for Mod†

[13], Chap. 9. This partition is also essential in the proof of Theorem 1.

Proof. The proof we present here is essentially contained in [13], §9.10. Since
G.m/ C G, the conjugate of an element � 2 G.m/ by an element � 2 G must again
belong to G.m/; if s and t are homeomorphisms representing � and � respectively,
then s B t B s�1 represents the element ����1 2 G.m/. For each component †i , the
restriction � j†i

is represented by t j†i
, and the restriction ����1j�.†i / is represented

by s B .t j†i
/ B s�1. Thus, the conjugation by � defines a homomorphism from the

restriction G.m/j†i
to the restriction G.m/j�.†i /; it is clearly an isomorphism with

the inverse being the conjugation by ��1. In particular, if the restrictions G.m/j†i

and G.m/j†j
are not isomorphic, e.g. if †i and †j belong to different parts in the

partition † D †Œ0� t†Œ1� t†Œ2�, then no element of G can take †i to †j .

Lemma 12. Fix an integer m � 3. Let † D †Œ0� t †Œ1� t †Œ2� be the partition in
Lemma 11. For each `, letGŒ`� andG.m/Œ`� be the restrictions ofG andG.m/ to†Œ`�

respectively, and set GŒ`�.m/ ´ GŒ`� \ Mod†Œ`�
.m/. Then G.m/Œ`� is a finite-index

normal subgroup of GŒ`�.m/.

Proof. By definition, GŒ`�.m/ consists of all elements in GŒ`� which acts trivially
on H1.†Œ`�I Z=mZ/ < H1.†I Z=mZ/. Since G.m/ acts trivially on the entire
H1.†I Z=mZ/, its restrictionG.m/Œ`� to†Œ`� acts trivially onH1.†Œ`�I Z=mZ/; hence,
G.m/Œ`� < GŒ`�.m/ C GŒ`�. Since G.m/ is a finite-index normal subgroup of G,
G.m/Œ`� must be a finite-index normal subgroup of GŒ`�. Hence, we conclude that
G.m/Œ`� must also be a finite-index normal subgroup of the intermediate subgroup
GŒ`�.m/.

Theorem 13 (Cf. [13], §9.10). Fix an integer m � 3, and let G < Mod† be an
adequately reduced subgroup. Let † D †Œ0� t †Œ1� t †Œ2� be the partition in
Lemma 11, and setGŒ`� andGŒ`�.m/ as in Lemma 12. Then the following statements
hold:

(0) GŒ0�.m/ C GŒ0� is trivial, and GŒ0� is finite;

(1) GŒ1�.m/ C GŒ1� is free-abelian, and GŒ1� is virtually free-abelian;

(2) GŒ2�.m/ C GŒ2� contains an infinite number of pairwise independent pseudo-
Anosov elements.
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Hence, for any finite collection '1; : : : ; 'n 2 GŒ2�.m/ C GŒ2� of pseudo-Anosov
elements, there exists a pseudo-Anosov element  2 GŒ2�.m/ C GŒ2� such that  
and 'j are independent for all j .

Proof. First, we considerG.m/Œ0�,GŒ0�.m/, andGŒ0�. G.m/Œ0� is trivial by the choice
of†Œ0� in Lemma 11; so,GŒ0�.m/ is finite by Lemma 12, and henceGŒ0� is finite. We
observe that GŒ0�.m/ is actually trivial, since GŒ0�.m/ is torsion-free.

Next, we considerG.m/Œ1�,GŒ1�.m/, andGŒ1�. The restriction ofG.m/Œ1� to each
component †i � †Œ1� is infinite-cyclic by the choice of †Œ1� in Lemma 11; hence,
the restriction ofGŒ1�.m/ to†i must be virtually infinite-cyclic by Lemma 12, and it
is indeed infinite-cyclic by Theorem 10. It follows thatGŒ1�.m/must be free-abelian,
and hence GŒ1� is virtually free-abelian.

Finally, we considerGŒ2�.m/ andGŒ2�. Note that it suffices to prove the statement
(2) under the assumption † D †Œ2�, and hence G D GŒ2�, G.m/ D GŒ2�.m/. With
this assumption, the restriction of G.m/ to each component †i � †Œ2� D † is
neither trivial nor infinite-cyclic by the choice of†Œ2� in Lemma 11, and is infinite and
irreducible by Lemma 9. Hence, by Ivanov’s result [13], §6.4, mentioned earlier, there
exists a pair of independent pseudo-Anosov elements �; � 2 G.m/. As in the proof
of Theorem 10, for each k 2 Z, let  k ´ �k���k 2 G.m/; by the same argument,
it follows that ‰ ´ f k j k 2 Zg � G.m/ is a pairwise independent collection
of pseudo-Anosov elements. Hence, for any finite collection '1; : : : ; 'n 2 G.m/

of pseudo-Anosov elements, there exists an element  2 ‰ such that Fix.'j / \
Fix. / D ¿ for all j .

5. Girth alternative

We now study the girth of subgroups of Mod†, for an orientable finite-type surface
† with @† D ¿. Our main result, the girth alternative, states that the dichotomy
between the subgroups with infinite girth and the ones with finite girth coincides with
the structural dichotomy of the Tits alternative, [12], [20].

Theorem 1. Let † be an orientable finite-type surface with @† D ¿, and let G
be a finitely generated subgroup of Mod†. Then G is either a non-cyclic group
with infinite girth or a virtually free-abelian group; moreover, these alternatives are
mutually exclusive.

Theorem 1 reduces to the special case, Theorem 14 below, where † admits a
complete hyperbolic metric. We first prove Theorem 1, assuming Theorem 14.

Theorem 14. Let† be an orientable finite-type surface with @† D ¿, which admits
a complete hyperbolic metric, and let G be a finitely generated subgroup of Mod†.
Then G is either a non-cyclic group with infinite girth or a virtually free-abelian
group; moreover, these alternatives are mutually exclusive.
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Proof of Theorem 1. Suppose for now that † is a union of tori and hyperbolic com-
ponents. Since the mapping class groups of tori and once-punctured tori are iso-
morphic, we may replace the copies of tori in † with the same number of copies of
once-punctured tori. In turn, we now realize G as a subgroup of the mapping class
group of a hyperbolic surface; Theorem 1 follows from Theorem 14 as desired.

For the general case, let† D †C t†� where†C is the union of spheres with at
most two punctures and †� is the union of tori and hyperbolic components. Let G�
be the restriction of G to †�; we have shown above that G� is either a non-cyclic
group with infinite girth or a virtually free-abelian group. Note that the restrictionG�
of the subgroupG to†� is the image of the restriction homomorphismG ! Mod†� ;
hence, if G� is a non-cyclic group with infinite girth, then so is G by Proposition 5.
So, we assume that G� is virtually free-abelian and let A < G� be a finite-index
free-abelian subgroup.

The mapping class group is trivial for the sphere and the sphere with one puncture,
and is isomorphic to Z=2Z for the sphere with two punctures; hence, Mod†C is finite.
It follows that the kernel K C G of the restriction homomorphism G ! Mod†C is
a finite-index normal subgroup of G. Let K� C G� be the restriction of K to †�.
Then K� \ A is a finite-index free-abelian subgroup of K�. Now, observe that K
and K� are actually isomorphic since K acts trivially on †C. Hence, K contains a
finite-index free-abelian subgroup H < K, corresponding to K� \ A < K�. Since
K is a finite-index subgroup of G, it follows that H < K < G is a finite-index
free-abelian subgroup of G; in other words, G is virtually free-abelian as desired.

We prove Theorem 14 in the rest of this section. In §5.1, we treat adequately re-
duced subgroups with Propositions 15 for connected surfaces and with Proposition 17
for disconnected surfaces; in §5.2, we treat reducible subgroups with Proposition 19.
In Proposition 17 and 19, we apply Proposition 2 to the image of the surjections,
suitably chosen by the results from §4, when the given subgroup is not virtually
free-abelian.

5.1. Adequately reduced subgroups. We first consider an adequately reduced sub-
group G < Mod†, where † is a connected surface.

Proposition 15. Let † be an orientable connected finite-type surface with @† D ¿,
which admits a complete hyperbolic metric, and let G < Mod† be an adequately
reduced subgroup. ThenG is either a non-cyclic group with infinite girth, a virtually
infinite-cyclic group, or a finite group; these alternatives are mutually exclusive.

Proof. Choose an integer m � 3. Suppose G is an adequately reduced subgroup
of Mod†, and let S D f�1; : : : ; �ng be a generating set of G. We assume that G is
neither virtually infinite-cyclic nor finite, and aim to show that it has infinite girth.

In this case, the statement (2) of Theorem 10 is satisfied. We know that there
is a pseudo-Anosov element � 2 G.m/ C G. For each 1 � j � n and " D
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˙1, the conjugate �"
j ��

�"
j 2 G.m/ C G is again a pseudo-Anosov element with

Fix.�"
j ��

�"
j / D �"

j .Fix.�//. Hence, applying the statement (2) of Theorem 10
to the collection f�g [ f�"

j ��
�"
j j 1 � j � n; " D ˙1g, we see that there is

another pseudo-Anosov element � 2 G.m/ C G such that Fix.�/\ Fix.�/ D ¿ and
Fix.�/ \ Fix.�"

j ��
�"
j / D ¿ for all 1 � j � n and " D ˙1.

Note that, if U� is a neighborhood of Fix.�/, then �"
j .U� / is a neighborhood of

Fix.�"
j ��

�"
j / for each 1 � j � n and " D ˙1. It then follows that there are small

enough neighborhoods U� � Fix.�/ and U� � Fix.�/ such that

U� \ U� D ¿ and U� \ �"
j .U� / D ¿

for each 1 � j � n and " D ˙1, or equivalently

U� \ U� D ¿ and �"
j .U� / \ U� D ¿

for each 1 � j � n and " D �1. Now, since � and � are pseudo-Anosov elements,
we can take high enough powers Q� ´ �N and Q� ´ �N such that

Q�k
�
PMF.†/ � U�

� � U� and Q�k
�
PMF.†/ � U�

� � U�

for all non-zero integer k. In particular, we have

Q�k
�
U� [

[
"D˙1

n[
j D1

�"
j .U� /

�
� U� and Q�k

�
U� [

[
"D˙1

n[
j D1

�"
j .U� /

�
� U�

for all non-zero integer k. Applying Proposition 2 to Q� , Q� , U� , U� , and

x 2 PMF.†/ �
�
.U� [ U� / [

[
"D˙1

n[
j D1

�"
j .U� [ U� /

�

we conclude that G must be a non-cyclic group with infinite girth.

We now consider an adequately reduced subgroupG < Mod† where† is discon-
nected. The strategy is to take the partition† D †Œ0� t†Œ1� t†Œ2� from Lemma 11,
and restrict the group G to †Œ2� when †Œ2� ¤ ¿; the non-emptiness of †Œ2� then
guarantees the infinite girth. When †Œ2� is empty, the following lemma from the
proof of the Tits alternative shows that G is virtually free-abelian.

Lemma 16 (Cf. [13], §8.7). Let m � 3 be an integer, and let G be an adequately
reduced group. ThenG is virtually free-abelian if and only if the restriction ofG.m/
to each component of † is either trivial or infinite-cyclic, i.e., †Œ2� D ¿ in the
partition from Lemma 11.

Proposition 17. Let † be an orientable finite-type surface with @† D ¿, which
admits a complete hyperbolic metric, and let G < Mod† be an adequately reduced
subgroup. Then G is either a non-cyclic group with infinite girth or a virtually
free-abelian group; these alternatives are mutually exclusive.
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Proof. Consider the decomposition† D †Œ0� t†Œ1� t†Œ2� in Lemma 11. If†Œ2� D
¿, then G is virtually free-abelian by Lemma 16. Hence, we may assume that
†Œ2� ¤ ¿. Note that the restriction GŒ2� of the subgroup G to †Œ2� is the image
of the restriction homomorphism G ! Mod†Œ2�

; hence, if the restriction GŒ2� is a
non-cyclic group with infinite girth, then so isG by Proposition 5; it remains to show
that GŒ2� is indeed a non-cyclic group with infinite girth.

For this, we may as well assume that† D †Œ2� and henceG D GŒ2�. Choosem �
3. LetS D f�1; : : : ; �ng be a generating set ofG. By Theorem 13, we know that there
is a pseudo-Anosov element � 2 G.m/ C G, and there is another pseudo-Anosov
element � 2 G.m/ C G such that Fix.�/ \ Fix.�/ D ¿ and Fix.�/ \ Fix.�"

j ��
�"
j /

for each 1 � j � n and " D ˙1. Here, the conjugates �"
j ��

�"
j are pseudo-Anosov

elements with Fix.�"
j ��

�"
j / D �"

j .Fix.�// in PMF].†/. From the discussion in

§3.2, we know that the action of pseudo-Anosov elements in Mod† on PMF].†/

exhibits the north-south dynamics; hence, by the arguments identical to the proof of
Proposition 15 – with the space PMF.†/ replaced by PMF].†/ – we see that G is
a non-cyclic group with infinite girth by Proposition 2.

5.2. Reducible subgroups. We now consider a reducible group G < Mod†. To
prove the girth alternative, we take the canonical reduction �C .G/ < Mod†C

, for
which the girth alternative holds by Proposition 17. The following lemma, extracted
from the proof of the Tits alternative [13], §8.9, characterizes virtually free-abelian
subgroups G in terms of its reduction �C .G/.

Lemma 18 (Cf. [13], §8.9). A reducible subgroup G < Mod† is virtually free-
abelian if and only if the canonical reduction �C .G/ is virtually free-abelian.

Proposition 19. Let † be an orientable finite-type surface with @† D ¿, which
admits a complete hyperbolic metric, and let G < Mod† be a reducible subgroup.
Then G is either a non-cyclic group with infinite girth or a virtually free-abelian
group; these alternatives are mutually exclusive.

Proof. The canonical reduction �C .G/ of G is adequately reduced, and hence it
is either a non-cyclic group with infinite girth or a virtually free-abelian group by
Proposition 17. Recall that the canonical reduction �C .G/ is indeed the image of the
reduction homomorphism �C W G ! Mod†C

; hence, if �C .G/ is a non-cyclic group
with infinite girth, so is G by Proposition 5. If �C .G/ is virtually free-abelian, so is
G by Lemma 18.
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