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1. Introduction

Let I" be an /Iz—group acting on an A, building A of order g. The Furstenberg
boundary €2 of A is the set of chambers of the spherical building at infinity, endowed
with a natural compact totally disconnected topology. The topological action of I"
on 2 is encoded in the full crossed product C *-algebra Ar = C(2) x I', which is
studied in [10], [11], [12]. This full crossed product is isomorphic to the reduced
crossed product, since the action of I' on €2 is amenable [10], Section 4.2. As the
notation suggests, 2Ar depends only on I' [12]. Motivated by rigidity theorems of
Mostow, Margulis and others, whose proofs rely on the study of boundary actions, it is
of interest to determine the extent to which the boundary C *-algebra 2t determines
the group T".

In[12], T. Steger and the author computed the K-theory of 2t for many As- groups
with ¢ < 13. The computations were done for all the A,-groups in the cases ¢ = 2, 3
and for several representative groups for each of the other values of ¢ < 13. If ¢ = 2
there are precisely eight ffz—groups I, all of which embed as lattices in PGL(3, K),
where K = Fo((X)) or K = Q,. If ¢ = 3 there are 89 possible A,-groups, of
which 65 are “exotic” in the sense that they do not embed naturally in linear groups.
Exotic 4, -groups only exist if n = 2, since all locally finite Euclidean buildings
of dimension > 3 are associated to linear algebraic groups. This justifies, to some
extent, the focus on A,-groups.

For each A,-group T, the C*-algebra 2 has the structure of a rank-2 Cuntz—
Krieger algebra [11], Theorem 7.7. These algebras are classified up to isomorphism
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by their K-groups [11], Remark 6.5, and it was proved in Theorem 2.1 of [12] that
Ko(Ur) = K1(Ar) = 2* & T. )]

where r > 0 and T is a finite group. The computations in [12] led to some striking
observations. For example, the three torsion-free Ay subgroups of PGL3(Q,) are
distinguished from each other by K¢ (2l1). There was also evidence for the conjecture
that, for any torsion free A,-group T, the integer r in the equation (1) is equal to the
second Betti number of I'. The purpose of this article is to prove that this is indeed
the case.

Theorem 1.1. If T is a torsion free /Iz-gmup acting on an A, building A of order
q, then
Ko(Ar) ® R = R?P2, )

where B, = dimg H*(I,R) = 3(¢ —2)(¢*> +¢ + 1)

The article [12] identified the integer r in (1) with the rank of a certain finitely
generated abelian group C(I"). Two new ideas lead to the proof of Theorem 1.1.
The local structure of the building A, together with the fact that I' has Kazhdan’s
property (T), is used to show that C(I") ® R is isomorphic to the space of ["-invariant
R-valued cochains on A, in the sense of [1], [4]. Then, according to an isomorphism
of Garland [5], this space is isomorphic to H?(T", R).

Remark 1.2. An A,-group is a natural analogue of a free group, which acts freely
and transitively on the vertex set of a tree (which is a building of type Ay). Ifthe tree is
homogeneous of degree g+ 1, withg > 2,then I" is afree group on %(q +1) generators
and one can again form the full crossed product C*-algebra Ar = C(Q) x T,
where €2 is the space of ends of the tree. The analogue of Theorem 1.1 states that
Ko(2r) ® R = RA1, where B; = dimg H'(I,R) = 1(g + 1) [8], Theorem 1.

Remark 1.3. Another simple C*-algebra associated with the A,-group T is the re-
duced group C*-algebra C;*(I"). Itis shown in [9], Theorem 6.1, that Ko(C* (")) =
7XT)_ This is a consequence of the fact that A,-groups belong to the class of groups
for which the Baum—Connes conjecture is known to be true.

Remark 1.4. This paper is a sequel to the articles [11], [12]. The key results used
are [11], Theorem 7.7, which shows that 2 is isomorphic to a rank-2 Cuntz—Krieger
algebra, and [12], Theorem 2.1, which shows that the K-theory of this algebra is
given by equation (1).

What happens in the case of a torsion free A,-group I' (n > 3)? There seems
to be no fundamental obstruction to generalising [11], Theorem 7.7, to identify the
boundary crossed product algebra with a higher rank Cuntz—Krieger algebra, in the
sense of [11]. The arguments of the present paper should also generalise, but addi-
tional conditions which are vacuous in the rank-2 case would need to be verified [1],
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Theorem 2.3 (C), (D). However it would be more difficult to generalise [12], Theo-
rem 2.1. This is because the proof of that result uses a Kasparov spectral sequence
[12], Proposition 4.1, whose limit is clear only in the rank-2 case.

2. A, -groups

Consider a locally finite building A of type A,. Each vertex v of A has a type
7(v) € Z/37Z, and each chamber (maximal simplex) of A has exactly one vertex of
each type. Each edge e is directed, with initial vertex of type i and final vertex of
type i + 1. An automorphism « of A is type rotating if there exists i € Z /37 such
that 7(a(v)) = t(v) + i for all vertices v of A.

Suppose that I" is a group of type rotating automorphisms of A, which acts freely
and transitively on the vertex set of A. Such a group is called an A-group. The theory
of ffz—groups has been developed in [3] and some, but not all, /Iz-groups embed as
lattice subgroups of PGL3(K). Any A,-group can be constructed as follows [3], I,
Section 3. Let (P, L) be a finite projective plane of order q. There are g> + g + 1
points (elements of P) and g% + g + 1 lines (elements of L). Let A: P — L bea
bijection and write A(§) = £. A triangle presentation compatible with A is a set T
of ordered triples (&;, &, §x) where &;, &, & € P, with the following properties.

(i) Given§;,§; € P, then (§;.§;.5k) € T for some § € P if and only if §; and
& are incident, i.e. §; € §;.

(i) (§i.§.60)0 €T = (§.6.6) €T
(iii) Given &;,&; € P, then (§;,§;,&) € 7 for at mostone & € P.

In [3] there is exhibited a complete list of triangle presentations forg = 2 and g = 3.
Given a triangle presentation 7, one can form the group

[ =Tg =(P|&&& = 1for (§.§.6) € T) 3)

The Cayley graph of I' with respect to the generating set P is the 1-skeleton of a
building A of type A,. Vertices are elements of I and a directed edge of the form
(v, v€) with y € T is labeled by the generator & € P.

The link of a vertex y of A is the incidence graph of the projective plane (P, L),
where the lines in L correspond to the inverses in I" of the generators in P. In other
words, § = £~ for £ € P.

For the rest of this article, I is assumed to be torsion free. Therefore I acts freely
on A and X = I'\ A is a 2-dimensional cell complex with universal covering A. Let
X* denote the set of oriented k-cells of X fork = 0, 1,2. Thus X! may be identified
with P and X2 may be identified with the set of orbits of elements of 7~ under cyclic
permutations.

Let A2 be the directed version of A2 in which each 2-simplex has a specified base
vertex, so that Z/3Z acts naturally on A2 Let X2 := A2 /T, the set of directed
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Figure 1. A chamber based at a vertex .

2-cells of X. Then X2 may be identified with 7. From now on a = (ag, a1, as)
will denote an element of 7, regarded as a directed 2-cell. Figure 2 illustrates the
three directed 2-cells associated with an oriented 2-cell of X. In the diagram, the
2-cells are thought of as being directed upwards and the symbol e is placed opposite
the “top” edge to indicate that direction.

ao ai az

ai as as ao ao ai

Figure 2. The directed 2-cells {(ap,a1,a2), {a1,az,ao), {az,ao,ar).

3. K-theory

Transition matrices M = (mgap), peg2 and N = (ngp), e g2 are defined as follows.

Ifa,b € X2 then myp, = 1 if and only if there are labeled triangles representing a, b
in the building A which lie as shown on the right of Figure 3. If no such diagram is
possible then m,p = 0.

In terms of the projective plane (P, L), the matrix M is defined by
Mmgp =1 < by ¢ as, l;] =ag V by.

It follows that each row or column of M has precisely g2 nonzero entries.
Similarly, the matrix N is defined by

Hge =1 <— a1¢c'1, Cr =dg A Cr.

as illustrated on the left of Figure 3.

Letr be the rank, and 7" the torsion part, of the abelian group C(I") with generating
set X2 and relations
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Figure 3. The relations ng,e = 1 and mgyp = 1.

a= Z Mapb = Z ngpb, a € X2, 4)
beX2 beX2
Thus C(T") = Z" & T. The following result was proved in [12], Theorem 2.1.

Theorem 3.1. Let T" be an /Iz-group, and let r be the rank, and T the torsion part
of C(I"). Then

Ko(Ur) = K1(Ar) = 2> & T. (5)
Given £ € P, let
€)=Y aecC), ©6)
aeX?
ar=¢§

It is sometimes convenient to write such sums pictorially as
&= a (7
; S

Note that a € X2 with ap = ¢ if and only if @ = (ag,a1,as) where a, = £ and
agp € & (and a; is then uniquely determined). There are ¢ + 1 such choices of ag
and so there are ¢ 4 1 terms in the sum (6). Similar remarks apply to the element

(§) € C(T") defined by )
(g):Za:Za. (8)
R

In what follows the element

plays a special role. Animportant observation, which is needed subsequently, is that &
has finite orderin C(I"). The statement and its proof are very like [ 12], Proposition 8.2.
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Lemma 3.2. In the group C(T"), (¢*> — 1)e = 0.

Proof. Usingrelations (4) and the fact that each column of the matrix M has precisely
g? nonzero entries,

e = Za= Z Zmabb= Z(Zm“b>b= Zq2b=q28. O

aeX? aeX? beX? beX? aeX? beX?
Lemma 3.3. If (ag,a;,as) € X? then, in the group C(T"),

(a1) —(az,a0,a1) = (a2) — (a1,az2,a0); (9a)
(ao) + (a1) + (az) = e. (9b)

Proof. Fix the base vertex 1 € A. Any generator a for C(I") has a unique represen-
tative directed chamber o, based at 1. The chamber o, has vertices 1, al_1 ,d>. By
[6], Section 15.4, each chamber based at 1, other than o, lies in a common apartment
with o, in exactly one of the five positions 15, 73, T4, 75, Tg in Figure 4. As before,
directed chambers will be pointed.

Figure 4

The left side of (9a) is equal to the sum of all the elements b € X2 represented by
directed chambers g} in position g, as illustrated in Figure 5 (a). Each such element
b satisfies b, = ay, and the relations (4) imply that

b= Z MpeC.

ceX?2

That s, b is the sum of all the elements ¢ € X2 with representative directed chambers
o, lying in position t4, as illustrated in Figure 5 (a). Moreover, if o, is any directed
chamber with base vertex 1, lying in position 74, then it arises in this way from a
unique chamber o in position tg. To see this, it is enough to take the convex hull
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of any such chamber o, with o,, which completely determines the whole hexagon
in Figure 5 (a). Therefore the left side of (9a) is equal to the sum of all the elements
ceX? represented by directed chambers o, based at 1 which lie in position 74 of
Figure 4.

(a) (b)

Figure 5

Similarly, the right side of (9a) is equal to the sum of all the elements b € X2
represented by directed chambers o0, in position 7, as illustrated in Figure 5 (b). The
relations (4) imply that, for each such chamber b,

It follows that the right side of (9a) is also equal to the sum of all the elements ¢ € X2
represented by directed chambers based at 1 which lie in position t4 of Figure 4. This
proves that the left and right sides of (9a) are equal.

The next task is to prove (9b). Recall that ¢ is the sum of all the elements of X 2,
and representative directed chambers for elements of this sum are o, together with
all chambers lying in any of the five positions 12, t3, 74, 75, Tg in Figure 4.

The set of chambers based at the vertex 1 representing the elements of the sum
{(az) consists of o, together with all directed chambers lying in the position t,, as
illustrated in Figure 6 (a). Here it may also be convenient to refer back to equation

).

Figure 6
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Using the relations (4), the sum {a;) is equal to the sum of elements represented by
chambers lying in the position t3 or 74, as in Figure 6 (b).

Finally, the sum (aq) is equal to the sum of elements represented by directed
chambers lying in the position 75 or 7, as in Figure 6 (c). For, cyclically permuting
the indices in the equation (9a) gives

(ao) — (a1,az2,a0) = (a1) — (ao, a1, az).

Therefore (ag) = {(a1,az,ao) + {a@1) — (ag,a1,a). Referring to Figure 6 (c), the
relations (4) show that {ay,a,,ag) is the sum of elements represented by directed
chambers in position t5. Also {a1) — (a¢, a1, a>) is the sum of elements represented
by directed chambers in position 7.

This completes the proof that (ag) + {(a;1) + {(a2) = ¢. O

The next lemma is a major step in the proof of the main theorem. It depends on
the fact that I' has Kazhdan’s property (T), which in turn depends only on the local
structure of the building A. See, for example, the proof of [2], Theorem 5.7.7.

Lemma 3.4. In the group C(I') ® R, for all {ag,a1,az) € X2 and & € P,

(ap,a1,a2) ® 1 = (ay1,az2,a0) @ 1 = (az,a9,a1) ® 1; (10a)

E)Yel=0=(¢®Il. (10b)

Proof. By Lemma 3.2, ¢ has finite order in C(I") and hence e ® 1 is zeroin C(I") Q R.
Therefore, by (9b),

(@) ® 14 (a1) ® 1+ (a2) ® 1 =0,

for (ag,a1,az) € X2 It follows from the presentation of I that the map £ — (§)®1,
& € P, induces a homomorphism 6 from I" into the abelian group C(I") ® R.

The A,-group I' has Kazhdan’s property (T), by [2], Theorem 5.7.7. It follows
that the range of 6 is finite [2], Corollary 1.3.6, and hence zero, since C(I') ® R is
torsion free. Therefore (§) ® 1 = 0, £ € P. Similarly, (§) ® 1 = 0, & € P. This
proves (10b). The relation (9a) then implies that (aq, a2, a0) ® 1 = {(az,a¢,a1) ® 1
and the rest of (10a) follows by symmetry. O

Let Co(I") be the abelian group with generating set X2 and the following relations:

(ao,ar.az) = (ai,az,a0) = (az.ap,ai). (a0, a1, az) € X% (11a)

()=0=(), ¢EeP (11b)

Lemma 3.5. The relations (11) imply the relations (4).
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Proof. Leta = (ag,a1,az) € X2, Then, using the relations (11), and referring to
Figure 7,

a = {ap,ai,az) = {ai,as,aop) [using (11a)]

= Z (c2,b1,a0) [using (11b), with § = ag]

(c2.b1,a0)€X?

c2#ay

> ( -3 bl,b2)> [using (11b) again]
{c2.b1,a0)€X?  (bo.b1,br)eX?

ca#a) boF#co

= Z Mmapb.
beX2
b
ai ar
Figure 7
The proof of the relations a = ) hei2 ngpb in (4) is similar. ]

Proposition 3.6. If T is a torsion free A,-group, then C(I') ® R = Co(T") ® R.

Proof. The groups have the same set of generators. By Lemmas 3.4 and 3.5, the
relations in each group imply the relations in the other. The groups are therefore
equal. O

4. Harmonic cochains and proof of the main result

A harmonic 2-cochain [4] is a function c: X2 >R satisfying the following condi-
tions for all ¢ € X? and forall £ € P.

c({ag,a1,a2)) = c({ay,az,a9)) = c({az,ap,ai)); (12a)

c((€)) = c({&)) = 0. (12b)

Denote the set of harmonic 2-cochains by C2, ()? 2). Since the group I" acts freely
on A, C2,.(X?) may be identified with the space of I'-invariant harmonic cochains
c: A? — R, in the sense of [1]. Now C2 (X?) is the algebraic dual of Co(I') ® R.

The next result is therefore an immediate consequence of Proposition 3.6.
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Proposition 4.1. C2.(X?) is isomorphic to C(I') ® R.

The proof of Theorem 1.1 can now be completed. By Theorem 3.1, it is sufficient
to show that the rank r of C(I") is equal to 8, = dimg H?(I',R). Garland’s isomor-
phism [1], Section 3.1, states that H?(I", R) = lear()? 2). Note that the account of
Garland’s Theorem in [1] relates to the case where I' is a lattice in PGL(3, K), but
the proof applies without change to all torsion free A,-groups.

It follows from Proposition 4.1 that C(I') ® R =~ H?(I",R). Theorem 3.1 now
implies that Ko(2r) ® R == R?%2,

It remains to identify B, explicitly. The Euler characteristic of " is y(I') =
%(q — 1)(g? — 1) [7], Section 4. Now y(I') = Bo — B1 + B2 where B; =
dimr H;(I',R). Since I' has Kazhdan’s property (T), the abelianisation I'/[I", I]
is finite [2], Corollary 1.3.6, and so f; = 0. Also 8¢ = 1. Therefore 8, =
x(IH)—1= %(q —2)(¢? + g + 1). This completes the proof. O

References

[1] G. Alon and E. de Shalit, Cohomology of discrete groups in harmonic cochains on build-
ings. Israel J. Math. 135 (2003), 355-380. Zbl 1073.14027 MR 1997050

[2] B. Bekka, P. de la Harpe, and A. Valette, Kazhdan’s property (T'), New Math. Monogr.
11, Cambridge University Press, Cambridge, 2008. Zbl 1146.22009 MR 2415834

[3] D. L. Cartwright, A. M. Mantero, T. Steger, and A. Zappa, Groups acting simply transi-
tively on the vertices of a building of type Ay. I. Geom. Dedicata 47 (1993), 143—166.
Zbl 0784.51010 MR 1232965

[4] B. Eckmann, Introduction to {-methods in topology: reduced {,-homology, har-
monic chains, £>-Betti numbers. Israel J. Math. 117 (2000), 183-219. Zbl 0948.55006
MR 1760592

[5] H. Garland, p-adic curvature and the cohomology of discrete subgroups of p-adic groups.
Ann. of Math. (2) 97 (1973), 375-423. Zbl 0262.22010 MR 0320180

[6] P. Garrett, Buildings and classical groups. Chapman & Hall, London 1997.
7Zbl 0933.20019 MR 1449872

[7] G. Robertson, Torsion in K -theory for boundary actions on affine buildings of type A, .
K-Theory 22 (2001), 251-269. Zbl 0980.46052 MR 1837234

[8] G.Robertson, Boundary operator algebras for free uniform tree lattices. Houston J. Math.
31 (2005), 913-935. Zbl 1093.46040 MR 2148805

[9] G. Robertson, Torsion in boundary coinvariants and K-theory for affine buildings. K-
Theory 33 (2005), 347-369. Zbl 1079.51007 MR 2220525

[10] G. Robertson and T. Steger, C *-algebras arising from group actions on the boundary of
a triangle building. Proc. London Math. Soc. (3) 72 (1996), 613—-637. Zbl 0869.46035
MR 1376771

[11] G.RobertsonandT. Steger, Affine buildings, tiling systems and higher rank Cuntz-Krieger
algebras. J. Reine Angew. Math. 513 (1999), 115-144. Zbl 1064.46504 MR 1713322


http://zbmath.org/?q=an:1073.14027
http://www.ams.org/mathscinet-getitem?mr=1997050
http://zbmath.org/?q=an:1146.22009
http://www.ams.org/mathscinet-getitem?mr=2415834
http://zbmath.org/?q=an:0784.51010
http://www.ams.org/mathscinet-getitem?mr=1232965
http://zbmath.org/?q=an:0948.55006
http://www.ams.org/mathscinet-getitem?mr=1760592
http://zbmath.org/?q=an:0262.22010
http://www.ams.org/mathscinet-getitem?mr=0320180
http://zbmath.org/?q=an:0933.20019
http://www.ams.org/mathscinet-getitem?mr=1449872
http://zbmath.org/?q=an:0980.46052
http://www.ams.org/mathscinet-getitem?mr=1837234
http://zbmath.org/?q=an:1093.46040
http://www.ams.org/mathscinet-getitem?mr=2148805
http://zbmath.org/?q=an:1079.51007
http://www.ams.org/mathscinet-getitem?mr=2220525
http://zbmath.org/?q=an:0869.46035
http://www.ams.org/mathscinet-getitem?mr=1376771
http://zbmath.org/?q=an:1064.46504
http://www.ams.org/mathscinet-getitem?mr=1713322

Harmonic cochains and K-theory for A»-groups 255

[12] G. Robertson and T. Steger, Asymptotic K-theory for groups acting on A, buildings.
Canad. J. Math. 53 (2001), 809-833. Zbl 0993.46039 MR 1848508

Received October 4, 2011; revised September 13, 2012

G. Robertson, School of Mathematics and Statistics, University of Newcastle, Newcastle
upon Tyne, NE1 7RU, U.K.

E-mail: guyanrobertson@gmx.com


http://zbmath.org/?q=an:0993.46039
http://www.ams.org/mathscinet-getitem?mr=1848508

	Introduction
	\tilde A_2-groups
	K-theory
	Harmonic cochains and proof of the main result
	References

