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1. Introduction

In the seminal paper [Sul], D. Sullivan proved what he coined a logarithm law gov-
erning the statistical behavior of excursions of geodesic flow lines to cusps in a non-
compact, finite volume Riemannian manifold M with constant negative sectional
curvature: if o: T'M — M is the unit tangent bundle, then for every x € M, and
almost every (with respect to Lebesgue’s measure) v € T! M, we have

ey
im sup =
t—00 log ¢ n—1

’

where (¢;);<r is the geodesic flow on T' M and d is the hyperbolic distance on M.

This result has inspired a significant body of work over the last 30 years on the
excursions of geodesic flow lines into neighborhoods of infinity in negatively curved
manifolds. Probabilistic aspects have been considered by, for example, Enriquez,
Franchi, Guivarc’h, Le Jan [EFJ]. In more geometric directions, Sullivan’s result
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has been extended by Kleinbock—Margulis [KIM] to finite volume locally symmet-
ric spaces of non-compact type, by Stratmann—Velani [SV] to geometrically finite
constant negative curvature, by Hersonsky—Paulin [HP4], [HPS] to variable nega-
tive curvature and to trees, and by Athreya—Ghosh—Prasad [AGP1], [AGP2] to some
buildings.

Closely related to geodesic flows are horocycle flows and their generalizations.
In 2-dimension hyperbolic geometry, the horocycle flow is a flow on the unit tangent
bundle of a hyperbolic surface, whose orbits are the leaves of the strong unstable
foliation of the geodesic flow. More generally, the ergodic theory and topological
dynamics of the strong unstable foliation (also called the horospherical foliation)
have been the subject of significant foundational works in dynamical systems. In
the setting of negative curvature, seminal contributions have been made by, among
others, Hedlund, Furstenberg, Dal’Bo, Dani, Roblin, Sarig, Schapira, Smillie, as well
as the recent Chapter 9 of [PPS]. In higher rank, the field has been transformed in
particular by the work of Ratner, with fundamental contributions by, among many
others, Dani, Dani—Margulis, Kleinbock—Margulis, Margulis, Margulis—Tomanov,
and more recently Benoist—Quint. See for example the survey [Esk] for a more
complete bibliography.

Much of the above study has focused on rigidity phenomena (for example clas-
sification of orbit closures and invariant measures). In the non-compact setting, this
often involved studying non-divergence phenomena, in particularly understanding
that measures supported on leaves of the strong unstable foliation satisfy appropri-
ate tightness conditions. In contrast, Sullivan-type questions about the excursions of
horocyclic flow lines or of the leaves of the strong unstable foliation to neighborhoods
of infinity in non-compact spaces have only recently been explored, first in the work
of Athreya—Margulis [AM] for unipotent or horospherical actions in some locally
symmetric spaces of non-compact type, and also in [Ath], [KeM].

In this paper, we are interested in this problem of excursions of (projections of)
horospheres into cuspidal neighborhoods, and applications to Diophantine approxi-
mation, a component which is present in many of the previous works. We work in
the very general setting of quotients M = I'\ X of proper CAT (—1) metric spaces X
by geometrically finite groups of isometries I (we will recall all necessary material
about the now well-known notion of geometrical finiteness). In Subsection 1.1, we
give a simplified version of our main theorem, when M is a (geometrically finite)
negatively curved Riemannian manifold. We stress the fact that no constant curvature
(nor locally symmetric) assumption is made.

As allowed by our general setting, an example of particular interestis when X is the
Bruhat-Tits tree for the group GL2(K ), where K is the field of formal Laurent series
over a finite field. Here, we will obtain our main Diophantine applications, precise
relationships between the asymptotics of excursions near infinity withapproximation
exponents and continued fraction expansions of elements of the field K, which we
describe below in Subsection 1.2.
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1.1. Riemannian manifolds. Let M be a complete, geometrically finite (for in-
stance finite volume), Riemannian manifold with dimension at least 2 and sectional
curvature at most —1. Let o: T'M — M be its unit tangent bundle and (¢, )R its
geodesic flow. Forevery v € T' M, let

W) ={weT'M : Aim - d(0(¢—v). 0(¢—rw)) = 0}

be the strong unstable leaf of v, endowed with the naturally scaling Hamenstddt’s
distance d*" (see Section 2, it coincides with the induced Riemannian distance when
the sectional curvature is constant) and, when non-compact, with the filter of the
complementary subsets of its relatively compact subsets. We say that v € T M is
negatively recurrent under the geodesic flow if there are a compact set K in 7' M and
a sequence of times (#,),en converging to —oo such that ¢;,v € K. When M has
finite volume, this excludes only countably many orbits of (compact) strong unstable
leaves under the geodesic flow.

Our main result, Theorem 7, whose simplified version is given below, is a precise
relation between the logarithmic growth rates of the strong unstable foliation and the
linear divergence rates of the geodesic flow.

Theorem 1. For every v € T'M which is negatively recurrent under the geodesic
flow, we have

I d(o(w), o(v)) _ : d(o(¢—v),0(v)))
imsup ————— = =14 limsup .
weWsi(v) logdsu(w’ v) t—>+00 !

In the particular case when M is a finite volume orientable hyperbolic surface, we
recover, by a purely geometric proof, the logarithm law for the excursions into cusp
neighborhoods of the horocyclic flow due to Theorem 2.10 of [Ath], generalizing the
work of [AM] on SL>(Z)\Hz. In particular, in this setting we have, by an application
of the easy half of the Borel-Cantelli lemma and an estimate on volumes, that for

almost every v,
i d(o(¢—1v),0(v))) _
im sup =

t—>+00 t

07

and so

do(w). o)

veway Togdw.v)

for almost every v. We remark that in [AM] there is a factor of 1/2 which is present
due to the fact that in that paper 7'! (SLZ (Z)\Hﬁ) = SL,(Z)\ SL,(R) was viewed
as the space of unimodular lattices in R?, and that the depth of cusp excursions
was measured by the (logarithm) of the length of the shortest vector in the lattice.
See [Ath] for further discussion.

Claim 5.3 in [Ath] strengthens the result of Theorem 2.10 of [Ath] by allowing
one to specify which cuspidal neighborhoods one is interested in visiting. Our results
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also allow us to specify a set of cusps into whose neighborhoods we want to study the
excursions of the strong unstable manifolds, as follows. Recall that a cusp of M is an
asymptotic class of minimizing geodesic rays in M along which the injectivity radius
tends to 0. For every cusp e, let r.: [0, +00[ — M be a representative of e, and let
Be: M — [0, +00[ be the map x — max{0, lim;— 400 ¢ —d(x,r.(t))}. (One way
to normalize S, is to ask for r, being contained in the closure of, and start from the
boundary of, a maximal open Margulis neighborhood of e (see for instance [BK],
[Bow], [HP4], it is a canonical neighborhood of the end of M to which converges e
if M has finite volume).) Given a (necessarily finite since M is geometrically finite)
set E of cusps, let B = maXcg PBe.

Theorem 2. For every v € T'M which is negatively recurrent under the geodesic
flow, we have

BE(o(w)) Pe(o(p-rv)

limsup —————— =1 + lim sup
weWsi(v) log d**(w, v) t—>+o00 t

Note that the above statements are stronger than almost-everywhere statements,
as for instance when M has constant curvature and finite volume, the right-hand side
may take any value in [1, +oo], but is 1 for almost every v, by Sullivan’s result. We
refer to Corollary 12 for almost everywhere consequences of these theorems for the
excursions of the strong unstable leaves in cusp neighborhoods.

As already mentioned, these theorems are valid when M is replaced by the quotient
of any proper CAT(—1) metric space X by any geometrically finite discrete group of
isometries of X, see Section 4.

1.2. Diophantine approximation. We now give an application of our main result
to non-Archimedian Diophantine approximation in positive characteristic (see for
instance [Las], [Sch] for nice introductions).

Let k = F, be a finite field with g elements, where g is a positive power of a
prime p. Let A = k[X] be the ring of polynomials in one variable X over k and let
K = k(X) be its fraction field, endowed with the absolute value |- | = | - |, defined
by

‘5‘ — qdegP—degQ.
Q
Let K be the completion of K for this absolute value, which is the field k((X 1))
of formal Laurent series f = Y ;o7 /i X (Where f; € k is zero for i € Z small
enough), with absolute value |- | = | - |, defined by

|f| — q—sup{jeZ:fi=0foralli<j}

Forevery f € K-—K , the approximation exponent v = v(f) of f is the least upper
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bound of the positive numbers v’ such that there exist infinitely many elements g in
K (with P, Q relatively prime) such that

gl =ier

Artin’s continued fraction expansion of f € K —K isthe sequence (a; = a;(f))ieN
in A with dega; > 0if i > 0 such that

f=a0+
ap + i
a+———

1
as + —

Let & = k[[X 1] be the local ring of formal power series f = Y ;. fi X (where
fi € k)in X! over k. An O-lattice is a free €-submodule of rank 2 in the K-vector
space K?2. The linear action of GL,(K) on K2 induces an action of GL,(K) on the
set of O-lattices. For every O-lattice A, let A(A) be the unique n € N such that there
exists y € SL,(4) and A € K suchthat \yA = & x X " Forevery f € K — K,
let (ug = ug(f ))g < ¢ be the maximal one-parameter unipotent subgroup of SL;( K)
whose projective action on the projective line [P} (I? )= KU {oo} fixes f.

Using the approach in [Paul] and the Bruhat-Tits building of (PGL,, K), we
have the following result, relating, for a given irrational formal Laurent series f, the
logarithmic growth of the orbit of any ¢-lattice under the one-parameter unipotent
subgroup of SL,(K) fixing f with the approximation exponent of / and with the
continued fraction expansion of f.

Theorem 3. For every f € K — K, we have

A 02 2 1
lim sup M =2—= =1+ limsup 0g|‘:ln_|1 .
|g|—>+o0 logq 8| v n—+oo log |an "o aiZ |

We give versions of this result for Diophantine approximation with congruence
conditions in Section 5.
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2. Background on CAT(—1) spaces

We refer to [BH] for the definitions and basic properties of CAT(—1) spaces, and the
knowledgeable reader may skip this section.

Let (X, d) be a proper CAT(—1) geodesic metric space, and X2° = X U 0o X
its cone-topology compactification by the asymptotic classes of its geodesic rays.

We denote by T X the space of geodesic lines in X, that is, of isometric maps
v:t +— v; from R into X. To simplify the notation, we will denote by v; instead of
v(t) the image by v € T'X of t € R. When X is a (complete, simply connected)
Riemannian manifold (with dimension at least 2 and sectional curvature at most —1),
this notation coincides with the usual one, upon identifying a unit tangent vector and
the geodesic line it defines. We denote by vy € 0o X the points at +0o of any
v € T'X. The geodesic flow (¢;);er is the action of R on 7! X by translations at
the source: ¢,v: s — vgy; foralls,t € Randv € T'X.

The Busemann cocycle is the continuous map f: doo X X X x X — R, defined
by

(§.x.y) = Be(x.y) = lim d(x.&)—d(y.&).
t—>+o00

where t — &, is any geodesic ray converging to £. For every £ € 0,,X, the horo-
spheres centered at £ are the level sets f~1(1) for A € R of the map f:y
Be(y, xo) from X to R, and the (closed) horoballs centered at § are its sublevel sets
f71(] = 00, A]) for A € R, for some (hence any) xo € X.

If C is a nonempty closed convex subset of X and £ € doo X — 00 C, the closest
point to § on C is the unique point of C which minimizes the map y — B¢(y. Xo),
for some (hence any) given xo € X.

Let I' be a discrete group of isometries of X. We denote by 7: X — I'\X
the canonical projection of X onto its quotient metric space I'\ X, whose distance is
again denoted by d.

The limit set of I" will be denoted by AT, and the convex hull of this limit set by
% AT. Recall that I' is nonelementary if Card(AT") > 3. The conical limit set AT
of I is the set of points £ € d X such that there exists a sequence of orbit points of
some (hence any) xo € X under I" converging to £ while staying at bounded distance
from a geodesic ray converging to £. The points in A.I" are called the conical limit
points.

A point p € 050X is a bounded parabolic point of T if it is the fixed point of
a parabolic element of I" and if its stabilizer I', in I' acts properly with compact
quotienton AI' —{p}. A discrete nonelementary group of isometries I" of X is called
geometrically finite if every element of AT is either a conical limit point or a bounded
parabolic point of T".

When X is the real hyperbolic n-space Hp and I is torsion-free, this is equiv-
alent to the fact that I' has a fundamental domain bounded by finitely many totally
geodesic hyperplanes. But the works of Thurston and many others have shown that
this definition is not ideal to work with, and we refer to [Bow] for foundational results



Logarithm laws, foliations, and Diophantine approximation 291

concerning the various definitions. In particular, when X is Riemannian (without any
assumption of constant curvature), I" is geometrically finite if and only if the quotient
by I' of the 1-neighborhood of the convex hull in X of the limit set of I' has finite
volume.

Let Parr be the set of fixed points of parabolic elements of I". If I is a geo-
metrically finite group of isometries of X, then (see for instance [Bow]) the action
of I' on Parr has only finitely many orbits, and there exists a I'-equivariant family
(HBp)pepar- of pairwise disjoint closed horoballs, with HB, centered at p, such that
the quotient

r\(¢Ar - | HB,)
pEPar
is compact, and any geodesic ray from the boundary of HB,, to p injects isometrically
by the canonical projection 7: X — I'\ X.
For every v € T X, the strong unstable leaf of v is

W) ={weT'X: lim d_;, w_;) =0}
t—>+o00

The set {wg : w € W**(v)} is exactly the horosphere centered at v_ through vy.

For every v € T!X, let d*" be Hamenstddt's distance on the strong unstable leaf
of v, defined as follows (see [HP1], Appendix, compare with [Ham], see also §2.2 of
[HP6] for a generalisation when horoballs are replaced by arbitrary nonempty closed
convex subsets): for all w, w’ € W (v),

d™(w,w’) = lim ezdw—rwl )=t
t——+o00

This limit exists, and Hamenstidt’s distance is a distance inducing the original topol-
ogy on W5(v). We will denote by B*'(w,r) the ball of center w and radius r
in the metric space (W™ (v),d™). For allt € R and w,w’ € W(v), and for
every isometry y of X, we have yW*'(v) = W(yv), o: W*(v) = W (¢sv),
d*(yw,yw’) = d*"(w, w’) and

dsu(¢tw’ ¢tw/) = etdSU(w’w/)' (1)

Remarks. (1) When X is a Riemannian manifold with constant sectional curvature,
then Hamenstédt’s distance is the induced Riemannian distance on the horosphere
of base points of vectors of W*"(v) (see for instance [HP2]). When X is a complex
hyperbolic space HZ., then Hamenstidt’s distance is a multiple of Cygan’s distance,
see §3.11 of [HP3].

(2) When X is a metric tree, then d** (v, w) = min{t € R : v_; = w_;}.

(3) Here is a coarse interpretation of Hamenstddt’s distance. Let « > 0 be fixed.
Let 7 be the map defined on the set of couples of elements of 71 X in the same strong
unstable leaf, with values in [0, 400, by

t(v,w) =min{t € R :d(v—;, w—;) < k}.
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Then is its easy to prove that there exists a constant ¢ > 0, depending only on k, such
that
| logd® (v, w) —t(v,w)| <c.

Finally, we denote by log the natural logarithm, with log(e) = 1.

3. Excursions in horospheres

In this section we give the geometric lemmas concerning the behavior of horospheres
that we will need to prove our main theorem. We refer for instance to [PP1] for
more information on the excursion properties of geodesic lines in convex subsets of
CAT(—1) spaces.

Let X be a CAT(—1) geodesic metric space. We will use several times without
mention the first of the following lemmas, which is well known and follows by
comparison with a geodesic triangle with an obtuse angle in the real hyperbolic
plane HZ. In all the following pictures, a white dot represents a point at infinity
of X.

Lemma 4. Let x € X and y,z € X U 000X be such that x is the closest point to z
on [x,y]. Let q' € [x,z] and let ¢ be the intersection point of |y, z] with the sphere
or horosphere centered at z and passing through q'. Then

d(x,[y,z]) < e1 = log(1 + v2),

1 3
d(q.q") <2 =2log +2\/_-

X q z

For instance by Lemma 2.9 of [PP1], for every horosphere H with center &, for
every ) € doo X —{&}, forevery x, y € H such that the geodesic rays [x, n[ and [y, n[
meet H only at x and y respectively, we have

d(x,y) <2cy. 2)

Lemma 5. Let x,y € X be two points in a horosphere centered at £ € 000X, let z
be the closest point to & on [x, y], and let z' be the closest pointto y on [x, &[. Then

|d(x,z) —d(y,z)| <2c; and |d(z',x)—d(Z',y)| < ca.
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Proof. This is well known, we only prove the second statement. If & is the point
at distance ¢ from x on [x, [, and if ¢, is the intersection with [y, &] of the sphere
centered at &, through z’, then d(z’, ¢;) < ¢, by Lemma 4 and

|d(z',x) —d (", y) | =1d(Z'.x) = d(gqe, y) | + d(Z'. q0),

andlimt—>+00 d(zl,x)_d(q“)’) zlg‘g‘(X,)’) =0. O

Lemma 6. Letv € T'X and w € W (). If d*(v,w) > e%, then the closest
point vy, to W4 on the geodesic line \v_, v4[ belongs to the geodesic ray |v—, vy,

and
8c1 4+ ¢»

| Togd™ (v, w) = It = =

Proof. By the triangle inequality, we have

d*(v,w) < e%d(”"’wO).

If v, does not belong to the geodesic ray Jv—_, vg], then d(vg, wo) < c2 by

c
Lemma 4, which contradicts the assumption that d*"(v, w) > e?. Let wy, be the
intersection point of the geodesic ray [v;,,, w4 [ and the horosphere o(W*"(v)). Then,
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using Equation (2) for the second equality, and Lemma 5 for the last equality, writing
A= B £ C instead of |A — B| < C, we have, fort > 0,

d(ve, wy) — 2t = d(vo, wo)  4¢1 = d(vo, wy) £ 6¢y
= d(vo, vs,) + d(vs,, wy) + 8¢y
= 2|tw| £ (8c1 + ¢2).

By dividing by 2 and by taking the limit as ¢ tends to 400, this proves the result.  [J

4. Horospherical logarithm laws

Let X be a proper CAT(—1) geodesic metric space, let I be a geometrically finite
group of isometries of X, and let 7 : X — '\ X be the canonical projection. For all
v € T1X, consider the nondecreasing map ©,: [0, +oo[ — [0, +o00[ defined by

Oy(s) = sup  d(m(wo), 7 (vo)).

weB(v,s)

A map ¥: 10, +00[ — 10, +oo[ will be called slowly increasing if t + (t) and
t > ﬁ are nondecreasing for ¢ big enough, if lim;— 4o ¥ (1) = 400, and if

lim; oo L2 = 1 forall ¢ € R. Let ay = lim/ 100 55 € [0,+00]. For

instance, for all a > 0 and @ € ]0, 1], the map ¢ +— a t* is slowly increasing with
ay = aifa = 1and ay = 400 otherwise. From now on, we fix such a map . We
use the convention that 400 + ¢t = +oo for all ¢ € [0, +00]. Note that ¥ (¢) ~ i t
ast — +ooif ay # 0,400, where f(¢) ~ g(t) ast — +oo is Landau’s usual
notation for f(¢) — g(t) = o(g(t)) ast — oo.

Theorem 7. Forall v € T'X such that v_ is a conical limit point of T', we have

lim sup ®U—(S) = ay + lim sup d(JT(U_t), JT(U()))
s>too Yogs) Vs 70)

Proof. We start the proof by making some reductions. Letus fix v € T X and denote
by %, the horosphere with center v_ through vy. Let (HB))pepary- be a I'-equivariant
family of pairwise disjoint closed horoballs as in Section 2, let H, = d HB, be the

horosphere bounding HB,, and let Xp,e = pepar. HBp be the union of the interiors
of the horoballs HB, for p € Parr. Let A be the diameter of I'\ (¢'AT" — Xpyr).

Since AT hasnoisolated pointand since v— € AT, the strong unstable leaf W**(v)
in 71X is non-compact. Indeed, if (£,),en is a sequence of points in AT — {v_}
converging to v_, then the geodesic line from v_ to &, meets the horosphere o (W*" (v))
in exactly one point x,, and the elements v,, € T' X such that v,(0) = x,, (v,)- =
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v— and (v,)+ = &, are points in W*(v) which as n — 400 go out of every compact
subset of W*"(v). We endow W*'(v) with the filter of the complementary subsets
of its relatively compact subsets, and we will consider limits and upper limits of
functions defined on W*"(v) along this filter. What we have to prove is

lim sup d(wo, ['vo) ay + lim sup d(v—r. vo) 3)
u = up —————-.
wewsq Ylogd w,v) ~ VLl T Y0

Since v is slowly increasing and by the triangle inequality, the validity of this formula
is unchanged if we replace v by any other given element of W**(v). We may hence
assume that vg € € AT (note that AT is not reduced to {v_}). Since v— € AT,
the negative geodesic ray vj_o, o] is therefore contained in 4’AT". Since v is slowly
increasing, by Equation (1) and by the triangle inequality, the validity of Equation
(3) is unchanged by replacing v by ¢_, v for any fixed o > 0. Since v_ is a conical
limit point, we may thus assume that vy € € AT’ — Xpy,.
Let us now introduce some more notation.

For every p € Parr, let, € | — o0, 0] be such that v,,, is the closest point to p on
the geodesic ray v)—oo,0], let z,, be the intersection point with %, of the geodesic ray
[vs,. p[ . let g, be the closest point to v— on Hj, and let v? be the unique element of
WSt (v) such that vﬁ = p. Note that the intersection with %, of the geodesic line
v? is its time O point v(l)’. For all p € Parr such that v;, ¢ HB), let q; be the closest
point to v;, on H),. Forall p € Parr such that v;, € HB), let t;t € ] — 00, 0] be such
that v, (respectively v tj) is the entering (respectively exiting) point of the geodesic
line v in (respectively out) of HB,, and let s, = 1, — 1, > 0.

By Lemma 6, for every p € Parr such that d*" (v, v?) > e%, we have

8c1 + >

| Togd™ (v.v") = Ity | = =

“4)

By the initial reduction, we have d (v, I'xo) < A, t; <O0andd(v,+,I'xg) < A
4
for every p € Parr such that vy, € HB). The following estimate will also be useful.
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Lemma 8. Let p € Parr. If vy, € HB), then
| d(vg, Tvo) — (|tp| +5p) | <5¢1 +ca + A.
If vy, & HBp, then
|d(vé’, T'vg) — (|tp| —d(vs,, HBp)) | < 2¢1 + 22 + A.

Proof. 1f vy, € HB), since the geodesic ray [g,, p[ isometrically injects in I"\ X and

since ¢, belongs to ¢’AT" and is the closest point to vé’ on Hp, by Equation (2), and

by the second part of Lemma 5 for the last equality, writing A = B & C instead of
|A — B| < C, we have

d(¥,Tvg) =dwl.qp) £ A
=d(zp,ve;) £ (A +4cy)
=d(zp,v1,) +d(vs,, ve;) £ (A +5¢1)
=|tp| +5p £ (A+5¢c1 +¢2).
The proof of the second assertion is similar: If v;, ¢ HB,, then
d(vy,Tvg) =dwl.qp) £ A
=d(zp.qp) £ (A+2c1 +02)
= d(zp,vy,) —d(vy,,q,) £ (A +2c1 + c2)
= |tp| —d(vs,, HBp) £ (A + 2¢1 + 2¢3). |
Now that the notation is in place, let us prove Equation (3) by reducing both sides
to computations inside the horoballs HB,,, using the above notation.

Let us endow the set Parr, and any infinite subset of it, with the Fréchet filter of
the complementary subsets of its finite subsets. We also consider limits and upper

limits of functions defined on this set along this filter. We denote by HB,, the interior
of HB,,.

dw—;,T'vo) _

Lemma 9. If{p € Parr : v;, € HB,} is finite, then lim sup,_, | g - =0

and otherwise

d(v—;, T
lim sup M = lim sup °p

t—+00 V(1) o Yl

pEParr:v;p € HBp

Proof. For all 1 € ] — 00,0] such that v, ¢ Xpwr = Upepy,. HBp, we have
d(vs, Tvg) < A, which in particular proves the first claim, since lim;— 400 ¥ (f) =

+o0. Let p € Parr be such that v,, € HB,. Forall 7 € [t,, 1], let r be the closest
point to v, on the geodesic ray [v., p[, see the picture below.
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Since d(vy,, [vi;, p[) < c¢1 and by convexity, since the geodesic ray [vs;, p[
isometrically injects in I"\ X and since v, belongs to 4’AT and is the closest point
tor on Hp, writing A = B & C instead of |[A — B| < C, we have

d(ve, Tvg) = d(r,T'v) £ ¢1
=d(r,v;) £(c1 +4)
= d(Ut,Utp_) + (26‘1 + A)
=t — 17| £ Qi + A).
Similarly, for all 7 € [t,,2,5], we have | d(v;, Tvo) — |t —,7| | < 2¢1 + A.

Sincet — ¥ (t) andt — ﬁ are eventually nondecreasing, if |z, | is big enough,

lt=t, | t—t, |t— tp\ _
note that —=4< 11f(|t|) =7 t) is maximal as 7 ranges in ]¢,, 1] whent = 1, and T =

+
fp( 7y is maximal astranges infty, 1, Flalsowhent = 1,. Since | d(vy,, Tvg)—sp | <
2c1+ Ajand | |1, — 1, | = sp| < 2(:1 by Lemma 5, this proves the result. O

Lemma 10. If {p € Parr : v;, € HB,} is finite, then

li d(wg, Tvy)
1m sup =dy,
wews(y V(logd™(w, v)) 7

and otherwise

T d(wo, I'vg) T Sp
1m sup =a 1m sup .
wewu(yy Y(logd®(w, v)) 7V v (ltp))

o
pEParr vy, € HBp

Proof. Since v— € AT, there exist C > 0 and a sequence (¥,)nen in I' such
that lim,— 4o d(Vo, Ynvo) = 400 and sup,eyny d(VnV0. Vj—00,0)) < C. In par-
ticular, since the family of pairwise disjoint horoballs (HBp),epar- is locally finite
in X, there exists a sequence (pp)nen in Parr such that lim, 4o 1, = —00
and sup, ¢y d(vy,,.HBp,) < C + A. By Equation (4) and Lemma 8, since v is
eventually nondecreasing, for all p € Parr such that d*(v, v?) is big enough, we
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have
d(vé’, I"vg)
¥ (logd*(v?,v))

> min { |tp| — d(Utp,HBp) 8—62—561 — 2C2 - A, |[p| — 5C1 —SCCi_c— A }
vt + =572) vt + =572)
In particular,
d(wo, T dwi", T
lim sup (wo, I'vo) > lim sup (v vo) ay. (®)]

>
wewsi)y V(ogd™®(w,v)) T poioo Y(logds(vPr,v)) —

Let w € W (v) with d*(w, v) > e, Let vy, be the closest point to w4 on
the geodesic line v, which belongs to v1_s, o] by Lemma 6 (see the picture below).
Let z,, be the intersection point with .77, of the geodesic ray [v,,,, p[, which satisfies
d(zy,wo) < 2¢; by Equation (2).

If vy, ¢ Xpar = UpeParr HB,, then respectively by the triangle inequality, since
vy, € €AT, by the second claim of Lemma 5, and by Lemma 6, we have

d(wo, T'vg) < d(zw,T'vo) + 2¢4
<d(zy,vs,) +2c1+ A =Z|ty|+2¢c1 +c2+ A

12 3
<logd*™(w,v) + # + A.

In particular, if {p € Parr : v;, € HB,} is finite, since ¥ is slowly increasing, we

4
have
T d(wg, T'vg) <1 log d**(w, v)
im sup , < lim sup ,
wews) Y(ogd™(w,v)) T yewa) ¥(logd™(w,v))

is at most a.,, hence is equal to ay by Equation (5). This proves the first claim of
Lemma 10.

We may hence assume that {p € Parr : v;, € HB,} is infinite. In particular,

. d(wo, T'vo) I d(wo, T'vo)
im sup = im sup
weWsu(v) W(logdsu(wv v)) weWSU(v) : vy, € Xpar W(logdsu(w, v))
d (v, Tvg) ©)

> lim sup

o Y(logds“(vP,v))’

pE€Parr:vy, € HBp
Let us prove that the converse inequality holds. Since i is slowly increasing, by
Equation (4) and the first part of Lemma 8, this will prove Lemma 10.

cp °
Let w € W*(v) and p € Parr such that d**(w,v) > e?2 and v;,, € HB,. In
particular, v;, € HB,. Assume for instance that vy, € [v,,, Vot [.
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Let z,, be the intersection point with J7; of the geodesic ray [v,+, p[, which
4
satisfies d(z;,, wo) < 2c; by Equation (2). Then, again using the second claim of
Lemma 5 for the final inequality,

d(wo,Tvo) < d(zy,,Tvo) +2¢1 < d(zy,,v,4) +2c1 + A
14
<d(zw, v ) 4+ A
= d(zw, vy,) + d(Ve, v, 1) +der + A

< |tw| + [tw — 5| + 4c1 + 2 + A.

[tw | +]tw —tj tp+—2tw

The map from [z,, t;[ to [0, +00[ defined by t,, T = v

creasing if t; is small enough, with maximum reached at #,, = #,. This maximum is

at least ‘t‘ﬂm—fp_l)zﬁ by the first assertion of Lemma 5. Since lim;_, 4o ¥ () = +o00,

this proves the converse inequality of Equation (6) by the first part of Lemma 8, thus
proves Lemma 10. O

1S nonin-

Now Equation (3), hence Theorem 7, follows immediately from Lemma 9 and
Lemma 10. [

For every p € Parr, let 51,: X — [0, 400[ be the (well-defined and 1-Lipschitz)
map ~
Bp: x = max{0, lim ¢ —d(x,rp(t))},
t—+o0

where r,: [0, +00[ — X is any geodesic ray from a point of H, to p. For every
I'-invariant subset E of Parr, let

e =max fp,
whichis a I'-invariant 1-Lipschitz map from X to [0, +o00[ . The proof of the following

result is the same as the one of Theorem 7, up to replacing the full family (HB,),epar-
by the subfamily (HB,),eE.
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Theorem 11. For every T-invariant subset E of Parr, for every v € T'X such that
v_ € A.T", we have

B E (wo) BE (v-1)

lim sup = ay + limsup
wewagy Vlogdm(w.v)) V7 Sl ()

Theorem 2 in the introduction is a corollary of Theorem 11, since replacing ,gp
by Bp + ¢, for any constant ¢, € R depending only on the orbit of p under I' does
not change its validity.

Note that under the hypothesis of an almost sure logarithm law for an invariant
measure of the geodesic flow, the right-hand sides of the equations in Theorem 7 and
Theorem 11 are an easily computed constant for almost every v, hence so are the
left-hand sides. In particular, the next result follows from Corollary 6.1 of [HP4]
and Corollary 1.2 of [HP5]. The new assumptions are satisfied in particular if the
Riemannian metric of X is locally symmetric in at least one horoball centered at each
parabolic point. We refer for instance to [Rob] for the definitions and properties of
the critical exponents and of the Bowen—Margulis measure.

Corollary 12. Let (X,T') be as above, with Parr nonempty. Let § be the critical
exponent of I'. Assume furthermore that either X is a locally finite tree, or X is a
Riemannian manifold with pinched sectional curvature such that, for every p € Parr,
if 8, is the critical exponent of the stabilizer ', of p in ', then §, < § and there exists
¢ > 0 such that % efrn < Card{a € I', : d(x9,0x0) <n} <c edon foralln € N.

Then for almost every v € T'X for the Bowen—Margulis measure of T on T X,
we have

lim sup ®v—(s) =a
stoo Y(logs) 7

Proof. Let §o = maxpepa- 0p < 6.
First note that, by §2 of [Rob] the set of elements v € T! X such that vy € AT’

has full measure for the Bowen—Margulis measure. Also note that since ¥ is slowly
increasing, if ay # +oo, then lim;_ o % = 0. Hence if ay # +o0, by

Theorem 7, we have, for almost every v € T!X for the Bowen—Margulis measure,

if limsup, _, , o d“’%{;tmo) is finite, then
O, (s d(v_;, Tv . logt
lim sup A = ay + lim sup v 0) lim gt _ ay, @)
s—>+oo Y (logs) t—>+00 log? t—>+o00 Y (1)

a formula which is also true if ay, = +o0.
In the locally finite tree case, Corollary 1.2 of [HPS] applies directly, since it

d=r.T'vo) _ % for almost every v € T'! X for the Bowen—

proves that lim sup,_, | o, Tog?

Margulis measure.
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Assume hence that X is a Riemannian manifold as in the statement. The only
assumption of Corollary 6.1 of [HP4] that is not an assumption of Corollary 12 is
that there exists ¢/ > 0 such that % e < Card{y € T : d(x¢,yxo) <n} <c’ efn
foralln € N.

By [DOP], the assumptions that I" is geometrically finite and that §,, < § for all
p € Parr imply the finiteness of the Bowen—Margulis measure on I'\7'' X. By [Dal]
since Parr # @, the set of the translation lengths of the hyperbolic elements of I
is not contained in a discrete subgroup of R. By [Rob], the extra assumption above
is satisfied (and there is even an asymptotic equivalent Card{y € I" : d(x¢, yxo) <

n} ~ ¢’ %" as n — +00). Since the conclusion of Corollary 6.1 of [HP4] is that
lim sup,_, | o d(vTO”tF”O) = 2(8i80) for almost every v € T!'X for the Bowen—
Margulis measure, Corollary 12 follows from Equation (7). O

Remark. Since Corollary 6.1 of [HP4] and Corollary 1.2 of [HP5] are valid cusp
by cusp, a statement analogous to Corollary 12 for a prescribed set of cusps is also
valid.

As a second application of our main theorem, here is another consequence, for the
behavior of strong unstable leaves, of the excursion properties of the geodesic flow
in cusps neighborhoods.

Corollary 13. If T is convex-cocompact, then foreveryv € T'X suchthatv_ € AT,
we have lim supg_, | %(j) =1
If T is not convex-cocompact and if X is a Riemannian manifold of dimension at

least 3, then for every o € [1, 2], there exists v € T1X such that

B Oy(s)
1m sup =«
s—+oo logs

Proof. The first claim is immediate from Theorem 7 with v : ¢ +— ¢. The second one

follows from the techniques of §5.4 of [PP1]. ]
Given « € |1, 2], it would be interesting to study the Hausdorff dimension of the
set of elements v € T'X such that lim sup,_, | o Gl)(;’g(j) =

5. An application to non-Archimedian Diophantine approximation

For all n > 2, let Hp be the upper half-space model of the real hyperbolic space
of dimension n. Applications to Archimedian Diophantine approximation may be
obtained, as in the case of X = Hﬁ and I" a congruence subgroup of PSL,(Z) (see
for instance [AM]), by taking for instance X = H% and I' = PSL(O) where O is
an order in the ring of integers of an imaginary quadratic number field, or X = H%
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and I' = PSL(&) where & is an order in a definite quaternion algebra over Q
(see for instance [PP2]). But in this paper, we concentrate on the applications to
non-Archimedian Diophantine approximation.

We start this section by restating a version of Theorem 11 in the particular case
of trees, which will be more directly applicable for our arithmetic applications.

Let T be a locally finite tree (endowed with the maximal distance making each
edge isometric to [0, 1], which is CAT(—1)). Let V(T') be its set of vertices and
Aut(T) its locally compact automorphism groups (which is contained in its isometry
group). Let I' be a geometrically finite subgroup of Aut(7"). Up to taking the first
barycentric subdivision of 7" and rescaling, we assume that I" acts without inversion
(that is, no element of I' maps an edge of T to its opposite edge), so that I'\T
has a unique structure of graph such that the canonical projection 7 — I'\T is a
morphism of graphs. By the structure theorem of [Pau2] (improving on the algebraic
cases of Serre [Ser] and Lubotzky [Lub]), with E the finite set '\ Parr, there exist a
finite subgraph & of I'\@ AT and for every e € E, a geodesic ray p,: [0, +o0o[ —
'\ AT with origin a vertex, which lifts to a geodesic ray in 7' converging to any
representative of e in Parr, such that T\ % AT is the disjoint union of ¢ and the open
rays pe(]0, +oco[) fore € E.

For every e € E, define amap A.: V(T) — [0, +o0[ by Ae(x) = nif 'x =
Pe(n) (such an n is unique if it exists), and A.(x) = 0 otherwise. Note that if e
is an element of Parr whose image in I'\ Parr is e, since p, lifts to a geodesic ray
converging to €, there exists a constant ¢ € R such that Bz (f) = A(f) + ¢ for ¢ big
enough, with the notation before Theorem 11. Also note that two geodesic linesin T,
starting from the same point at infinity, coincide up to translation on a neighborhood
of —oo. For every non-isolated point £x € 0007, we endow oo T — {£x} with the
filter of the complementary subsets of its relatively compact subsets. Therefore, the
following result follows immediately from the definition of Hamenstiddt’s distance
and Theorem 11.

Corollary 14. Let &, € AT and ny € 00oT — {E4}. Forevery n € 0ooT — {4}, let
t > n(t) be the geodesic line from & to 1 such that n+(0) € V(T) and n(t) = n«(t)
for t small enough. Let §+(n,nx) = inf{t € N : n(—s) = n«(=s) forall s > t}.
Then forall e € E and ¥ : 10, +o0o[ — 10, +o00[ slowly increasing, we have

li A.(n(0)) . . Ae(«(—1))
im sup =ay +limsup —————.

n€dooT—itxy ¥ (Sx(1,7x)) 1—+00 V(1)

We now give our applications to non-Archimedian Diophantine approximation.
We follow the notation of [Paul],Ain particular as recalled in the introduction for
k=Fg A =Kk[X],K = k(X), K = k(X™), & = k[[X "I, |- | = | - |oo and,

for every f € K — K, its continued fraction expansion (a, = a,(f))nen and its
approximation exponent v = v( f).
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Forevery f =Y ez iX7' € K, the integral part [ f] of f is Yoo fiXTTed
anditsfractionalpart{f}is Do fiX X7 eX10. Artin’smap ¥ : X-lo— {0} —>
1ﬁlsdeﬁnedbyf — {1/f}. Given f € K—K,wehaveag = [flandifn > 1,
then a, = [m] Consider the sequences (Pr)nenui—1} and (Qn)neNui-1}

in A inductively defined by
Pi=1Q0-1=0, Py=ap, Qo=1
and for every n € N,
Ppii =ans1Pn+ Pp—1 and  Qni1 = an410n + On—1.

Then P, and Q, are relatively prime, and

P, 1
—n=a0+

On

a; +
a +

1

an-1+ —

An

is called the n-th convergent of f. The sequence (%)neN converges to f (for the
above, see for instance [Las], [Sch], as well as [Paul] for a geometric explanation).
The action of GL;(K) on the set of O-lattices induces an action of K* by homo-
theties on this set, and we will denote by [A] the homothety class of an &-lattice A.

Remarks. (1) Note that &-lattices A in K2 behave, from the topological viewpoint,
very differently than Z-lattices in R?: they are compact open additive subgroups of
K2, and hence K2 /A is infinite and discrete (thus non-compact). Furthermore, for
any norm | - || on K2, we have inf cea_oy x| = 0.

(2) The set V(T g) (see below for an explanation of this notation) of homothety
classes of O-lattices in K2 can be endowed with the quotient of Chabauty’s topology
on closed subgroups of the (additive) locally compact group K K2, or, equivalently,
with the topology of an homogeneous space under the transitive (hnear) action of
PGL, (K ). Note that this topology is discrete since PGL, (&) is open in PGLz(Ie ),
again a major difference from the case of Z-lattices in R%. The map A definedin the in-
troduction induces (by passing to the quotients) a proper map from PSL»(A)\V(T g)
to N. This map is an ultrametric analog of the inverse of the systole map on Z-lattices
with covolume 1 in R?, whose properness is called Mahler’s criterion.

Let us fix anonzero element Q . of A. Consider Hecke’s nonprincipal congruence
subgroup

ry = {(Z‘ Z) €SLy(d):c=0 mon*},
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which has finite index in SL,(A4). For every O-lattice A, define Ag, (A) = n if
there exists y € Fg* such that [yYA] = [0 x X7" 0] and Ag, (A) = 0 otherwise.

Forevery f € K—K, recall that (u ¢ =ug(f ))g < ¢ 18 the maximal one-parameter

unipotent subgroup of SL, (I? ) whose projective action on [P; (I/(\ )= KU {00} fixes
f. Forevery f € K — K, the approximation exponent vg, = vo, (f) of f relative
to Q « is the least upper bound of the positive numbers v’ such that there exist infinitely
many elements 5 in K with P and Q relatively prime and Q = 0 mod Q« such
that

\f—§|f|Q|—“’.

Theorem 15. For every [ € K — K, we have

A 0? 2
lim sup M =—2__=
lg|—>+o0 Iqu g Vo,

log |a
=1+ lim sup el 'H,;l| 57
n—+00:0,;,=0mod Q « log |an+1 l_[i=1 a; |

Theorem 3 in the introduction follows by taking Q. = 1.

Proof. We will apply Corollary 14 with 7' the Bruhat-Tits tree of (PGL5, K ), whose
definition and useful properties we start by recalling (following [Ser]).

The Bruhat-Tits tree T gz of (PGL,, K ) is the graph whose vertices are the ho-
mothety classes of O-lattices in K 2, two vertices x and x’ being joined by an edge if
and only if there exist representatives A, A’ of x, x” respectively such that A” C A
and A /A’ is isomorphic to /X1 0.

We identify as usual the projective line IP; (K) with K U {oc0} by the map

. X
K*(x,y) — —.
Yy

We denote by (g, x) > g - x the projective action of g € GL2(KA) onx € Py (I/(\) =
K U {oo}. R

The action of GL,(K) on the set of O-lattices induces an isometric action of
GL2(K) on Tp. Note that SL,(K) acts with two orbits on the set of vertices of
Tg. There exists one and only one homeomorphism between dooT 2z and P (K)
such that the (continuous) extension to doo T 2 of the isometric action of GLZ(E ) on
T corresponds to the projective action of GL» (1’(\ ) on Py (1?). From now on, we
identify doo T g and Py (I? ) by this homeomorphism.

We denote by HB o the horoball in T g with center oo whose boundary contains
the vertex [€?]. Note that PSL,(A) is a geometrically finite group of isometries of
T %, with only one orbit of parabolic points, and that (y HBoo)yesL, (4)/ SL>(4) oo 18 the
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associated PSL, (A)-equivariant family of maximal horoballs with pairwise disjoint
interiors (see §6.2 of [Paul]). The geodesic ray from [0?] to co € doo T g, whose
sequence of consecutive vertices is ([0 X X " 0])yenN, injects onto the quotient
PSL>(A)\Tg.

Letus fix f € K — K. We are now going to apply Corollary 14 with ¢ = id (so
thatay = 1), T = Tg, I' the image of Fg* in Aut(7T") (which is also a geometrically
finite subgroup with Parp = Parpgy,(4) = P1(K) = K U{00}), £&x = f (whichis a
conical limit point, since f is irrational and the limit set of PSL,(A4), hence of T, is
the whole boundary at infinity), 7. = 0, and e = I'co.

The sequence ([0’ x X ™" 0])nen of consecutive vertices of the geodesic ray in T g
from [©?] to oo isometrically injects in PSL,(A)\T &> hence in Fg* \Tz. Therefore,
there exists a constant ¢ € R such that for every &-lattice A, we have

[ Ae([A]) = Ag.(A)| =c.

The element yy = ( 1/1f (1)) € SL2(I€) maps projectively co to f (hence sends
the horospheres centered at co to the horospheres centered at f) and fixes 0. The
maximal one-parameter unipotent subgroup of SLZ(I?) fixing oo is g ((1) H )
Hence the maximal one-parameter unipotent subgroup (u g)g g of SLo (I? ) fixing f
iSgrug = yf((l) H )yf_l. We fix the parametrization of the geodesic lines starting
from f so that they cross at time t = 0 through yr9d HB,. Note that there exists a

constant ¢’ € R such that for all g € K , we have
| AQ*(ugyfﬁz) — Ao, (ug %) | <c.

By Corollary 5.2 of [Paul], for all g € K , Hamenstédt’s distance between the
geodesic lines starting from oo and ending at 0 and at g, passing through d HB, at

1
time 0, is |g|™=7. Since yy is an isometry fixing 0 and yy - g = ug - 0, with 6x(-,-)
defined in Corollary 14, we hence have

8x(ug -0,0) = log, [g|.
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The map from K to dooTp — {f} sending g to n = ug - 0 is a homeomorphism.
With 7 > 7(t) as defined in Corollary 14, we may assume that 1, (0) = yz[0?] (this
changes A.(17(0)) only by a constant), and we have 1(0) = ugys[0?] (see the above
picture on the right). Hence

Ae(n(0 A 0?
lim sup L) = lim sup B0. (g 07) (8)
n€dooT—iEx} 0% M%) |gl>to0  10g, |E]
Let us denote by v : K - Z U {400} the valuation associated to the absolute
value | - |, so that for all f € K, we have

[ f1=q7.

By §6.3 of [Paul] the geodesic line starting from oo and ending at f (passing
at time t = 0 through d HB,) enters successively the interiors of the horoballs of
the PSL, (A)-equivariant family of maximal horoballs with pairwise disjoint interiors
which are centered at the convergents of f. Furthermore, if x,, is its entering vertex

in HB p, and y, its point the closest to %, then
On

1
d(xn, yn) = Ed(xn’xw-l) = —Veo(@n+1).

In particular,

d(x0. yn) = Y _ —2Vo0(@i) — Voo (ant1) = log,

i=1

n

2

ant1 || 4
i=1

By the definition of Ag,, we are only interested in the excursions of the geodesic
line Joo, f[ in the horospheres HB L with P, O € A relatively prime and Q =

0 mod Q. Since the geodesic ray from y[0?] to f coincides, for times big enough
and up to translation, with the geodesic line Joo, f[, we have

lim sup —Ae(n*(—t)) = lim sup logq kel
t—>+00 ! n—+00:Q; =0mod Q « logq |an+1 n?zl Cliz |

€))

By §6.3 of [Paul] with the above notation, we also have

Py
On

9’

Ao, ) = voo £ = ") = ~log,

On f-

and
d(x0,Xn) = —2V00(Qn) = 210gq | On .
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Since | f — g is at least 1 if g is not a convergent of f, we hence have, by the
definition of the approximation exponent vg,,

2 . 2log| O |
Vo, |Q|—>+00:0=0mod Q « —]og | f -5 |
21o
= liminf 81 0nl
n—>+00:0,=0mod Qx _10gq | f _ Q_’:l |
_ .. d(X(),xn)
= lim inf _—
n—>+00:0,; =0mod Q « d(xo,yn)
n
G .
= lim inf 2= ~2Veoldi)
n—4+00:0,=0mod O« Zi:l —2V00(ai) — Voo (@n+1)
log, |a
=1- lim sup g lan-1] (10)

n—>+00:Q0,=0mod Q « 10gq |an+1 l_[?=1 aiz |

Now Theorem 15 follows from Equation (8), Corollary 14, Equation (9), and Equa-
tion (10). ]

Remark. Note that the definition of A g, isrelated to the choice of one of the ends of
FOQ* \T ¢ (the one corresponding to the geodesic ray in T z with vertices [0'x X ™" 0]

forn € N). Other choices of ends give analogous Diophantine approximation results.
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