
Groups Geom. Dyn. 8 (2014), 375–389
DOI 10.4171/GGD/230

Groups, Geometry, and Dynamics
© European Mathematical Society

Finite factor representations of Higman–Thompson groups

Artem Dudko and Konstantin Medynets

Abstract. We prove that the only finite factor representations of the Higman–Thompson groups
fFn;rg and fGn;rg are the regular representations and scalar representations arising from group
abelianizations. As a corollary, we obtain that any measure-preserving ergodic action of the
commutator subgroup of a Higman–Thompson group must be essentially free. Finite factor
representations of other classes of groups are also discussed.
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1. Introduction

One of the directions in the representation theory of infinite groups is the classifi-
cation of factor representations of finite type for the group in question. In view of
the Gelfand–Naimark–Segal construction, this amounts to the study of non-negative-
definite central functions (termed “characters”) on the group. In [20] Vershik sug-
gested that each indecomposable character � (an extreme point in the simplex of
characters) of a “rich” group G “must” arise as �.g/ D �.Fix.g//, Fix.g/ D fx 2
X W g.x/ D xg, for some ergodic measure-preserving action of G on a measure-space
.X; �/. We will refer to this suggestion as Vershik’s conjecture. This conjecture was
recently verified for the infinite symmetric group [21] and for the full groups of
Bratteli diagrams [6].

We notice that some older results of representation theory can also be given a
similar dynamical interpretation. Consider the general linear group GLn.Fq/ over
a finite field Fq and set G1.Fq/ D S

n�1 Gn.Fq/ with the diagonal embedding.
The characters of GL1.Fq/ were completely described by Skudlarek [15]. The
group GL1.Fq/ acts on the Cantor space X of one-sided sequences over Fq . The
dynamical system .X; GL1.Fq// is uniquely ergodic. Denote the invariant measure
by �. Then, using the classification results of Skudlarek [15], one can check that
each indecomposable character � of GL1.Fq/ has the form �.g/ D �.Fix.g//k for
some k 2 f0; 1; 2; : : :g [ f1g.
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The goal of the present paper is to study finite factor-representations (characters)
for the Higman–Thompson family of groups fFn;rg and fGn;rg (see the definition in
Section 3) and to check the validity of Vershik’s conjecture for these groups. Appar-
ently, the most famous group from this family is the Thompson group F2;1 consisting
of all piecewise linear continuous transformations of the unit interval with all singu-
larities at points in f p

2q W p; q 2 Ng and slopes in f2q W q 2 Zg. The discussion of
historical importance of these groups and their various algebraic properties can be
found in [2], [3], and [16].

Our motivation is two-fold. First, these groups have been extensively studied from
the group-theoretic point of view, but the theory of their representations has not been
addressed yet. Our second motivation is that the actions of these groups on the spaces
where they are defined have no non-atomic invariant measures, which, according to
Vershik’s conjecture, should imply that these groups have no non-identity/non-regular
characters. The following is the main result of the present paper.

Theorem. Let G be a group from the Higman–Thompson families fFn;rg or fGn;rg.
(i) Let � be a finite factor representation of G. Then either � is the regular

representation or � has the form

�.g/ D �.Œg�/Id;

where Œg� is the image of g in the abelianization G=G0, G0 is the commutator of G,
� W G=G0 ! T is a group homomorphism into the unit circle, and Id is the identity
operator in some Hilbert space.

In particular, if � is an indecomposable character of G, then � is either regular or
�.g/ D �.Œg�/, where Œg� is the image of g in the abelianization of G and � W G=G0 !
T is a group homomorphism.

(ii) The commutator subgroup G0 has no non-identity, non-regular characters.

This result implies that the characters of any Higman–Thompson group G are con-
vex combinations of the regular character and characters of its abelianization G=G0.
The structure of group characters has implications on dynamical properties of group
actions. Suppose that a group G admitting no non-regular/non-identity characters
acts on a probability measure space .X; �/ by measure-preserving transformations.
Setting �.g/ D �.Fix.g//, Fix.g/ D fx 2 X W g.x/ D xg, one can check that the
function � is a character. This necessitates that the action must be essentially free,
i.e. �.Fix.g// D 0 for every g 2 G n feg, see Theorem 2.12 and Corollary 3.10 for
details.

Corollary. LetG be the commutator subgroupof agroup from theHigman–Thompson
families fFn;rg or fGn;rg. Then any faithful measure-preserving ergodic action of G

on a probability measure space .X; �/ is essentially free.

Combining this result with [1], Proposition 14, we obtain the following. Note
that the commutator subgroups of groups in fFn;rg or fGn;rg are simple [2], [8].
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Corollary. LetG be the commutator subgroupof agroup from theHigman–Thompson
families fFn;rg or fGn;rg. Then G has no non-trivial invariant random subgroup.

In our proofs, we mostly utilize the fact that the commutators of Higman–Thomp-
son groups have no non-atomic invariant measures on the spaces over which they are
defined. This means that the orbit equivalence relations generated by their actions
are compressible [9]. This observation allows us to state the main result in terms of
dynamical properties of group actions (Theorems 2.9 and 2.11) and extend it to other
classes of transformation groups (Section 3).

We notice that the amenability of the Thompson group F2;1 is still an open ques-
tion. Thus, it would be interesting to relate the constraints on group actions coming
from the absence of non-trivial characters to the amenability. We would like to men-
tion though that there are amenable groups with no non-identity/non-regular charac-
ters. In [13], [14] Ovchinnikov showed that every Chevalier group G D L.K/ over
an infinite discrete field K admits only the trivial and the regular indecomposable
characters. We notice that for some discrete fields the associated Chevalier groups
are locally finite.

The structure of the paper is the following. In Section 2 we develop the general
theory of finite type factor representations for groups admitting compressible actions.
In Section 3 we apply our general results to the Higman–Thompson groups and to
the full groups of irreducible shifts of finite type [11].

To complete the introduction, we mention that finite type representations have
been completely studied only for a handful of infinite groups. Amongst these, the
groups mentioned above, the infinite unitary group [18] and [19], and the general
linear group GL.n; K/ over an infinite discrete field [10].

2. General theory

In this section we show that if a group admits a compressible action on a topological
space, then this group, under some algebraic assumptions, has no non-trivial factor
representations. We will start with definitions from the representation theory of
infinite groups.

Definition 2.1. A character of a group G is a function � W G ! C satisfying the
following conditions:

1) �.g1g2/ D �.g2g1/ for any g1; g2 2 G;

2) the matrix
˚
�

�
gig

�1
j

��n

i;j D1
is non-negatively defined for any n and g1; : : : ;

gn 2 G;

3) �.e/ D 1. Here e is the group identity.

A character � is called indecomposable if it cannot be written in the form � D
˛�1 C .1 � ˛/�2, where 0 < ˛ < 1 and �1, �2 are distinct characters.
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For a unitary representation � of a group G denote by M� the W �-algebra gen-
erated by the operators of the representation � . Recall that the commutant S 0 of a
set S of operators in a Hilbert space H is the algebra S 0 D fA 2 B.H/ W AB D
BA for any B 2 Sg.

Definition 2.2. A representation � of a group G is called a factor representation if
the algebra M� is a factor, that is M� \ M0

� D CId.

The indecomposable characters on a group G are in one-to-one correspondence
with the finite type factor representations of G. The classification of factors into types
can be found in Chapter 5 of [17]. Starting with an indecomposable character � on
G one can construct a triple .�; H; �/, referred to as the Gelfand–Naimark–Segal
(GNS for short) construction. Here � is a finite type factor representation acting in
the space H , and � is a unit vector in H such that �.g/ D .�.g/�; �/ for every g 2 G

(see, for example, [6], Section 2.3). Note that the vector � is cyclic and separating for
the von Neumann algebra M� . The latter means that if A� D 0, for some A 2 M� ,
then A D 0.

Remark 2.3. We note that each character defines a factor representation up to
quasi-equivalence. Two unitary representations �1 and �2 of the same group G

are called quasi-equivalent if there is an isomorphism of von Neumann algebras
! W M�1

! M�2
such that !.�1.g// D �2.g/, for each g 2 G. For example, all II1

factor representations of an amenable group are hyperfinite [4] (Corollary 6.9 and
Theorem 6) and, hence, generate isomorphic algebras. At the same time, they might
be not quasi-equivalent.

Suppose that G is an infinite conjugacy class (abbr. ICC) group. Then its left
regular representation � generates a II1-factor and the function �.g/ D .�.g/ıe; ıe/

is an indecomposable character (termed the regular character).

Definition 2.4. We say that a group H has no proper characters if � being an
indecomposable character of H implies that either � is the identity character given
by

�.g/ D 1 for every g 2 G

or the regular character defined as

�.g/ D 0 if g ¤ e and �.e/ D 1:

We notice that for non-ICC groups the regular characters are decomposable.

Fix a regular Hausdorff topological space X . Notice that any two distinct
points of X have open neighborhoods with disjoint closures. To exclude trivial
counterexamples to our statements we assume that the set X is infinite. Suppose
that a group G acts on X . For a group element g 2 G, denote its support by
supp.g/ D fx 2 X W g.x/ ¤ xg.
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Definition 2.5. We say that the action of G on X is compressible if there exists a
basis U of the topology on X such that

(i) for all g 2 G, there exists U 2 U such that supp.g/ � U ;

(ii) for all U1; U2 2 U, there exists g 2 G such that g.U1/ � U2;

(iii) for all U1; U2; U3 2 U with xU1 \ xU2 D ¿, there exists g 2 G such that
g.U1/ \ U3 D ¿ and supp.g/ \ U2 D ¿.

(iv) for all U1; U2 2 U, there exists U3 2 U such that U3 � U1 [ U2.

Remark2.6. Suppose that X is a Polish space. If an action of G on X is compressible,
then the G-action has no probability invariant measure. The latter is equivalent to
the G-orbit equivalence relation being compressible (see [9] and references therein).
This observation motivates our terminology.

The following result relates the dynamical properties of group actions to the func-
tional properties of group characters.

Proposition 2.7. Let G be a countable group admitting a compressible action by
homeomorphisms on some regular Hausdorff topological space X . Then for ev-
ery non-regular indecomposable character � of G there exists g ¤ e such that
j�.g/j D 1.

Proof. Consider a proper indecomposable character � of G. Assume that j�.g/j < 1

for all g ¤ e. Let .�; H; �/ be the GNS-construction associated to �.
(1) We notice that the definition of the compressible action implies that � has the

multiplicativity property in the sense that if U1; U2 2 U and g; h 2 G are such that

supp.g/ � U1; supp.h/ � U2 and xU1 \ xU2 D ¿;

then
�.gh/ D �.g/�.h/: (1)

Indeed, find an increasing sequence of finite sets Fn � G with
S

n Fn D G. Then
by condition (i) and condition (iv) of Definition 2.5, we can find open sets Vn 2 U
such that

Vn �
[

f 2Fn

supp.f /:

By condition (iii) there exist elements rn 2 G such that

rn.U1/ \ Vn D ¿ and supp.rn/ \ U2 D ¿:

Then rnhr�1
n D h and supp.rngr�1

n / \ supp.f / D ¿ for every f 2 Fn. Passing
to a subsequence if needed, we can assume that �.rngr�1

n / converges weakly to an
operator Q 2 M� . Notice that the trace �.Q/ is equal to �.g/. Since the operator
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Q commutes with �.Fn/ for every n, we obtain that Q belongs to the center of M� .
Therefore, Q is scalar and Q D �.g/Id. Thus

�.gh/ D lim
n!1.�.rnghr�1

n /�; �/ D .Q�.h/�; �/ D �.g/�.h/:

(2) We claim that, for every " > 0 and every open set U there exists g 2 G with
supp.g/ � U and j�.g/j < ". Indeed, fix an element h ¤ e and n 2 N. Find n

subsets V1; : : : ; Vn 2 U such that xVj \ xVk D ¿, for j ¤ k. By condition (i) and
condition (ii) we can choose elements g1; : : : ; gn 2 G such that gj .supp.h// � Vj ,
for each j . Set

f D .g1hg�1
1 /.g2hg�1

2 / � � � .gnhg�1
n /:

By multiplicativity, we obtain that �.f / D �.h/n. Choosing n sufficiently large we
obtain an element f with j�.f /j < ". By condition (i) and condition (ii) we can find
an element g conjugate to f with supp.g/ � U , which proves the claim.

(3) Consider an element g 2 G; g ¤ e. Find an open set U with g.U /\ xU D ¿.
Fix " > 0 and n 2 N. Using condition (ii) and (iv) of Definition 2.5, we can
find subsets U1; : : : ; Un; V1; : : : ; Vn 2 U with pairwise disjoint closures such that
g.Vi / � Ui � U for each i . Find hj 2 G, j D 1; : : : ; n, supported by Uj with
j�.hj /j < ". Set �j D �.hj gh�1

j /�. Then for i ¤ j , the multiplicativity of � implies
that

.�i ; �j / D �.hj g�1h�1
j high�1

i /

D �.hj .g�1h�1
j g/.g�1hig/h�1

i /

D �.hj /�.g�1h�1
j g/�.g�1hig/�.h�1

i /:

As j�.hj /j < ", we obtain that j.�j ; �i /j < ". Thus,

k�1 C : : : C �nk � �
n C n.n � 1/"

� 1
2 :

Since .�l ; �/ D �.g/ for each l , we have

j�.g/j D 1
n
j.�1 C �2 C : : : C �n; �/j � 1

n

�
n C n.n � 1/"

� 1
2 :

When n goes to infinity, we obtain

j�.g/j � "
1
2 :

Since " > 0 is arbitrary, we conclude that �.g/ D 0. Thus, � is the regular character.

Lemma 2.8. Let G be a simple group and � be a character. If j�.g/j D 1 for some
g 2 G; g ¤ e, then

�.s/ D 1 for all s 2 G:

Equivalently, if � is not the identity character, then j�.s/j < 1 for all s ¤ e.
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Proof. Let c D �.g/, jcj D 1. Consider the GNS construction .�; H; �/ corre-
sponding to �. Using the Cauchy–Schwarz inequality and the fact that the vector �

is separating, we obtain that

.�.g/�; �/ D c H) �.g/� D c� H) �.g/ D c Id :

Take an arbitrary element h 2 G which does not commute with g and set s D
hgh�1g�1. Then �.s/ D Id. It follows that �.s1/ D Id for all s1 from the normal
subgroup generated by s. Since G is simple, we obtain that �.g/ D Id for every
g 2 G. Thus, � is the identity character.

As a corollary of Lemma 2.8 and Proposition 2.7, we immediately obtain the
following result.

Theorem 2.9. Let G be a simple countable group admitting a compressible action
on a regular Hausdorff topological space X . Then G has no proper characters.

Remark 2.10. Jesse Peterson [private communications] noticed that the proof of
Proposition 2.7, in fact, implies that if � is not a regular character, then j�.g/j D 1

for all g 2 G n feg. Since 1 D j�.g/j D j.�.g/�; �/j � 1, by the Cauchy–Schwarz
inequality, we obtain that �.g/� D cg� for some jcg j D 1. This yields that � is a
homomorphism of G into the unit circle. Thus, if a group (not necessarily simple) G

admitting a compressible action has no homomorphisms into the unit circle, then G

has no proper characters. We notice that perfect (and, in particular, simple) groups
have no non-trivial homomorphisms into the unit circle.

Let G be a group. For a subgroup R of G and an element g 2 G set CR.g/ D
fhgh�1 W h 2 Rg. Denote by N.R/ the normal closure of R in G, i.e., the subgroup
of G generated by all elements of the form grg�1; g 2 G; r 2 R.

Theorem 2.11. Let G be a group and R be an ICC subgroup of G such that

(i) R has no proper characters;

(ii) for every g 2 G n feg, there exists a sequence of distinct elements fgigi�1 �
CR.g/ such that g�1

i gj 2 R for any i , j .

Then each finite type factor representation � of G is either regular or has the form

�.g/ D !.Œg�/;

where ! is a finite type factor representation of G=N.R/ and Œg� 2 G=N.R/ is the
coset of the element g.

Proof. Consider an indecomposable character � of G. Let .�; H; �/ be the GNS-
construction associated to �.
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(1) Consider the restriction of � onto the subgroup R. Set H
R

D Lin.�.R/�/.
Since the restriction of � on R is a character and the only indecomposable characters
of the group R are the regular and the identity characters, we can decompose the
space H

R
into R-invariant subspaces H1 and H2 (possibly trivial) such that H

R
D

H1

L
H2 with �.R/jH1 being the identity representation and �.R/jH2 being the

regular representation.
The orthogonal projections fPig onto Hi , i D 1; 2 belong to the center of the

algebra generated by �.R/. In particular, Pi lies in the algebra M� . Furthermore,

�.g/ D ˛�id.g/ C .1 � ˛/�reg.g/ for all g 2 R;

where �id is the identity character, �reg is the regular character, and ˛ 2 Œ0; 1�. If
˛ ¤ 0; 1, we can write down the vector � as

� D ˛
1
2 �1 C .1 � ˛/

1
2 �2; (2)

where �1 2 H1, �2 2 H2 are unit vectors such that

.�.h/�1; �1/ D �id.h/ D 1; .�.h/�2; �2/ D �reg.h/ D ıh;e for all h 2 R:

For convenience, if ˛ D 0, we set �1 D 0; �2 D � , and if ˛ D 1, we set �1 D �; �2 D 0.
Observe that Hi D Lin.�.R/�i /, i D 1; 2.

(2) Assume that H2 ¤ f0g. Consider an arbitrary element g 2 G, g ¤ e.
By our assumptions there exists a sequence of elements fhng 2 R n feg such that
h�1

m g�1hmh�1
n ghn 2 R, for all n and m, and the elements h�1

n ghn are pairwise
distinct. Set gm D h�1

m ghm. Since g�1
m gn 2 R n feg, we obtain that

.�.gn/�2; �.gm/�2/ D �reg.g�1
m gn/ D 0:

This shows that �.gm/�2 ! 0 weakly. Observe also that

.�.gn/�2; �2/ D .�.gn/P2�; P2�/ D �.P2�.h�1
n ghn/P2/

D �.�.h�1
n /P2�.g/P2�.hn// D �.P2�.g/P2/:

Since the latter is independent of n and �.gn/�2 ! 0, we conclude that

.�.g/�2; �2/ D �.P2�.g/P2/ D 0:

Set H0 D Lin.�.G/�2/. Then �.G/jH0 is quasi-equivalent to the regular rep-
resentation. Since � is a factor representation, we conclude that � is the regular
representation.

(3) Assume that H2 D f0g. Then � D �1 and �.h/ D Id for every h 2 R.
Therefore, �.g/ D Id for all g 2 N.R/. This means that the representation � factors
through the quotient G=N.R/ and defines a finite type factor representation ! of
G=N.R/ such that �.g/ D !.Œg�/ for all g 2 G.
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Recall that a finite type factor representation of a group G is of type I if the
von Neumann algebra of the representation is isomorphic to the algebra of all linear
operators in some finite-dimensional Hilbert space. We say that an action of group G

on a measure space .Y; �/ is trivial if g.x/ D x for every g 2 G and �-almost every
x 2 X . The following result shows that any ergodic action of a group admitting no
non-identity/non-regular characters must be essentially free, that is �.Fix.g// D 0

for all g 2 G n feg.

Theorem 2.12. Assume that every finite type factor representation of a countable
ICC group G is either regular or of type I and that there is at most countably many
(up to quasi-equivalence) finite type factor representations of G. Then every faithful
ergodic measure-preserving action of G is essentially free.

Proof. Consider an ergodic action of G on a measure space .Y; �/. Set

zY D f .x; y/ 2 Y � Y j x D g.y/ for some g 2 G g:
For a Borel set A � zY and a point x 2 Y , set Ax D f.x; y/ 2 Ag. Define a 	 -finite
measure Q� on zY by Q�.A/ D R

Y
card.Ax/d�.x/. Given a function f 2 L2. zY ; Q�/

and a group element g 2 G, set

.�.g/f /.x; y/ D f .g�1x; y/:

Then �.g/ is a unitary operator on the Hilbert space L2. zY ; Q�/. Denote by � the
indicator function of the diagonal of Y � Y . Set H D Linf�.G/�g. We note the von
Neumann algebra M� generated by �.G/, restricted to H , is of finite type. We refer
the reader to [5] for details. Since the group G has at most countably many finite
factor representations, the representation � decomposes into a direct sum (at most
countable) of factor representations.

Our goal is to show that the representation � is regular. Then the uniqueness of the
trace implies that .�.g/�; �/ D 0 for every g ¤ e. Using the identity �.Fix.g// D
.�.g/�; �/, we obtain that the action is essentially free.

Suppose to the contrary that the decomposition of � into factors contains a
non-regular factor representation �1, which, by our assumptions, generates a finite-
dimensional von Neumann factor. Let P1 be a projection from the center of M� such
that �1.g/ D P1�.g/, for every g 2 G. Set �1 D P1� .

Since for every g 2 G the unitary operator .� 0.g/f /.x; y/ D f .x; g�1y/ be-
longs to M0

� and � 0.g/� D �.g�1/�, we have that

� 0.g/�.g/�1 D � 0.g/�.g/P1� D P1� 0.g/�.g/� D P1� D �1;

for all g 2 G. This implies that the function h.x/ WD j�1.x; x/j is G-invariant and
�-integrable on Y . By ergodicity, we obtain that h.x/ � C on Y , for some constant
C . Note that if C D 0, then

0 D
Z

zY
�1.x; y/�.x; y/d Q�.x; y/ D .�1; �/;
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which is impossible as the projection of � onto �1 is non-trivial.
Fix an orthonormal basis 
1; : : : ; 
n for Linf�1.G/�1g. For a given g 2 G, write

�1.g/�1 D
nX

j D1

j̨ .g/
j ;

for some ˛1.g/; : : : ; ˛n.g/ with
P j j̨ .g/j2 D j�1j2 � 1. Observe that

nX
j D1

j̨ .g/
j .x; y/ D .�1.g/�1/.x; y/ D .�.g/�1/.x; y/ D �1.g�1x; y/;

for every .x; y/ 2 zY . Since j�1.g�1x; y/j D C , for .x; y/ 2 zY with x D g.y/, we
conclude that

Pn
j D1 j
j .x; y/j 	 C > 0, for .x; y/ with x D gy and, thus, for any

.x; y/ 2 zY . This implies that the function
Pn

j D1 j
j .x; y/j is not integrable with
respect to Q�. This contradiction yields that �1 D 0 and, thus, the representation � is
regular.

We finish this section by giving examples of groups admitting no compressible
actions. We observe that even though the following proposition yields a result similar
to that of Theorem 2.11, the underlying assumptions are different and not mutually
interchangeable.

Proposition 2.13. Let G be a countable group with trivial center and such that every
proper quotient is finite or abelian. Assume that the group G admits a compressible
action on a regular Hausdorff space. Then all finite type non-regular representations
of G are of type I.

Proof. Consider a non-regular indecomposable character � of G. Let .�; H; �/ be
the GNS-construction associated to �. By Proposition 2.7 there exists g ¤ e such
that j�.g/j D 1. Choose h 2 G not commuting with g. Denote by N the normal
subgroup of G generated by the element ghg�1h�1. Using the arguments from the
proof of Lemma 2.8 we obtain that �jN D Id. Thus, the representation � of the
group G gives rise to the representation of G=N with the same von Neumann algebra.
Recall that factor representations of abelian groups are scalar.

If a group G as in the proposition above has a measure-preserving action on a
measure space .X; �/ with 0 < �.Fix.g// < 1 for some g ¤ e, then, in view of
Theorem 2.12, such a group cannot have compressible actions. Examples of such
groups are full groups of even Bratteli diagrams, commutators of topological full
groups of Cantor minimal systems [6], and just infinite branch groups [7].
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3. Applications

In this section we show that the results established in the previous section are applica-
ble to Higman–Thompson groups and to the full groups of irreducible shifts of finite
type.

3.1. Higman–Thompson groups

Definition 3.1. Fix two positive integers n and r . Consider an interval Ir D Œ0; r�.
Define the group Fn;r as the set of all orientation preserving piecewise linear home-
omorphisms h of Ir such that all singularities of h are in ZŒ1=n� D f p

nk W p; k 2 Ng
and the derivative of h at any non-singular point is nk for some k 2 Z.

Observe that the commutator subgroup of Fn;r is a simple group and the abelian-
ization of Fn;r is isomorphic to Zn [2], Section 4. Consider the subgroup F 0

n;r of Fn;r

consisting of all elements f 2 Fn;r with supp.f / being a subset of .0; r/. Note that,
in general, supp.f /, f 2 Fn;r might contain the endpoints of the interval Ir . Observe
that (the commutator subgroup) F 0

n;r D .F 0
n;r/0 [2], Section 4. The following lemma

shows that the commutator subgroup F 0
n;r satisfies the assumptions of Theorem 2.9.

Lemma 3.2. The basis U D f.a; b/ W Œa; b� � .0; r/; a; b 2 ZŒ 1
n
�g of the topology

satisfies conditions (i)–(iv) of Definition 2.5 for the action of the group R D .F 0
n;r/0

on .0; r/. Thus, the action of R is compressible.

Proof. (1) Condition (i) and condition (iv) of Definition 2.5 are clearly satisfied.
To check condition (ii), consider intervals U1 D .a; b/ and U2 D .c; d/ both in

U. Replacing U2 by a subinterval if necessary we may assume that b�a
d�c

D nk for
some k 2 Z. Since the function a�x

c�x
is continuous in x for x ¤ c, we can find

x 2 ZŒ 1
n
� such that 0 < x < minfa; cg and a�x

c�x
D nk , for some k 2 Z. Similarly,

we can find y 2 ZŒ 1
n
�, maxfb; dg < y < r such that y�b

y�d
D nk , for some k 2 Z.

Let h W Œ0; r� ! Œ0; r� be the function such that

h.0/ D 0; h.x/ D x; h.a/ D c; h.b/ D d; h.y/ D y; h.r/ D r;

and h is linear on each of the line segments Œ0; x�; Œx; a�; Œa; b�; Œb; y�; Œy; r�. Note
that h 2 Fn;r and h.U1/ D U2.

Set m D min.a; c/ and M D max.b; d/. Using the same arguments as above,
find an element f 2 Fn;r with f .Œm; M�/ � .y; r/. Then g D f �1h�1f h 2 R and
g.U1/ D U2.

(2) To check condition (iii), we consider intervals Ui D .ai ; bi /, i D 1; 2; 3 from
U such that xU1 \ xU2 D ¿. Without loss of generality, assume that a1 > b2. Choose
r 0 < r such that U3 \ .r 0; r/ D ¿. Using the ideas from (1) above, one can construct
an element g 2 R such that supp.g/ \ .a2; b2/ D ¿ and g.U2/ � .r 0; r/. We leave
the details to the reader.
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Observe that all finite factor representations of abelian groups are scalar rep-
resentations, i.e. �.g/ D cg Id, with cg 2 T , the unit circle. In particular, the
indecomposable characters of abelian groups are homomorphisms into T .

Corollary 3.3. (1) The group F 0
n;r has no proper characters.

(2) If � is an indecomposable character of Fn;r , then � is either regular or �.g/ D
�.Œg�/, where Œg� is the image of g in the abelianization of Fn;r and � W Zn ! T is a
group homomorphism.

Proof. Statement (1) immediately follows from Lemma 3.2 and Theorem 2.9.
To establish the second result, we only need to check condition (2) of Theo-

rem 2.11. Fix g 2 Fn;r n feg. Find an interval .a; b/ with g.a; b/ \ .a; b/ D ¿.
Find a sequence of distinct elements fhngn�1 � .Fn;r/0 supported by .a; b/. Then
.h�1

n g�1hn/.h�1
m ghm/ 2 .Fn;r/0 for any n ¤ m. This completes the proof.

Definition 3.4. Let n and r be positive integers. Define Higman’s group Gn;r as
the group of all right continuous bijections of Œ0; r/ which are piecewise linear, with
finitely many discontinuities and singularities, all in ZŒ1=n�, slopes in fnk W k 2 Zg,
and mapping ZŒ1=n� \ Œ0; r/ to itself.

Note that Fn;r � Gn;r . In fact, Fn;r consists exactly of all continuous elements
g 2 Gn;r . In [8] Higman showed that the commutator subgroup G0

n;r is simple and
that the abelianization of Gn;r is trivial for even n and is Z=2Z for odd n.

Lemma 3.5. The groups R D F 0
n;r and G D Gn;r satisfy the conditions of Theo-

rem 2.11.

Proof. Corollary 3.3 shows that the group R has no proper characters. Consider an
arbitrary element g 2 G, g ¤ e. Choose an open interval I such that I \g�1.I / D ¿
and g is continuous on both I and g�1.I /. It follows that for any two elements
r1; r2 2 R with supp.r1/ � I , supp.r2/ � I the element

h D r2g�1r�1
2 r1gr�1

1 ¤ e

is a continuous bijection of Œ0; r/. Observe that h acts as the identity near 0 and r .
It follows that h 2 R and the elements r1gr�1

1 and r2gr�1
2 belong to the same coset

of G=R. Since the group R has infinitely many elements supported by the set I , we
immediately establish condition (ii).

The following result is an immediate corollary of Theorem 2.11 applied twice to
the pairs R D F 0

n;r , G D .Gn;r/0 and R D F 0
n;r , G D Gn;r .

Corollary 3.6. (1) The group G0
n;r has no proper characters.

(2) If � is an indecomposable character of Gn;r , then � is either regular or �.g/ D
�.Œg�/, where Œg� is the image of g in the abelianization of Gn;r and � W Gn;r=G0

n;r !
T is a group homomorphism.
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3.2. Full groups of irreducible shifts of finite type. We refer the reader to Section 6
of [11] for a comprehensive study of full groups of étale groupoids including the
groups discussed below.

Let .V; E/ be a finite directed graph. Suppose that the adjacency matrix of the
graph is irreducible and is not a permutation matrix. For an edge e 2 E, denote by
i.e/ the initial vertex and by t .e/ its terminal vertex. Set

X D ffengn�1 2 EN W t .ek/ D i.ekC1/ for every k 2 Xg:
Equipped with the product topology, X is a Cantor set. We note that the space X

along with the left shift is called a one-sided subshift of finite type, see [11] and
references therein regarding relations with symbolic dynamics.

An n-tuple .e1; : : : ; en/ 2 En is called admissible if t .ek/ D i.ekC1/ for every
1 � k � n � 1. Two admissible tuples Ne D .e1; : : : ; en/ and Nf D .f1; : : : ; fm/ are
called compatible if t .en/ D t .fm/. Each admissible tuple Ne D .e1; : : : ; en/ defines
a clopen set U. Ne/ D fx 2 X W xi D ei ; i D 1; : : : ; ng. Such clopen sets form a
basis of the topology. Given two compatible admissible tuples Ne1 and Ne2, define a
continuous map � Ne1; Ne2

W U. Ne1/ ! U. Ne2/ as

� Ne1; Ne2
. Ne1; xnC1; xnC2; : : :/ D . Ne2; xnC1; xnC2; : : :/:

Definition 3.7. Following [11], we define the full group of X , in symbols ŒŒX��, as
the set of all homeomorphisms g of X for which there exists two clopen partitions
X D Fn

iD1 U. Nei / D Fn
iD1 U. Nfi / with ei and fi being compatible admissible tuples

(possibly of different lengths), i D 1; : : : ; n, such that gjU Nei
D � Nei ; Nfi

for every
i D 1; : : : ; n.

For a clopen subset Y � X , set ŒŒX jY �� as the set of all g 2 ŒŒX�� with supp.g/ � Y .

The following result was established in Lemma 6.1 and Theorem 4.16 of [11]

Proposition 3.8. For any clopen set Y � X , the commutator group ŒŒX jY ��0 is simple.

Fix an arbitrary point x0 2 X . Find an increasing sequence of clopen sets fYng
such that X n fx0g D S

n Yn. Set R D S
nŒŒX jYn��0. It follows from Proposition 3.8

that the group R is simple. Observe that the group R consists of all elements g 2 ŒŒX��0
equal to the identity on some neighborhood of x0.

Denote by F the set of all admissible tuples which are not prefixes of x0. Define
U as the family of all finite unions of sets from fU. Ne/g Ne2F . Notice that U is a base
of the topology on X n fx0g. One can check that U satisfies conditions (i)–(iv) of
Definition 2.5 for the action of R. Thus, using Theorem 2.9, we conclude that the
group R has no characters. Considering R as a subgroup of G D ŒŒX��, one can check
that the assumptions of Theorem 2.11 are satisfied. We leave the details to the reader.

Corollary 3.9. If � is an indecomposable character of ŒŒX��, then � is either regular
or �.g/ D �.Œg�/, where Œg� is the image of g in the abelianization of ŒŒX�� and
� W ŒŒX��=ŒŒX��0 ! T is a group homomorphism.
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Applying Theorem 2.12, we also obtain the following result.

Corollary 3.10. Let G be the commutator subgroup of either a Higman–Thompson
group or the full group of an irreducible shift of finite type. Then every ergodic
measure-preserving action of G is essentially free.

To finish our discussion, we notice that the full group of the one-sided Bernoulli
shift over the alphabet with n letters is isomorphic to Gn;1 [12].
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