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A horospherical ratio ergodic theorem for actions of free groups
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Abstract. We prove a ratio ergodic theorem for discrete non-singular measurable equivalence
relations, provided they satisfy a strong form of the Besicovich covering property. In particular,
this includes all hyperfinite measurable equivalence relation. We then use this result to study
general non-singular actions of non-abelian free groups and establish a ratio ergodic theorem
for averages along horospheres.
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1. Introduction

Consider a non-singular action of a countable groupG on a standard � -finite measure
space .X;B; �/, which we denote by x 7! T gx. From the action on X , there is an
induced isometric action on L1.X; �/ also denoted by T g , given by T gf .x/ D
f .T g�1

x/. This induces an isometric action on the Banach pre-dual of L1.X; �/,
namely on L1.X; �/ which is given by yT g.f / D T gf � dg�

d�
.

This set-up gives rise to a wide array of important and interesting examples of
actions, where one would like to study the statistical properties of the distribution of
the orbits of G in X . Very little is known about this problem for general groups, and
let us begin by reviewing the main results in the case of actions of abelian groups.

1.1. The ratio ergodic theorem for commuting transformations. For Z-actions
there is a generalization of Birkhoff’s pointwise ergodic theorem, in the form of a
ratio ergodic theorem. This generalization was initiated by Hopf [Ho37], and was
later generalized further by Hurewicz [Hu44] and extended to operators by Chacon–
Ornstein [CO60]. The ratio ergodic theorem states that if T W .X; �/ ! .X; �/ is a
non-singular and conservative transformation, u; v 2 L1.X; �/ and v > 0 then the

�First-named author supported in part by NSF grant DMS-1000104 and BSF grant 2008274. Second-
named author supported in part by ISF, and BSF grant 2008274



332 L. Bowen and A. Nevo

ratios

RATIOnŒu; v� WD
Pn

kD0
yT kuPn

kD0
yT kv

converge pointwise almost everywhere as n ! 1 to a function r.u; v/ on X satis-
fying

� r.u; v/ B T D r.u; v/, namely r.u; v/ is T -invariant,

�
R
f � r.u; v/v d� D R

f �u d� for any f 2 L1.X; �/ such that f BT D f .

In particular, ifT is ergodic then r.u; v/ equals the constant
R

u d�R
v d�

almost everywhere.
In general,

r.u; v/ D E�v

hu
v

ˇ̌ˇ�i

is the conditional expectation of u
v

on the � -algebra � of T -invariant sets with respect
to the measure �v defined by d�v D vd�.

This result has only recently been extended to Zd actions by Feldman [Fe07]
and by Hochman [Ho10]. As to non-amenable groups, let us first recall some of
the original motivating problems, and then describe in the next section some recent
examples of ratio ergodic theorems and also some counterexamples.

1.2. Ratio equidistribution for non-commuting transformations. A significant
source of important problems arises already in the special case in which .X;B; �/ is
a locally compact group with Haar measure, � W � ! X is a group homomorphism
onto a dense subgroup, the action .T g/g2� is given by T g.x/ D �.g/x and u; v are
compactly supported continuous functions. In this case, it is natural to ask whether
the ratios RATIOnŒu; v� converge everywhere (instead of almost everywhere).

Arnol’d and Krylov were among the first to consider the problem of establishing
equidistribution for actions of free groups [AK63]. They established uniform conver-
gence in the case when the groupX is SO3.R/, but the same method applies whenever
the groupX is compact and connected. We note that in the case that the underlying in-
variant measure is finite the mean and subsequently the pointwise ergodic theorem for
completely general actions of free groups were considered by several authors [Gu69],
[Gr99], [Ne94], [NS94], [Bu02], [BN13a] (see also the recent survey [BK12]).

Kazhdan considered equidistribution of ratios in the case when X is the isometry
group of the Euclidean plane and the averages are random walk averages [Ka65].
His argument was corrected and the results extended by Guivarc’h [Gu76] (see
also [Vo04]). An important advance in the case when X equals the isometry group
of Euclidean n-space was very recently obtained by Varju [Va12]. Breuillard has
obtained positive results when X is the Heisenberg group [Br05] and the averages
are random walk averages. He has also obtained positive results when X is any
simply-connected nilpotent Lie group [Br10] and the averages are uniform over balls
in the Cayley graph of the image group �.�/. A survey of these results can be found
in [Br06].
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2. Some recent developments, and statement of the main result

2.1. Some recent ratio ergodic theorems. Let us now describe some developments
over the last decade, which will illuminate the subtlety of the problem of establishing
ratio ergodic theorems and some of the difficulties that must be overcome in the non-
amenable context. We will describe results pertaining to actions of a lattice subgroup
� of a semisimple algebraic groupG on homogeneous spaces ofG. In order to keep
the exposition focused, let us concentrate on the case G D SL2.R/, although all the
results we will describe apply in much greater generality. Let � � SL2.R/ be any
lattice subgroup, for example a lattice isomorphic to the free group Fr .

2.1.1. Lattice action on theboundary of thehyperbolic plane. Consider the group
SL2.R/ and its maximal compact subgroup K D SO2.R/. The homogeneous space
G=K can be identified with the hyperbolic plane H2. Fix the point o D ŒK� 2
G=K D H2, and the G-invariant Riemannian metric d on H2.

The lattice � acts on the homogeneous space B D P n SL2.R/ D P 1.R/ where
P is the group of lower triangular matrices, and denote bym the uniqueK-invariant
probability measure on B . For any line Œv� 2 B , and any two continuous functions �
and  on B , with

R
B
 dm ¤ 0 the following holds:

lim
T !1

P
d.�o;o/�T �.Œv��/P
d.�o;o/�T  .Œv��/

D
R

B
�.Œw�/dm.Œw�/R

B
 .Œw�/dm.Œw�/

:

This result is based on a precise asymptotics established in [G03] for the expressionP
d.�o;o/�T �.Œv��/, from which the ratio equidistribution theorem is an immediate

corollary. The lattice action on the boundary B D P n G was originally consid-
ered (in greater generality) by Gorodnik [G03], and developed further in Gorodnik–
Maucourant [GM05] and Gorodnik–Oh [GO07].

2.1.2. Lattice action on the Euclidean plane. Consider the homogeneous space
R2 n f0g D N n SL2.R/, N the lower triangular unipotent group. Fix any norm on
M2.R/. Let v 2 R2 be any vector whose �-orbit is dense in R2. Then given any
two continuous compactly supported functions �,  on R2,

lim
T !1

P
k�k�T �.v�/P
k�k�T  .v�/

D
R

R2 �.w/˛v.w/dwR
R2  .w/˛v.w/dw

;

where ˛v.w/ is a positive continuous density on R2, dw denotes Lebesgue measure,
and we assume

R
R2  .w/˛v.w/dw ¤ 0. Once again, this result is based on a

precise asymptotics established for the expression
P

k�k�T �.v�/ in Theorem 12.2
of [GW07], from which the ratio equidistribution theorem is an immediate corollary.

Let us note that the limiting density in the ratio theorem depends non-trivially
on the starting point v 2 R2, and for any given v, depends non-trivially on the
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norm. This is shown explicitly in [GW07], which in turn generalizes previous work
of Ledrappier [L99], [L01] and Ledrappier–Pollicott [LP03], [LP05].

2.1.3. Lattice action on the quadratic surface (de-Sitter space). Consider now
the homogeneous space X D A n SL2.R/, where A is the diagonal group. It can be
realized as the one-sheeted hyperboloid in R3 given by the level set of a quadratic
form of signature .2; 1/ invariant under SL2.R/ Š SO0.2; 1/. The quadratic sur-
face in question is also called de-Sitter space. Fix any norm on M2.R/, and recall
the polar coordinate system on de-Sitter’s space, namely R � S1 7! X W .r; !/ 7!
.! cosh r; sinh r/. Then for every �; 2 L1.X/ with compact support such thatR
X
 .r; !/ cosh r dr d! ¤ 0, and for almost every v 2 X ,

lim
T !1

P
k�k<T �.v�/P
k�k<T  .v�/

D
R
X
�.r; !/ cosh r dr d!R

X
 .r; !/ cosh r dr d!

:

Note that the limiting density here is theG-invariant measure on the quadratic surface,
and is independent of the starting point and the norm. However this is not case for
higher dimensional quadratic surfaces, see [GN14].

Once again, this result is based on a precise asymptotics, established in this case
in [GN14], §1.5:

lim
t!1

1

t

X
�2�t

�.v�/ D c2.�/

Z
X

�.r; !/ .cosh r/ dr d!

where �t D f� 2 � I log k�k � tg, and c2.�/ > 0. Further examples of precise
asymptotics for actions of lattices in algebraic groups acting on homogeneous spaces
with infinite invariant measure were established in [GW07], and [GN14]. These give
rise to further ratio equidistribution theorems, or almost sure ratio ergodic theorems.
A further discussion can be found in [GN12].

2.1.4. A ratio ergodic theorem for hyperbolic groups. We mention another recent
(weighted) ratio ergodic theorem for actions of word-hyperbolic groups preserving
a � -finite measure .X;	/, established by Pollicott and Sharp [PS13]. Let S be a
symmetric generating set of such a group � , and let Sn D f� 2 � I j� jS D ng, where
j� jS is the word length of � w.r.t. S . Then there exists 
 D 
S > 1 such that for any
f; g 2 L1.X;	/ with g > 0:

PN
nD0 


�n
P

j� jS Dn f .�x/PN
nD0 


�n
P

j� jS Dn g.�x/

converges pointwise almost surely asN ! 1. In the case that the group in question
is the fundamental group of a closed surface of constant negative curvature, and the
set of generators is the standard one, the limit is

R
X
fd	=

R
X
gd	 provided that the

action is ergodic.
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2.1.5. Counterexample: balls on the free group (added in proof). A natural gen-
eral question that can be posed in this context is the following. Let F D ha1; : : : ; ari
be a rank r � 2 free group. Let .T g/g2F be a conservative action on a standard
� -finite measure space .X;B; �/ by non-singular transformations. Let . yT g/g2F be
the induced isometric action on L1.X; �/, the Banach pre-dual of L1.X; �/. For
g 2 F , let jgj denote its word length with respect to the given generators. For
u; v 2 L1.X; �/ with v > 0 let

RATIOnŒu; v� WD
P

jgj�n
yT guP

jgj�n
yT kv

:

Does the sequence RATIO2nŒu; v� converge pointwise almost everywhere asn ! 1?
This question was very recently answered negatively by Hochman in [Ho13], who
constructed examples of measure preserving ergodic actions where the ratio ergodic
theorem fails along (subsequences of ) the sequence of balls. The discussion in [Ho13]
is very general and shows that such counterexamples exist whenever the sequence of
balls in a finitely generated group fails to satisfy the Besicovich covering property.
Thus this property is inextricably linked to the validity of the ratio ergodic theorem.

2.2. Statement of the main result. The main goal of the present paper is to give
an exposition of a new dynamical approach to establishing ratio ergodic theorems for
actions of free groups. This approach is motivated by the recent proof of the pointwise
ergodic theorem for spherical averages in free groups developed in [BN13a]. We
remark however that the method of proof we will develop is by no means restricted
to free groups, and applies in much greater generality, see [BN13b] and [BN]. We
will comment on these generalizations further below, but in the interest of simplicity
of exposition will focus here on the free group only.

To set the notation, let F D ha1; : : : ; ari denote the free group of rank r � 2.
Let S D Sr

iD1fai ; a
�1
i g be a free symmetric generating set. The reduced form of an

element g 2 F is the unique expression of the form g D s1 � � � sn with si 2 S and
siC1 ¤ s�1

i for all i . Define jgj WD n, the length of the reduced form of g. Define a
distance on F by d.g1; g2/ WD jg�1

1 g2j.
The boundary @F is the subspace of all sequences � D .s1; s2; : : :/ 2 SN such

that siC1 ¤ s�1
i for all i � 1. It is naturally endowed with a Markov probability

measure � determined as follows. Let .s1; : : : ; sn/ 2 Sn be an arbitrary sequence
such that siC1 ¤ s�1

i for all i � 1. Then

�.f� 2 @F W �i D si for all 1 � i � ng/ D .2r/�1.2r � 1/�.n�1/:

There is a natural action of F on @F by

.t1 � � � tn/.s1; s2; : : :/ D .t1; : : : ; tn�k; skC1; skC2; : : :/

where t1; : : : ; tn 2 S , g D t1 � � � tn 2 F is in reduced form and k is the largest number
� n such that s�1

i D tnC1�i for all i � k.



336 L. Bowen and A. Nevo

The action preserves the measure class of �. For any � 2 @F , the set

H� D
°
g 2 F W d� B g�1

d�
.�/ D 1

±

is the horosphere centered at � passing through the identity element e. The horosphere
can alternatively be described as the set of all elements g 2 F such that for some
n D n.g/ > 0, .g�1�/i D �i for all i > n (i.e., g�1 preserves the ‘tail’ of � , from
some point onwards, or equivalently, jgj D 2n and precisely the first n letters of g
coincide with those of �).

We let R0 � @F � @F be the equivalence relation given by � �R0
� 0 if and only

if there is an n > 0 such that �i D � 0
i for all i > n. In other words, � �R0

� 0 if there
exists g 2 H� such that g�1� D � 0.

Now let .X;B; �/ be a standard � -finite measure space on which F acts by non-
singular transformations. Let R0.X/ � X�@F �X�@F be the equivalence relation
under which .x; �/ is equivalent to .y; � 0/ if and only if there is a g 2 H� such that
.y; � 0/ D .g�1x; g�1�/.

Our main theorem is:

Theorem 2.1. If u; v 2 L1.X � @F ; �� �/, with v > 0 almost everywhere, then the
ratios

RATIO2nŒu; v�.x; �/ WD
P

g�12H� ;jgj�2n
yT gu.x; �/P

g�12H� ;jgj�2n
yT gv.x; �/

converge pointwise almost everywhere as n ! 1 to a R0.X/-invariant function
r.u; v/.

Furthermore, if R0.X/ is ergodic then r.u; v/ D
R

u d.���/R
v d.���/

, and the conclusions

hold for any choice of v 2 L1.X�@F/ provided only that it satisfies
R
v d.���/ ¤ 0.

It is an open question whether the analogous statement with the condition jgj � 2n

replaced by jgj D 2n holds true.
In the case when .X;B; �/ is a probability space and the action is measure-

preserving, we proved in [BN13a] that the averages

1

#fg�1 2 H� ; jgj � 2ng
X

g�12H� ;jgj�2n

yT gu.x; �/

converge almost everywhere to E��� ŒujR0.X/�.x; �/which is the conditional expec-
tation of u on the � -algebra of R0.X/-saturated sets. Moreover, if u.x; �/ D u.x/ is
a function of the first argument only then E��� ŒujR0.X/�.x; �/ is equal to E�ŒujF2�,
the conditional expectation of u on the � -algebra of F2-invariant sets (where F2 < F
is the index 2 subgroup consisting of all g 2 F with jgj even). In particular if F2

acts ergodically on .X;B; �/ then the above averages converge pointwise a.e. to the
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integral
R
u.x/ d�. By averaging the above averages over the whole boundary it is

possible to establish the pointwise ergodic theorem for uniform spherical averages in
free groups, as well as for many other averages [BN13a].

In the general case, when .X;B; �/ is � -finite and the action is merely non-
singular then there are examples (provided in § 5) showing that E��� ŒujR0.X/� does
not necessarily equal E�ŒujF2�. Many interesting cases remain open. For example,
it is not known whether E��� ŒujR0.X/� D E�ŒujF2� in the special case when X
is the isometry group of Euclidean n-space, � W F ! X is a homomorphism onto a
dense subgroup and the action .T g/g2F is given by T gx D �.g/x.

2.3. Organization of the paper. To begin, in § 3 we prove a ratio ergodic theorem
for measured equivalence relations with respect to averages on subsets satisfying
some extreme invariance properties. It seems likely that the hypotheses in this result
can be relaxed. Next we show in § 4 that the horospherical equivalence relation
described above have natural subsets that satisfy the hypotheses of § 3. This implies
our main result for the free group. In § 5 we exhibit some examples pertaining to
the issue of whether ergodicity of F Õ .X;B; �/ implies ergodicity of the relation
R0.X/.

Acknowledgements. The authors would like to thank Mike Hochman for useful
conversations, and the (anonymous) referees for useful comments.

3. A ratio ergodic theorem for amenable equivalence relations

Consider a standard � -finite measure space .B; �/ with a Borel equivalence relation
R � B�B . We assume that R is discrete and that the measure � is non-singular w.r.t.
R (or R-quasi-invariant in equivalent terminology). Discreteness of the relation
R means that for almost every b 2 B , the equivalence class Œb� of b is at most
countable. Quasi-invariance of the measure under the relation means that for any
Borel A � B with �.A/ D 0, its saturation ŒA� WD S

a2AŒa� also has �-measure
zero. Integrating the counting measures on the fibers of the left projection .x; y/ 2
R 7! x gives the left counting measure M on R satisfying dM.x; y/ D d�.x/.
The right counting measure {M is defined by d {M.x; y/ D dM.y; x/. Because � is
quasi-invariant, these two measures are equivalent and the Radon–Nikodym cocycle
is defined by D.x; y/d {M.x; y/ WD dM.x; y/. Thus the cocycle identity D.x; z/ D
D.x; y/D.y; z/ is satisfied, for almost all x; y; z 2 B ..

Suppose that F D fFng1
nD1 is a sequence of measurable functions Fn W B ! 2B

fin
(where 2B

fin denotes the space of finite subsets of B) such that Fn.b/ is a subset of the
R-equivalence class of b for almost every b. We will need the following definitions.

(1) Let Inn.R/ denote the group of inner automorphisms of R (also known as
the full group of R). These are invertible measurable maps � W B ! B with
graph contained in R (up to a null set). A set ˆ � Inn.R/ generates R if for
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almost every .b1; b2/ 2 R there exists � 2 hˆi such that �.b1/ D b2 (where
hˆi denotes the group generated by ˆ).

(2) F is extremely asymptotically invariant if limn!1 jFn.b/j D C1 for �-a.e.
b and there exists a countable generating set ˆ � Inn.R/ such that for every
� 2 ˆ and almost every b 2 B there exists anN D N.�; b/ such that n > N
implies Fn.b/ D �.Fn.b//.

(3) F satisfies the extreme Besicovich property if for almost every .b; b0/ 2 R

and any n � 0, either Fn.b/ D Fn.b
0/ or Fn.b/\Fn.b

0/ D ;. Moreover, we
require that there exists an N D N.b; b0/ such that n � N implies Fn.b/ D
Fn.b

0/.

(4) F is anchored if b 2 Fn.b/ for every n and almost every b.

Remark 3.1. Consider a non-singular hyperfinite relation T on .B; �/, namely a re-
lation which can be represented as an increasing union T D S

n2N Tn of equivalence
relations Tn with finite classes. Clearly, T is anchored, and satisfies the extreme
Besicovich property w.r.t. to the choice of Fn.b/ D Tn.b/, where Tn.b/ is the finite
Tn-equivalence class of b 2 B . Furthermore, T is clearly extremely asymptotically
invariant, where forˆwe choose the group generated by all the inner automorphisms
of the relations Tn, n 2 N. Since every discrete non-singular amenable Borel equiv-
alence relation is in fact hyperfinite, the ratio ergodic theorem stated below applies
in great generality.

For u; v 2 Lp.B; �/ with v > 0 on B , consider the sums SUMF
n Œu� 2 Lp.B/

and ratios RATIOF
n Œu; v� defined by

SUMF
n Œu�.b/ WD

X
b02Fn.b/

u.b0/D.b0; b/;

RATIOF
n Œu; v�.b/ WD SUMF

n Œu�.b/

SUMF
n Œv�.b/

:

For u 2 L1.B; �/ let E� ŒujR� denotes the conditional expectation of u on the � -
algebra of R-invariant sets with respect to the measure �.

The main result of this section is:

Theorem 3.1. If F is extremely asymptotically invariant, anchored and satisfies the
extreme Besicovich property then F is a pointwise ratio ergodic sequence in L1.
Namely, for every u; v 2 L1.B; �/, with v > 0 on B , RATIOF

n Œu; v� converges
pointwise almost everywhere as n ! 1 to a function r.u; v/ on B satisfying

� r.u; v/ is an R-invariant function,

�
R
f � r.u; v/v d� D R

f � u d� for any f 2 L1.B; �/ which is R-invariant.
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In general

r.u; v/ D E�v

hu
v

ˇ̌
ˇRi

is the conditional expectation of u
v

on the � -algebra of R-invariant sets, with respect
to the measure �v defined by d�v D vd�.

In particular, if R is ergodic then r.u; v/ equals the constant
R

u d�R
v d�

almost ev-

erywhere. In that case, the conclusions hold for any choice of v 2 L1.B; �/ provided
only that

R
B
vd� ¤ 0.

We would like to point out that the hypotheses are certainly not necessary. For
example, the classical ratio ergodic theorem for averages along intervals of Z could
be phrased in the language of equivalence relations. But expanding intervals in Z are
neither extremely asymptotically invariant nor do they satisfy the extreme Besicovich
property. It is an open problem to determine general hypotheses on F guaranteeing
that it is a ratio ergodic sequence.

The proof of Theorem 3.1 follows a classical recipe: we first prove that it holds
true for fixed v and for u in a naturally defined dense subset of L1. Then with the aid
of a maximal inequality, we show that it holds for all u in L1. To be precise:

Theorem 3.2 (Dense set of good functions). If F is extremely asymptotically invari-
ant then, given v 2 L1.B; �/ with v > 0 on B , there exists a norm dense subspace
Lv � L1.B; �/ such that for all u 2 Lv , RATIOF

n Œu; v� converges pointwise almost
everywhere.

Let MF Œu; v� WD supn j RATIOF
n Œu; v�j. We will prove the following weak-type

.1; 1/ maximal inequality.

Theorem 3.3 (L1 maximal inequality). Suppose that F is anchored and satisfies the
extreme Besicovich property. Then for any u; v 2 L1.B; �/ with v > 0 on B , and
any  > 0,

�v

�˚
b 2 B W MF Œu; v�.b/ � 

�� � 1



Z
fM F Œu;v�.b/>	g

u.b/ d�.b/ � kukL1.B;�/



where �v is the measure d�v D vd�.

Finally, when R is ergodic, the proof of the last statement in Theorem 3.1 fol-
lows from the observation that given u; v 2 L1.B; �/, with

R
B
vd� ¤ 0, we can

choose v0 2 L1.B; �/, with v0 > 0, and then consider the ratios RATIOF
n Œu; v0� and

RATIOF
n Œv; v0�. Both are well defined, and for almost every b 2 B , the second is

eventually non-zero, and converges to the non-zero constant
R
vd�=

R
v0d�. Hence

the ratio of the two ratios converges almost surely to
R
ud�=

R
vd�, which is the final

conclusion stated in Theorem 3.1.
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3.1. A dense set of good functions

Lemma 3.2. For any f 2 L1.B; �/ and � 2 Inn.R/,
Z
f .b/D.�b; b/ d�.b/ D

Z
f .��1b/ d�.b/:

Proof. Recall that D.�b; b/ d {M.�b; b/ D dM.�b; b/. Therefore
Z
f .b/D.�b; b/ d�.b/ D

Z
f .b/D.�b; b/ d {M.�b; b/

D
Z
f .b/ dM.�b; b/ D

Z
f .��1b/ d�.b/: �

Lemma 3.3. Let F be extremely asymptotically invariant and ˆ � Inn.R/ be a
countable generating set witnessing its extreme asymptotic invariance. For � 2 ˆ

and u 2 L1.B; �/, define u
 2 L1.B; �/ by

u
.b/ WD u.b/ � u.�.b//D.�.b/; b/:
Then SUMF

n Œu
 � converges pointwise almost everywhere to 0 D E� Œu
 jR�. More-
over the span of fu
 W u 2 L1.B; �/; � 2 ˆg is norm dense in L1

0.B/ (D the set of
w 2 L1.B; �/ with E� ŒwjR� D 0).

Proof. Note that

SUMF
n Œu
 �.b/ D

X
b02Fn.b/

u.b0/D.b0; b/ � u.�.b0//D.�.b0/; b/ D 0

for all n > N.�; b/ since �.Fn.b// D Fn.b/. In particular SUMF
n Œu
 � converges

pointwise almost everywhere to 0. By Lemma 3.2, E� Œu
 jR� D 0. To see that
the span of the set of all functions of the above form is norm dense in L1

0.B/, let
L1

0 .B/ be the Banach dual of L1
0.B/. Suppose f 2 L1

0 .B/,
R
f u
 d� D 0 for all

u 2 L1
0.B/ and � 2 ˆ. Then

Z
f .b/u.b/ d�.b/ D

Z
f .b/u.�.b//D.�.b/; b/ d�.b/ D

Z
f .��1b/u.b/ d�.b/

by the previous lemma. Since this equality holds for all u 2 L1
0.B/, it follows that

f D f B��1 a.e. for every � 2 ˆ. Sinceˆ is countable and generating, this implies
that f is R-invariant. So

R
B
f ud� D R

B
f E�.u/d� D 0 for all u 2 L1

0.B/, and
f defines the zero functional. This proves that the weak closure of the span of the
collection of functions of the form u
 (with u 2 L1.B; �/ and � 2 ˆ) is all of
L1

0.B/. Because the weak closure of a subspace equals its norm closure, this proves
the lemma.
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We will now use these facts in order to construct, given v 2 L1.B; �/, a norm-

dense subset Lv � L1.B; �/, such that for u 2 Lv , SUMF
n Œu�

SUMF
n Œv�

converges almost

everywhere.

Proof of Theorem 3.2. Consider the linear subspace Lv of L1.B; �/ spanned by all
functions of the formwv, for all bounded functionswwhich are R-invariant, together
with the span of all the functions of the form u
 , as � ranges over the set ˆ of inner
automorphisms defined above, and u over

�
L1 \ L1�

.B; �/. Thus

Lv D fwv C P
i2I .ui /
i

I w 2 L1.B; �/R; ui 2 .L1 \ L1/.B; �/;
�i 2 ˆ; jI j < 1g:

Since w is R-invariant, clearly RATIOF
n Œwv; v� D w. The proof of Lemma 3.3

implies that for every function y 2 Lv the ratios RATIOF
n Œy; v� converge almost

everywhere. To show that Lv is norm dense in L1.B; �/, assume that k 2 L1.B; �/
satisfies

R
B
ky d� D 0 for all y 2 Lv , and we will show that k D 0. But under the

foregoing condition we have for y D u
 in particular that

Z
k.b/u.b/ d�.b/ D

Z
k.b/u.�.b//D.�.b/; b/ d�.b/ D

Z
k.��1b/u.b/ d�.b/:

for every u 2 L1.B; �/ and � 2 ˆ by Lemma 3.2. So k must be invariant under
ˆ. As we noted in the proof of Lemma 3.3 above, it follows that k is an R-invariant
function. Therefore by definition kv 2 Lv , and hence

R
B
k � kv d� D 0, so that k

vanishes on the support of v which is all ofB . Thus Lv is weakly dense and therefore
norm dense in L1.B; �/. This concludes the proof of Theorem 3.2.

3.2. Identifying the limit. We proceed to identify the limit of RATIOF
n Œu; v� as the

R-invariant function given by the conditional expectation E�v

�
u
v

ˇ̌
R

�
, where d�v D

vd�.

Lemma 3.4. Let Lv be the subspace defined in the proof of Theorem 3.2. Then for
every y 2 Lv ,

lim
n!1 RATIOF

n Œy; v� D E�v

hy
v

ˇ̌ˇRi
:

Proof. First, we already saw in the proof of Theorem 3.2 that ifwvCP
i2I .ui /
i

D
y 2 Lv with w an R-invariant function, then limn!1 RATIOF

n Œy; v� D w. If y has
another representation y0 D w0vC P

j 2J .u
0
j /
0

j
, then it follows thatw D w0, so that

w is uniquely determined by y.
Thus we can consider the well-defined map y D wv C P

i2I .ui /
i
7! wv D

‰v.y/. We claim that ‰v W Lv ! L1.B; �/ is a contraction when taking the
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L1.B; �/-norm on both sides. Indeed, for any bounded R-invariant function k,
we have Z

B

ky d� D
Z

B

�
kwv C k

X
i2I

.ui /
i

�
d� D

Z
B

kwv d�

Taking k D sign.w/, k is obviously R-invariant since w is, and thus

k‰v.y/kL1.B;�/ D kwvkL1.B;�/ D
Z

B

jwj v d�

D
Z

B

sign.w/wv d� D
Z

B

sign.w/y d� � kykL1.B;�/ :

It follows that ‰v W Lv ! L1.B; �/ can be extended to a linear operator of norm
bounded by 1 from the closure of Lv , namely L1.B; �/, to L1.B; �/.

Clearly, the foregoing shows that for every y 2 Lv ,‰v.y/ D wv has the property
that for every bounded R-invariant function k,

Z
B

k‰v.y/ d� D
Z

B

ky d�:

By the norm density of Lv and by continuity of‰v.y/, it follows that the last equation
is valid also for ‰v.z/ for every z 2 L1.B; �/.

We now claim that for every y 2 Lv ,

lim
n!1 RATIOF

n Œy; v� D w D ‰v.y/

v
D E�v

hy
v

ˇ̌ˇRi
:

Indeed the convergence of the ratios to w was established above, and the fact that w
is the stated conditional expectation is equivalent to

Z
B

kw � v d� D
Z

B

k
y

v
� v d�

for every k 2 L1.B; �/R, which was just verified.

In order to extend the convergence result stated in Lemma 3.4 to an arbitrary
function u 2 L1.B; �/, we will use the following facts.

First note that since Lv is norm dense inL1.B; �/, the range of‰v W L1.B; �/ !
L1.B; �/ is contained in the closed subspace of L1.B; �/ consisting of functions of
the form wv, where w is an R-invariant function. Indeed wnv is a Cauchy sequence
in L1.B; �/ if and only if wn is a Cauchy sequence in L1.B; �v/, and in fact the
space

˚
wv 2 L1.B; �/ ; w is R invariant

�
is clearly isometrically isomorphic with

the Banach space of R-invariant functions in L1.B; �v/. Hence if yn 2 Lv and
yn ! u, ‰v.yn/ D wnv ! z in L1.B; �/, then wn ! z

v
in L1.B; �v/, w D z

v
is

R-invariant, and ‰v.u/ D wv.
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Thus ‰v.u/ D w.u/v, with w.u/ a uniquely determined R-invariant function.
Clearly, the composition u 7! ‰v.u/ 7! ‰v.u/

v
D w.u/ is a bounded linear map

from L1.B; �/ to L1.B; �v/, with norm bounded by 1.
Furthermore, we claim that

‰v.u/

v
D w.u/ D E�v

hu
v

ˇ̌ˇRi

for everyu 2 L1.B; �/. This follows because the conditional expectation is a bounded
linear operator on L1.B; �v/ with closed range, Lv is norm-dense in L1.B; �/, and
these identities hold for u 2 Lv , as we saw in the proof of Lemma 3.4.

Finally, we can therefore conclude that the composition u 7! E�v

�
u
v

ˇ̌
R

� D w.u/

is a bounded linear map from L1.B; �/ to L1.B; �v/
R, with norm at most 1.

We will now show that the property that limn!1 RATIOF
n Œu; v� D E�v

�
u
v

ˇ̌
R

�
extends to all u 2 L1.B; �/, by an argument that employs the weak-type .1; 1/ ratio
maximal inequality.

3.3. Applying the ratio maximal inequality

Proof of Theorem 3.1 assuming Theorem 3.3. Let u be any function inL1.B; �/, fix
 > 0 and y 2 Lv which satisfies ku � ykL1.B;�/ < 

2.
Applying the fact that limn!1 RATIOF

n Œy; v� D E�v

�
y
v

ˇ̌
R

�
almost surely, we

have

lim sup
n!1

ˇ̌ˇ RATIOF
n .u; v/ � E�v

hu
v

ˇ̌ˇRiˇ̌ˇ
� lim sup

n!1

ˇ̌ˇRATIOF
n .u � y; v/

ˇ̌ˇ
C lim sup

n!1
j RATIOF

n .y; v/ � E�v

hy
v

ˇ̌ˇRi
j C

ˇ̌ˇE�v

hu � y
v

ˇ̌ˇRiˇ̌ˇ
D lim sup

n!1

ˇ̌ˇRATIOF
n .u � y; v/

ˇ̌ˇ C
ˇ̌ˇE�v

hu � y
v

ˇ̌ˇRiˇ̌ˇ :
The first summand is estimated by the maximal inequality stated in Theorem 3.3:

�v

®
lim sup

n!1
ˇ̌
RATIOF

n .u � y; v/ˇ̌ > ¯ � 1


ku � ykL1.B;�/ < :

The second summand is estimated by the discussion preceding the proof:

�v

nˇ̌ˇE�v

hu � y
v

ˇ̌ˇRiˇ̌ˇ > o � 1


kw.u/ � w.y/kL1.B;�v/ � 1


ku � ykL1.B;�/ < 

Since these inequalities are valid for all  > 0, we have

lim sup
n!1

ˇ̌ˇRATIOF
n .u; v/ � E�v

hu
v

ˇ̌ˇRiˇ̌ˇ D 0
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almost everywhere and this completes the proof of Theorem 3.1 subject to the proof
of Theorem 3.3, to which we now turn.

3.4. The weak-type ratio maximal inequality in L1

Proof of Theorem 3.3. Without loss of generality, we may assume that u is nonneg-
ative. For T > 0, define MF

T Œu; v� W B ! R by

MF
T Œu; v�.b/ WD sup

T �n�0

RATIOF
n Œu; v�.b/:

Let  > 0. Let D be the set of all b 2 B such that MF Œu; v�.b/ >  and DT be
the set of all b 2 B such that MF

T Œu; v�.b/ > . Since fDT gT >0 is an increasing
sequence withD D S

T >0DT , it suffices to prove that �v.DT / � �1
R

DT
u d� for

each T > 0.
Fix T > 0 and let 
 W DT ! R be defined by 
.b/ D n if n is the largest number

such that SUMF
n Œu; v�.b/ >  and n � T . Let C be the collection of all sets of

the form F�.b/.b/ for b 2 DT . Let E be the union of all sets in C . Because F

is anchored, it follows that DT � E. Now the extreme Besicovich property of F

implies DT D E and the sets in C are pairwise disjoint.
Define Fu W B � B ! R by

� Fu

�
b; b0� D u.b/jF�.b/.b/j�1 if b 2 E and b0 2 F�.b/.b/;

� Fu

�
b; b0� D 0 otherwise.

Define Fv similarly with v in place of u.
For any b; b0 either F�.b/.b/ D F�.b0/.b

0/ or F�.b/.b/ \ F�.b0/.b
0/ D ;. There-

fore,
Z

E

u.b/ d�.b/ D
Z

B

X
b0

Fu

�
b; b0� d�.b/

D
Z

R

Fu.b; b
0/ dM.b; b0/

D
Z

R

Fu.b; b
0/D.b; b0/ d {M.b; b0/

D
Z

B

X
b

Fu

�
b; b0�D.b; b0/ d�.b0/

D
Z

E

1

jF�.b0/.b0/j
X

b2F�.b0/.b0/

u.b/D.b; b0/ d�.b0/

D
Z

E

1

jF�.b0/.b0/j SUMF
�.b0/Œu�.b

0/ d�.b0/:
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Similarly, Z
E

v.b/ d�.b/ D
Z

E

1

jF�.b0/.b0/j SUMF
�.b0/Œv�.b

0/ d�.b0/:

By definition of DT ,Z
DT

1

jF�.b0/.b0/j SUMF
�.b0/Œu�.b

0/ d�.b0/

� 

Z
DT

1

jF�.b0/.b0/j SUMF
�.b0/Œv�.b

0/ d�.b0/:

Since E D DT we now haveZ
DT

u.b/ d�.b/ � 

Z
DT

v.b/ d�.b/

which implies

�v

�˚
MF

T Œu; v�.b/ > 
�� D �v.DT /

� 1



Z
fM F

T
Œu;v�.b/>	g

u.b/ d�.b/ � kukL1.B;�/


:

The theorem follows by letting T ! 1.

3.5. A ratio maximal inequality in Lp. Let us note that the weak type .1; 1/
maximal inequality can be used to derive a strong type Lp maximal inequality, as
follows.

Theorem 3.4. Let u; v 2 L1.B; �/ with v > 0 on B , and let

MF Œu; v� WD sup
n

ˇ̌
RATIOF

n Œu; v�
ˇ̌
:

If F is anchored and satisfies the extreme Besicovich property then the strong type
Lp ratio maximal inequality holds (for 1 < p < 1), namely, assuming u

v
2 Lp.�v/,

		MF Œu; v�
		

Lp.�v/
� p

p � 1
			u
v

			
Lp.�v/

or more explicitlyZ
B

MF Œu; v�p.b/v.b/ d� �



p

p � 1
�p Z

B



u.b/

v.b/

�p

v.b/ d� < 1:

Proof. Let us first recall the following basic fact (see [Ga70]). Suppose two non-
negative measurable functions ˆ and ‰ on a standard � -finite measure space .Y; �/
satisfy
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(1) ‰ 2 Lp.Y; �/, for some 1 < p < 1,

(2) � fy I ˆ.y/ > g < 1 for all  > 0,

(3) � fy I ˆ.y/ > g � 1
	

R
fy I ˆ.y/>	g‰.y/ d�:

Then ˆ is in Lp.Y; �/, and kˆkLp.Y;�/ � p
p�1

k‰kLp.Y;�/ :

Fixing v > 0, let us consider the measure space .Y; �/ D .B; �v/, and define
ˆ D MF Œu; v�, and ‰ D u

v
. Then if both u and v are in L1.�/, we have by

Theorem 3.3 that

�fy I ˆ.y/ > g D �v

˚
MF Œu; v�.b/ >

�
� 1



Z
fM F Œu;v�.b/>	g

u.b/

v.b/
v.b/ d�

D 1



Z
fy I ˆ.y/>	g

‰.y/ d�

so that conditions 2 and 3 above are satisfied. Assuming in addition that u
v

2 Lp.�v/,
condition 1 above is satisfied as well, and we can conclude that

		MF Œu; v�
		

Lp.�v/
� p

p � 1
			u
v

			
Lp.�v/

and the proof of the Lp maximal inequality is complete.

Remark 3.5. Rather than assuming directly that the equivalence relation in question
is hyperfinite, we have chosen to formulate the ratio theorems for equivalence relations
satisfying extreme asymptotic invariance and the extreme Besicovich property. This
was done in order to emphasize the tools we have used and their relation to classical
arguments in amenable ergodic theory. It would be of course desirable to generalize
the ratio ergodic theorem for equivalence relations with the sets Fn.b/ satisfying the
ordinary Besicovich property. On the other hand, the doubling condition introduced
in [BN13a] or polynomial volume growth condition on the sets Fn.b/ are insufficient
for the validity of the ratio ergodic theorem. Indeed, the ratio ergodic theorem fails
already for certain natural polynomially growing Følner sequences in actions of Z2.
For more on this fact and for positive results on the ratio ergodic theorem and its
connection to the Besicovich property of the underlying family of sets in the case
of Zd -actions see [Ho10]. Further results on the interesting connection between the
Besicovich property and the ratio ergodic theorem has very recently been obtained in
the case where the equivalence relation is given by orbits of a countable group and
the action is measure-preserving in [Ho13].

3.6. Cocycles and extensions of equivalence relations. Given an equivalence re-
lation R and a sequence F of subset functions with extreme properties, one can
use cocycles defined on F in order to define a sequence of subset functions with
extreme properties defined on an extension of R. This fact will be applied below to
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actions of free groups. In general, suppose .X; �/ is a standard measure space, � is
a group acting by measure-class-preserving transformations on X and ˛ W R ! � is
a measurable cocycle. This means that ˛ satisfies the cocycle equation

˛.b1; b2/˛.b2; b3/ D ˛.b1; b3/

for a.e. b1; b2; b3 2 B . Let R˛ D R˛.X/ be the equivalence relation on X � B

given by .x; b/ �R˛ .x0; b0/ if and only .b; b0/ 2 R and ˛.b0; b/x D x0.

Lemma 3.6. Suppose F D fFng1
nD1 is a sequence of subset functions for R. Let

F ˛ D fF ˛
n g1

nD1 be defined by

F ˛
n .x; b/ D f.x0; b0/ 2 X � B W b0 2 Fn.b/; x

0 D ˛.b0; b/xg:

If F is anchored then F ˛ is anchored. If F is extremely asymptotically invariant
then F ˛ is extremely asymptotically invariant and if F has the extreme Besicovich
property then F ˛ has the extreme Besicovich property.

Proof. We will show that if F is extremely asymptotically invariant then F ˛ is also
extremely asymptotically invariant. The other claims are similar. Let ˆ � Inn.R/
be a countable generating set witnessing the extreme asymptotic invariance of F .
For each � 2 ˆ, define �˛ 2 Inn.R˛/ by �˛.x; b/ D .˛.�.b/; b/x/; �.b//. Then
ˆ˛ WD f�˛ W � 2 ˆg � Inn.R˛/ is a countable generating set witnessing the
extreme asymptotic invariance of F ˛ .

4. A horospherical ratio ergodic theorem for the free group

As in the introduction, we let F D ha1; : : : ; ari denote the free group of rank r � 2,
@F denote its boundary, � the Markov measure on @F , R0 the tail equivalence relation
and H� the horosphere based at � 2 @F passing through the identity.

Let B D fBng be the sequence of subset functions given by

Bn.�/ D f� 2 @F W �k D �k for all k > ng:

In other words, Bn.�/ is the set of all g� where g ranges over the intersection of the
horosphere H� with the ball of radius 2n in F .

In the next subsection we show:

Theorem 4.1. The sequence B is anchored, extremely asymptotically invariant and
satisfies the extreme Besicovich property.
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4.1. Extreme properties of B

Definition 4.1. We will say that a map � W @F ! @F has order � n if there is a
bijection �0 W Sn ! Sn such that

(1) for any � 2 @F ,

�.�1; : : : ; �n/ D .� 0
1; : : : ; �

0
n; �nC1; �nC2; : : :/

where �0.�1; : : : ; �n/ D .� 0
1; : : : ; �

0
n/;

(2) in the above � 0
n D �n and, since �.�/ 2 @F , � 0

iC1 ¤ .� 0
i /

�1 for any i .

Lemma 4.2. The set of finite order inner automorphisms of R0 generates R0.

Proof. If .�; �/ 2 R0 then there exists an N such that n � N implies �n D �n. Let
�0 W SN ! SN be a bijection satisfying

(1) �0.�1; : : : ; �N / D .�1; : : : ; �N /;

(2) if .s1; : : : ; sN / 2 SN satisfies siC1 ¤ s�1
i for any i and �0.s1; : : : ; sN / D

.t1; : : : ; tN / then tiC1 ¤ t�1
i for any i .

Define � 2 Inn.R0/ by

�.s1; s2; : : :/ D .t1; : : : ; tN ; sN C1; : : :/;

where �0.s1; : : : ; sN / D .t1; : : : ; tN /. This is an inner automorphism of finite order
and clearly �.�/ D �.

Proof of Theorem 4.1. It is immediate from the definition of B that B is anchored and
satisfies the extreme Besicovich property. To see that it is extremely asymptotically
invariant, let ˆ � Inn.R0/ be the set of finite order inner automorphisms. This is a
countable generating set by the previous lemma. Clearly, each Bn is preserved under
all automorphisms of order < n.

4.2. A horospherical ratio pointwise ergodic theorem. Let .X; �/ be a standard � -
finite measure space on which F acts non-singularly. Let ˛ W R0 ! F be the cocycle
˛.�; �/ D g 2 F where g� D � (e.g., g D .�1 � � � �N /.�1 � � � �N /

�1 if �n D �n for all
n � N ). Define the equivalence relation R˛

0 D R˛
0 .X/ onX � @F and the sequence

of subset functions B˛ D fB˛
n g1

nD1 as in § 3.6. By Theorem 4.1 and Lemma 3.6,
it follows that B˛ is anchored, extremely asymptotically invariant and satisfies the
extreme Besicovich property. So Theorem 3.1 implies:

Theorem4.2. B˛ is a ratio ergodic sequence inL1. Namely, for everyu; v 2 L1.X�
@F ; �� �/ with v > 0, RATIOB˛

n Œu; v� converges pointwise a.e. to E.���/v

�
u
v
jR˛

0

�
.
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Theorem 2.1 is implied by Theorem 4.2 above because

B˛.x; �/ D fg.x; �/ W g�1 2 H� ; jgj � 2ng
implies

RATIOB˛

n Œu; v� D
P

g�12H� ;jgj�2n
yT gu.x; �/P

g�12H� ;jgj�2n
yT gv.x; �/

:

Remark 4.3. The relation R0 defined in §3 is in fact the tail relation of a one sided
Markov shift of finite type coding the boundary of the free group. The subset functions
Bn.�/ defined there are in fact finite equivalence classes associated with then-step tail
relations, namely equality of sequences from then-th letter onwards. This observation
implies that Theorem 2.1 and Theorem 4.2 admit far-reaching generalizations, to the
case of the Markov shift of finite type associated with any Markov group. In particular,
it is possible to prove analogs of these results for any non-elementary word-hyperbolic
group with any set of generators. Ergodic theorems for Markov groups are developed
in detail along these lines in [BN].

5. Ergodic components of the horospherical relation: some examples

Observe that the cocycle ˛ W R0 ! F defined above takes values in F2 WD the index
2 subgroup of F consisting of all words of even reduced length. Let F Õ .X; �/ be
a non-singular action on a standard � -finite measure space. Theorem 4.2 raises the
following two natural questions.

(1) If F Õ .X; �/ is ergodic then is the diagonal action F Õ .X � @F ; � � �/
ergodic?

(2) If the diagonal action F2 Õ .X �@F ; ���/ is ergodic then is the equivalence
relation R˛

0 .X/ ergodic?

In [BN13a] it was shown that, if .X; �/ is a probability space and the action
preserves the measure then the answer to both questions is ‘yes’. We show here that
both questions have negative answers for actions on general non-singular actions on
� -finite measure spaces .

Example 5.1. This is a counterexample to (1). Let X D .@F � @F/ n� be the set of
pairs of distinct points in the boundary @F , which can also be identified with set of bi-
infinite geodesics in the Cayley tree. As is well known, there exists a Radon measure
� on X , which is absolutely continuous to the product measure � � � and invariant
under the action of F on X (given by the diagonal action on the product). Moreover
F Õ .X; �/ is ergodic by Kaimanovich’s double ergodicity Theorem [Ka03] (which
can easily be proven directly in this special case).
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Consider now the spaceX �@F with the product measure ���, and the invariant
conull set consisting of triples of distinct points. It is well-known that the action of
F on the latter set is in fact proper (as an action on a metric space) and in particular
admits a global Borel section. Since the equivalence relation R is a sub relation of
the relation determined by the F -orbits, it follows that R admits many R-invariant
sets of intermediate measure and is certainly not ergodic. In fact, the F -action on the
product X � @F is measure-theoretically smooth.

Example 5.2. The following provides further counterexamples to (1). Let G D
SL2.R/, and X D G=H , with H a unimodular connected subgroup, and � taken as
theG-invariant measure onG=H . Let F act via a dense homomorphism � W F ! G.

We want to consider the question of ergodicity of F on the product X � @F , and
for that let us view the homomorphism � as a cocycle ˛ W F �@F ! G via ˛.g; b/ D
�.g/. The Mackey range Y of the cocycle is the space of ergodic components of the
induced action of F on @F �G (by f .b; g/ D .f b; ˛.f; b/g/). The groupG acts on
@F �G via g.f; h/ D .f; hg�1/. Because this action commutes with the action of F ,
it descends to an action on Y . Since the action of F on @F is amenable and ergodic,
G acts amenably and ergodically on Y . By [Zi78b], any ergodic amenable action of
G factors over a transitive amenable action G=L, with L being a closed amenable
subgroup.

SinceL is amenable, it leaves a probability measure on the boundary of hyperbolic
space invariant, and therefore it is either conjugate to a subgroup of the maximal
compact subgroupK, or conjugate to a subgroup of the minimal parabolic subgroup
P , or to a subgroup of the group NK.A/, the normalizer in K of the diagonal group
A. By passing to a further factor if necessary, we can therefore assume eitherL D K,
L D P or L D NK.A/.

Since G=L is a factor of the Mackey range of the cocycle ˛, it follows that ˛ is
cohomologous to a cocycle taking values in L, and this is equivalent to @F admitting
an ˛-invariant map  to G=L. Since the cocycle is defined by ˛.g; b/ D �.g/, this
amounts to a measurable non-singular map  , equivariant with respect to the actions
of F on both sides.

Thus we have a non-singular factor map  W @F ! G=L. Now in general
(see [Zi78a]), for any G-space X , F is ergodic on X � @F (acting via �) if and
only ifG is ergodic on Y �X . ChoosingX D G=H , by Moore’s ergodicity theorem
(see e.g. [Zi84]), G is ergodic on G=L � G=H if and only if H is ergodic on G=L.
Since the Mackey range Y factors overG=L, it follows of course thatG is not ergodic
on Y � G=H if H is not ergodic on G=L. Choosing H to be the trivial group feg,
the maximal compact subgroup K, or the diagonal subgroup A, we obtain that H is
not ergodic onG=L, for any of the admissible choices of L, namely L D K, L D P

or L D NK.A/.
Thus taking X to be the group itself (X D SL2.R/), or the hyperbolic plane

(X D H2 D G=K) or the de-Sitter space (X D G=A), we conclude that the F -action
on X � @F is not ergodic.
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Example 5.3. To obtain a counterexample to question (2), we let X D @F and
consider the product action of F on .@F � @F ; � � �/. This action is well-known to
be ergodic as already noted in Example 5.1. The action restricted to the subgroup of
even words F2 on .@F �@F ; ���/ is also ergodic. However, the equivalence relation
R˛

0 .@F/ is not ergodic. To see this, note that a point .b; c/ 2 @F � @F with b ¤ c

determines a geodesic � W Z ! F from b to c. Let Hc be the horosphere centered at
c that passes through the identity element. Without loss of generality we may assume
that �.0/ is contained inHc . Define J.b;c/.n/ D �.n/�1�.nC 1/. We claim that the
map .b; c/ 2 @F � @F 7! J.b;c/ is invariant under the relation R˛

0 .@F/. Because the
map .b; c/ 7! J.b;c/ is not constant a.e. this proves that R˛

0 .@F/ is not ergodic.
Any element in the R˛

0 .@F/-equivalence class of .b; c/ has the form .g�1b; g�1c/

where g 2 Hc . Notice that g�1Hc D Hg�1c . Therefore, g�1� is the geodesic from
g�1b to g�1c and g�1�.0/ is contained in Hg�1c . So if J 0 D J.g�1b;g�1c/ then

J 0.n/ D .g�1�.n//�1g�1�.nC 1/ D �.n/�1�.nC 1/ D J.b;c/.n/:

This proves the claim.

It would be useful to establish general conditions on an ergodic non-singular
action F Õ .X; �/ which imply positive answers to questions (1) and (2) above. As
am example, note that even the following is not known.

Question 5.4. Suppose F ! Isom.En/ is a dense embedding into the isometry group
of Euclidean n-space. Through this embedding, F acts by isometries on Euclidean
n-space. Is the induced action F Õ .En � @F ; �n � �/ ergodic? Here �n is the
Lebesgue measure on En. If so, then is the equivalence relation R˛

0 .E
n/ ergodic?
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