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A note on trace fields of complex hyperbolic groups

Heleno Cunha and Nikolay Gusevskii

Abstract. We show that if � is an irreducible subgroup of SU.2; 1/, then � contains a loxo-
dromic element A. If A has eigenvalues �1 D �ei' , �2 D e�2i' , �3 D ��1ei' , we prove
that � is conjugate in SU.2; 1/ to a subgroup of SU.2; 1; Q.�; �//, where Q.�; �/ is the field
generated by the trace field Q.�/ of � and �. It follows from this that if � is an irreducible
subgroup of SU.2; 1/ such that the trace field Q.�/ is real, then � is conjugate in SU.2; 1/

to a subgroup of SO.2; 1/. As a geometric application of the above, we get that if G is an
irreducible discrete subgroup of PU.2; 1/, then G is an R-Fuchsian subgroup of PU.2; 1/ if
and only if the invariant trace field k.G/ of G is real.

Mathematics Subject Classification (2010). 32H20, 20H10, 22E40, 57S30, 32G07, 32C16.

Keywords. Complex hyperbolic groups, trace fields.

Introduction

Arithmetic methods are a powerful tool in the study of Kleinian groups, discrete sub-
groups of PSL.2; C/, especially of finite-covolume discrete groups, as was demon-
strated in [21], see also an extensive bibliography there. A central theme in this theory
is to understand the structure of the invariant trace field and the invariant (quaternion)
algebra associated to a Kleinian group. In the case of complex hyperbolic geome-
try, that is, in the case of subgroups of PU.n; 1/ (SU.n; 1/) little known about these
objects, see for instance [23], where the study of the invariant trace fields and the
invariant algebras associated to subgroups of SU.n; 1/ was initiated. In particular,
in this work the invariant trace field and the invariant algebra were introduced for
subgroups of SU.n; 1/. An important problem here is to understand whether a sub-
group of SU.n; 1/ can be realized over the field generated by the eigenvalues of its
elements. In this paper, we prove that any irreducible subgroup � of SU.2; 1/ con-
tains a loxodromic element A and it can be realized over the field generated by the
trace field of � and the eigenvalues of A.

The main result of our paper is the following theorem:

TheoremA. Let � be an irreducible subgroup of SU.2; 1/ and A 2 � be loxodromic
with eigenvalues �1 D �ei' , �2 D e�2i' , �3 D ��1ei' . Then � is conjugate in
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SU.2; 1/ to a subgroup of SU.2; 1; Q.�; �//, where Q.�; �/ is the field generated
by the trace field Q.�/ of � and �.

As a corollary of this theorem, we get the following

Theorem B. Let � be an irreducible subgroup of SU.2; 1/ such that Q.�/ is a subset
of R, then � is conjugate in SU.2; 1/ to a subgroup of SO.2; 1/.

We would like to stress that in Theorem A and Theorem B we do not assume that
the group � is discrete.

Also, in this paper, we define an invariant trace field for subgroups of PU.2; 1/.
Let G be a subgroup of PU.2; 1/ and � D ��1.G/, where � W SU.2; 1/ ! PU.2; 1/

is a natural projection. Then the invariant trace field of G, denoted by k.G/, is
defined to be the field Q.�3/, where �3 D h�3 W � 2 �i. It follows from [23] that
the invariant trace field is an invariant of the commensurability class.

We say that a subgroup G of PU.2; 1/ is an R-subgroup if it leaves invariant a
totally real geodesic 2-plane in H 2

C . A subgroup G of PU.2; 1/ is called R-Fuchsian
if it is a discrete R-subgroup. A subgroup G is a C-subgroup if it leaves invariant a
complex geodesic in H 2

C . A subgroup G of PU.2; 1/ is called C-Fuchsian if it is a
discrete C-subgroup.

By applying Theorem B, we get the following characterization of discrete non-
elementary R-subgroups of PU.2; 1/.

Theorem C. Let G be an irreducible discrete subgroup of PU.2; 1/. Then G is an
R-Fuchsian if and only if the invariant trace field k.G/ of G is real.

This implies, in particular, that if G is an irreducible discrete subgroup of PU.2; 1/

whose invariant trace field is real, then the invariant algebra associated to G is of
dimension nine over k.G/. On the other hand, if G is a non-elementary C-subgroup
of PU.2; 1/) (G is reducible in this case) with real invariant trace field, then the
invariant algebra associated to G is of dimension four.

As a corollary of Theorem C, we have the following.

Theorem D. Let G be a discrete non-elementary subgroup of PU.2; 1/ such that the
invariant trace field k.G/ of G is real. Then G is either R-Fuchsian or C-Fuchsian.

We remark that Theorem D can be considered as a complex hyperbolic analog of a
classical result due to B.Maskit, see Theorem G.18 in [22] and Corollary 3.2.5 in [21].
Finally, we would like to mention that some related questions were considered in [3],
[14], [15], [24], [27], [28], [29], [30].

The article is organized as follows. In Section 1, we review some basic facts in
complex hyperbolic geometry. In Section 2, we prove our main results.
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1. Complex hyperbolic plane and its isometry group

Let V be a 3-dimensional C-vector space equipped with a Hermitian form h�; �i
of signature .2; 1/. We denote by P .V / the complex projectivization of V and by
P W V n f0g ! P .V / a natural projection.

Let V�, V0, VC be the subsets of V nf0g consisting of vectors where hv; vi is neg-
ative, zero, or positive respectively. Vectors in V0 are called null or isotropic, vectors
in V� are called negative, and vectors in VC are called positive. Their projections to
P .V / are called isotropic, negative, and positive points respectively.

The projective model of the complex hyperbolic plane H 2
C is the set of negative

points in P .V /, that is, H 2
C D P .V�/. The boundary @H 2

C D P .V0/ of H 2
C is the

3-sphere formed by all isotropic points.
The Hermitian form h�; �i defines a metric, the Bergman metric, on H 2

C , see [16].
Let U.V / be the unitary group corresponding to this Hermitian form. Then the
holomorphic isometry group of H 2

C is the projective unitary group PU.V /, and the
full isometry group of H 2

C is generated by PU.V / and complex conjugation. We
denote by SU.V / the subgroup of linear transformations in U.V / with determinant 1.

For our purposes it is convenient to work with a basis e D fe1; e2; e3g in V which
has the following properties:

he1; e1i D 0; he2; e2i D 1; he3; e3i D 0;

he1; e2i D 0; he2; e3i D 0; he1; e3i D 1:

So, in this basis e1 and e3 are isotropic and e2 is positive. In what follows,
we denote by C2;1 the vector space V equipped with this basis. If the vectors
z D .z1; z2; z3/> and w D .w1; w2; w3/> in C2;1 are given by their coordinates in
e D fe1; e2; e3g, then the Hermitian product hv; wi is given by

hv; wi D z1 xw3 C z2 xw2 C z3 xw1:

The use of this basis simplifies essentially matrix computations and it was suc-
cessfully applied in a series of works, see, for instance [6], [7], [8], [9], [10], [11],
[12], [13], [18], [19], [29]. Throughout this paper we will use this basis.

Let U.2; 1/ and SU.2; 1/ denote the representations of U.V / and SU.V / in the
basis e D fe1; e2; e3g.

If A is an element of SU.2; 1/, then the matrix A is defined by the following
simple conditions:

hv1; v1i D 0; hv2; v2i D 1; hv3; v3i D 0;

hv1; v2i D 0; hv2; v3i D 0; hv1; v3i D 1;

where v1, v2, v3 denote the vectors defined by the rows of A.
Also, we have the following useful formula for the inverse of A 2 SU.2; 1/:

A D
2
4a11 a12 a13

a21 a22 a23

a31 a32 a33

3
5 ; A�1 D

2
4xa33 xa23 xa13

xa32 xa22 xa12

xa31 xa21 xa11

3
5 :
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It is seen that A�1 is the Hermitian anti-transpose of A.
The non-trivial elements of PU.2; 1/ fall into three general conjugacy types, de-

pending on the number and location of their fixed points.

� Elliptic elements have a fixed point in H 2
C ,

� Parabolic elements have a single fixed point on the boundary of H 2
C ,

� Loxodromic elements have exactly two fixed points on the boundary of H 2
C .

This exhausts all possibilities, see [16] for details.

Let � W SU.2; 1/ ! PU.2; 1/ be a natural projection. We call an element A 2
SU.2; 1/ loxodromic (parabolic, elliptic) if its projectivization �.A/ is loxodromic
(parabolic, elliptic). For instance, any loxodromic element A 2 SU.2; 1/ is conjugate
in SU.2; 1/ to an element of the following form

A D
2
4�1 0 0

0 �2 0

0 0 �3

3
5 ;

where �1 D �ei' , �2 D e�2i' , �3 D ��1ei' , � > 0, � ¤ 1, ' 2 .��; ��.
A parabolic element g 2 PU.2; 1/ is unipotent if it can be represented by a

unipotent element of SU.2; 1/, that is, a matrix having 1 as its only eigenvalue.
Otherwise, g is ellipto-parabolic. In that case g can be represented by an element
of SU.2; 1/ having a repeated non-real eigenvalue of norm 1. Also, g has a unique
invariant complex geodesic, see below.

There are two types of totally geodesic submanifolds of H 2
C of real dimension

two:

� Complex geodesics (copies of H 1
C) have constant sectional curvature �1.

� Totally real geodesic 2-planes (copies of H 2
R) have constant sectional curva-

ture �1=4.

Any complex geodesic is the intersection of a complex projective line in P .V /

with H 2
C , and it is uniquely defined by its polar point, which is positive [16]. We

recall that a polar point to a complex projective line c in P .V / is the projectivization
of the Hermitian orthogonal complement in V of P �1.c/.

Any totally real geodesic 2-plane is the intersection of a totally real projective
plane in P .V / with H 2

C .
We recall that a subspace S of VR, where VR is the real vector space underlying

V , is totally real if and only if S and its image J.S/ are orthogonal with respect to the
Hermitian product h�; �i, see [16]. It is easy to show that S is totally real if and only
if the Hermitian product hv; ui is real for all v; u 2 S . An example of a totally real
subspace is the R-linear span of e D fe1; e2; e3g, the basis considered above. We call
this subspace a canonical totally real subspace. The projectivization of this space is
called a canonical totally real projective 2-plane. Any totally real 2-plane in P .V / is
the image of the canonical totally real projective 2-plane under an element from the
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group PU.2; 1/. The stabilizer of the canonical totally real subspace in SU.2; 1/ can
be canonically identified with the group SO.2; 1/.

A chain is the boundary of a complex geodesic. An R-circle is the boundary of a
totally real geodesic 2-plane, see [16].

Let G be a subgroup of PU.2; 1/. We say that G is a C-subgroup if it leaves
invariant a complex geodesic. G is called an R-subgroup if it leaves invariant a
totally real geodesic 2-plane. A subgroup � of SU.2; 1/ is called C-subgroup if its
projectivization is a C-subgroup of PU.2; 1/. Similarly, a subgroup � of SU.2; 1/

is called an R-subgroup if its projectivization is an R-subgroup of PU.2; 1/. We say
that a subgroup G of PU.2; 1/ is C-Fuchsian if it is a discrete C-subgroup, and G is
called R-Fuchsian if it is a discrete R-subgroup. Typical examples of C-subgroups
of SU.2; 1/ are subgroups of SU.1; 1/ canonically embedded into SU.2; 1/, and
typical examples of R-subgroups of SU.2; 1/ are subgroups of SO.2; 1/ canonically
embedded into SU.2; 1/.

Recall that a subgroup � of SU.2; 1/ is called reducible if it has an invariant proper
C-subspace of V , and called irreducible otherwise. It is clear that a subgroup � of
SU.2; 1/ is irreducible if and only if � has no invariant 1-dimensional C-subspaces
of V .

A subgroup G of PU.2; 1/ is called reducible if all elements of G have a common
fixed point in their action on the projective space P .V /. Otherwise, G is called
irreducible.

A subgroup G of PU.2; 1/ is called elementary if it has a finite orbit in its action
on H 2

C [@H 2
C . Otherwise, G is non-elementary. A subgroup � of SU.2; 1/ is called

elementary if its projectivization is elementary. Otherwise, � is non-elementary.
Clearly, any C-subgroup G of PU.2; 1/ is reducible because the polar point to

the invariant complex geodesic of G is a common fixed point for all elements of G in
their action on P .V /. Also, it is clear that a non-elementary R-subgroup of PU.2; 1/

is irreducible.

2. Trace fields of complex hyperbolic groups

Let � be a subgroup of SU.2; 1/. Then the trace field of � , denoted by Q.tr�/, is the
field generated by the traces of all the elements of � over the base field Q of rational
numbers. For simplicity, we will denote the trace field of � by Q.�/. Of course,
Q.�/ is a conjugacy invariant. We remark that the trace field Q.�/ is also invariant
under complex conjugation, since for B 2 SU.2; 1/ we have tr.B�1/ D tr.B/.

If � contains a loxodromic element A with eigenvalues �1 D �ei' , �2 D e�i2' ,
�3 D ��1ei' , then Q.�; �/ denotes the field generated by Q.�/ and �. Also, for
any field k we denote by SU.2; 1; k/ the intersection of SU.2; 1/ with M.3; k/.
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Lemma 2.1. Let � D hAi be the group generated by a loxodromic element A 2
SU.2; 1/ with eigenvalues �1 D �ei' , �2 D e�2i' , �3 D ��1ei' . Then ei' 2
Q.�; �/.

Proof. Since Q.�/ is invariant under complex conjugation, it follows that Re.tr.A//

and jtr.A/j2 are in Q.�/. We have that

tr.A/ D �ei' C ��1ei' C e�i2'

and
tr.A�1/ D tr.A/ D �e�i' C ��1e�i' C ei2' :

A direct computation shows that

Re.tr.A// D cos 2' C .� C ��1/ cos ' D 2 cos2 ' C .� C ��1/ cos ' � 1

and
jtr.A/j2 D .�2 C ��2/ C 2.� C ��1/ cos 3' C 3:

Since � C ��1 ¤ 0, the last formula implies that cos 3' 2 Q.�; �/.

Looking at these formulae, one could expect that cos ' is in a proper extension of
Q.�; �/, but the following trick shows that, in fact, cos ' is in Q.�; �/.

It is easy to see that the following formula

.4 cos2 ' C 2t cos ' C t2 � 3/ cos ' D 4 cos3 ' � 3 cos ' C .2 cos2 ' C t cos '/t

is true for all t 2 R and for all ' 2 .��; ��.
Also, it is elementary to check that

4 cos2 ' C 2t cos ' C t2 � 3 ¤ 0

for all t > 2 and for all ' 2 .��; ��. This implies that for all t > 2 and for all
' 2 .��; �� we have that

cos ' D 4 cos3 ' � 3 cos ' C .2 cos2 ' C t cos '/t

4 cos2 ' C 2t cos ' C t2 � 3
:

In particular, taking t D � C ��1 and using the identity cos 3' D 4 cos3 ' � 3 cos ',
we get the formula

cos ' D cos 3' C .2 cos2 ' C .� C ��1/ cos '/.� C ��1/

4 cos2 ' C 2.� C ��1/ cos ' C .� C ��1/2 � 3
:

One verifies that this can be re-written as

cos ' D cos 3' C .Re.tr.A// C 1/.� C ��1/

2Re.tr.A// C .� C ��1/2 � 1
:
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Therefore, the above implies that cos ' 2 Q.�; �/ for all ' 2 .��; ��.
Next, a direct computation shows that

i sin ' D tr.A/ � tr.A/

2.� C ��1 C 2 cos '/
:

All the above implies that ei' 2 Q.�; �/ for all ' 2 .��; ��.

Corollary 2.1. Let � D hAi be the group generated by a loxodromic element A 2
SU.2; 1/ with eigenvalues �1 D �ei' , �2 D e�i2' , �3 D ��1ei' . Then all these
eigenvalues belong to Q.�; �/.

Lemma 2.2. Let � be a subgroup of SU.2; 1/ containing a loxodromic element
A D diag.�1; �2; �3/, where �1 D �ei' , �2 D e�i2' , �3 D ��1ei' . Then for any
element B D .bij / 2 � , the diagonal elements of B are in Q.�; �/.

Proof. We write

A D
2
4�1 0 0

0 �2 0

0 0 �3

3
5 ; A�1 D

2
4

N�3 0 0

0 N�2 0

0 0 N�1

3
5 ; B D

2
4b11 b12 b13

b21 b22 b23

b31 b32 b33

3
5 :

Then computations show that

tr.B/ D b11 C b22 C b33 D t1;

tr.AB/ D �1b11 C �2b22 C �3b33 D t2;

tr.A�1B/ D N�3b11 C N�2b22 C N�1b33 D t3:

Note that every ti lies in Q.�/. We consider these equalities as a system of linear
equations in three unknowns b11, b22, b33. Let us show that the matrix L of this
system is non-singular. We write

L D
2
4 1 1 1

�1 �2 �3N�3
N�2

N�1

3
5 :

Then a computation gives that

det L D .�2
N�1 � �3

N�2/ � .�1
N�1 � �3

N�3/ C .�1
N�2 � �2

N�3/

D .��2 � �2/ C 2.� � ��1/ cos 3':

The equality det L D 0 is equivalent to cos 3' D .� C ��1/=2, which is impossible
since � C ��1 > 2.

It follows from Corollary 2.1 that every coefficient of the system lies in Q.�; �/.
Solving this system by Cramer’s rule, we conclude that every bi i lies in Q.�; �/.
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Lemma 2.3. Let � be a subgroup of SU.2; 1/ containing a loxodromic element
A D diag.�1; �2; �3/, where �1 D �ei' , �2 D e�i2' , �3 D ��1ei' . Then for any
element B D .bij / 2 � , the products b12b21, b13b31, b23b32 are in Q.�; �/.

Proof. Let C D BAB . First, we compute the diagonal elements ci i of the matrix C .
They are

c11 D �1b2
11 C �2b12b21 C �3b13b31;

c22 D �1b12b21 C �2b2
22 C �3b23b32;

c33 D �1b13b31 C �2b23b32 C �3b2
33:

Then by applying Lemma 2.2, we have that ci i is in Q.�; �/. Also, by the same
reason, bi i is in Q.�; �/. Therefore, we can re-write these equalities in the following
form

�2b12b21 C �3b13b31 D t1;

�1b12b21 C �3b23b32 D t2;

�1b13b31 C �2b23b32 D t3;

where t1; t2; t3 are some elements of Q.�; �/.
We consider these equalities as a system of linear equations in three unknowns

x1 D b12b21, x2 D b13b31, x3 D b23b32. The matrix L of this system is

L D
2
4�2 �3 0

�1 0 �3

0 �1 �2

3
5 :

A short computation shows that det L D �2�1�2�3 D �2 det A ¤ 0. Solving this
system by Cramer’s rule, we conclude that every xi lies in Q.�; �/.

Lemma 2.4. Let � be a subgroup of SU.2; 1/ containing a loxodromic element
A D diag.�1; �2; �3/, where �1 D �ei' , �2 D e�i2' , �3 D ��1ei' . Then for any
element B D .bij / 2 � , the products b12

Nb32, b13
Nb31, b23

Nb21 are in Q.�; �/.

Proof. Let C D BAB�1. Let us compute the diagonal elements ci i of the matrix C .
They are

c11 D �1b11
Nb33 C �2b12

Nb32 C �3b13
Nb31;

c22 D �1b21
Nb23 C �2b22

Nb22 C �3b23
Nb21;

c33 D �1b31
Nb13 C �2b32

Nb12 C �3b33
Nb11:

By applying Lemma 2.2, we get that ci i lies in Q.�; �/. Since � is real, we have
that the field Q.�; �/ is invariant under complex conjugation. Hence, b11

Nb33, b22
Nb22,

b33
Nb11 are all in Q.�; �/. Therefore, we can re-write these equalities in the following

form
�2b12

Nb32 C �3b13
Nb31 D t1;
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�1b21
Nb23 C �3b23

Nb21 D t2;

�1b31
Nb13 C �2b32

Nb12 D t3;

where t1; t2; t3 are some elements of Q.�; �/.
Now let D D B�1AB . Again we compute the diagonal elements di i of this

matrix. They are

d11 D �1b11
Nb33 C �2b21

Nb23 C �3b31
Nb13;

d22 D �1b12
Nb32 C �2b22

Nb22 C �3b32
Nb12;

d33 D �1b13
Nb31 C �2b23

Nb21 C �3b33
Nb11:

By applying the above arguments, we re-write these equalities in the following form

�2b21
Nb23 C �3b31

Nb13 D s1;

�1b12
Nb32 C �3b31

Nb12 D s2;

�1b13
Nb32 C �2b23

Nb21 D s3;

where s1; s2; s3 are some elements of Q.�; �/.
We consider the first and the conjugate third equality defined by C and the con-

jugate first equality defined by D. So, we have the following equalities:

�2b12
Nb32 C �3b13

Nb31 D t1;

N�1b13
Nb31 C N�2b12

Nb32 D Nt3;

N�2b23
Nb21 C N�3b13

Nb31 D Ns1:

These equalities define a system of linear equations in three unknowns x1 D b12
Nb32,

x2 D b13
Nb31, x3 D b23

Nb21. The matrix L of this system is

L D
2
4�2 �3 0

N�2
N�1 0

0 N�3
N�2

3
5 :

The determinant det L D �2. N�1
N�2/ � �3

N�2
2 D e2i'.e�3i'� � e3i'��1/. It is seen

that det L D 0 if and only if �2 D e6i' . This is impossible since � > 0; � ¤ 1.
Solving this system by Cramer’s rule, we conclude that every xi lies in Q.�; �/.

The following proposition is crucial in the proof of our main result.

Proposition 2.1. Let � D hA; Bi be an irreducible subgroup of SU.2; 1/, where A

is a loxodromic element with eigenvalues �1 D �ei' , �2 D e�2i' , �3 D ��1ei' .
Then � is conjugate in SU.2; 1/ to a subgroup of SU.2; 1; Q.�; �//.
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Proof. We will show that one needs at most two conjugations to get the result we
need.

First, by applying a suitable conjugation in SU.2; 1/, we may assume that

A D
2
4�1 0 0

0 �2 0

0 0 �3

3
5 ; B D

2
4b11 b12 b13

b21 b22 b23

b31 b32 b33

3
5 :

By v1 D .b11; b12; b13/>, v2 D .b21; b22; b23/>, and v3 D .b31; b32; b33/> we
denote the vectors defined by the rows of the matrix B .

Let X 2 SU.2; 1/ be a loxodromic element (elliptic if r D 1) such that

X D
2
4rei˛ 0 0

0 e�2i˛ 0

0 0 r�1ei˛

3
5 :

Then XAX�1 D A and XBX�1 is

XBX�1 D
2
4 b11 re3i˛b12 r2b13

r�1e�3i˛b21 b22 re�3i˛b23

r�2b31 r�1e3i˛b32 b33

3
5 :

If the entries b12, b32 of B are all equal to 0, then the group � is not irreducible
since in this case A and B have a common invariant complex line spanned by the
vector .0; 1; 0/>. In this case, � is a C-group. Therefore, at least one of the numbers
b12; b32 is not equal to 0. Let us suppose that b12 ¤ 0. In this case, by normalizing the
elements A and B using X , we may assume without loss of generality that b12 D 1.

From the above results we know that bi i , b12b21, b13b31, b23b32, b12
Nb32, b13

Nb31,
b23

Nb21 are all in Q.�; �/.
Since b12 D 1, we get that b21 and b32 are in Q.�; �/. Let us first consider

the case b21 D 0. Then we have that b31 ¤ 0. Indeed, if b31 D 0, then A and
B have a common invariant complex line spanned by the vector .1; 0; 0/>. This is
impossible because � is irreducible. Let us assume now that b32 D 0. Since the
vectors v2 and v3 are orthogonal, we get that hv2; v3i D b23

Nb31 D 0. So, in this case,
b23 D 0. This implies that b22 ¤ 0. Hence, hv1; v2i D Nb22 ¤ 0, a contradiction.
Therefore, we have that b32 ¤ 0. It follows that b23 lies in Q.�; �/. Since the
vectors v1 and v2 are orthogonal, we have that b23 ¤ 0. Then, by considering the
equality hv2; v3i D b22

Nb32 C b23
Nb31 D 0, we conclude that b31 lies in Q.�; �/.

Since b31 ¤ 0, we get that b13 lies in Q.�; �/. This shows that all the entries of the
matrix B are in Q.�; �/. Therefore, we proved the proposition in this case.

Now let us assume that b21 ¤ 0. It follows immediately that b23 lies in Q.�; �/.
We write hv1; v2i D b11

Nb23 C Nb22 Cb13
Nb21 D 0. Since b21 ¤ 0, this implies that

b13 is in Q.�; �/. If b13 ¤ 0, we get that b31 is in Q.�; �/. Suppose that b13 D 0.
In this case, b23 ¤ 0, since otherwise A and B have a common invariant complex
line spanned by the vector .0; 0; 1/>. This is impossible because � is irreducible.
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We write hv2; v3i D b21
Nb33 C b22

Nb32 C b23
Nb31 D 0. Since b23 ¤ 0, we get that

b31 lies in Q.�; �/.
Summarizing everything, we get that in the case b12 ¤ 0 after conjugation all the

entries of the matrix B lie in Q.�; �/. The case b12 D 0, b32 ¤ 0 is similar to the
previous one.

Next we prove that any irreducible subgroup of SU.2; 1/ contains a loxodromic
element. First, we will prove the following lemma.

Lemma 2.5. Let � be a non-elementary subgroup of SU.2; 1/. If � contains a
parabolic element, then � contains a loxodromic element.

Proof. Let B 2 � be parabolic. Then B has a unique invariant isotropic complex
line in V . By normalizing � in SU.2; 1/, we may assume without loss of generality
that this line is spanned by the vector .1; 0; 0/>. This implies that B has the following
form:

B D
2
4b11 b12 b13

0 b22 b23

0 b32 b33

3
5 :

As before, we denote by v1 D .b11; b12; b13/>, v2 D .b21; b22; b23/>, v3 D
.b31; b32; b33/> the vectors defined by the rows of the matrix B .

We consider two cases: (1) b12 D 0, (2) b12 ¤ 0.
First, we consider the case b12 D 0. We have that hv2; v2i D jb22j2 D 1.

From this and the equality hv2; v3i D 0, we get that b32 D 0. Then the equality
hv1; v2i D b11

Nb23 D 0 implies that b23 D 0. From the equality hv1; v3i D 1, we
get that b11

Nb33 D 1. Since B is parabolic, we have that b13 ¤ 0 and that jb11j D 1.
Hence jb33j D 1. We write b11 D ei' and b13 D rei� , r > 0. Then the equality
hv1; v1i D 0 implies that b13 D riei' . Therefore, when b12 D 0, the element B

after a suitable normalization of � has the following form:

B D
2
4ei' 0 riei'

0 e�2i' 0

0 0 ei'

3
5 :

We remark that if ' D 0, then B is unipotent and B is ellipto-parabolic otherwise.
Next, we consider the case b12 ¤ 0. Using the same arguments as in the first

case, we get that jb22j D 1 and b32 D 0. Since b12 ¤ 0, by normalizing � using the
element X defined in the proof of Proposition 2.1, we may assume without loss of
generality that b12 D 1. The equality hv1; v3i D 1 implies that b11

Nb33 D 1. Note that
in this case B is always unipotent. Hence b11 D 1. This implies that b22 D b33 D 1.
Then it follows from the equality hv1; v2i D 0 that b23 D �1. Now let us consider
the equality hv1; v1i D Nb13 C b13 C 1 D 0. It easy to see that this equality is true
if and only if b13 D �1=2 C si , where s is real. Summarizing everything, we get
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that in the case b12 ¤ 0 after a suitable normalization of � the element B has the
following form:

B D
2
41 1 �

0 1 �1

0 0 1

3
5 ;

where � D �1=2 C si , s 2 R.
An easy induction shows that for any n 2 N in the first case

Bn D
2
4eni' 0 eni'inr

0 e�2ni' 0

0 0 eni'

3
5

and

Bn D
2
41 n n� C f .n/

0 1 �n

0 0 1

3
5

in the second case, where the function f W N ! Z is defined by the following
conditions: f .1/ D 0 and f .n C 1/ D f .n/ � n. It is easy to show that f .n/ D
.1 � n/n=2.

Since � is non-elementary it contains an element C which does not leave invariant
the complex line spanned by the vector .1; 0; 0/>. Let C D .cij /. Then we have that
c31 ¤ 0. Easy computation shows that

tr.BnC / D c11eni' C c31eni'inr C c22e�2ni' C c33eni'

in the first case, and

tr.BnC / D c11 C c21n C c31.n� C f .n// C c22 � c32n C c33

in the second one.
Hence, in the first case

jtr.BnC /j D jc31eni'inr � .�c11eni' � c22e�2ni' � c33eni'/j
� jc31eni'inr j � j.�c11eni' � c22e�2ni' � c33eni'/j
D jc31jnr � j.�c11eni' � c22e�2ni' � c33eni'/j:

Since c31 ¤ 0, and r > 0, this inequality implies that jtr.BnC /j tends to infinity
when n tends to infinity.

In the second case, we have that

jtr.BnC /j D jc11 C c21n C c31.n� C f .n// C c22 � c32n C c33j
� jc31f .n/j � j � c31n� � c11 � c21n � c22 C c32n � c33j
D jc31jjf .n/j � j � c31n� � c11 � c21n � c22 C c32n � c33j:
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Since c31 ¤ 0 and f .n/ is quadratic, this inequality implies that jtr.BnC /j tends to
infinity when n tends to infinity.

Thus, in both cases, we have that there exists n0 such that jtr.BnC /j > 3 for all
n > n0. Then using Goldman’s classification of the elements in SU.2; 1/ [16], we
get that the elements BnC are loxodromic for all n > n0. This proves the lemma.

We are very grateful to John Parker for his help in the proof of this lemma.

In what follows, we will need the following fundamental result due to Chen and
Greenberg [4]:

Proposition 2.2. Let � be a subgroup of SU.2; 1/. Consider the natural action of
� on H 2

C [ @H 2
C . If there is no point in H 2

C [ @H 2
C or proper totally geodesic

submanifold in H 2
C which is invariant under � , then � is either discrete or dense in

SU.2; 1/.

By applying this result and Lemma 2.5, we prove the following proposition.

Proposition 2.3. Let � be an irreducible subgroup of SU.2; 1/. Then � contains a
loxodromic element.

Proof. Let us consider the natural action of � on the projective space P .V / (or
equally the action of its projectivization). We know that the only proper totally
geodesic submanifolds of H 2

C are either geodesics, or complex geodesics, or totally
real geodesic 2-planes [4], [16]. Note that if there is a geodesic in H 2

C which is
invariant under � , then there is a complex geodesic c in H 2

C which is also invariant
under � (this complex geodesic c is spanned by the geodesic in question). Therefore,
the polar point to c is invariant under � for its action on the projective space P .V /.
Hence, if � is irreducible, then either � has no invariant proper totally geodesic
submanifolds or � is an R-subgroup of SU.2; 1/.

First, we consider the case when � has no invariant totally real geodesic 2-planes.
By applying Proposition 2.2, we get that � is either discrete or dense in SU.2; 1/. If
� is dense in SU.2; 1/, it contains a loxodromic element since the set of loxodromic
elements is open in SU.2; 1/ [16], and we are done. Now let us assume that � is a
discrete subgroup of SU.2; 1/. Suppose that � has no loxodromic elements. If �

contains only elliptic elements, then it is easy to see that � is finite, and then, using
the arguments similar to those in [25], we conclude that there is a point in H 2

C which
is invariant under � , a contradiction. Therefore, � contains a parabolic element � .
Since � is irreducible, it contains an element not fixing the unique fixed point of � . By
applying Lemma 2.5, we get that � contains a loxodromic element, a contradiction.

Now, let � be an R-subgroup. Then � is conjugate in SU.2; 1/ to a subgroup
of SO.2; 1/. Since � irreducible, the result follows from the plane real hyperbolic
geometry [2], [25].
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Corollary 2.2. Let G be an irreducible subgroup of PU.2; 1/. Then G is non-
elementary.

Proof. Assume that G is elementary. Let p 2 H 2
C [ @H 2

C be a point such that the
orbit G.p/ of p is finite. If p 2 H 2

C , then it follows from the proof of Proposition 2.3
that there is a point in H 2

C which is invariant under � , a contradiction. Next, let us
suppose that p 2 @H 2

C . By applying Proposition 2.3, we have that G contains a
loxodromic element. Since G.p/ is finite, this implies that G.p/ consists of two
distinct points. Let G.p/ D fp1; p2g and c be the unique complex geodesic spanned
by fp1; p2g. Then c is invariant under G, and, therefore, G leaves invariant its polar
point, a contradiction.

Thus, we proved that any irreducible subgroup of SU.2; 1/ contains a loxodromic
element. With this, we now prove our main result: if � is an irreducible subgroup of
SU.2; 1/, then � is conjugate in SU.2; 1/ to a subgroup of SU.2; 1; Q.�; �//, where
� is the absolute value of an eigenvalue of any loxodromic element of � with j�j ¤ 1.
In particular, this implies that � can be defined over the field Q.�; �/.

Theorem 2.1. Let � be an irreducible subgroup of SU.2; 1/. Let A 2 � be any
loxodromic element with eigenvalues �1 D �ei' , �2 D e�2i' , �3 D ��1ei' . Then
� is conjugate in SU.2; 1/ to a subgroup of SU.2; 1; Q.�; �//:

Proof. First, we show that � contains two loxodromic elements A1 and A2 having
the same eigenvalues as A (in fact, we show that A1 and A2 are conjugate to A in
�) such that the subgroup �0 D hA1; A2i generated by A1 and A2 is irreducible.
In what follows, we consider the natural action of � on the projective space P .V /.
We remark that A has three fixed points p1, p2, p3 for its action on the projective
space: p1, p2 are isotropic and p3 is positive, p3 is the polar point to the complex
projective line ˛ spanned by p1 and p2. If all the elements of � fix the point p3,
then � is reducible. So, there exists an element B of � which does not fix p3. Let
C D BAB�1 and q3 D B.p3/. Then C.q3/ D q3. Note that C is loxodromic, hence
C does not fix p3. Let q1 and q2 be the isotopic fixed point of C . If the sets fp1; p2g
and fq1; q2g are disjoint, taking A1 D A and A2 D C we are done, since in this case
the elements A and C have no common fixed points for their action on P .V /. So,
let us consider the case when these sets have non-empty intersection, that is, when
the elements A and C have a common isotropic fixed point. If fp1; p2g D fq1; q2g,
then the complex projective line ˛ is invariant under C , and, therefore, C.p3/ D p3,
a contradiction. This implies that A and C may have only one common isotropic
fixed point. One may assume without loss of generality that p1 D q1 is a unique
common isotropic fixed point of A and C . Then since � is irreducible, there exists
an element D 2 � which does not fix the point p1. Let E D DAD�1. We have
that E is loxodromic and E.p1/ ¤ p1. If the invariant complex geodesic ˇ of E is
not equal to ˛, then taking A1 D A and A2 D E, we are done. If ˛ D ˇ, we take
A1 D C and A2 D E.
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Now, by applying Proposition 2.1, we get that there exists f 2 SU.2; 1/ such that
��

0 D f �0f �1 is a subgroup of SU.2; 1; Q.�0; �//. Let �� D f �f �1. Then ��
0

is a subgroup of ��. In order to show that �� is a subgroup of SU.2; 1; Q.�; �//, we
apply Burnside’s density theorem, stated as Theorem 1600 in I. Kaplansky’s book [20],
and the trick which one can find in the proof of Theorem B in [20]. According to
Kaplansky this trick is due to C. Procesi.

Since ��
0 is irreducible, by applying Burnside’s density theorem, we get that ��

0

contains a basis of M.3; C/ over C. Let S D fS1; S2; : : : ; S9g be such a basis. Then
it follows that for any element � 2 �� there exist complex numbers c1; c2; : : : ; c9

such that

� D c1S1 C c2S2 C : : : C c9S9:

Let Tr.A; B/ D .A; B/ denote the trace form on M.3; C/ so that

.A; B/ D Tr.A; B/ D tr.AB/:

It is well known that Tr is a non-degenerate symmetric bilinear form.
It follows from the equality

� D c1S1 C c2S2 C : : : C c9S9

that

.�; Si / D c1.S1; Si / C c2.S2; Si / C : : : C c9.S9; Si /

for all i D 1; 2; : : : ; 9.
We consider these equalities as a system of linear equations in unknowns

c1; c2; : : : ; c9. We have that for all i; j D 1; 2; : : : ; 9, the product .Si ; Sj / is in
Q.�0; �/, and the product .�; Si / is in Q.�; �/. Therefore, this implies that every
coefficient of the system lies in Q.�; �/. Since the form Tr is non-degenerate, this
system is non-singular. Solving this system by Cramer’s rule, we conclude that every
ci lies in Q.�; �/. This implies that every � 2 �� lies in SU.2; 1; Q.�; �//. From
this, we conclude that �� is a subgroup of SU.2; 1; Q.�; �//.

As a corollary of this theorem, we get the following.

Theorem 2.2. Let � be an irreducible subgroup of SU.2; 1/ such that Q.�/ is a
subset of R, then � is conjugate in SU.2; 1/ to a subgroup of SO.2; 1/.

Proof. Since � is irreducible, it follows from Proposition 2.3 that � contains a loxo-
dromic element A. Let �1 D �ei' , �2 D e�2i' , �3 D ��1ei' be its eigenvalues. It
is easy to see that in this case all the eigenvalues of A are real: A is either hyperbolic
or loxodromic whose elliptic part is of order 2. Since the field Q.�/ is real, the field
Q.�; �/ is also real. So, the result follows from Theorem 2.1.
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We would like to stress that in Theorem 2.1 and Theorem 2.2 we do not assume
that the group � is discrete.

Next we show that the conclusions of Theorem 2.1 and Theorem 2.2 are not true if
� is reducible. Indeed, let us consider the embedding of SL.2; R/ in SU.2; 1/ given
by

�
a b

c d

�
�!

2
4 a 0 �ib

0 1 0

ic 0 d

3
5 :

This defines a faithful representation of SL.2; R/ in SU.2; 1/. Let � be the image
of SL.2; R/ under this embedding. Then � is reducible because the complex line
spanned by the vector .0; 1; 0/> is invariant under � . In fact, � is a C-subgroup of
SU.2; 1/. Also, we have that the trace field of � is real. It is easy to see that � cannot
be conjugate in SU.2; 1/ to a subgroup of SO.2; 1/. Moreover, if we consider the
image of SL.2; Z/ under this embedding, we get an example of a non-elementary
discrete subgroup of SU.2; 1/ whose trace field is Q but which is not conjugate in
SU.2; 1/ to a subgroup of SO.2; 1/.

Now we consider the case of subgroups of PU.2; 1/. We would like to find
conditions under which a subgroup G of PU.2; 1/ leaves invariant a totally real
geodesic 2-plane in H 2

C . It is natural to ask if it is possible or not to get an answer in
terms of the traces of lifts of elements of G to SU.2; 1/.

Let � W SU.2; 1/ ! PU.2; 1/ be a natural projection. Let G be a subgroup
of PU.2; 1/. Then the trace field of G, denoted Q.G/, is the field Q.�/, where
� D ��1.G/. We remark that this field is never real.

The following example is useful to understand the problem. Let � be a subgroup
of SO.2; 1/ such that the restriction � W � ! PU.2; 1/ is a monomorphism. Let
G D �.�/. We have that � is a lift of G. One could define an “invariant” trace
field of G as the trace field of � . And, in this case, this field is real! So, it would
be natural to define an “invariant” trace field of a subgroup G of PU.2; 1/ which
has a lift to SU.2; 1/ as the trace field of its lift. Unfortunately, the problem when a
subgroup G of PU.2; 1/ has a lift to SU.2; 1/ is still open, and it seems very difficult.
To our knowledge, the only results in this direction are in [17], in the case when G is
isomorphic to the fundamental group of a closed orientable surface. Some examples
when G has no lift, the reader can find in [1]. The lifting problem in the case of real
hyperbolic geometry of dimension three was completely solved in [5].

In [26], [21], [28] the invariant trace field was defined for subgroups of PSL.2; C/,
see also [23], for the case of SU.n; 1/. We follow their ideas to define an invariant
trace field for subgroups of PU.2; 1/.

Let G be a subgroup of PU.2; 1/ and � D ��1.G/. Then the invariant trace field
of G, denoted by k.G/, is defined to be the field Q.�3/, where �3 D h�3 W � 2 �i. It
follows from [23] that the invariant trace field is an invariant of the commensurability
class.
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If A 2 SU.2; 1/, then we have the following trace identity:

tr.A3/ D .tr.A//3 � 3 tr.A/ tr.A�1/ C 3;

see, for instance, [24]. Since an element of PU.2; 1/ has three lifts to SU.2; 1/ which
differ by a cube root of unity, it follows from this formula that if G is an R-subgroup
of PU.2; 1/, then the invariant trace field of G is real.

By applying Theorem 2.2 , we get the following characterization of discrete R-
subgroups of PU.2; 1/.

Theorem 2.3. Let G be an irreducible discrete subgroup of PU.2; 1/. Then G is an
R-subgroup if and only if the invariant trace field k.G/ of G is real.

Proof. Let � D ��1.G/. Then it is clear that � and �3 are irreducible. Let H D
�.�3/. It follows from Theorem 2.2 that �3 is conjugate in SU.2; 1/ to a subgroup
of SO.2; 1/. This implies that H leaves invariant a totally real geodesic 2-plane L

in H 2
C . Since �3 is a normal subgroup of � , it follows that H is a normal subgroup

of G. Since the group G is irreducible, it follows from Corollary 2.2 that G is non-
elementary. Therefore, the normality implies that the limit set of H is equal to the
limit set of G, see, for instance, [4]. We remark that the limit set of H is contained
in the boundary of L. Moreover, using the fact that G is non-elementary, we have
that the set of fixed points of loxodromic elements of G is dense in its limit set. This
implies that L is invariant with respect to G. Therefore, G is an R-subgroup of
PU.2; 1/.

As an immediate corollary we get the following theorem.

Theorem 2.4. Let G be a discrete non-elementary subgroup of PU.2; 1/ such that the
invariant trace field k.G/ of G is real. Then G is either R-Fuchsian or C-Fuchsian.

Proof. If G is irreducible, then it follows from Theorem 2.3 that G is R-Fuchsian.
Now let us assume that G is reducible. Let p be a common fixed point of all elements
of G in their action on the projective space P .V /. Since G is non-elementary, we
have that p cannot be in H 2

C [ @H 2
C . So, p is positive. This implies that G leaves

invariant the complex geodesic whose polar point is p. Therefore, the group G is
C-Fuchsian.

We remark that Theorem 2.4 can be considered as a complex hyperbolic analog
of a classical result due to B.Maskit, see Theorem G.18 in [22] and Corollary 3.2.5
in [21].

We say that g 2 PU.2; 1/ is a screw motion iff any lift of g to SU.2; 1/ has
non-real trace. For instance, purely hyperbolic and unipotent parabolic elements are
not screw motions. Geometrically, g 2 PU.2; 1/ is not screw motion iff g has an
invariant totally real geodesic 2-plane.
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Corollary 2.3. Let G be an irreducible discrete subgroup of PU.2; 1/. Then G is an
R-subgroup if and only if G contains no screw motions.

Corollary 2.4. Let G be an irreducible discrete subgroup of PU.2; 1/ whose limit
set is not contained in an R-circle. Then its invariant trace field is non-real extension
of Q.

Corollary 2.5. Let G be a discrete subgroup of PU.2; 1/ of finite co-volume. Then
its invariant trace field is non-real extension of Q.

Proof. It is clear that G is irreducible. Suppose that the invariant trace field k.G/ of
G is real. By Theorem 2.3, G is an R-subgroup of PU.2; 1/. Therefore, the limit set
of G is contained in an R-circle. This implies that G cannot have finite co-volume.
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