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1. Introduction

Bredon cohomology with respect to the family of finite subgroups can be intuitively
understood as the cohomology theory obtained by considering proper (i.e., with finite
stabilizers) actions instead of free actions of groups. In this paper we introduce
†-theory for the class of Bredon modules similar to the classical Bieri–Strebel–
Neumann–Renz theory developed since 1980s. In the classical case modules A over
the group algebra ZG are considered and by definition a class Œ�� of a non-trivial
character � W G ! R is in †m.G; A/ if A is of type FPm over ZG�, where G�

is the monoid fg 2 G j �.g/ � 0g. An early version of †1.G; Z/ was used as
an important tool in the classification of all finitely presented metabelian groups by
Bieri and Strebel [7]. The importance of the invariant †m.G; Z/ lies in the fact that
it classifies which subgroups of G above the commutator are of type FPm [5]. One of
our main results, Theorem D below, is that the analogous statement holds for Bredon
cohomology for the newly defined Bredon †-invariants.

Finiteness cohomological conditions in Bredon cohomology play the same role
when studying proper classifying spaces that ordinary finiteness cohomological prop-
erties for ordinary classifying spaces. Recall that for a group G a G-CW complex
X is a model for EG, the proper classifying space, if XH is contractible whenever
H � G is finite and empty otherwise.

Then, if there is a model for EG with cocompact 2-skeleton and G is of type Bredon
FPn, also denoted by FPn (see Section 2 for a definition), one can show that there
exists a model for EG with finite n-skeleton. This follows using the n-dimensional
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version of [16], Theorem 4.2, which in turn can be proven truncating at dimension n

the inductive procedure used there. In this paper we create a Bredon version of the
homological †-invariants and hope that in future the question of homotopic Bredon
†-invariants can be addressed.

We first develop general Bredon theory for modules over cancelation monoids and
later concentrate on monoids G�, where G is a group and � a non-zero real character
of G. The main obstacle to develop a general †-theory is that the sets ŒM=K; M=H�

(see Section 2 for notation), where K and H are finite subgroups of the cancelation
monoid M , are not always finitely generated over the Weyl monoid WM K and to
avoid this problem we consider special monoids M , namely cancelation monoids
that conjugate finite subgroups. For these monoids we describe the Bredon type FPn

in the following result (see Corollary 2.13).

Theorem A. A cancelation monoid M which conjugates finite subgroups is of type
FPn if and only if there are finitely many finite subgroups H1; : : : ; Hs such that for
each finite subgroup K of M there is an element m 2 M such that Km � mHi for
some i D 1; : : : ; s and WM K is of type FPn.

In Section 6 we define the new invariant †m.G; A/ for an OF G-module A and
study it in detail for the trivial module Z. The following result (see Theorem 6.6)
classifies the elements of the new invariant in terms of the classical †-invariant.

Theorem B. Suppose that G is a finitely generated group and has finitely many
conjugacy classes of finite subgroups. Then Œ�� 2 †m.G; Z/ if and only if there is a
subgroup zG of finite index in G that contains the commutator subgroup G0 and such
that for every finite subgroup K of G we have K � zG and

1. N zG.K/.Ker.�/ \ zG/ D zG;

2. �.NG.K// 6D 0 and Œ�jNG.K/� 2 †m.NG.K/; Z/.

Furthermore condition 2 can be substituted by condition

2b. �.CG.K// 6D 0 and Œ�jCG.K/� 2 †m.CG.K/; Z/.

By one of the main results in [5] the classical †-invariant is always an open subset
of the character sphere S.G/. In the Bredon case the situation is slightly different
and we have the following result (see Theorem 6.11).

Theorem C. Suppose that †m.G; Z/ 6D ¿. Then †m.G; Z/ is open in S.G/ if and
only if NG.K/G0 has finite index in G for every finite subgroup K.

In Theorem B of [5] it was shown that for a group G of homological type FPm

and a subgroup H of G that contains the commutator of G we have that H is of type
FPm if and only if S.G; H/ D fŒ�� j �.H/ D 0g � †m.G; Z/. We establish the
following Bredon version of Theorem B of [5] (see Theorem 6.8).
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Theorem D. Let H be a subgroup of G that contains the commutator and G=H is
torsion-free and non-trivial. Then Z is Bredon FPm as OF H -module if and only if
S.G; H/ � †m.G; Z/.

Finally in the last two sections of the paper we consider the case of virtually
soluble groups of type FP1 or finite extension of the Thompson group F . In both
cases the groups are known to be of type Bredon FP1 [11], [17]. The proofs of
both cases of Theorem E (see Theorem 8.8 and Theorem 7.5) use Theorem B and the
techniques developed to prove that G is of type Bredon FP1 in [11], [17].

Theorem E. If G is virtually soluble of type FP1 or is a finite extension of the
Thompson group F then †1.G; Z/ D †1.G; Z/.
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2. Some Bredon cohomology for monoids

Let M be a monoid. We say that M is of type FPn if the trivial left module Z is of
type FPn over the monoid ring ZM . If not otherwise stated the modules considered
in the paper are left ones. Observe that for a monoid M defining type FPn using
the right trivial ZM -module Z might yield different result. Even for the monoid
M D G� D fg 2 G j �.g/ � 0g that comes from a non-zero real character
� W G ! R, where G is a finitely generated group, we might have that the trivial left
ZM -module Z is FPm but the trivial right ZM -module Z is not FPm. For example
if we consider the Bieri–Strebel–Neumann–Renz invariant †m.G; Z/ defined for
left ZG-modules Z it suffices that Œ�� 2 †m.G; Z/ but Œ��� 62 †m.G; Z/. This
is a consequence of the fact that if Z were FPm as a right M -module, then via
g 7! g�1 one could show that Z would be FPm as a left G��-module, contradicting
that Œ��� 62 †m.G; Z/ . As shown in [10] even the notion of finite cohomological
dimension for a monoid depends on the choice of left or right modules.

Definition 2.1. We say that a monoid M is a left (resp. right) cancelation monoid if
for any m; m1; m2 2 M such that mm1 D mm2 (resp. such that m1m D m2m) we
have m1 D m2. And we say that M is a cancelation monoid if it is both left and right
cancelation monoid.
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From now on until the end of this section we assume that M is a cancelation
monoid unless otherwise stated. We say that a (left) M -set � is transitive if it is
generated by a single ! 2 �, i.e., if � D M!. We say that an M -set � is restricted
if it is a disjoint union of transitive M -sets, i.e.,

� D PS
�2ƒ��

where ƒ is a set and each �� is transitive.
If ƒ is finite, we say that � is M -finite. And if the stabilizer in M of any

generator of each �� is a finite submonoid, then we say that � is proper. Note that
since M is a cancelation monoid any finite submonoid is a subgroup. For example,
for the monoid M D fxn j n � 0g the M -set fxn j n 2 Zg with left M -action
given by multiplication is not restricted. Neither is the finitely generated M -set
X WD M P[ M= �, where � consists of identifying the two copies of xi whenever
i � i0 for a fixed i0 > 0.

We define the orbit category OF M to be the category with objects the transitive
proper M -sets. We denote the objects of OF M by M=K, where K is a finite sub-
group of M . Here M=K D fmK j m 2 M g. Morphisms in OF M are M -maps
� W M=K ! M=H and are uniquely determined by �.K/ D mH . For this to be well
defined we need Km � mH . The set of morphisms mor.M=K; M=H/ is denoted
by

ŒM=K; M=H� D fmH j Km � mH g:
In the particular case when K D H we set

WM K WD ŒM=K; M=K�:

Note that since M is a cancelation monoid the sets mK and Km have the same
cardinality as K, hence WM K D fmK j mK D Kmg and WM K is a cancelation
monoid which we call the Weyl monoid for K in analogy with Weyl groups.

As in the group case, we may define a Bredon module, or OF M -module V.�/,
as a contravariant functor from OF M to the category of abelian groups. The Bredon
modules form an abelian category so we have (co)products and (co)limits, exact
sequences etc. are defined analogously.

By definition a free Bredon module is one of the form ZŒ�; ��, where � is a
restricted proper M -set. We say that a morphism in the category of Bredon modules
V.�/ ! W.�/ is an epimorphism if for every M=K 2 OF M we have that the map
V.M=K/ ! W.M=K/ is surjective. It is easy to see that every Bredon module is an
epimorphic image of a free Bredon module. Following the same procedure as in the
group case, see [20], one can show that the category of OF M -modules has enough
projectives and then define cohomology and homology.

Observe also that for any OF M -module V and any finite subgroup K � M , the
functor V.�/ yields a structure of WM K-module in V.M=K/. In the particular case
when V.�/ D ZŒ�; M=H� this action is given by xKmH D xmH for xK 2 WM K,
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m 2 M (for example, if M has no finite subgroups, then a OF M -module is just an
M -module). But note that the condition that � is restricted in the definition of a free
Bredon module is necessary, for example consider again the monoid M D fxn j n �
0g and � D fxn j n 2 Zg. Then the OF M -module ZŒ�; �� is just the M -module
Z� which can not be projective (an easy way to see it is to observe that for any
a 2 Z�, there is some b 2 Z� with xb D a, something that can not happen in any
submodule of a free M -module).

By definition an OF M -set † is a collection of sets †K , one for each finite
subgroup K � M . We say that † is OF M -finite if †K is finite for each K and empty
for all but finitely many subgroups K. As for groups ([15], Section 9), an OF M -
module U is finitely generated if there is an OF M -finite OF M -set † such that for
each finite subgroup K, †K � U.M=K/ and there is no proper submodule V.�/ of
U.�/ with †K � V.M=K/ for any finite subgroup K. If we put �K D M=K � †K

seen as M -set with trivial action on the right hand factor and � WD PSf�K j K �
M finite subgroupg, then there is a surjection � W ZŒ�; �� � U.�/. And conversely,
if there is such a surjection � for some restricted M -finite proper M -set �, then U.�/

is finitely generated.
The finiteness conditions FPn, FP1 and FP for OF M -modules are defined

as usual and we say a cancelation monoid M satisfies any of the above finiteness
conditions if the trivial OF M -module Z does, where Z is the OF M -module with
Z.M=K/ D Z for any K finite and with all the maps equal to the identity.

In particular if M D G is a group this defines the finiteness conditions FPn,
FP1 and FP for OF G-modules, also called Bredon finiteness conditions. Our main
objective in the rest of this section is to generalize to monoids (under reasonable extra
hypotheses) the following well-known characterization

Lemma 2.2 ([16], Lemma 3.2 in [13]). A group G is of type FPn if and only if it
has finitely many conjugacy classes of finite subgroups and moreover for each finite
subgroup K, the Weyl group WGK D NG.K/=K is of type FPn.

We begin with the case n D 0.

Lemma 2.3. A cancelation monoid M is of type FP0 if and only if there are finitely
many finite subgroups H1; : : : ; Hn of M such that for each finite subgroup K of M

there is an element m 2 M such that Km � mHi for some i D 1; : : : ; n.

Proof. Note that M is of type FP0 if and only if there is a restricted M -finite proper
M -set � D Sn

iD1 M=Hi � �Hi
(i.e., every �Hi

is finite) such that ZŒ�; �� surjects
onto Z.�/. This means that for any finite subgroup K, ZŒM=K; �� ¤ 0 thus there
is an m 2 M such that Km � mHi for some i .

Definition 2.4. Let M be a monoid. We say that M conjugates finite subgroups if
for any H1; H2 � M finite such that H1g D gH2 for some g 2 M , there exists
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an h 2 M invertible with H h
1 D H2, where H h

1 D h�1H1h. We say that M has
finitely many conjugacy classes of finite subgroups if there is a finite family of finite
subgroups fK1; : : : ; Ksg such that for any finite subgroup L � M there is some i

and some invertible t 2 M such that L D t�1Ki t .

Proposition 2.5. Let M be a cancelation monoid of type FP0 that satisfies the fol-
lowing two conditions:

i) For any finite subgroups K; L of M the WM K-module ZŒM=K; M=L� is of
type FP1.

ii) M has finitely many conjugacy classes of finite subgroups.

Then a OF M -module V is of type FPn if and only if for each finite subgroup K of
M , V.M=K/ is a module of type FPn over WM K.

Proof. If V is of type FPn, then there is a projective resolution P�.�/ � V.�/ such
that Pi .�/ is finitely generated for all i � n. We may assume that for i � n the Pi .�/

are finitely generated free, hence of the form ZŒ�; �i � with �i a restricted proper M -
finite M -set. Thus ZŒ�; �i � D ˚k

j D1ZŒ�; M=Lj � for some finite subgroups Lj (here
we allow repetitions). Note that for any finite subgroup K, P�.M=K/ � V.M=K/

is an exact sequence of modules. Since each Pi .M=K/ is of type FP1 as WM K-
module for i � n this yields the result by dimension shifting ([1], Proposition 1.4).
Assume now that V is an OF M -module such that each V.M=K/ is finitely generated
as WM K-module. Choose a set � of representatives of each conjugacy class of finite
subgroups, so � is finite. For each K 2 �, let †K be a finite generating system
of V.M=K/ as WM K-module. Then the OF M -set † which corresponds to †K

whenever K 2 � and is empty otherwise is OF M -finite and generates V as OF M -
module. As a consequence, there is a finitely generated free OF M -module P and an
epimorphism P � V . This proves the case n D 0 of the “if” part. For the general
case, argue by induction, exactly as in [13], Lemma 3.1. Explicitly, assume that the
result holds for n � 1 and consider the n-th kernel Un of a projective resolution of
V as OF M -module formed, up to degree n � 1, by finitely generated free Bredon
modules. Then the fact that evaluating a finitely generated free module at each M=K

yields a WM K-module of type FP1 and the hypothesis that V.M=K/ is FPn imply
that each Un.M=K/ is finitely generated and the preceding paragraph yields that Un

is finitely generated, hence V is also FPn.

Lemma 2.6. Let M be a cancelation monoid and � be a restricted M -finite proper
M -set. Then the permutation M -module Z� is of type FP1.

Proof. Note that it suffices to consider the case when � is M -transitive, i.e., we
may assume that � D M=K for some finite subgroup K of M . Then the assertion
is obvious as Z is of type FP1 as ZK-module and the induction functor from K-
modules to M -modules is exact and takes finitely generated projectives to finitely
generated projectives.
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Lemma 2.7. Let H; K � M be finite subgroups of the cancelation monoid M . There
are subgroups K1; : : : ; Ks � H such that there is a decomposition as WM K-set

ŒM=K; M=H� D Ss
iD1 �i where �i WD fmH j Km D mKig: (1)

Furthermore any two sets �i and �j are either disjoint or equal. In particular if we
take a decomposition where s is minimal, the union in (1) is disjoint.

Proof. Fix mH 2 ŒM=K; M=H� and let

xK WD fh 2 H j mh 2 Kmg:
Given h1; h2 2 xK, there are some k1; k2 2 K such that mh1 D k1m and mh2 D k2m.
Then mh1h2 D k1mh2 D k1k2m thus xK is a subgroup of H . Obviously, m xK � Km

and conversely, as Km � mH one gets Km � m xK, hence Km D m xK. As for xK 2
WM K, xm xK D xKm D Kxm, the monoid WM K acts on fmH j Km D m xKg.
Since H is finite, there are finitely many subgroups xK that can be obtained in this
form so the first assertion follows.

Suppose fmH j Km D mKig \ fmH j Km D mKj g 6D ¿ for some i 6D j , so
there are a1; a2 2 M such that a1H D a2H , Ka1 D a1Ki and Ka2 D a2Kj . Then
a1 D a2h for some h 2 H and hence Ka2h D Ka1 D a1Ki D a2hKi , so

a2Kj D Ka2 D a2Kh�1

i :

Since M is a cancelation monoid Kj D Kh�1

i , so fmH j Km D mKj g D fmH j
Kmh D mhKig D fm0H j Km0 D m0Kig.

Definition 2.8. We say that a monoid M has the left linear property if for every
m1; m2 2 M at least one of the linear equations xm1 D m2 and xm2 D m1 has a
solution in M .

Lemma 2.9. Assume that M is a cancelation monoid with the left linear property.
Let �i be one of the disjoint sets from Lemma 2.7 and assume that �i is finitely
generated over WM K. Then �i is WM K-transitive.

Proof. Let m1H; m2H 2 �i . Since M has the left linear property there is f 2 M

such that f m1 D m2 or f m2 D m1. Assume m1 D f m2. Then Kf m2 D Km1 D
m1Ki D f m2Ki D fKm2. Since M is a cancelation monoid we deduce that
Kf D fK, so fK 2 WM K. Hence m1H 2 WM K.m2H/.

Finally if m1H; : : : ; mkH is a generating set of �i over WM K then the previ-
ous paragraph implies that �i is transitive and reordering we may assume �i D
WM K.mkH/.

Lemma 2.10. Assume that M is a cancelation monoid and that for some fixed finite
subgroups K; H of M each of the WM K-sets �i of Lemma 2.7 is WM K-transitive.
Then the WM K-module ZŒM=K; M=H� is of type FP1.
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Proof. The hypothesis implies that the WM K-set ŒM=K; M=H� is WM K-finite and
restricted. By Lemma 2.6, we only have to check that it is also proper.

Set Li D fxK 2 WM K j xmiH D miH g, where �i D WM K.miH/. The fact
that M is a cancelation monoid implies that for f1; f2 2 miH the linear equation
xf1 D f2 has at most one solution in M , thus Li is finite. Since it has the left
cancelation property, it is a subgroup.

Lemma 2.11. Assume that M is a type FP0 cancelation monoid that conjugates
finite subgroups. Then M has finitely many conjugacy classes of finite subgroups.

Proof. By Lemma 2.3 there are finitely many finite subgroups H1; : : : ; Hs such that
for each finite subgroup K of M we have Km � mHi for some m 2 M and some
i D 1; : : : ; s. Then following the first part of the proof of Lemma 2.7 we see that
Km D m xK, where xK is a finite subgroup of Hi . Then since M conjugates finite
subgroups there is an invertible t 2 M such that Kt D xK � Hi .

Corollary 2.12. Let M be a type FP0 cancelation monoid that conjugates finite
subgroups. Then a OF M -module V is of type FPn if and only if for each finite
subgroup K of M , V.M=K/ is a module of type FPn over WM K.

Proof. By Proposition 2.5, Lemma 2.10 and Lemma 2.11, it suffices to show that
for any finite subgroups K; H of M each of the WM K-sets �i of Lemma 2.7 is
transitive. To see it, note that since M conjugates finite subgroups for each Ki

with Km D mKi , we must have Ki D Kmi for some mi 2 M invertible. Then
fmH j Km D mKig D WKM.miH/.

Corollary 2.13. A cancelation monoid M which conjugates finite subgroups is of
type FPn if and only if there are finitely many finite subgroups H1; : : : ; Hs such that
for each finite subgroup K of M there is an element m 2 M such that Km � mHi

for some i D 1; : : : ; s and the monoid WM K is of type FPn.

Proof. It follows from Lemma 2.3 and Corollary 2.12 applied for V D Z.

3. The case of monoids obtained from characters

Let G be a group and � W G ! R be a non-zero homomorphism. Consider the monoid

G� D fg 2 G j �.g/ � 0g:
Note that every finite subgroup of G is contained in G�. Recall that

if G� is of type FPm then G is of type FPm : (2)

From now on fix the monoid M D G�. Note that WM K D .WGK/� D NG.K/�=K.
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Lemma 3.1. Let � W G ! R be a non-zero character. Then G� is a cancelation
monoid with the left linear property.

Proof. Let f1; f2 2 G�. Then either f �1
1 f2 2 G� or f �1

2 f1 2 G�, so G� has the
left linear property. Since G� is embeddable in a group it is a cancelation monoid.

Remark 3.2. As a consequence of this and of Lemma 2.9, we get that if � W G ! R
is a non-zero character and H; K are finite subgroups of G, then ŒG�=K; G�=H� is
finitely generated as WG�

K-set if and only if each of the sets �i in Lemma 2.7 is
WG�

K-transitive.

Lemma 3.3. Let � W G ! R be a non-zero character. Then G� conjugates finite
subgroups if and only if G� � NG.K/ Ker.�/ for any finite subgroup K of G. This
is equivalent to G D NG.K/ Ker.�/.

Proof. Assume first that G� conjugates finite subgroups and consider a finite subgroup
K of G. Then, for any m 2 G� if we put K1 WD Km � G, we have mK1 D Km thus
K1 D Kt for some t 2 G� invertible, in particular t 2 Ker.�/. Since mt�1 2 NG.K/

we get m 2 NG.K/t � NG.K/ Ker.�/, so G� � NG.K/ Ker.�/.
Conversely, assume G� � NG.K/ Ker.�/ and let K; K1 � G� be finite sub-

groups such that mK1 D Km for m 2 G�. Put m D st with s 2 NG.K/ and
t 2 Ker.�/, then t 2 G� is invertible and Kt D Km D K1.

In addition note that G D G� [ G�1
� and NG.K/ Ker.�/ is a subgroup of G, so

if G� � NG.K/ Ker.�/ we get G D NG.K/ Ker.�/.

Lemma 3.4. Let � W G ! R be a non-zero character, zG � G a subgroup and N

a normal subgroup of G with N � Ker.�/ \ zG. Assume that zG� � NG.K/N for
every finite subgroup K of zG. Then zG� conjugates finite subgroups.

Proof. As

zG� � NG.K/N \ zG � N zG.K/N � N zG.K/.Ker.�/ \ zG/

it suffices to use Lemma 3.3.

Lemma3.5. LetM DG�. Then for allfinite subgroupsK andH ofM , ŒM=K; M=H�

is finitely generated as WM K-set if and only if for every finite K � M one of the
following conditions holds:

(i) �.NG.K// D 0, i.e., NG.K/ � Ker.�/;

(ii) �.NG.K// ' Z, i.e., NG.K/ Ker.�/= Ker.�/ has torsion-free rank 1;

(iii) �.NG.K// D �.G/, i.e., NG.K/ Ker.�/ D G.
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Proof. Let K1; : : : ; Ks be the subgroups in the decomposition of Lemma 2.7. Note
that these are precisely the subgroups of H which are conjugated to K by an element
lying in M . Choose for each of them some mi 2 M with Kmi D Ki . Then
ŒM=K; M=H� D S

1�i�sfmH j Km D Kmi g. Thus the set ŒM=K; M=H� is finitely
generated over WM K if and only if for every 1 � i � s the set .NG.K/mi / \ M

is finitely generated over NM .K/ D NG.K/ \ M via left multiplication. This
is equivalent to inff�.gmi / j g 2 NG.K/; gmi 2 G�g being attained which is
equivalent to inff�.g/ j g 2 NG.K/; �.g/ � ��.mi /g being attained. Note that this
is the case if one of the conditions (i), (ii) or (iii) holds.

Let m0 2 G�. Suppose that ŒM=K; M=H� is finitely generated as WM K-set for
H D Km0 and that neither of the conditions (i) and (ii) hold. Then the restriction
of � on NG.K/ is a non-discrete non-zero real character, hence �.NG.K// is a
dense subset of R. Then ŒM=K; M=H� D fmH j Km � mH D mKm0g D
fmH j Km � Km0g D fmH j Km D Km0g, i.e., s D 1 and m1 D m0 and
the above infimum is attained if and only if ��.m0/ 2 �.NG.K//, i.e., �.G��/ �
�.NG.K//. Since NG.K/ is a group this is equivalent to �.G/ D �.NG.K//, i.e.,
G D NG.K/ Ker.�/.

Corollary 3.6. Let N be the subgroup of G that contains the commutator G0 and
such that N=G0 is the torsion part of G=G0. Then the assumptions of Lemma 3.5 hold
for every non-zero character � W G ! R if for every finite subgroup K of G one of
the following conditions holds:

(i) NG.K/ � N ;

(ii) NG.K/N=N ' Z;

(iii) NG.K/N D G.

Remark 3.7. For different K we may need different conditions from the list above.

Proof. Take a character �0 W G ! R with Ker.�0/ D N . Then if Lemma 3.5 holds
for any character � it holds for � D �0 and we are done.

For the converse let � W G ! R be an arbitrary non-zero character. Suppose
NG.K/ � N . Then NG.K/ � N � Ker.�/. If NG.K/N=N ' Z then since
�.N / D 0 we get that �.NG.K// is cyclic, i.e., is either zero or �.NG.K// ' Z.
Finally if NG.K/N D G, applying � we get �.NG.K// D �.G/.

Lemma 3.8. Let M D G�. Then M has finitely many conjugacy classes of finite
subgroups if and only if the following two conditions hold.

(i) NG.K/ Ker.�/ has finite index in G for every finite subgroup K;

(ii) G has finitely many conjugacy classes of finite subgroups.

Proof. Suppose first that M has finitely many conjugacy classes of finite subgroups
(see Definition 2.4). Then since any finite subgroup of G lies in M (ii) follows
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immediately. Let K1; : : : ; Kr be representatives of the conjugacy classes of finite
subgroups in G. Then for each i , the G-orbit (via right conjugation) generated
by Ki is finitely generated over the subgroup of invertible elements of G�, i.e.,
Ker.�/. This is equivalent to the existence of a finite set mi;1; : : : ; mi;ji

such that
G D S

1�j �ji
NG.Ki / Ker.�/mj . The last is equivalent to NG.K/ Ker.�/ having

finite index in G.
The converse follows by repeating the above argument backwards.

4. Some general facts about finite index extensions

Assume a group T acts by conjugation on a finitely generated group G. This induces
a right action of T on Hom.G; R/ given by

�t .g/ WD �.gt�1

/:

Moreover, this actions leaves †n.G; Z/ setwise fixed for any n.

Lemma 4.1. Let G be a finitely generated group with a finite index subgroup H .
Then:

i) For �1; �2 2 Hom.G; R/, �1 D �2 if and only if �1jH D �2 jH .

ii) If G D K Ë H for some (finite) K, the characters of H that can be extended
to G are precisely those in the fixed points Hom.H; R/G .

Proof. For i), note that for any g 2 G, there is some n > 0 with gn 2 H . Then, if
�1jH D �2jH ,

n�1.g/ D �1.gn/ D �2.gn/ D n�2.g/:

And for ii) observe that K � Ker.�/ for any character � W G ! R thus �jH 2
Hom.H; R/G . Conversely, let � 2 Hom.H; R/G and define � W G ! R by �.kh/ WD
�.h/ for k 2 K; h 2 H . This is a well defined character of G that extends �.

5. Examples

We will see later on that property (i) from Lemma 3.8, i.e.,

jG W NG.K/ Ker.�/j < 1 for any character � W G ! R, for any finite K � G;

(3)
holds for all virtually soluble groups of type FP1 and finite extensions of the Thomp-
son group F (see Theorem 7.6 and Theorem 8.8). Note that this is equivalent to
jG W NG.K/ŒG; G�j < 1. We will discuss these examples in more details in the last
two sections of the paper.
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Example 5.1. Using right angledArtin groups, it is not difficult to construct groups for
which condition (3) does not hold true. Let K D C2 and L be the simplicial complex
having four vertices labeled 1,2,3 and 4 and edges joining the vertices labeled f1; 4g;
f2; 4g and f3; 4g. Let AL be the associated right angled Artin group, i.e., the group
with presentation

hg1; g2; g3; g4 j Œg1; g4�; Œg2; g4�; Œg3; g4�i;
and consider the action of K on L given by swapping the vertices labeled 1 and 2. This
yields and action of K on AL and we may form the semidirect product G D K Ë AL.
Let LK denote the fixed point subcomplex, i.e., the subcomplex of L consisting of
the vertices 3, 4 with an edge joining them. Then using Theorem 2 in [14] (due to
Crisp) we get NG.K/=K Š CAL

.K/ D ALK D hg3; g4 j Œg3; g4�i.
Now, consider the character � W G ! R such that �.g1/ D 1 D �.g2/, �.g3/ D

˛, �.g4/ D ˇ so that h1; ˛; ˇi is a rank-3 subgroup of .R; C/. Then

�.NG.K/ Ker.�// D �.NG.K// D h˛; ˇi
and �.G/ D h1; ˛; ˇi, so jG W NG.K/ Ker �j is not finite.

Example 5.2. Finally we consider an example where (3) holds but for some character
� we have G 6D NG.K/ Ker.�/.s This is equivalent to �.G/ 6D �.NG.K//.

Consider G D K Ë hb0; b1; b2; b3i with K D C2 generated by t swapping b0; b1

and b2; b3, where hb0; b1; b2; b3i ' Z4. Let a0 D b0b1, a1 D b2b3, a2 D b0b�1
1 ,

a3 D b2b�1
3 and note that a2; a3 2 G0. Then NG.K/ D CG.K/ D K � ha0; a1i,

hence

�.NG.K// D h�.a0/ D 2�.b0/; �.a1/ D 2�.b2/i 6D h�.b0/; �.b2/i D �.G/:

6. Bredon Sigma theory

Let
S.G/ WD Hom.G; R/ X f0g= �

where � is the equivalence relation given by �1 � �2 if �1 2 R>0�2. Write Œ�� for
the equivalence class of �.

Definition 6.1. Let A be an OF G-module and Œ�� 2 S.G/. Then we say that
Œ�� 2 †m.G; A/ if there is a subgroup zG of finite index in G that contains all finite
subgroups of G, G0 � zG, M D zG� conjugates finite subgroups and A is FPm as
OF M -module. Observe that in this definition zG might depend on �.

Theorem 6.2. Let G be a finitely generated group. Then Œ�� 2 †m.G; Z/ if and only
if there is a subgroup zG of finite index in G with G0 � zG and a family fH1; : : : ; Hsg
of finite subgroups of zG such that for any finite subgroup K of G we have K � zG
and the following three conditions hold:
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1. N zG.K/.Ker.�/ \ zG/ D zG;

2. �.NG.K// 6D 0 and Œ�jNG.K/� 2 †m.NG.K/; Z/;

3. there is an element m 2 zG� such that Km � mHi for some i D 1; : : : ; s.

Remark 6.3. Since CG.K/ has finite index in NG.K/ and by Theorem 9.3 of [19]
(see Theorem 8.2) condition 2 is equivalent to condition

2b. �.CG.K// 6D 0 and Œ�jCG.K/� 2 †m.CG.K/; Z/.

Proof. Note that by Lemma 3.3 condition 1 is equivalent to M D zG� conjugates finite
subgroups. By Lemma 2.3 condition 3 is equivalent to Z is FP0 as OF M -module.

By Corollary 2.13 Z is FPm as OF M -module if and only if condition 3 holds
and Z is FPm as left ZWM K-module for every finite subgroup K. This is equivalent
to

Z is of type FPm as left ZNM .K/-module: (4)

Note that NM .K/ D N zG.K/ \ G�. By condition 1 we have that the restriction of �

on N zG.K/ is non-zero, hence (4) is equivalent to

Œ�jN zG
.K/� 2 †m.N zG.K/; Z/: (5)

Since N zG.K/ has finite index in NG.K/ by Theorem 9.3 of [19], (5) is equivalent to
Œ�� 2 †m.NG.K/; Z/.

Lemma 6.4. Let G be a finitely generated group. If †m.G; Z/ 6D ¿ then Z is Bredon
FPm.

Proof. By Lemma 2.2 we have to show that there are finitely many G-orbits under
conjugation of finite subgroups in G and NG.K/ is of type FPm for every finite
subgroup K of G. Let Œ�� 2 †m.G; Z/. Then condition 3 from Theorem 6.2 shows
that any finite subgroup of G is inside H

g
i for some g 2 G�� and 1 � i � s, hence

there are finitely many G-orbits of finite subgroups in G.
If NG.K/� is of type FPm then NG.K/ is of type FPm. Hence Z is Bredon FPm.

Remark 6.5. Let G be a finitely generated group. Then †m.G; Z/ � †m.G; Z/.
To see it, observe that we may assume †m.G; Z/ ¤ ¿ and it suffices to consider the
case when K is the trivial group in part 2 from Theorem 6.2.

Theorem 6.6. Suppose that G is a finitely generated group and has finitely many
conjugacy classes of finite subgroups. Then Œ�� 2 †m.G; Z/ if and only if there is a
subgroup zG of finite index in G that contains the commutator subgroup G0 such that
for every finite subgroup K of G we have K � zG and

1. N zG.K/.Ker.�/ \ zG/ D zG;
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2. �.NG.K// 6D 0 and Œ�jNG.K/� 2 †m.NG.K/; Z/.

Remark 6.7. As before condition 2 can be substituted by condition 2b from Re-
mark 6.3. By Lemma 6.4 if †m.G; Z/ 6D ¿ then G has finitely many conjugacy
classes of finite subgroups.

Proof. Assume that there is zG such that conditions 1 and 2 hold. Since G has finitely
many conjugacy classes of finite subgroups, the same holds for zG. Let H1; : : : ; Hs

be representatives of the finitely many conjugacy classes of finite subgroups in zG.
We claim that condition 1 from Theorem 6.2 implies condition 3 from Theorem 6.2.
Indeed condition 3 is equivalent to every finite subgroup K of G being a subgroup
of H

g
i for some g 2 zG�� and 1 � i � s. Note that K � H t

i for some t 2 zG D
N zG.Hi /.Ker.�/ \ zG/, so t D xy, x 2 N zG.Hi /, y 2 Ker.�/ \ zG � zG�� and hence
H t

i D H
xy
i D H

y
i .

The following is a Bredon version of [5], Theorem B. Recall that S.G; H/ consists
of the classes of all those characters vanishing on H .

Theorem 6.8. Let H be a subgroup of a finitely generated group G that contains the
commutator subgroup G0 and such that G=H is torsion-free and non-trivial. Assume
that Z is Bredon FPm as OF G-module. Then Z is Bredon FPm as OF H -module if
and only if S.G; H/ � †m.G; Z/.

Proof. 1. Suppose that Z is Bredon FPm as OF H -module. Then by Lemma 2.2

a1. there are finitely many conjugacy classes of finite subgroups in H ;

b1. for any finite subgroup K of H the group NH .K/ is of type FPm.

Since G, H are FPm there are finitely many conjugacy classes of finite subgroups
in both G; H and every G-orbit (of finite groups under conjugation) splits into finitely
many H -orbits, hence for every finite subgroup K of G

NG.K/H has finite index in G: (6)

Define
zG D \NG.K/H; (7)

where the intersection is over representatives of the G-orbits of conjugacy classes
of finite subgroups in G. Thus the intersection is finite, zG has finite index in G

and contains H , hence zG contains all the finite subgroups of G and the commutator
subgroup G0.

Let Œ�� 2 S.G; H/, i.e. H � Ker.�/. By Lemma 3.4 applied for N D H , zG�

conjugates finite subgroups. Then condition 1 from Theorem 6.6 holds and zG is
global, i.e., zG does not depend on �.

Note that NH .K/ D NG.K/ \ H , so NG.K/=NH .K/ is abelian. By condition
b1 and [5], Theorem B, we have that every non-zero real character Q� W NG.K/ ! R
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such that Q�.NH .K// D 0 represents an element of †m.NG.K/; Z/. In particular this
holds for Q� the restriction of � to NG.K/, hence condition 2 from Theorem 6.6 holds.
Note that since �.H/ D 0 and ŒG W NG.K/H� < 1 we have �.NG.K// 6D 0. Then
by Theorem 6.6 Œ�� 2 †m.G; Z/

2. Conversely suppose that

S.G; H/ � †m.G; Z/:

Then by Theorem 6.2 for every Œ�� 2 S.G; H/:
a2. there is a subgroup zG of finite index in G that contains the commutator G0

and contains every finite subgroup K of G and N zG.K/.Ker.�/ \ zG/ D zG;
b2. for any finite subgroup K of G we have �.NG.K// 6D 0 and Œ�jNG.K/� 2

†m.NG.K/; Z/. In particular NG.K/ is of type FPm.
Since †m.G; Z/ 6D ¿, by Lemma 6.4 G has finitely many conjugacy classes of

finite subgroups. By a2, NG.K/ Ker.�/ has finite index in G, hence every G-orbit
of finite subgroups (i.e., fKggg2G) splits into finitely many Ker.�/-orbits. Choose
� such that H D Ker.�/. Then every G-orbit of finite subgroups splits into finitely
many H -orbits, so H has finitely many conjugacy classes of finite subgroups, i.e.,
condition a1 holds.

It remains to show that condition b1 holds. Fix one finite subgroup K of G. By b2
NG.K/ is of type FPm. Recall that NG.K/=NH .K/ is abelian. Let 	 W NG.K/ ! R
be a non-zero real character such that 	.NH .K// D 0. Then 	 can be extended to a
real character 	1 of NG.K/H that is zero on H . Since G0 � H we see that 	1 is
extendable to a real character � of G. Thus by condition b2, NG.K/� D NG.K/� is
of type FPm. Then by the original Bieri–Renz criterion ([5], Theorem B) NH .K/ is
of type FPm.

Example 6.9. Let G be a polycyclic group. Then Z is Bredon FP1 as OF G-module.
Let H be the subgroup of G that contains the commutator and such that H=G0 is the
torsion part of G=G0. Since H is polycyclic, Z is Bredon FP1 as OF H -module. So
by the previous theorem

†m.G; Z/ D S.G; H/ D S.G/:

Example 6.10. Leary–Nucinkis have constructed an example of a group which is
of ordinary type FP1 but not Bredon FP1 (see [14]). Their example is obtained
as a finite index extension of a Bestvina–Brady group BL, where L is certain flag
complex on which the alternating group of degree 5, K D A5 acts. Consider the
associated right angled Artin group AL, then K also acts on L and we may form
G D K Ë AL. The map � W AL ! Z which sends all the generators in the standard
right-angled Artin presentation of AL to the identity is a (discrete) character of G

which by Lemma 4.1 can be lifted to a character �0 of G, then Ker.�/ D BL

and Ker.�0/ D K Ë BL is Leary–Nucinkis’ example. Then Theorem 6.8 implies
that Œ�0� 62 †1.G; Z/, however Œ�� 2 †1.G; Z/ by the version of this result for
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ordinary characters, see [5], Theorem B. Note that by [14], LK D ¿ which implies
that K D NG.K/, so here both conditions from Theorem 6.6 fail.

Theorem 6.11. Suppose that †m.G; Z/ 6D ¿. Then †m.G; Z/ is open in S.G/ if
and only if NG.K/G0 has finite index in G for every finite subgroup K.

Remark 6.12. It will follow from the results in the last two sections of this paper
that the condition ŒG W NG.K/G0� < 1 holds for virtually soluble groups of type
FP1 and for finite extensions of the Thompson group F .

Proof. Let N=G0 be the torsion part of the abelianization G=G0. By Lemma 6.4 G

has finitely many conjugacy classes of finite subgroups.
Suppose first that †m.G; Z/ is open in S.G/ and let Œ�� 2 †m.G; Z/. Then there

is Œ�0� 2 †m.G; Z/ that is “close” to Œ�� and such that Ker.�0/ D N . Then condition
1 from Theorem 6.6 implies that there is a subgroup of finite index zG in G such that
N zG.K/.Ker.�0/ \ zG/ D zG, hence NG.K/N has finite index in G and since N=G0
is finite NG.K/G0 has finite index in G.

For the converse assume that NG.K/G0 has finite index in G for every finite
subgroup K. Then ŒG W NG.K/N � < 1. Let zG D T

K NG.K/N where the
intersection is over representatives of conjugacy classes of finite subgroups in G, thus
the intersection is finite and zG has finite index in G. Note that zG D N zG.K/N . Then
by Lemma 3.3 and Lemma 3.4 condition 1 from Theorem 6.6 holds for every character
� and furthermore �.NG.K// 6D 0. Observe that since NG.K/N has finite index in G

we have S.G/ � S.NG.K/N / and S.G/ D S.NG.K/; N \NG.K// � S.NG.K//.
Since †m.NG.K/; Z/ is an open subset of S.NG.K// we deduce that condition 2
from Theorem 6.6 is an open condition for a fixed finite subgroup K, i.e., if it holds
for one character then it holds for a neighbourhood. The fact that there are finitely
many conjugacy classes K of finite subgroups in G completes the proof.

7. Finite extensions of the Thompson group

In this section we use the notation of [8], [11]. So we denote by Fn;1 the group of
PL increasing homeomorphisms f of R acting on the right such that the set Xf of
break points of f is a discrete subset of ZŒ 1

n
�, f .Xf / � ZŒ 1

n
� and slopes are integral

powers of n. Furthermore, there are integers i and j (depending on f ) with

.x/f D
´

x C i.n � 1/ for x > M;

x C j.n � 1/ for x < �M

for sufficiently large M (depending on f again).

Definition 7.1. Let n � 2 and let t0 2 R. Set

Fn;Œt0;1� D ff j f is the restriction to Œt0; 1� of Qf 2 Fn;1; Qf .t0/ D t0g;
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Fn;Œ�1;t0� D ff j f is the restriction to Œ�1; t0� of Qf 2 Fn;1; Qf .t0/ D t0g:
Let

	1; 	2 W Fn;Œt0;1� ! R

be the characters given by 	1.f / D logn..t0/f 0/ and 	2.f / D �i if .x/f D
x C i.n � 1/ for x � 0 and let

�1; �2 W Fn;Œ�1;t0� ! R

be the characters given by �1.f / D logn..t0/f 0/, �2.f / D �j where .x/f D
x C j.n � 1/ for x 	 0.

The following lemma is a correction of Lemma 4.7 from [11]. Note that in [11]
though not explicitly stated the †-invariants are defined via right actions as both
Proposition 3.3 and Theorem 3.4 there work only in this case.

However in this paper all modules are left ones, so we stick to †-invariants defined
via left actions. Generally moving to a definition of the †-invariants from right actions
to left actions changes only the sign of the invariant, i.e., we get the antipodal set.
In the next result and below, the superscript “c” means taking the complementary
subset.

Lemma 7.2. †1.Fn;Œt0;1�/
c D f�Œ	1�; �Œ	2�g and †1.Fn;Œ�1;t0�/

c D f�Œ�1�; Œ�2�g.

Proof. As shown in Lemma 4.7 in [11], the map 	 W Œ0; 1/ ! Œ0; n � 1� of [8]
Lemma 2.3.1 induces by conjugation an isomorphism from Fn;Œt0;1� to a subgroup
of the group of piecewise linear homeomorphisms of the interval Œt0; n�1�. Note that
we can assume that t0 is an element of any fixed interval Œs; s Cn�1/ or .s; s Cn�1�

since for ı W x ! x C n � 1 we have ıFn;Œt0;1�ı
�1 D Fn;Œt0�.n�1/;1�. In particular

we assume that t0 2 Œ0; n�1/. The map 	 was used in Lemma 4.7 from [11] together
with the description of †1 for groups of PL automorphisms of closed intervals [4]
to calculate †1.Fn;Œt0;1�/

c. Adding the extra minus signs explained in the paragraph
before Lemma 7.2 we get that †1.Fn;Œt0;1�/

c D f�Œ	1�; �Œ	2�g.
Consider now the group Fn;Œ�1;t0�. If we want to do the same as for the group

Fn;Œt0;1�, we first have to modify 	 by composing it with the map x 7! �x so that we
get 	� W .�1; 0� ! Œ0; n � 1�. Here we need to assume �n C 1 < t0 � 0, exactly as
for the argument before we needed 0 � t0 < n�1. This has the effect that now we get
†1.Fn;Œ�1;t0�/

c D f�Œ�1�; Œ�2�g. Thus the correct statement of Lemma 4.9 in [11]
using the definition of † via right actions there is †1.Fn;Œ�1;t0�/

c D fŒ�1�; �Œ�2�g,
slightly different than what is stated in [11] Lemma 4.9 as fŒ�1�; Œ�2�g. However, this
does not affect the main results of [11], since with the notation of [11], Lemma 4.11,
we get that the map Q'� swaps Œ Q	1� with Œ Q�1� and Œ Q	2� with Œ�Q�2� and in [11] the fact
that Q'� swaps Œ Q	1� with Œ Q�1� was used and this holds in our corrected version.
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From now on, we consider the case n D 2 only and put F WD F2;1. We consider
the following two characters of F . Let f 2 F be such that .x/f D x C i when
x � 0 and .x/f D x C j for x 	 0 and define

�1.f / D j;

�2.f / D �i:

Note that as F=F 0 has rank 2, S.F / D fŒa�1 C b�2� j a; b 2 Rg.
Let I be the unit interval and � W I ! R be the PL-homeomorphism with break-

points 1=2i , 1�1=2j for i; j > 0 such that .1=2i /� D �i C1, .1�1=2j /� D j �1.
Conjugating with � yields an isomorphism from F2;1 to the Thompson group of
PL-homeomorphisms of I which we denote by FI . Using this isomorphism we get
for FI the characters ˛i .h/ D �i .�

�1h�/ for i D 1; 2 and one easily checks that
˛i .h/ WD log2..i � 1/h0/. Therefore by Theorem A in [3] (see also [4]) after sign
change,

†1.F / D S.F / X f�Œ�1�; �Œ�2�g;
†1.F; Z/c D S.F / X †2.F; Z/

D conv�2f�Œ�1�; �Œ�2�g
D fŒa�1 C b�2� j a � 0; b � 0; .a; b/ 6D .0; 0/g:

(8)

Proposition 7.3. Let G D K Ë F with K finite such that CF .K/ < F . Then
S.G/ D fŒ��; Œ���g with � W G ! R the only character such that �jF D �1 C �2.

Proof. By the same argument of [11] Theorem C, there is a subgroup K0 � K

of index 2 acting trivially on F . Then, KF=K0 Š .K=K0/ Ë F , and the action
of K=K0 on F is given by conjugation with a decreasing homeomorphism h of
R such that h2 D id (see [11], Lemma 4.1). Let Œ�� 2 S.G/. By Lemma 4.1,
�jF 2 Hom.F; R/K D Hom.F; R/K=K0 . The fact that h is decreasing implies that
the induced action of K=K0 in S.F / swaps Œ�1� and Œ�2�, this also follows taking
into account that †1.F; Z/c D f�Œ�1�; �Œ�2�g. Therefore

S.F /K=K0 D fŒ�1 C �2�; Œ��1 � �2�g
and the claim follows by Lemma 4.1.

As a consequence, we get

Lemma 7.4. LetG D KËF withK finite such thatCF .K/ < F . Then†1.G; Z/ D
fŒ��g with �jF D �1 C �2.

Proof. It follows by [19], Theorem 9.3 (see Theorem 8.2), Proposition 7.3 and (8).
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Theorem 7.5. Let G D K Ë F with K finite. Then

†1.G; Z/ D †1.G; Z/:

Proof. We only have to check that any Œ�� 2 †1.G; Z/ also lies in †1.G; Z/. As
by Corollary D of [11] we know that G has only finitely many conjugacy classes of
finite subgroups, all we have to do is to check whether � satisfies the conditions of
Theorem 6.6.

If CF .K/ D F , then G D K �F so both conditions from Theorem 6.6 are trivial
(taking zG D G).

So we may assume CF .K/ < F , thus, by Lemma 7.4, Œ�� D Œ�� and we may
assume � D �, in particular it is discrete (all the characters of G are). Fix

zG D CF .K/ Ker.�/:

Observe that any finite subgroup of G is contained in Ker.�/, hence is contained in
zG. This means that the result will follow if we prove that zG has finite index in G

and for any finite Q � G, NG.Q/ 6� Ker.�/ and Œ�jNG.Q/� 2 †1.NG.Q/; Z/.
If Q acts trivially on F , then last two assertions are obvious. And in other case,
arguing as in Proposition 7.3, we see that there is a Q0 � Q of index 2 acting
trivially on F so that the action of Q=Q0 D h'i on F is given by conjugation with
a decreasing homeomorphism h of R such that h2 D id. Note that �

'
2 D �1. Now,

by Theorem 4.14 of [11] there is an isomorphism

� W CF .'/ ! F2;Œt0;1�

where t0 2 R is the only element such that .t0/h D t0 and � sends f to its restric-
tion on Œt0; 1�. Furthermore it was shown in [11], Theorem 7.3, that t0 2 ZŒ1

2
�,

hence F2;Œt0;1� ' F . By Lemma 7.2 †1.F2;Œt0;1�/
c D f�Œ	1�; �Œ	2�g and since

F2;Œt0;1� ' F and by (8)
Œ	2� 2 †1.F2;Œt0;1�/:

Let 	 W F2;Œt0;1� ! R be the character obtained by composing �jCF .'/�
�1. Since

CF .'/ has finite index in NG.Q/ and by Theorem 9.3 of [19] (see Theorem 8.2),
we only have to check that 	 ¤ 0 and Œ	� 2 †1.F2;Œt0;1�/. And to understand
	 basically we only have to understand ��1, which by [11], Theorem 4.14, sends
f 2 F2;Œt0;1� to the only Qf W R ! R with .x/f D .x/ Qf for x 2 Œt0; 1/ and such
that Qf h D h Qf . Assume that .x/f D x C i for i � 0. Then as Qf 2 CF .'/ and
�

'
2 D �1 we have

	.f / D �. Qf / D �1. Qf / C �2. Qf / D �
'
2 . Qf / C �2. Qf / D 2�2. Qf / D �2i;

which means that 0 ¤ Œ	� D Œ	2� 2 †1.F2;Œt0;1�; Z/. In particular for Q D K we

get Ker.�/ < CF .K/ Ker.�/ D zG thus ŒG W zG� < 1.
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Theorem 7.6. Let G be a finite extension of the Thompson group F . Then

†1.G; Z/ D †1.G; Z/:

Proof. By Corollary D of [11] there are finitely many conjugacy classes of finite
subgroups in G, let K1; : : : ; Ks be representatives of these conjugacy classes. For
1 � i � s set Gi D Fi Ì Ki .

Let Œ�� 2 †1.G; Z/. We have to show that Œ�� 2 †1.G; Z/. Note that by [19],
Theorem 9.3 (see Theorem 8.2) for i � s we have Œ� jGi

� 2 †1.Gi ; Z/. By the
proof of Theorem 7.5

Œ� jNGi
.Ki /� 2 †1.NGi

.Ki /; Z/: (9)

Let K be a finite subgroup of G, so K D K
g
i for some g, i . Thus to establish

the second condition of Theorem 6.6 it suffices to consider the case when K D Ki .
Note that ŒNG.Ki / W NGi

.Ki /� < 1. By (9) and Theorem 8.2 we get that

�.NG.Ki // 6D 0 and Œ� jNG.Ki /� 2 †1.NG.Ki /; Z/;

so the second condition of Theorem 6.6 holds.
Set

zG D T
1�i�s.CF .Ki / Ker.�//:

Note that for g 2 G we have

CF .K
g
i / Ker.�/ D CF .Ki /

g Ker.�/ D CF .Ki / Ker.�/;

so zG is the intersection of CG.K/ Ker.�/ where K runs through all finite subgroups
of G. We claim that CF .Ki /.Ker.�/ \ Gi / has finite index in Gi , hence in G.
Indeed if Ki acts non-trivially on F this follows from the proof of Theorem 7.5 and
the fact that Œ� jGi

� 2 †1.Gi ; Z/, so � jGi
is the unique character of Gi whose

restriction on F is �1 C �2. If Ki acts trivially on F we have F � CG.Ki /, so
ŒGi W CF .Ki /.Ker.�/ \ Gi /� � ŒGi W F � < 1. Thus zG has finite index in G.
By Lemma 3.4 applied for the normal subgroup N D Ker.�/ of G we get that zG�

conjugates finite subgroups, hence by Lemma 3.3 applied for the group zG the first
condition of Theorem 6.6 holds.

8. Soluble groups of type FP1

We recall some results that will be useful in this section.

Theorem 8.1 ([18], Corollary 5.2). Let G be a nilpotent-by-abelian group of type
FP1 then

†1.G; Z/c D conv †1.G; Z/c:
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Theorem 8.2 ([19], Theorem 9.3). Let H be a subgroup of finite index in a finitely
generated group G and � W G ! R be a non-trivial character. Then Œ�� 2 †m.G; Z/

if and only if Œ�jH � 2 †m.H; Z/.

Theorem 8.3 ([17], Theorem 2.4). Let 
 be a virtually soluble group of type FP1.
Then there is only a finite number of conjugacy classes of finite subgroups of 
 .

Theorem 8.4 ([17], Theorem 3.13). Let G be a virtually soluble group of type FP1
and F be a finite group acting on G. Then CG.F / is of type FP1 and is finitely
presented.

We outline the main steps in the proof of Theorem 8.4. Recall that for a ZQ-mod-
ule A the invariants †A.Q/ D fŒ�� 2 S.Q/ j A is finitely generated as ZQ�-moduleg
and †A.Q/c D S.Q/ X †A.Q/. For a subset M of S.Q/ we denote by dis M the
discrete points of M .

1. By the classification of soluble groups of type FP1 started in [9], and fin-
ished in [12], such groups are virtually torsion-free, constructible. Hence they are
finitely presented and nilpotent-by-abelian-by-finite. So it suffices to assume that G

is nilpotent-by-abelian.
2. For nilpotent-by-abelian groups G it is known that G is of type FP1 if and

only †1.G; Z/c lies in an open hemisphere in S.G/ [6].
3. By going down to a subgroup of finite index if necessary we can assume that G

is nilpotent-by-abelian of type FP1, with normal nilpotent subgroup N and abelian
quotient Q D G=N such that N and Q are F -invariant. By going down to a subgroup
of finite index again we can further assume that Q is torsion-free and Q D C0 � T0,
where F acts trivially on C0 and e D P

t2F t acts as zero on T0.
4. Let A be the abelianization of N , so the action of F on N induces an action of

Q on A. Under the assumptions of Step 3 since dis †c
A.Q/ is contained in some open

hemisphere of S.Q/ then A is finitely generated as ZC0-module (via the conjugation
action of C0) and dis †c

A.C0/ is contained in some open hemisphere of S.C0/.
5. Let C be a subgroup of G containing N such that CG=N .F / D C=N . Then

C is of type FP1.
6. The group NCG.F / has finite index in C . In particular NCG.F / is of type

FP1.
7. Let S be a subgroup of G such that SN D G. Then S is of type FP1. Applying

this for NCG.F / in the place of G we deduce that CG.F / is of type FP1.

Lemma 8.5. Let F be a finite group acting on a nilpotent-by-abelian group G of
type FP1 as described in Step 3 above, i.e., N is nilpotent, Q D G=N is torsion-free
abelian, N and hence Q are F -invariant and Q D C0 � T0, where F acts trivially
on C0 and e D P

t2F t acts as zero on T0. Let 
 be a finite index extension of G that
contains F and � W 
 ! R be a non-trivial homomorphism such that �.N / D 0. Let
Q� W Q ! R be the homomorphism induced by �. Suppose that

Œ Q�� … conv †c
A.Q/;
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where A is the abelianization of N . Then

Œ Q�jC0
� … conv †c

A.C0/:

Proof. By construction for V D Q ˝Z Q and the idempotent Qe D . 1
jF j /

P
t2F t we

have
V D V.1 � Qe/ ˚ V Qe;

where T0 ˝Z Q D V.1 � Qe/ and C0 ˝Z Q D V Qe. Then .T0 ˝Z Q/ ˝QF Q D 0,
so the image of T0 in the abelianization of 
 is finite, in particular

Q�.T0/ D 0: (10)

The rest of the proof is similar to the proof of Lemma 3.6 in [17]. We outline the
main steps. First by the last paragraph of the proof of [17], Proposition 3.9 (there C0

was denoted by C ) A is finitely generated as ZC0-module. Suppose that

Q�jC0
D �1 C 
 
 
 C �m;

where Œ�i � 2 †c
A.C0/. By the link between †c and valuations [2], Theorem 8.1, there

is Œvi � 2 †c
A.Q/ such that the restriction of vi to C0 is �i , i.e., vi D .�i ; wi /, where

wi is the restriction of vi on T0. ThenP
t2F vt

i D P
t2F .�i ; wt

i / D .jF j�i ;
P

t2F wt
i / D .jF j�i ; 0/:

Hence
jF j Q� D jF j. Q�jC0

; Q�jT0
D 0/ D P

t2F;1�i�m vt
i ;

thus Œ Q�� 2 conv †c
A.Q/, a contradiction.

Lemma 8.6. Let F be a finite group acting on a group G. Assume that G has a
normal F -invariant nilpotent subgroup N , Q D G=N is torsion-free abelian and
Q D C0 � T0, where F acts trivially on C0 and e D P

t2F t acts as zero on T0.
Let 
 be a finite extension of G that contains F and � W 
 ! R be a non-trivial
homomorphism such that

�.N / D 0 and Œ�� 2 †1.
; Z/:

Let C be the subgroup of G containing N and such that C=N D CG=N .F /. Then

Œ�jC � 2 †1.C; Z/:

Proof. Observe that †1.
; Z/ 6D ¿ implies that 
 and hence G are of type FP1.
By Theorem 8.1 and Theorem 8.2

Œ�jG � 2 †1.G; Z/ D S.G/ X .conv †1.G; Z/c/:



Sigma theory for Bredon modules 437

Since N is nilpotent by Theorem 2.3 of [18]

†1.G; Z/c D †c
A.Q/; (11)

where A is the abelianization of N , i.e., for a real homomorphism 	 W G ! R we have
Œ	� 2 †1.G; Z/c if and only if 	.N / D 0 and for the homomorphism Q	 W Q ! R
induced by 	 we have Œ Q	� 2 †c

A.Q/ D S.Q/ X †A.Q/. Hence for the character
Q� W Q ! R induced by � we have

Œ Q�� … conv †c
A.Q/:

Then by Lemma 8.5
Œ Q�jC0

� … conv †c
A.C0/: (12)

Since C0 D C=N , as in (11) we have †c
A.C0/ D †1.C; Z/c and by Theorem 8.1

and (12) we obtain

Œ�jC � … conv †1.C; Z/c D †1.C; Z/c; so Œ�jC � 2 †1.C; Z/:

Lemma 8.7. Let G be a group with a normal nilpotent subgroup N and Q D G=N

abelian. Let � W G ! R be a non-trivial character such that Œ�� 2 †1.G; Z/ and
�.N / D 0. Let S be a subgroup of G such that SN D G. Then

Œ�jS � 2 †1.S; Z/:

Proof. Since †1.G; Z/ 6D ¿, G is of type FP1. By [17], Lemma 3.12, S is of type
FP1 and by Theorem 8.1

†1.S; Z/c D conv †1.S; Z/c:

Recall that as in (11)
†1.S; Z/c D †c

B.Q/;

where B D S \ N=ŒS \ N; S \ N � and Q D G=N ' S=S \ N . Hence to prove
the lemma we have to show for the character Q� W Q ! R induced by �jS that

Œ Q�� … conv †c
B.Q/: (13)

Note that S and G are of type FP1, so †c
B.Q/ and †c

A.Q/ contain only discrete
points, where A D N=ŒN; N �. As in the proof of Lemma 3.12 in [17],

†c
B.Q/ D dis †c

B.Q/ � conv dis †c
A.Q/ D conv †c

A.Q/;

hence
conv †c

B.Q/ � conv †c
A.Q/: (14)

Using again Theorem 8.1

Œ�� … †1.G; Z/c D conv †1.G; Z/c
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and as in (11)
†1.G; Z/c D †c

A.Q/:

Since �.N / D 0, for Q� the character induced by �, we have

Œ Q�� … conv †c
A.Q/:

Then by (14) we deduce that (13) holds.

We finish the section by proving the following †-version of Theorem 8.4.

Theorem 8.8. Let 
 be a virtually soluble group of type FP1. Then

†1.
; Z/ D †1.
; Z/:

Proof. Note that by Theorem 8.3 
 has finitely many conjugacy classes of finite
subgroups. Observe that by Remark 6.5 we have †m.
; Z/ � †m.
; Z/:

For the converse let � W 
 ! R be a non-zero homomorphism such that Œ�� 2
†1.
; Z/ and K be a finite subgroup of 
 . Let G be a normal nilpotent-by-abelian
subgroup of 
 . Then K acts on G via conjugation and CG.K/ has finite index
in C�.K/. By substituting G by a subgroup of finite index if necessary we can
assume that the assumptions of Step 3 hold and �.N / D 0. Then the previous two
lemmas imply that Œ�jS � 2 †1.S; Z/ for S D CG.K/. Since S has finite index in
D D C�.K/ by Theorem 8.2 Œ�jD� 2 †1.D; Z/.

By the line above (10) and the fact that CG.F /N has finite index in the preimage
of C0 in G we deduce that C�.F /Œ
; 
� has finite index in 
 , hence we can define

zG WD \fC�.F /Œ
; 
� j F rep. of the conjugacy classes of finite subgroups in 
g:
Then by Lemma 3.3 and Lemma 3.4 the first condition of Theorem 6.6 holds.

Finally the proof is completed by Theorem 6.6, where condition 2 is substituted
by condition 2b.
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