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Abstract. Let X D S � E � B be the metric product of a symmetric space S of noncompact
type, a Euclidean space E and a product B of Euclidean buildings. Let � be a discrete group
acting isometrically and cocompactly on X . We determine a family of quasi-isometry invariants
for such � , namely the k-dimensional Dehn functions, which measure the difficulty to fill k-
spheres by .k C 1/-balls (for 1 � k � dim X � 1). Since the group � is quasi-isometric
to the associated CAT(0) space X , assertions about Dehn functions for � are equivalent to
the corresponding results on filling functions for X . Basic examples of groups � as above
are uniform S -arithmetic subgroups of reductive groups defined over global fields. We also
discuss a (mostly) conjectural picture for non-uniform S -arithmetic groups.
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1. Introduction and main results

Since Gromov’s seminal essay [26] the study of quasi-isometry invariants of (Cayley
graphs of) finitely generated groups is of central interest in geometric group theory.
Dehn functions are basic and well-studied examples of such quasi-isometry invariants.
They measure the difficulty to fill circles by discs and are closely related to the
complexity of the word problem (see e.g. [12]). For example, the Dehn function of
a CAT(0) group is either linear or quadratic. A finitely generated group is Gromov-
hyperbolic if and only if its Dehn function is linear (see [12], 6.1.5).

More generally, higher-dimensional homotopical resp. homological Dehn (or fill-
ing) functions are quasi-isometry invariants which encode the difficulty to fill k-
spheres by .k C1/-balls resp. k-cycles by .k C1/-chains. They were first considered
in [20] and [26] §5, and then more systematically in [3]. In contrast to the classical
1-dimensional Dehn functions much less is known about higher-dimensional Dehn
functions. Recently, versions of such quasi-isometry invariants have been investi-
gated by several authors for various classes of finitely generated groups (see e.g. [1],
[11], [24], [41], [49], [51], [52]).
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The chief goal of the present paper is Theorem 2, in which we precisely determine
the higher-dimensional Dehn functions for groups � acting geometrically (i.e., iso-
metrically, properly discontinuously and cocompactly) on a product X D S �E �B ,
where S D G=K is a symmetric space of noncompact type (with G a semisimple,
noncompact real Lie group and K � G a maximal compact subgroup), E is a Eu-
clidean space and B is a product of Euclidean buildings. These higher-dimensional
Dehn functions are (essentially) equivalent to the corresponding filling functions of
the associated complete simply connected CAT(0) space X , which we compute in
Theorem 1.

Examples of groups � for which Theorem 2 holds are crystallographic groups,
uniform lattices (arithmetic or not) in semisimple real Lie groups and (uniform) S -
arithmetic subgroups of connected, reductive and K-anisotropic K-groups (where
K is a global field). We briefly discuss this last family in Section 4. Our results
are motivated by the corresponding problem to determine the higher-dimensional
Dehn functions for S -arithmetic subgroups of connected, reductive and K-isotropic
K-groups, which yield non-uniform lattices acting on CAT(0) spaces X as above.
Since such a non-uniform lattice is not quasi-isometric to X , this latter problem is
much more difficult. In Section 5 we solve it for arbitrary lattices in SO.n; 1/ and
SU.n; 1/ (see Theorems 4 and 5). We also provide a (mostly) conjectural picture for
the general case (see Conjecture 1).

Beside hyperbolic groups studied in [37], [32] and Heisenberg groups treated in
[51], the groups � covered by Theorems 2, 4 and 5 seem currently to be the only
examples of families of finitely generated discrete groups whose Dehn functions are
known in all dimensions.

1.1. Higher-dimensional filling functions for some CAT(0) spaces. In order to
state our results we first recall the concept of higher-dimensional filling functions for
CAT(0) spaces X D S � E � B as above. Consider an (integral) Lipschitz k-chain
in X , i.e., a finite linear combination † D P

i ai�i , with ai 2 Z and �i W �k ! X

a Lipschitz map from the k-dimensional Euclidean standard simplex to X . Note
that S and E are smooth manifolds and B is a piecewise Euclidean (poly)-simplicial
complex with bounded geometry. Therefore, by Rademacher’s theorem ([21], 3.1.6),
such a �i is differentiable almost everywhere and we thus can define volk �i as the
integral over its Jacobian (for smooth maps this is the Riemannian volume of the
image, compare [15], 5.5). We then define the k-volume or k-mass of † as

volk † WD
X

i

jai j volk �i :

We wish to measure the difficulty to fill Lipschitz k-cycles by Lipschitz .k C 1/-
chains. More precisely, for an integral Lipschitz k-cycle † we define its filling volume

FVolkC1.†/ WD inffvolkC1 � j � D Lipschitz .k C 1/-chain with @� D †g:
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Notice that the CAT(0) space X D S �E �B is contractible and thus k-connected for
any 0 � k � n � 1 D dim X � 1 (i.e., all homotopy groups �k.X/ are trivial); hence
the corresponding homology groups are also trivial (by the Hurewicz isomorphism
theorem) and such fillings exist.

The .k C 1/-dimensional filling function of X is then given by

FVkC1
X .l/ WD supfFVolkC1.†/ j † D Lipschitz k-cycle in X with volk † � lg:

We emphasize that we are interested in the asymptotic geometry of X , i.e., the
cycles we wish to fill are supposed to be “large”. In fact, volumes of “small” do-
mains have Euclidean behaviour and in particular satisfy superlinear isoperimetric
inequalities (see [27], p. 322).

Quasi-isometry invariants are obtained from filling functions by considering equiv-
alence classes for the following (standard) equivalence relation. Let f; g W R ! R
be two functions. We write f � g, if there is a constant C > 0 such that
f .x/ � Cg.Cx C C / C Cx C C and f � g, if f � g and g � f . Our key
result is the following.

Theorem 1 (Filling functions). Let X D S � E � B be the metric product of
a symmetric space of noncompact type S D G=K, a Euclidean space E and a
product B of Euclidean buildings (one or two factors of X may be trivial). Let
rank X D rankR G C dim E C dim B be the Euclidean rank of X . For k � 1, let
FVkC1

X be the .k C 1/-dimensional filling volume function of X . Then

(i) X has Euclidean filling functions below the rank:

FVkC1
X .l/ � l

kC1
k if k � rank X � 1I

(ii) X has linear filling functions above the rank:

FVkC1
X .l/ � l if rank X � k � dim X � 1:

Notice that case (ii) in Theorem 1 only occurs if the symmetric factor S is non-
trivial.

If X D S is a symmetric space of noncompact type, Theorem 1 has been correctly
asserted by Gromov in [26], 5.D (5) (b0). He also proposed a possible proof for an
upper bound via isoperimetric inequalities: Pick some maximal flat F in X and
project orthogonally to that flat. Then use the resulting cylinder to produce the
desired filling. Gromov claims that this projection exponentially retracts the volume
(as a function of the distance d to F ). In 6.B2 (d00) he attributes this to Mostow. But
Mostow actually only proves (using quite delicate estimates) that the contraction is
proportional to d �1=2 when restricted to an r-dimensional submanifold (see [38],
Lemma 6.4). The problem is that vectors tangent to singular geodesics can have
projections with contraction factor almost equal to one, so that it is not clear whether
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this idea works. Nevertheless our approach is still quite similar: instead of projecting
to a flat we project to a suitable horosphere.

A result of Wenger [47] asserts that a complete, simply connected CAT(0) space
satisfies Euclidean isoperimetric inequalities in all dimensions (see Proposition 1
below). This yields Euclidean upper bounds for filling functions (see Section 2.1).
Theorem 1 shows that this inequalities are sharp below the rank. Moreover it refines
Wenger’s general result in the present setting for dimensions above the rank (again
showing that linear isoperimetric inequalities are sharp by providing lower bounds).
In particular, Theorem 1 asserts that the filling functions of a symmetric space detect
its rank.

Hyperbolic spaces satisfy linear isoperimetric inequalities in all dimensions. The-
orem 1 thus also goes with Gromov’s philosophy concerning the notion of “rank” in
non-positive curvature as expressed in [26], 6.B2:

One of the guiding principles in the asymptotic geometry of spaces X with K � 0

can be expressed as follows. All flatness of X where K D 0 is confined to k-flats
in X ... One distinguishes among them maximal flats ... and then tries to show
that X is “hyperbolic transversally to maximal flats”.

1.2. Higher-dimensional Dehn functions for some CAT(0) groups. We now pass
from spaces to groups. Recall that a group � is of type Fm, if there exists an Eilenberg–
Mac Lane complex K.�; 1/ with finite m-skeleton. A group is of type F1, if it is
of type Fm for all m. The finiteness properties F1 and F2 are equivalent to � being
finitely generated and finitely presented, respectively. Alonso showed in [Al] that
“being of type Fm” is invariant under quasi-isometries.

Suppose that a given group � is of type FkC1. Then there exists a k-connected
.kC1/-complex K on which � acts cocompactly (see [13] and [41]). A combinatorial
map † W Sk ! K.k/ of the standard k-sphere into the k-skeleton of K can then be
filled by a combinatorial .k C 1/-ball �. We define the combinatorial k-volume of
† as the number of non-degenerate k-cells in the image

volck.†/ WD ]f� � †.Sk/ j � is a non-degenerate k-cell of Kg:
Analogously we define the combinatorial .k C 1/-volume of � as the number of
non-degenerate .k C 1/-cells in the image of �. We further set

DFVolckC1.†/ WD minfvolckC1.�/ j � is an .k C 1/-ball with boundary †g:
The k-dimensional (combinatorial) Dehn function (of K) is then defined as

ık
K.l/ WD maxfDFVolckC1.†/ j volck.†/ � lg:

The above definition of higher dimensional Dehn functions is equivalent to that of
Alonso et al. in [3] (see [13]). In particular its equivalence class (in the sense above)
is independent of the chosen complex K and defines a quasi-isometry invariant of � .
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We next give an alternative definition of higher-dimensional Dehn functions which
is better adapted to our situation, since it is more closely related to filling functions.

Let X be a k-connected manifold or Euclidean polyhedral complex and let � be
a (finitely generated) group which acts cocompactly on X . The k-th dimensional
(Lipschitz) Dehn function (of X ), ık

X , is a homotopical version of a filling function.
It measures the volume that is necessary to extend a Lipschitz map f W Sk ! X of
the k-dimensional unit sphere to a map g W BkC1 ! X of the .k C 1/-dimensional
unit ball:

DFVolkC1.f / WD inffvolkC1.g/ j g W BkC1 ! X; gj
Sk

D f g
and

ık
X .l/ WD supfDFVolkC1.f / j f W Sk ! X; volk.f / � lg:

As a consequence of the Federer–Fleming deformation theorem the combinatorial
and Lipschitz versions of higher dimensional Dehn functions are actually equivalent
if X (or K) is a space which can be approximated by a polyhedral complex of
bounded geometry (compare [1], Theorem 2.1.). Since its equivalence class defines
a quasi-isometry invariant (by [3]), we will write ık

� in place of ık
X or ık

K to denote (a
representative of) this equivalence class.

Theorem 1 implies

Theorem 2 (Dehn functions). Let X D S � E � B be the metric product of a
symmetric space of noncompact type S D G=K, a Euclidean space E and a product
B of Euclidean buildings (one or two factors of X may be trivial) and let rank X D
rankR G C dim E C dim B denote the Euclidean rank of X .

Let � be a group acting isometrically, cocompactly and properly discontinuously
on X. Then

(i) the k-dimensional Dehn functions of � are Euclidean below the rank:

ık
�.l/ � l

kC1
k if k � rank X � 1 I

(ii) the k-dimensional Dehn functions of � are linear above the rank:

ık
�.l/ � l if rank X � k � dim X � 1:

As noted above, the chief examples of groups � to which Theorem 2 applies
are provided by cocompact S-arithmetic subgroups of reductive algebraic groups G

which are defined over global fields K. We will discuss such groups in some more
detail in Section 4. Notice that, if K is a function field, then Theorem 2 reduces to
part (i) only. Note further that in the special case where X D S is a symmetric space
of rank 1, a group � as in Theorem 2 is hyperbolic and then Theorem 2 asserts that all
Dehn functions are linear. For general hyperbolic groups linear upper bounds were
obtained in [32] and [37].
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As already mentioned, linear 1-dimensional Dehn functions characterize Gromov-
hyperbolic groups. On the other end of the range, top-dimensional linear isoperimetric
inequalities (or, equivalently, positive Cheeger constants) characterize discrete non-
amenable groups, which act geometrically (see [26], 05.A6, and Theorem 3 below).

Finally, we note that a theorem of Avez [4] asserts that the fundamental group of a
closed manifold V with nonpositive sectional curvature is non-amenable unless V is
flat. This in particular applies to fundamental groups of compact locally symmetric
spaces (of noncompact type) with Euclidean factors, i.e., uniform lattices in real
reductive Lie groups. Theorems 1 and 2 thus refine Avez’s theorem in the case of
reductive locally symmetric spaces.

Remark (Generalization). Theorem 1 and Theorem 2 extend to CAT(0) spaces (and
groups acting geometrically on them) of the form X D S �H , where S is a symmetric
space of noncompact type as before, and where H is a Euclidean polyhedral complex
with bounded geometry and the property that its dimension is equal to its Euclidean
rank (i.e., the maximal dimension of an isometrically embedded Euclidean space). In
fact, in the proofs below we only use these (weak) geometric properties of buildings.

2. The proof of Theorem 1

2.1. Theorem 1 (i): Euclidean fillings below the rank. By definition of the filling
functions FVkC1

X we have k � 1. As we are here concerned with Theorem 1 (i), we
may assume that (Euclidean) rank X � 2.

Wenger proved Euclidean isoperimetric inequalities in a general setting:

Proposition 1 (Wenger, [47]). If X is a complete simply connected CAT.0/ space
of dimension n, then any k-dimensional Lipschitz cycle † in X satisfies a Euclidean
isoperimetric inequality:

FVolkC1.†/ � Ck .volk †/
kC1

k ; 1 � k � n � 1;

where Ck is a constant that depends only on X and k.

These isoperimetric inequalities provide an upper bound for filling functions

FVkC1
X .l/ � l

kC1
k :

In order to get also a lower bound for k < r D rank X we consider a k-
dimensional round sphere S of volume l contained in a maximal (r-dimensional)
flat F of X . Let B be a minimal filling of S in X . The orthogonal projection from
X to F is a 1-Lipschitz map (see e.g. [14], 2.4). If we orthogonally project B to
F we thus get a filling B 0 of S in F with volkC1 B 0 � volkC1 B (see [15], 5.2.2).
Hence B 0 is a minimal filling of the round sphere S in the Euclidean space F . By



Optimal higher-dimensional Dehn functions for some CAT(0) lattices 447

the solution of the isoperimetric problem in Euclidean space, B 0 must be a round ball

with boundary S and thus satisfies l
kC1

k � volkC1 B 0 � volkC1 B . Hence we get
the required lower bound

l
kC1

k � FVkC1
X .l/:

2.2. Theorem 1 (ii): Linear fillings above the rank. Note that Theorem 1 (ii),
which concerns fillings of dimensions above rank X , is only meaningful if the sym-
metric factor S of X is nontrivial. In fact, otherwise we have X D E �B and the (Eu-
clidean) rank of X coincides with the topological dimension dim X D dim ECdim B

and hence there is no filling problem above the rank. In this subsection we will thus
always assume that the symmetric factor S is nontrivial.

2.2.1. Linear upper bounds. We first recall the formulae for Jacobi fields in Rie-
mannian products S � M , where S D G=K is a symmetric space of noncompact
type (with semisimple Lie group G) and M is an open (flat) submanifold of some Eu-
clidean space. These will be used below for volume estimates. A proof for semisimple
symmetric spaces can be found in [19], 2.14. and 2.15; it directly extends to the prod-
uct case. Recall that a Jacobi field along a geodesic ray is called stable, if its norm is
bounded.

Proposition 2. Let S � M D G=K � M be an n-dimensional Riemannian product
of a symmetric space of noncompact type with an open (flat) submanifold M � Rm

of a Euclidean space and let x0 be a base point of S . Let g D k ˚ p be a Cartan
decomposition of the Lie algebra of the semisimple group G. Let a be a maximal
abelian subspace of p. For a unit vector H in a, an element g 2 G and a point
p 2 M , let

c W Œ0; 1/ ! S � M; t 7! .g 	 exp tH 	 x0; p/;

be a geodesic ray parametrized by arc-length starting at .g 	 x0; p/. Further let
El.t/; 0 � l � n � 1, be orthonormal parallel vector fields in S � M along the ray
c and orthogonal to c. Then any stable Jacobi field Y.t/ along c.t/ and orthogonal
to c with Y.0/ D Pn�1

lD1 ylEl.0/ is of the form

Y.t/ D
n�1X
lD1

yle
�p

�l tEl.t/;

where the �l are zero or eigenvalues of the curvature operator RH D .adH/2
jp and

thus either also equal to zero or of the form �l D .˛l.H//2 for some (positive)
root ˛l .

We now proceed to prove the linear upper bound in Theorem 1 (ii). To that end
let X D S � E � B be as in Theorem 1 (with nontrivial symmetric factor S ). Further
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let † be a k-dimensional cycle with

k � r D rank X D rank S C dim M D dim a C dim M:

For convenience we use in the following the same notation for the map † and its image
in X . We wish to construct a chain � which bounds † and such that volkC1 � �
const 	 volk †, where the constant only depends on X and k. The idea is to fill †

by first projecting it orthogonally to a suitable horosphere of X and then take � as
the cylinder of this map together with a filling of the projection (which will be very
small, i.e., of volume � 1) inside this horosphere. We will achieve this in 6 steps.

Step 1 (A cone over †). Consider a Weyl chamber in the geometric boundary of
the symmetric factor S D G=K and denote its barycenter by ˇ. Together with the
base point x0 of S this defines an Iwasawa decomposition G D NAK and associated
horocyclic coordinates S Š NA 	x0 (see e.g. [33]). Let c1.t/ WD exp tH0 	x0; t 2 R;

be the unit speed geodesic in S through x0 and asymptotic to ˇ. Note that taking
translates of c1 gives a foliation of S by asymptotic geodesics: S D N 	 exp H ?

0 	
c1.R/.

Given a point x D .n exp H1c1.s/; e; b/ 2 X D S � E � B , with H1 2 H ?
0 , we

denote by �.x; t/ the unique geodesic ray in X which starts at x and is asymptotic to
the above barycenter ˇ 2 S.1/ � X.1/, i.e.,

�.x; t/ D .n exp H1 	 c1.s C t /; e; b/; t 2 Œ0; 1/:

This in particular defines a map

� W † � R�0 ! X; .x; t/ 7! �.x; t/:

Below we will use the associated .kC1/-dimensional “cone” z� WD �.†�R�0/ � X

over the k-cylce †.
In order to guarantee that z� is .k C 1/-dimensional, we pick some point Qx 2 †

and choose the barycenter ˇ in such a way that the geodesic ray �. Qx; t/ is transversal
to †. That this is possible for any k follows e.g. from the polar decomposition of
S (and its boundary at infinity): [30], Chapter 5, Lemma 6.3. We also note that
the image under � of the set of those points of † where the issuing geodesic ray is
tangential (i.e. not transversal) is only a k-dimensional subset and hence does not
contribute to the .k C 1/-volume of the cone z�.

Step 2 (Regular points of †). If the building factor B of X is nontrivial, X is not a
differentiable manifold. We can, however, consider all open cells of B , say �m with m

in some index set IB . Then there is a finite subset I � IB such that the intersections

†m WD † \ .S � E � �m/; m 2 I;

have positive k-dimensional Hausdorff measure and cover † up to a set of measure
zero (recall that we use here the same notation for the map † and its image in X ).
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Notice that S � E � �m; m 2 IB ; is the Riemannian product of a symmetric space
with an (open, flat) Euclidean manifold, so that Proposition 2 can be applied.

We fix an 	 > 0, which will be chosen appropriately in Step 5. By Rademacher’s
theorem †m is differentiable almost everywhere (with respect to Hausdorff measure).
By Lusin’s theorem (see [21], 2.3.5) there is a compact subset †r

m of †m for each
m 2 I , such that †r

m is a C 1-manifold and volk.†m n †r
m/ < 	.

The sets †r
m are non-empty, disjoint C 1-manifolds which cover the regular part

†r WD
[
m2I

†r
m

of †. Note that volk.† n †r/ < 	 jI j.
Step 3 (Volume of the cone over the regular part †r ). We fix m 2 I and, for � as ins
Step 1, we denote by ! be the volume form on z�r

m WD �.†r
m � R�0/ � X . We also

define 
 W †r
m � R�0 ! R by

��!.x; t/ D 
.x; t/dt ^ �� N!.x/ (1)

where � W †r
m � R�0 ! †r

m is the projection to the first factor and N! is the volume
form on †r

m. We will show that there is a constant C2 depending only on X such that

volkC1. z�r
m/ � C2 volk.†r

m/ for all m 2 I: (2)

Equation (2) in turn implies the following linear estimate for the cone over the regular
part †r of †

volkC1. z�r/ D
X
m2I

volkC1. z�r
m/ � C2

X
m2I

volk.†r
m/ D C2 volk.†r/: (3)

In order to prove estimate (2) we will use the following

Lemma 1. Let k � rank X , m 2 I and 	 as above. Then there are constants �� > 0,
C1 > 0 and C2 > 0 depending only on X (but not on k, m or 	) such that for every
x 2 †r

m the density function 
 in (1) satisfies


.x; t/ � C1e�p
�� t and thus

Z 1

0


.x; t/dt D C2 < 1:

Proof. Consider the geodesic ray c.t/ WD �.x; t/ defined in Step 1 starting at x 2 †r
m

and asymptotic to ˇ. We can (and do) assume that c is transversal to † (see the
discussion in Step 1). Let V0.0/; : : : ; Vn�1.0/ be an orthonormal frame of TxX such
that V0.0/ D Pc.0/ and V0.0/; : : : ; Vk.0/ span Tx

z�r
m. For each 0 � i � k the unit

vector Vi .0/ extends to a parallel vector field Vi .t/ along c.t/. We choose local
coordinates .x1; : : : ; xk/ in †r

m around x such that @
@xi

.x/ D Vi .0/CaiV0.0/. Then,
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by the map � , we have local coordinates .x1; : : : ; xk; t / in z�r
m near the geodesic ray

c.t/. The volume form N! of †r
m at x is

N!.x/ D
s

1 C
X

i

a2
i dx1 ^ 	 	 	 ^ dxk :

We now consider the (unique) stable Jacobi fields Yi .t/ along c.t/ which satisfy
Yi .0/ D Vi .0/; 1 � i � k. Using the k � k matrix

Ak.t/ WD .hYi .t/; Yj .t/i/1�i;j �k

we can write the volume element ! on z�r
m as

!.c.t// D
p

det Ak.t/ dt ^ dx1 ^ 	 	 	 ^ dxk :

Hence we get


.x; t/ D
s

det Ak.t/

1 C P
i a2

i

�
p

det Ak.t/: (4)

We now choose orthonormal parallel vector fields El.t/; 0 � l � n � 1; along
the ray c.t/ as in Proposition 2 such that, for 1 � i � n � 1,

Vi .0/ D
n�1X
lD1

ailEl.0/:

Note that the matrix .ail/ is orthogonal. By Proposition 2, the Jacobi fields Yi ,
1 � i � k; can be written as

Yi .t/ D
n�1X
lD1

e�p
�l tailEl.t/:

Hence

hYi .t/; Yj .t/i D
D n�1X

lD1

e�p
�l tailEl.t/;

n�1X
mD1

e�p
�m tajmEm.t/

E

D
n�1X
lD1

e�2
p

�l tailajl :

In order to estimate the determinant of the matrix

Ak.t/ WD .hYi .t/; Yj .t/i/1�i;j �k

we consider the k � .n � 1/ matrices

A WD .ail/ and B WD .ajle
�2

p
�l t /:
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Then, by the Binet–Cauchy formula (see e.g. [22]), we have

det Ak.t/ D det.AB>/ D
X

1�s1<s2<���<sk�n�1

det As1:::sk det Bs1:::sk ;

where As1:::sk denotes the k � k matrix consisting of the columns of A with indices
s1 : : : sk and similarly for B . By definition .aij /1�i;j �n�1 is an orthogonal matrix
and hence jaij j � 1. By Proposition 1, the �i are either zero or eigenvalues of the
curvature operator given by H0. By assumption we have k � rank X . Since the
projection of the geodesics �.x; t/ to S are regular by definition, at most k � 1 of the
Jacobi fields Yi can be tangent to a flat in X . Thus, for each matrix Bs1:::sk , there is
at least one column si , say, such that �si

D ˛2
si

.H0/ > 0 for some positive root ˛si
.

Moreover, by the choice of H0 as a barycentric direction, these values are uniformly
bounded away from zero by �� WD min˛2†C ˛.H0/ > 0. We thus obtain the estimate

det Ak.t/ � C 2
1 e�2

p
�� t ; (5)

where C 2
1 depends only on n. Inserting (5) in (4) completes the proof of Lemma 1.

From Lemma 1 we immediately get (2):

volkC1. z�r
m/ D

Z
†r

m

.

Z 1

0


.x; t/dt/ N!.x/ D C2 volk.†r
m/:

Step 4 (Volume of the cone over the singular part †n†r ). We claim that for a 2 Œ0; 1/

holds

volkC1.�.† n †r � Œ0; a�// � 3kC1 volk.† n †r/ 	 a:

In fact, this immediately follows from

Lemma 2. The map � W † � Œ0; 1/ ! X is 3-Lipschitz.

Proof. Let x; y 2 †. By construction the geodesics �.x; t/ and �.y; t/ are asymp-
totic. Thus by the convexity of the distance function in the CAT(0) space X we have
for s; t � 0

dX .�.x; s/; �.y; t// � dX .�.x; s/; �.y; s// C dX .�.y; s/; �.y; t//

� dX .�.x; 0/; �.y; 0//C j s � t j
D dX .x; y/C j s � t j
� 3

p
dX .x; y/2C j s � t j2: �

Step 5 (A chain � which fills †). By Lemma 1 and since I is finite we can find t0 � 1

so large that 
.x; t0/ � .jI j volk.†r
m//�1 for all m 2 I (note that I depends on †).
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Consider a horosphere H based at ˇ 2 X.1/ (as in Step 1) such that † lies in
the complement of the horoball BH with boundary H . Let �H W X ! H denote the
horospherical projection. The image �H .†/ can be written in the form

�H .†/ D f�.x; t.x// j x 2 †g:
We choose H in such a way that t .x/ � t0 for all x 2 †.

By formula (1) and the choice of t0 we the get

volk.�H .†r// D
X
m2I

volk.�H .†r
m//

D
X
m2I

Z
†r

m


.x; t.x// N!.x/

�
X
m2I

Z
†r

m


.x; t0/ N!.x/

�
X
m2I

.jI j volk.†r
m//�1 volk.†r

m/ D 1:

For the horosphere H chosen above we set t1 WD maxft .x/ j x 2 †g (we can
assume that t1 � 1). We now also choose the parameter 	 of Step 2 explicitly as
	 WD .t1 jI j/�1.

Notice that the horospherical projection �H is 1-Lipschitz. By the definition of 	

in Step 2 and the explicit choice above we thus have

volk.�H .† n †r// � volk.† n †r/ < 	 jI jD 1

t1
� 1:

We conclude that
volk.�H .†// � 1 C 1 D 2:

As this is independent of † and since X has bounded geometry, there is a filling �0

of �H .†/ such that
volkC1.�0/ � C3; (6)

where C3 is again a uniform constant depending only on X . Finally, if BH denotes
the horoball in X with boundary H , we set

� WD . z� n BH / [ �0 D .�.† � R�0/ n BH / [ �0:

By construction this � is a filling .k C 1/-chain for †.

Step 6 (Volume of �). Let t0; t1 and 	 D .t1 jI j/�1 be as in Step 5. From Step 4 we
have

volkC1.�.† n †r � Œ0; 1// n BH /

� volkC1.�.† n †r � Œ0; t1�//

� 3kC1 volk.† n †r/ 	 t1 � 3kC1	 jI j t1

D 3kC1 DW C4:
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This together with (3) and (6) yields

volkC1.�/ D volkC1.�.†r � Œ0; 1// n BH /

C volkC1.�.† n †r � Œ0; 1// n BH / C volkC1.�0/

� volkC1. z�r/ C C4 C C3

� C2 volk.†r/ C C4 C C3

� C2 volk.†/ C C3 C C4

� volk.†/:

This estimate completes the proof of the linear upper bound in Theorem 1 (ii).

2.2.2. Linear lower bounds. In order to establish linear lower bounds for the filling
functions in Theorem 1 (ii), it suffices to provide arbitrarily large k-cycles †, with the
property that any .kC1/-filling � satisfies volkC1.�/ 
 volk.†/. We construct such
cycles via the following lemma. Recall that every symmetric space S of noncompact
type contains (many) copies of real hyperbolic planes H2 (see [30], IX.2).

Lemma 3. Let S be an n-dimensional symmetric space of noncompact type with base
point x0. Let H2 � S be a totally geodesic hyperbolic plane containing x0. For any
2 � k � n there exists a .k � 2/-dimensional subspace q of p Š Tx0

S orthogonal
to h Š Tx0

H2 such that the k-dimensional submanifold

W WD exp.h ˚ q/ 	 x0

of S , which is diffeomorphic to H2�exp q	x0 DW H2�Q, has the following property:
Let † be the topological sphere obtained as the intersection of W with the sphere

SR.x0/ of radius R >> 1 and center x0 in S . Then the k-dimensional Hausdorff
measure (or Riemannian volume) of any (smooth) filling � of † in S satisfies

volk.�/ 
 eR 
 volk�1.†/:

Proof. The proof is by induction on the dimension of W and uses the coarea formula.
We start the induction with k D 2. In this case we take q WD f0g, i.e., W D H2.

Consider the circle †1 WD SR.x0/ \ W � W . Fill †1 with any 2-chain �2 in
S . The orthogonal projection of S to the totally geodesic submanifold W D H2

is 1-Lipschitz. Hence, if �0
2 is the orthogonal projection of �2 to W , we have

vol2.�2/ � vol2.�0
2/, i.e, the filling �0

2 of †1 in W D H2 is even smaller than the
filling in S . The minimal filling of the circle †1 in W D H2 is the disc D2

R of radius
R. Hence

vol2.�0
2/ � vol2.D2

R/ � eR � vol1.†1/

and the claim follows in this case.
In order to continue the proof by induction, we assume that the lemma is proved

for suitable submanifolds W 2; W 3; : : : ; W k with dim W i D i . We now wish to
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prove the lemma for a W kC1 of dimension k C 1. To that end we choose a geodesic
c in S orthogonal to W k and define W kC1 as the union of the parallel translates of
W k along c. Let � W S ! c denote the orthogonal projection of S to the geodesic c.
Since � is 1-Lipschitz, Eilenberg’s coarea formula (see [16], 13.3) yields for any
filling �kC1 of †k WD SR.x0/ \ W kC1 in S

volkC1.�kC1/ 

Z 1

�1
volk.��1.t/ \ �kC1/ dt

�
Z C1

�1

volk.��1.t/ \ �kC1/ dt:

(7)

The last integral is greater than the minimal filling volume of the intersection of
SR.x0/ with the “thickening” of W k D ��1.0/ \ W kC1 given by[

t2.�1;C1/

��1.t/ \ W kC1:

The latter consists of copies of W k (note that � commutes with parallel translation
along c).

By Sard’s theorem, almost every t 2 Œ�1; 1� is a regular value of � j �kC1 and
� j †k . Hence

@.��1.t/ \ �kC1/ D ��1.t/ \ @�kC1 D ��1.t/ \ †k;

i.e., ��1.t/ \ �kC1 is a filling of ��1.t/ \ †k for a.e. t 2 Œ�1; 1� (see e.g. 2.1. in
[28]). Now we have

��1.0/ \ †k D ��1.0/ \ W kC1 \ SR.x0/ D W k \ SR.x0/ D †k�1:

We thus can apply the induction hypothesis and get that ��1.0/ \ �kC1 and hence
also ��1.t/\�kC1 for t 2 Œ� 1

100
; 1

100
�, say, has Hausdorff measure (or Riemannian

volume)
volk.��1.t/ \ �kC1/ 
 eR:

Inequality (7) then yields volkC1.�kC1/ 
 eR.
Finally, we need to show that volk.†k/ � eR. But †k is a sphere of radius R in

W kC1 with center x0 and W kC1 contains a hyperbolic plane through x0. The claim
then follows from the computation of volumes of spheres via Jacobi fields (see [42],
II.5, Lemma 5.4). This finishes the induction proof of Lemma 2.

We proceed to prove the lower bounds in Theorem 1 (ii). Let †k be a k-sphere of
radius R in S � X D S � E � B as in Lemma 2 and let �kC1 be an arbitrary filling
of †k in X . Let � W X ! S be the orthogonal projection. As S is a convex subspace
of X this again is a 1-Lipschitz map. Hence, by Lemma 2,

volkC1.�kC1/ � volkC1.�.�kC1// 
 volk.†k/:
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In order to get k-cycles having at least linear fillings for any chain in X for k

up to dim X � 1 D dim S C dim E C dim B � 1 we choose a flat F in E � B

and consider the convex subspace S � F in X . Note that this actually is a manifold
of dimension equal to dim X . For the construction of the †k with k � dim S we
then proceed exactly as in the last step of the proof of the Lemma 2 by inductively
defining suitable W kC1 � S � F � X using successively parallel translation along
and orthogonal projection to pairwise orthogonal geodesics in F . Finally, since
the orthogonal projection from X to S � F is 1-Lipschitz, we get the linear filling
inequality by the same argument as above.

3. The proof of Theorem 2

We have the following general result relating filling and Dehn functions:

Proposition 3. Let X1 and X2 be two k-connected manifolds or simplicial complexes
on which a group � acts geometrically, then

ık
X1

� ık
X2

and FVkC1
X1

� FVkC1
X2

:

Moreover ı2
X1

� FV3
X1

and ık
X1

� FVkC1
X1

for k � 3.

Proof. The first assertion is proved in [3], Section 6, Corollary 3, for a (simplicial)
version of ık . This is equivalent to the above (compare [49]). The second claim
follows from [25], 2.A0, for upper bounds and [11], 2.6. (4), for lower bounds.

We emphasize thatYoung constructed examples of groups � acting geometrically
on a space X for which ı2

� 6� FV3
X (see [49], Corollary 6). If, however, X D S�E�B

is as in Theorem 1, then we also have ı2
X 
 FV3

X . In fact, by Theorem 1 and the
explicit construction of lower bounds by filling spheres by balls in Sections 2.1 and
2.2.2 we have

ı2
X .l/ 
 l

3
2 � FV3

X .l/ if rank X � 3;

ı2
X .l/ 
 l � FV3

X .l/ if rank X D 1 or 2:

Hence in that case there are no cycles that are “harder to fill” than spheres. Together
with this observation and the fact (by [3]) that ık

� is a quasi-isometry invariant, i.e.,
ık

� � ık
X , Theorem 2 follows immediately from Theorem 1 and Proposition 3.

4. Basic examples

Examples of groups � to which Theorem 2 applies include:
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(1) Crystallographic groups, i.e., discrete groups of isometries acting cocompactly
on some Euclidean space En (see e.g. [46], Part II, Chapter 3).

(2) Uniform lattices in semisimple real Lie groups G, which act cocompactly on
the associated symmetric space S D G=K of noncompact type (see e.g. [7]).

(3) Uniform S -arithmetic groups, which act cocompactly on products of sym-
metric spaces of noncompact type and of Bruhat–Tits buildings. We briefly
describe these last examples and some of their properties in the next paragraph.

4.1. S-arithmetic groups. We briefly recall the definition of S -arithmetic groups.
For more details and informations we refer to [9] and [36], Chapter I.3.

A global field K is either an algebraic number field, i.e., a finite extension of Q,
or the function field of an algebraic curve over a finite field, i.e., a finite extension
of Fq.T /, the field of rational functions in one variable over the finite field with q

elements. In the first case the characteristic of K is zero and in the second it is pos-
itive. Completions of global fields with respect to archimedean or non-archimedean
valuations are local fields.

Let K be a global field and let S be a finite set of inequivalent valuations of K
including all archimedean ones. The ring of S -integers of K is defined as

OS WD fk 2 K j jk jv� 1 for all v … Sg:
Let G � GLN be a connected, reductive K-group. The associated S-arithmetic
group is the group of S -integers, G .OS / D G \GLN .OS /. Its diagonal embedding
into the locally compact group G S WD Q

v2S G .Kv/ (here Kv is the completion of
K with respect to v) is an irreducible lattice. The reductive group G S in turn acts
isometrically on an associated CAT(0) space X as in Theorem 1 or 2, i.e., the metric
product of a symmetric space of noncompact type, a Euclidean space and a product
of Euclidean (Bruhat–Tits) buildings.

4.2. Some (non-)existence results. We list a few results concerning existence and
non-existence of uniform S -arithmetic groups.

� (Borel–Harder, [14]) Let G be a reductive L-group over a local field L of
characteristic zero. Then the group of L-points, G .L/, contains uniform
lattices.

� (Borel–Harish-Chandra, [8]; see also [36], I.3.2.7) Let K be a global field. If
G is K-anisotropic and if one chooses the finite set S in such a way that G

is Kv-isotropic for any v 2 S , then (the diagonal embedding of) G .OS / is a
uniform lattice in G S and thus acts cocompactly on X . Note that many such
S exist, since the set of valuations v such that G is anisotropic over Kv is
finite (see [44], Lemma 4.9).

� (Harder, [29], 3. Korollar 1) Only groups of type A have anisotropic forms
over global fields of positive characteristic. In particular, if at least one of the
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factors G .Kv/ in G S has char Kv > 0 and is not of type A, then G S cannot
contain uniform lattices.

� If K is a global field and G is K-isotropic, then G .OS / is a non-uniform
lattice.

4.3. Finiteness properties. The very definition of higher-dimensional Dehn func-
tions for some group � requires that � acts on highly connected spaces: k-dimensional
Dehn functions are meaningful only for groups of finiteness type FkC1.

In the case of number fields we have the following result:
(Raghunathan [40], Borel–Serre [9]) Any S -arithmetic subgroup G .OS / (uni-
form or not) of a reductive group G defined over a global number field is of
finiteness type F1
In the case of function fields there are restrictions:

(Serre [43], Kropholler–Mislin [31], Bux–Wortman [17]) An S -arithmetic sub-
group G .OS / of a reductive group G defined over a function field K is of type
F1 if and only if G is K-anisotropic (or, equivalently, if G .OS / is uniform).

Hence for uniform S -arithmetic groups Dehn functions are always defined in any
dimension. By the above result of Borel and Serre this also holds for non-uniform
S -arithmetic groups in the number field case. We emphasize however that this is no
longer true for non-uniform S -arithmetic subgroups of K-isotropic groups G defined
over function fields. Recall that the finiteness length of a group � is the maximal m

such that � has finiteness type Fm. In [17] and [18] it is proved that if G .OS / is
non-uniform (and G defined over a function field), then its finiteness length is r � 1,
where r is the sum of the local ranks (or, equivalently, the Euclidean rank of the
associated product of Euclidean buildings on which G .OS / acts). In particular, if
k � r � 1, the the k-dimensional Dehn function is not defined for such groups. We
address a conjectural picture about Dehn functions for non-uniform lattices in the
next section.

5. Some conjectures and results for non-uniform lattices

5.1. A general conjecture. If a group � acts geometrically on a metric space X ,
then � is quasi-isometric to X . Examples are uniform S-arithmetic groups acting on
X D S � E � B (see Section 4). This is no longer true for non-uniform S-arithmetic
groups like SLn.ZŒ 1

p
�/ which in fact can be strongly distorted and thus make the

investigation of filling problems considerably more subtle. We posit the following
conjectural picture (compare also the discussion in Gromov’s book [26], 5D (c)).

Conjecture 1. Let � be an S -arithmetic subgroup of a reductive algebraic group
defined over a global field K such that � acts as an (irreducible) non-uniform lattice
on X D S � E � B , the associated metric product of symmetric spaces, Euclidean
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spaces andEuclidean buildings. Let r be the Euclidean rank of X and n the dimension
of X . Then the higher-dimensional Dehn functions of � satisfy

(i) ık
�.l/ � l

kC1
k , if k � r � 2.

Moreover, if K has characteristic zero .i.e., if K is a number field/, then

(ii) ır�1
� .l/ � exp l ,

(iii) ık
�.l/ 
 l˛ with 1 � ˛, if r � k � n � 2,

(iv) ın�1
� .l/ � l .

5.2. Some evidence for Conjecture 1. In the following we discuss partial results
which provide some evidence for Conjecture 1.

We will use the elementary

Lemma 4. Let X be a CAT.0/ space and X0 a length subspace. Suppose that C

is a complete convex subspace both of X and X0 in the induced metrics. Then the
restriction of the orthogonal projection � W X ! C to X0 is 1-Lipschitz.

Proof. By [14], Chapter II, Proposition 2.4 (4), the projection � is 1-Lipschitz. More-
over, since C is convex in X0 as well as in X , we have for all x; y 2 X0,

dX0
jC .�.x/; �.y// D dC .�.x/; �.y//

D dX jC .�.x/; �.y//

� dX .x; y/ � dX0
.x; y/: �

5.2.1. Linear Dehn functions in top dimension. The next theorem confirms Con-
jecture 1(iv) for lattices in semisimple groups.

Theorem 3. Let X D G=K be an n-dimensional symmetric space of noncompact
type (without Euclidean factor) and let � � G be a lattice. Then the top-dimensional
Dehn function of � is linear:

ın�1
� .l/ � l:

Proof. If � is uniform the claim follows from Theorem 2. If � is non-uniform, it
does not act cocompactly on X , but there is a suitable subspace X0 of X obtained by
deleting a �-invariant family of horoballs on which � acts cocompactly (see [23] for
rank X D 1 and [33] for rank X � 2). Since � is not virtually solvable (see [39],
Chapter 4, Theorem 3.6) it contains a free group by the Tits alternative and thus is non-
amenable. Moreover, X and X0 have bounded geometry. Thus, by [26], 0.5.A6, the
n-dimensional (Hausdorff) volume of any domain � � X0 with .n�1/-dimensional
measurable boundary @� satisfies a linear isoperimetric inequality

voln.�/ � const. voln�1.@�/
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for a uniform constant depending only on X0. This observation yields a linear upper
bound for the n-dimensional filling function (and hence the .n�1/-dimensional Dehn
function).

In order to get a linear lower bound for the n-dimensional filling function, we
choose a geodesic c in X0 that is mapped to a closed geodesic in X=� . Such a c

exist: One can e.g. choose c in a �-closed flat (see [38], Lemma 8.30). Then take (a
small) ı > 0 such that the ı-tube around c is completely contained in X0 (replace X0

by a 2ı-neighbourhood of X0 if necessary). The ı-tube Uı.cl/ of a segment of c of
length l is a convex subset of X and also of X0 (see [14], Chapter II, Corollary 2.5). By
Lemma 4 the orthogonal projection from X to Uı.cl/ restricted to X0 is 1-Lipschitz.
Hence any filling of @Uı.cl/ in X0 has at least the same volume as a filling in Uı.cl/.
Since X and X0 have bounded geometry, we have

voln.Uı.cl// � l � voln�1.@Uı.cl//

which yields the claimed linear lower bound for the n-dimensional filling function.

5.2.2. Proof of Conjecture 1 for real and complex hyperbolic lattices. Here we
confirm Conjecture 1 for non-uniform lattices (arithmetic or not) in SO.n; 1/ resp.
SU.n; 1/, the group of orientation preserving isometries of real hyperbolic space
H nR resp. complex hyperbolic space H nC. Notice that in this case the Euclidean
rank of X D H nR (resp. H nC) is one, so that Conjecture 1 reduces to parts (iii)
and (iv). Note further that uniform lattices in SO.n; 1/ resp. SU.n; 1/ are covered by
Theorem 2: As the rank is one, all higher-dimensional Dehn functions are linear.

Theorem 4. Let � be a non-uniform lattice in SO.n; 1/. Then the higher-dimensional
Dehn functions of � satisfy

(a) ık
�.l/ � l

kC1
k for 1 � k � n � 2,

(b) ın�1
� .l/ � l .

Proof. It is well known that � acts geometrically on a CAT(0) space X0 obtained from
real hyperbolic space H nR by removing a �-invariant family of disjoint horoballs
(see [14], Theorem 11.27, Corollary 11.28). The Euclidean rank of X0 is n � 1 and
(isolated) maximal flats are provided by the boundary horospheres of the deleted
horoballs. By Wenger’s result (Proposition 1) the simply connected CAT(0) space
X0 satisfies Euclidean isoperimetric inequalities below the rank:

FVkC1
X0

.l/ � l
kC1

k for 1 � k � n � 2;

Lower Euclidean bounds are obtained as follows. Take a maximal flat in X0, i.e., a
boundary horosphere H , and a round k-sphere †k � H . By Lemma 4 the orthogonal
projection from X0 to the convex subspace H is 1-Lipschitz. Hence the projection
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of any minimal filling �kC1 of †k in X0 orthogonally projects to an even smaller
minimal filling �0

kC1
of †k in H and hence is a .k C 1/-ball, which yields the

Euclidean lower bound:

volkC1.�kC1/ � volkC1.�0
kC1/ � .volk.†k//

kC1
k :

Claim (b) on the top-dimensional Dehn function follows from Theorem 3.

Theorem 5. Let � be a non-uniform lattice in SU.n; 1/. Then the higher-dimensional
Dehn functions of � satisfy

(a) ık
�.l/ � l

kC1
k for 1 � k � n � 2,

(b) ın�1
� .l/ � l

nC1
n�1 ,

(c) ık
�.l/ � l

kC2
kC1 for n � k � 2n � 2,

(d) ı2n�1
� .l/ � l .

Proof. As in the proof of Theorem 4 we use the fact that � acts geometrically on
a space X0 obtained from real hyperbolic space H nC by removing a �-invariant
family of disjoint horoballs (see e.g. [23] or [33]). Notice that in contrast to the real
hyperbolic case, this X0 is not a CAT(0) space. The boundary horospheres of X0

can be identified with .2n � 1/-dimensional Heisenberg groups H2n�1. Moreover,
given a boundary horosphere H � @X0, there is a 1-Lipschitz retraction r W X0 ! H

(see [33]). Hence, if † is a k-cycle in H any filling � of † in X0 cannot be of smaller
volume than that of the minimal filling of † in H . This yields lower bounds for the
filling functions of X0:

FVkC1
X0


 FVkC1
H

for 1 � k � 2n � 2:

In order to obtain upper bounds we argue as in [26], 5.D.5 (c). Given a k-cycle †

in X0 we first take a filling z� of † in X with volkC1. z�/ � volk.†/ (such a linear
filling exists by Theorem 1). Then we consider the intersection z† WD z� \ @X0. This
is a k-cycle in @X0. We fill z† by a minimal .k C 1/-chain y� in @X0. Together with
z� \ X0 this eventually yields a .k C 1/-chain � which fills † in X0.

Now assume that volk.†/ D l . By taking a 	-neighbourhood of z† we see that

volk.z†/ � volkC1.U�.z†/ \ z�/ < volkC1. z�/ � volk.†/:

Hence also have volk.z†/ � l . This yields

volkC1.�/ � volkC1. z� \ X0/ C volkC1. y�/

� volkC1. z�/ C volkC1. y�/ � l C FVkC1
@X0

.l/;
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where the last estimate follows from the fact that y� is a minimal filling in @X0 of
the cycle z†, which by the above also has k-volume � l . Since @X0 is the union of
disjoint horospheres we further have FVkC1

@X0
� FVkC1

H
. We conclude that

FVkC1
X0

.l/ � l C FVkC1
H

.l/ � l C FVkC1
H2n�1

.l/:

The higher-dimensional filling functions of Heisenberg groups have been determined
by Young in [51]. As they are superlinear we obtain that

FVkC1
X0

� FVkC1
H2n�1

� FVkC1
H

:

Together with the lower bound above this eventually yields for the filling functions
of X0:

FVkC1
X0

� FVkC1
H

� FVkC1
H2n�1

for 1 � k � 2n � 2:

As � is quasi-isometric to X0 we get for the Dehn functions for �:

ık
� � ık

X0
� ık

H � ık
H2n�1

for 1 � k � 2n � 2:

Parts (a), (b) and (c) of the theorem then follow from [51].
Claim (d) on the linear top-dimensional Dehn function follows from Theorem 3.

5.2.3. Low dimensional Euclidean lower bounds. The last argument of the proof
of Theorem 4 (a) generalizes to non-uniform lattices of semisimple Lie groups:

Theorem 6. Let � be an irreducible, non-uniform lattice in a semisimple Lie group
G acting on a symmetric space X D G=K of rank r . Then the Dehn functions of
dimension between 1 and r � 2 have Euclidean lower bounds:

ık
�.l/ 
 l

kC1
k if 1 � k � r � 2:

Proof. A theorem of Mostow asserts that there are many closed maximal flats in
Xn� , see [38], Lemma 8.3, 8.30. Pick one such flat and its universal cover F in X0

(a length subspace of X quasi-isometric to � , see [23] and [33]). Then the restriction
of the orthogonal projection � W X ! F to X0 is 1-Lipschitz by Lemma 4 and the
claim follows from the solution of the Euclidean isoperimetric problem in F .

5.2.4. Exponential (r-1)-dimensional Dehn functions. Conjecture 1 (ii), i.e., that
the .r � 1/-dimensional Dehn function is exponential, has been proved in a number
of cases.

By a result of Gromov (see [33] for a detailed proof) Dehn functions (of any
dimension) of linear groups are at most exponential.

Wortman, in [48], established lower exponential bounds for many non-uniform
arithmetic subgroups of semisimple algebraic Q-group. The cases where the conjec-
ture for such groups is still open are those of relative Q-type BCn, G2, F4 and E8.
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In [34] we proved exponential lower bounds for the 1-dimensional Dehn function
of (irreducible) non-uniform lattices in all semisimple Lie groups of rank 2.

By Taback [45], the 1-dimensional Dehn function for the (simplest) S -arithmetic
group PSL2.ZŒ 1

p
�/, p a prime number, is exponential.

5.3. The Bux–Wortman conjecture. A unified approach to large scale properties
of S -arithmetic groups on function fields or number fields has been formulated in a
conjecture by Bux and Wortman [17]. It is based on a geometric version of reduction
theory and uses the concept of coarse manifolds to measure the distorsion of the
metrics in various dimensions.

A coarse n-manifold of scale s in a metric space X is the image of a map C W M !
X from a triangulated n-dimensional manifold M (with boundary) such that any two
adjacent vertices of the triangulation are mapped to points of distance at most s in X .
The boundary of a coarse manifold is the image under C of the boundary of M . The
volume of a coarse manifold is defined as the number of vertices in the triangulation.
A subset Y � X is called (homotopically) undistorted in dimension k, if there are
positive constants s1 and s2 and a linear function L W R ! R such that the following
holds:

For any coarse k-ball B in X of scale at most s1 whose boundary is a coarse
sphere in Y , there is a coarse k-ball B 0 in Y of scale at most s2 with the same
boundary, such that volk.B 0/ � L.volk.B//.

The (homotopical) distorsion dimension of Y in X is the largest dimension k such
that Y is homotopically undistorted in dimension k.

Consider now a reductive K-group G defined over a global field K and a fi-
nite set S of valuations as in Section 4.1. Let G S be the semisimple Lie group
G S D Q

v2S G .Kv/ endowed with a left-invariant metric. Notice that this metric
space is quasi-isometric to the product X D S � B of a symmetric space and Eu-
clidean buildings on which G S acts isometrically. The metric on G S restricts to the
diagonally embedded lattice G .OS /. The Euclidean rank r of G S (or X ) is the sum
of the local ranks r WD P

s2S rankKv
G .

Conjecture 2 (Bux–Wortman, [17]). The S -arithmetic subgroup G .OS / has distor-
tion dimension r � 1 as a subgroup of the reductive group G S with respect to the
metrics defined above.

As mentioned above, S -arithmetic groups over number fields are of type F1. In
contrast, S -arithmetic groups over function fields are almost never of type F1.

Conjecture 1 (ii) implies that the upper bound in Conjecture 2 is sharp also in the
number field case. This indicates that are deep similarities from the point of view
of coarse geometry between S -arithmetic groups over function fields and those over
number fields: In both cases the distortion dimension should be equal to the Euclidean
rank minus 1.
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A weakened and special case of Conjecture 2 has recently been established in [6].
Further evidence comes from the solution of Thurston’s conjecture, that SLn.Z/ has
a quadratic 1-dimensional Dehn function, by Young (see [50] for n � 5). Work
of Lubotzky–Mozes–Raghunathan [35] asserts that, for r � 2, G .OS / is undis-
torted in G S in dimension 1. Since this is not the case for r D 1, it follows that
dist-dim.G .OS // D 0 if and only if the Euclidean rank of G S is 1. Moreover, re-
sults of Leuzinger–Pittet [34] (for number fields), Behr [5] (for function fields) and
Taback [45] (for PSL2.ZŒ 1

p
�/) show that dist-dim.G .OS // D 1, if the Euclidean rank

of G S is 2.
Finally, we remark that in view of Theorem 1 and Theorem 6, in order to prove

Conjecture 2, the problem is to establish Euclidean isoperimetric inequalities below
the rank.

Acknowledgement. I thank Robert Young for pointing out to me some inaccuracies
in an earlier version of this paper.
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