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Amenable groups with a locally invariant order
are locally indicable

Peter Linnell�and Dave Witte Morris

Abstract. We show that every amenable group with a locally invariant partial order has a left-
invariant total order (and is therefore locally indicable). We also show that if a group G admits
a left-invariant total order, and H is a locally nilpotent subgroup of G, then a left-invariant total
order on G can be chosen so that its restriction to H is both left-invariant and right-invariant.
Both results follow from recurrence properties of the action of G on its binary relations.
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1. Introduction

The purpose of this note is to point out two easy consequences of the proof that finitely
generated, amenable, left-orderable groups have nontrivial first Betti number [6]. (See
Section §2A for the relevant definitions.)

Any left-invariant total order is a locally invariant order, so it is obvious that every
left-orderable group has a locally invariant order. There is no known counterexample
to the converse (cf. p. 1163 of [2]), and we show that the converse is indeed true for
amenable groups. (In particular, the converse is true for all virtually solvable groups.
This does not seem to be trivial even for groups that are virtually abelian.)

Theorem 1.1. Every amenable group with a locally invariant order is left-orderable.
Therefore, the group is locally indicable.

We also prove a new result on extending an ordering of a subgroup to an ordering
of the ambient group:

Theorem 1.2. If

� G is a left-orderable group, and

�The first author was partially supported by a grant from the NSA.
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� H is a locally nilpotent subgroup of G,

then there is a left-invariant total order on G, such that the restriction of the order
to H is bi-invariant.

Remark 1.3. The subgroup H is not assumed to be convex, or normal (or anything
else, other than locally nilpotent), so it is difficult to imagine how Theorem 1.2 could
be attacked by the classical methods of the theory of orderable groups. However, we
will see that it (and also Theorem 1.1) can be proved very easily by using the action
of G on the space of its left-invariant orders, an idea that was recently introduced into
the subject by É. Ghys and A. S. Sikora. See [7] for more discussion and applications
of this method.

Here is an outline of the paper. Section 2 provides some standard definitions and
discusses the topology on the space of binary relations. Section 3 explains the use of
amenability to obtain recurrence in the space of binary relations. Section 4 proves
Theorem 1.1. Section 5 proves Theorem 1.2. Finally, Section 6 shows that groups
with a locally invariant order can also be characterized as the groups that are “diffuse”
or “weakly diffuse” in the sense of B. Bowditch [1].
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in the workshop on “Ordered Groups and Topology” (Banff International Research
Station, Alberta, Canada, February 12–17, 2012) for many helpful conversations, for
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could be inserted into the statement of Theorem 1.2. Remark 5.3 (2) was provided by
D. Rolfsen (an organizer of the workshop). We also thank the BIRS staff for the warm
hospitality that provided such a stimulating research environment, andA. M. W. Glass
for helpful comments on a previous version of this paper.

2. Preliminaries

§2A. Some standard definitions

Definitions 2.1 ([5]). Let G be a group.

� A partial order on G is a transitive, irreflexive binary relation � on G. That
is, x 6� x, and, for all x; y; z 2 G, if x � y and y � z, then x � z.

� A total (or “linear”) order on G is a partial order �, such that, for all x; y 2 G

with x ¤ y, we have either x � y or x � y.

� � is left-invariant if, for all x; y; g 2 G, we have x � y ) gx � gy.

� � is bi-invariant if it is both left-invariant and right-invariant. That is, if x � y,
then gx � gy and xg � yg, for all x; y; g 2 G.
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� G is left-orderable if there exists a left-invariant total order on G.

� G is locally nilpotent if every finitely generated subgroup of G is nilpotent.

� G is locally indicable if every nontrivial finitely generated subgroup of G has
an infinite, cyclic quotient.

Definition 2.2 ([2]). A partial order � on G is locally invariant if, for all x; y 2 G

with y ¤ e, we have either xy � x or xy�1 � x.

Remark 2.3. It is an easy exercise ([2], Lemma 1.1), to show that a group G has a
locally invariant order iff there exists a partially ordered set .P ; �/ and a function
� W G ! P , such that, for all x; y 2 G with y ¤ e, we have either �.xy/ � �.x/

or �.xy�1/ � �.x/. (When G is countable, one may take .P ; �/ to be .R; </.) For
example, Rn has a locally invariant order, because we may take �.x/ D kxk.

The notion of an amenable group has many different definitions that are all equiv-
alent to one another. We choose the one that is most convenient for our purposes.

Definition 2.4 ([9], p. 9 and Theorem 5.4 (i), (iii)).

� A measure � on a measure space X is said to be a probability measure if
�.X/ D 1.

� A (discrete) group G is amenable if for every continuous action of G on a
compact, Hausdorff space X , there is a G-invariant probability measure on X .

Example 2.5 ([9], Corollaries 13.5 and 13.10). It is fairly easy to see that every
solvable group is amenable. It is also easy to see that if every finitely generated
subgroup of G is amenable, then G is amenable. Therefore, every locally solvable
group is amenable. In particular, every locally nilpotent group is amenable.

We also need the following two facts. The second is an easy observation, but the
first is nontrivial.

Lemma 2.6 ([9], Propositions 13.3 and 13.4). Assume G is amenable. Then:

(1) every subgroup of G is amenable, and

(2) G � G is amenable.

§2B. Topology and action on the space of binary relations. A. S. Sikora [11]
introduced a topology on the space of left-invariant total orders on G, and É. Ghys
(personal communication) observed that it would be useful to study the natural action
of G on this space. For our present purposes, we describe these ideas in the context
of more general binary relations on G, not just left-invariant orders.
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Definition 2.7. The collection of all subsets of a set X can be identified with the
collection 2X of all functions f W X ! f0; 1g (by identifying a subset with its char-
acteristic function). Since 2X can also be viewed as the Cartesian product of #X

copies of the finite set f0; 1g, Tychonoff’s Theorem provides it with a natural topol-
ogy, in which it is a compact Hausdorff space. (And it is metrizable if X is countable.)

Definition 2.8. For any set X , each subset of X � X is said to be a binary relation
on X . Therefore, Definition 2.7 tells us that the set of all binary relations on X has
the topology of a compact Hausdorff space. (Hence, the same is true for any of its
closed subsets.) The topology is defined so that

for any x; y 2 X , the subset f R 2 2X�X j x R y g is both open and closed:

Therefore, any subset that is defined by a Boolean combination of finitely many
assertions of the form x1 � y1, x2 � y2, …, xn � yn is also closed (and open).
So the intersection of any collection of such subsets (even an infinite collection) is
closed (but may not be open).

Remark 2.9. For any subgroup H of G, there is a natural restriction map from 2G�G

to 2H�H . It is obvious that this is continuous.

Definition 2.10. Let G be an abstract group. Then G acts on 2G�G by both left-
translations and right-translations. These commute, so there is an action of G � G

on 2G�G , defined by

x R.g;h/ y () gxh�1 R gyh�1:

It is clear that this is an action by homeomorphisms.

Example 2.11. Let G be a group. Here are some important examples of closed
subsets of 2G�G that are invariant under the action of G � G.

(1) The set of all partial orders on G, defined by the axioms

x 6� x

.x � y/ and .y � z/ H) x � z

(2) The set of locally invariant orders on G, defined by the axioms for a partial
order, together with

y ¤ e H) .x � xy/ or .x � xy�1/

(3) The set of all total orders on G, defined by the axioms for a partial order,
together with

x ¤ y H) .x � y/ or .x � y/
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(4) (Sikora [11]) The set of left-invariant total orders on G, defined by the axioms
for a total order, together with

x � y H) zx � zy

(5) (Navas [7], Proposition 3.7) The set of Conradian orders on G, defined by the
axioms for a left-invariant total order, together with

.x � e/ and .y � e/ H) xy2 � y

3. Recurrence in the space of binary relations

Definition 3.1 (cf. [6], Definition 3.2). Let G be a group, and let R 2 2G�G .

� For .g; h/ 2 G�G, we say R is recurrent for .g; h/ if, for every finite subset F

of G, there exists n 2 ZC, such that R.g;h/n
and R have the same restriction

to F . (If G is countable, this is equivalent to the assertion that there is a
sequence ni ! 1, such that R.g;h/ni !R as i ! 1.)

� R is recurrent if it is recurrent for every element of G � G.

It is important to realize that most groups do not have a left-invariant total order
that is recurrent:

Lemma 3.2 ([6], Corollary 4.4). If G has a left-invariant total order that is recurrent,
then G is locally indicable.

Proof. Recall that a left-invariant total order � on G is said to be Conradian (see [5],
Lemma 2.4.1 (c)) if for all x; y 2 G with x; y � e, there exists n 2 NC, such that
xyn � y. It is easy to see that every recurrent left-invariant total order is Conradian
(because there is some n with xyn � yn � y), and it is well known that any group
with a Conradian order must be locally indicable (see [3] or Theorem 2.4.1 of [5]).

The following theorem is the main result of [6] (and is the culmination of a
series of previous theorems of A. H. Rhemtulla, I. M. Chiswell, P. H. Kropholler, and
P.A. Linnell that have stronger hypotheses in the place of “amenable”).

Theorem 3.3 (D. W. Morris [6]). If G is a countable, amenable group, and G has a
left-invariant total order, then G has a left-invariant total order that is recurrent.

The proof actually establishes the following stronger statement:

Proposition 3.4. Let



472 P. Linnell and D. Witte Morris

� G be a countable, amenable group, and

� R be a binary relation on G.

Then there exists a sequence f.gn; hn/g1
nD1 of elements of G � G, such that the

sequence fR.gn;hn/g1
nD1 converges to a binary relation that is recurrent.

Proof. For the reader’s convenience, we provide an outline of the proof. See [6] for
more details of the main steps (2, 3, and 4).

(1) Let RG�G be the closure of the .G�G/-orbit of R in 2G�G . Note that RG�G

is compact, since it is a closed subset of the compact space 2G�G .

(2) Since G � G is amenable (see Lemma 2.6 (2)), there exists a .G � G/-invariant

probability measure on RG�G .

(3) Since there is an invariant probability measure, the Poincaré Recurrence The-
orem ([12], Theorem 1) tells us, for each .g; h/ 2 G � G, that almost every

element of RG�G is recurrent for .g; h/.

(4) Since G � G is countable, and the union of countably many sets of measure 0

is still a set of measure 0, we can reverse the quantifiers: for almost every

S 2 RG�G , the binary relation S is recurrent for every .g; h/ 2 G � G.

(5) Since S 2 RG�G and 2G�G is a metric space (because G is countable), there
exists a sequence f.gn; hn/g1

nD1 of elements of G � G, such that R.gn;hn/ ! S

as n ! 1.

Corollary 3.5. Let

� G be a left-orderable group,

� H be a countable, amenable subgroup of G, and

� R be a nonempty, closed, .H � H/-invariant subset of 2G�G .

Then there exists R 2 R, such that the restriction of R to H is recurrent.

Proof. Let R 2 R, and let r be the restriction of R to H . Then Proposition 3.4
provides a sequence f.gn; hn/g1

nD1 of elements of H � H , such that fr .gn;hn/g1
nD1

converges to a recurrent binary relation r1.
Since 2G�G is compact, the sequence fR.gn;hn/g1

nD1 must have an accumulation
point; call it R1. (Note that R1 2 R, since R is closed and .H � H/-invariant.)
Since the restriction map 2G�G ! 2H�H is continuous, we know that the restric-
tion of R1 to H must be an accumulation point of fr .gn;hn/g1

nD1. However, this
sequence converges, so it has a unique accumulation point, namely r1. Therefore,
the restriction of R1 to H must be r1, which is recurrent.

By letting R be the set of left-invariant total orders, or the set of locally invariant
orders, we see that the following two results are special cases of Corollary 3.5.
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Corollary 3.6. Let

� G be a left-orderable group, and

� H be a countable, amenable subgroup of G.

Then there exists a left-invariant total order � on G, such that the restriction of �
to H is recurrent.

Corollary 3.7. Let

� G be a group with a locally invariant order, and

� H be a countable, amenable subgroup of G.

Then there exists a locally invariant order � on G, such that the restriction of �
to H is recurrent.

Remarks 3.8. (1) If � is left-invariant, then �.g;h/ is independent of g, so we may
write �h.

(2) By letting R D �H , we see that the order � in the conclusion of Corollary 3.6
can be chosen to be in �H .

(3) Furthermore, if C is any countable subset of G, then � can be chosen so that
� is “recurrent for H on C .” That is, for all h 2 H and all x1; x2; : : : ; xr 2 C with
x1 � x2 � � � � � xr , there exists n 2 NC, such that x1hn � x2hn � � � � � xrhn.

(4) Therefore, if G is countable, then � can be chosen to be recurrent for every
element of H , and there is a sequence fhng1

nD1 of elements of H , such that �hn ! �.

4. Proof of Theorem 1.1

Proposition 4.1. Let � be a locally invariant order on G that is recurrent for all
right-translations. Then:

(1) The restriction of � to any left coset of any cyclic subgroup of G is either the
standard linear order or its reverse. That is, for any g; x 2 G, with x ¤ e,
we have either

� � � � gx�2 � gx�1 � g � gx � gx2 � � � � ;

or
� � � � gx�2 � gx�1 � g � gx � gx2 � � � � :

(In particular, � is a total order on G.)

(2) The positive cone of � is closed under multiplication.

(3) G is left-orderable.
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Proof. (1) Suppose this conclusion does not hold. Then, perhaps after replacing g

with gxn, for some n 2 Z, we have

g � gx � gx2 � gx3 � � � � and gx�1 � gx�2 � gx�3 � � � � .

Since gx�1 � gx�2, and � is recurrent for right-translation by x, there exists k 2 ZC,
such that .gx�1/xkC2 � .gx�2/xkC2. This means gxkC1 � gxk , which contradicts
the fact that g � gx � gx2 � � � � .

(2) Suppose there exist x and y, such that x � e and y � e, but xy 6� e. Since
(1) tells us that � is a total order, we must have xy � e. Then x � xy (because
x � e � xy), so, from (1), we must have

x � xy � xy2 � � � � ;

so
e � xy � xyn for all n 2 ZC:

On the other hand, since � is recurrent for right-translation by y, and x � e, we
know there is some n 2 ZC, such that xyn � eyn � e. This is a contradiction.

(3) Let P D f x 2 G j x � e g be the positive cone of �. For any x 2 G

with x ¤ e, letting g D e in (1) tells us that either x 2 P or x�1 2 P (but not
both). Furthermore, (2) tells us that P is closed under multiplication. Therefore (see
[5], Theorem 1.5.1) P is the positive cone of a left-invariant total order on G (but the
left-invariant order may be different from �).

Proof of Theorem 1.1. Assume G is an amenable group that has a locally invariant
order. We wish to show that G is left-orderable. There is no harm in assuming that G

is finitely generated ([5], Corollary 3.1.1), and hence countable. Then Corollary 3.7
(with H D G) tells us that G has a locally invariant order that is recurrent. So
Proposition 4.1 (3) tells us that G is left-orderable.

Now Theorem 3.3 and Lemma 3.2 tell us that G is locally indicable.

5. Proof of Theorem 1.2

Notation 5.1. Let x and h be elements of a group H .

� We use xh to denote the conjugate h�1xh.

� We use Œx; h� to denote the commutator x�1h�1xh D x�1xh.

Lemma 5.2. If � is a recurrent left-invariant total order on a locally nilpotent
group H , then � is bi-invariant.

Proof. Let P D f x 2 H j x � e g be the positive cone of �. We wish to show P is
invariant under conjugation by elements of H .
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Arguing by contradiction, let us assume there exist x; h 2 H , such that

x � e and xh � e.

Since fx; hg is finite, there is no harm in assuming H is finitely generated. Hence,
H is nilpotent, so there is a central series

H D Hr F Hr�1 F � � � F H1 F H0 D feg;
such that ŒHk; H � � Hk�1 for every k.

Fix k, such that x 2 Hk , and assume, by induction, that P \ Hk�1 is invariant
under conjugation by elements of H . Since x � e, but xŒx; h� D xh � e, we must
have Œx; h� � e. Then, since Œx; h� 2 ŒHk; H � � Hk�1, our induction hypothesis
tells us that

Œx; h�h
i � e for every i 2 Z.

Therefore, for every n 2 ZC, we have

xhn D xh Œxh; h� Œxh2

; h� � � � Œxhn�1

; h�

D xh Œx; h�h Œx; h�h
2 � � � Œx; h�h

n�1

� e:

Since x � e, this contradicts the fact that � is recurrent.

Proof of Theorem 1.2. Assume, for the moment, that H is countable. Then, since H

is amenable (see Example 2.5), Corollary 3.6 provides us with a left-invariant total
order � on G, such that the restriction of � to H is recurrent. Lemma 5.2 tells us
that the restriction to H must be bi-invariant, as desired.

Now consider the general case.

� Let LO.G/ be the set of left-invariant total orders on G.

� For each subgroup K of H , let

BG.K/ D f � 2 LO.G/ j the restriction of � to K is bi-invariant g:

� Let C be the collection of countable subgroups of H .

For K1; : : : ; Kn 2 C , the subgroup hK1; : : : ; Kni is countable, so the first paragraph
of the proof implies that

BG.K1/ \ � � � \ BG.Kn/ 	 BG

�hK1; : : : ; Kni� ¤ ;:

Since each BG.K/ is easily seen to be a closed subset of LO.G/, and LO.G/ is
compact, we conclude that

T
K2C BG.K/ ¤ ;. Since every finite subset of H is

contained in an element of C , we know that any element of this intersection is a
left-invariant total order on G whose restriction to H is bi-invariant, as desired.
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Remarks 5.3. (1) The bi-invariance of all recurrent orders holds for a more general
class of amenable groups than just those that are locally nilpotent. For example, let
us say that G is positively polycyclic if G is a polycyclic group that is isomorphic to
a group of upper-triangular n � n real matrices with all diagonal entries positive (for
some n). Generalizing Lemma 5.2, it can be shown that if G is a locally positively
polycyclic group, then every recurrent left-invariant total order on G is bi-invariant.
Therefore, Theorem 1.2 remains valid if the word “nilpotent” is replaced with “posi-
tively polycyclic”.

(2) On the other hand, the word “locally” in Theorem 1.2 cannot be replaced with
the phrase “residually torsion-free,” even if we add the additional assumption that
H has finite index in G. For example, a braid group on 5 or more strands has no
left-order whose restriction to a subgroup of finite index is bi-invariant (see [4] or
Theorem 3.2 of [10]), even though the subgroup of pure braids is a subgroup of finite
index that is residually torsion-free nilpotent.

6. Diffuse groups and weakly diffuse groups

Definition 6.1 ([1]). Let G be a group.

(1) An element Oa of a subset A of G is an extreme point of A if, for all nonidentity
h 2 G, we have either Oa h … A or Oa h�1 … A. Equivalently, we have Oa�1A \
A�1 Oa D feg, where A�1 D f a�1 j a 2 A g.

(2) G is weakly diffuse if every nonempty, finite subset of G has an extreme point.

(3) G is diffuse if every finite subset A of G with #A 
 2 has at least two extreme
points.

Answering questions of B. Bowditch ([1], p. 815) and I. Chiswell ([2], p. 1163),
we observe that the above two properties of G are equivalent to the existence of a
locally invariant order relation:

Proposition 6.2. For any group G, the following are equivalent:

(1) G is diffuse.

(2) G is weakly diffuse.

(3) G has a locally invariant total order.

(4) G has a locally invariant partial order.

Proof. We prove .1/ , .2/ and .2/ ) .3/ ) .4/ ) .2/. Begin by noting that
.1/ ) .2/ and .3/ ) .4/ are trivial. Also, .4/ ) .2/ is well known (and not
difficult), cf. Lemma 1.2 (2) of [2].

.2 ) 1/ Suppose G is weakly diffuse, but not diffuse. Then there is a finite
subset A of G with #A 
 2, such that the extreme point of A is unique. After
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multiplying A on the left by an element of G, we may assume that the extreme
point of A is e. Then e is also the unique extreme point of A�1. (In general, since
Oa�1A \ A�1 Oa D Oa�1

� OaA�1 \ A Oa�1
� Oa, we see that Oa is an extreme point of A if

and only if Oa�1 is an extreme point of A�1.) So the only possible extreme point of
A [ A�1 is e. However, if we let h be any nonidentity element of A, then we have
eh˙1 D h˙1 2 A [ A�1, so e is not an extreme point. Therefore A [ A�1 has no
extreme points, which contradicts the fact that G is weakly diffuse.

.2 ) 3/ Assume G is weakly diffuse. We wish to show that G has a locally
invariant total order. By a straightforward compactness argument, it suffices to show
that every finite subset A of G has a total order <A with the following property:

for all a 2 A and all nonidentity h 2 G, such that ah 2 A and ah�1 2 A,

we have either a <A ah or a <A ah�1:
(6.3)

We construct <A by induction on the cardinality of A. Since G is weakly diffuse,
there exists an extreme point Oa of A. (Note that the condition in (6.3) is vacuously
true for a D Oa.) By the induction hypothesis, there is a total order on A X fOag
that satisfies (6.3) when A is replaced with A X fOag. We extend this to a total order
on A by specifying that Oa is the unique maximal element. Then the resulting order
satisfies (6.3).

Thus, Theorem 1.1 can be restated in the following form:

Theorem6.4. Anamenable group isweakly diffuse if and only if it is locally indicable.
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