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Abstract. We describe the C *-algebra of an E-unitary or strongly 0- E-unitary inverse semi-
group as the partial crossed product of a commutative C *-algebra by the maximal group image
of the inverse semigroup. We give a similar result for the C *-algebra of the tight groupoid
of an inverse semigroup. We also study conditions on a groupoid C *-algebra to be Morita
equivalent to a full crossed product of a commutative C *-algebra with an inverse semigroup,
generalizing results of Khoshkam and Skandalis for crossed products with groups.
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1. Introduction

E-unitary inverse semigroups are perhaps the most commonly studied class of in-
verse semigroups. One reason for this is that many interesting semigroups, including
those studied in operator theory, are either E-unitary or strongly 0-E-unitary. An-
other reason is that there is a very explicit structure theorem for this class known
as McAlister’s P-Theorem. It describes E-unitary inverse semigroups in terms of a
group acting partially on a semilattice. It is natural to try to interpret this result at the
level of C *-algebras using crossed products, and indeed many authors have given de-
scriptions of inverse semigroup algebras that are suggestive of this approach (cf. [12],
[21], [5]), but none have been applicable in the same generality as the P-Theorem.

For example, in [12], Khoshkam and Skandalis studied the C *-algebras of certain
locally compact groupoids admitting cocyles. They showed the algebras of such
groupoids are Morita equivalent to crossed products. As an application to inverse
semigroups, they show that the C *-algebras of a restricted class of E-unitary inverse
semigroups are Morita equivalent to crossed products of the maximal group image
by a commutative C*-algebra related to the idempotents. They also point out that
their results do not hold for all E-unitary inverse semigroups.

*The second author work was partially supported by a grant from the Simons Foundation (#245268 to
Benjamin Steinberg) and by NSERC. Some of this work was done while the second author was at Carleton
University



486 D. Milan and B. Steinberg

In Section 3 of this paper it is shown that the C *-algebra of an E-unitary inverse
semigroup is isomorphic to a partial crossed product (in the sense of [3] and [18]) of
the maximal group image G by the algebra of its subsemigroup of idempotents E.
In fact, results are given for both the full and reduced C *-algebras that correspond to
full and reduced partial crossed products respectively.

Next we use groupoid reductions to apply the results of Section 3 to the inverse
semigroups that typically appear in the C*-algebra literature. Most contain a zero
element, but inverse semigroups with zero are only E-unitary in trivial cases. How-
ever, in Section 5 we give crossed product results for strongly 0- E-unitary inverse
semigroups, which are precisely the inverse semigroups with zero for which a variant
of the P-Theorem holds. By considering reductions we are also able to give crossed
product results for the C *-algebra of the tight groupoid associated with such an in-
verse semigroup in [4]. This is especially important in light of examples such as
the Cuntz algebras O, and the C *-algebras of directed graphs that are quotients of
inverse semigroup algebras, and have also been identified as the C *-algebras of the
tight groupoid of the relevant inverse semigroups [4].

In the final section we study Morita equivalence with a view toward understanding
the relationship between our results, the work of Khoshkam and Skandalis [12], and
related work of Abadie [1], [2]. We find that the Morita equivalence in [1] can be
viewed as a special case of some of the results in [12]. Also, by replacing the cocycle
appearing in [12] with a morphism between groupoids, we study Morita equivalence
in a more general context. In particular, we give conditions which guarantee that a
locally compact groupoid is Morita equivalent to a groupoid of germs of an inverse
semigroup action. To apply this to inverse semigroups, we investigate the functo-
riality of the assignment S > ¢ (S) of Paterson’s universal groupoid to an inverse
semigroup S [22]. We define a condition, called the Khoshkam—Skandalis condi-
tion, on a morphism of inverse semigroups that generalizes the one in Proposition 3.9
of [12]. It guarantees that a morphism ¢ : § — T induces a Morita equivalence be-
tween C *(S) and a crossed product of 7' by a commutative C *-algebra, generalizing
the Morita equivalence in Corollary 3.11 of [12] for the case where T is a group and
@ is the maximal group image homomorphism. In particular, we generalize Theo-
rem 3.10 of [12] from E-unitary inverse semigroups to strongly 0- E-unitary inverse
semigroups and locally E-unitary inverse semigroups. A key role is played by the
identification of a certain category of T'-actions with the category of ¢ (T)-actions.

2. Preliminaries

In this paper, compact will always mean compact and Hausdorff. We will use the
term quasi-compactness for the condition that every open cover has a finite subcover.
Note that a locally compact space need not be Hausdorff. Since we are principally
interested in operator algebras associated to groupoids and inverse semigroups, all
locally compact spaces will be assumed o-compact and, in particular, all discrete
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groups and semigroups will be assumed countable. Readers who are not interested
in analytic results can safely drop these assumptions. We have chosen to maintain
this convention in order to avoid cumbersome hypotheses in our theorems.

A groupoid ¢ is a small category in which each arrow is invertible. We will
use the “arrows only” approach to groupoids and identify the objects with the space
of units ¢° when convenient. The domain and range of an arrow are denoted d
and r respectively. A topological groupoid is a groupoid endowed with a topology
such that the domain, range, multiplication and inversion maps are continuous. A
locally compact groupoid for us means a topological groupoid with a locally compact
topology such that the unit space is Hausdorff. We also assume, following Paterson,
that alocally compact groupoid has a left Haar system [22]. This implies, in particular,
that the domain and range maps are open. For more on topological and locally compact
groupoids, see [24], [22], [12].

An étale groupoid is a topological groupoid & whose unit space is locally compact
Hausdorff, and such that the domainmap d : ¢ — %° (or equivalently the range map)
is alocal homeomorphism. We do not assume ¢ is Hausdorff. The counting measures
give a left Haar system for an étale groupoid [4], [22], [24] and so étale groupoids
are locally compact in the above sense.

A semigroup S is an inverse semigroup if, for each s in S, there exists unique s*
in S such that

s =ss"s and s = s¥ss™.

We state some basic definitions concerning inverse semigroups here; a thorough
treatment of the subject can be found in [13].

There is a natural partial order on S definedby s < ¢ if s = te for some idempotent
e. Equivalent conditions are the following: s = ft forsomeidempotent ;s = ts*s;
and s = ss*t. The subsemigroup E(S) of idempotents of S is commutative, and
hence forms a (meet) semilattice for the natural partial order where e A f = ef for
e, f in E(S). Every inverse semigroup admits a universal morphism o : S — G(S)
onto a group. The group G(.S) is the quotient of S by the congruence s ~ ¢ if and only
if se = te for some e in E(S). It is universal in the sense that all other morphisms
from S to a group factor uniquely through o. One calls G(S) the maximal group
image of S and o the maximal group homomorphism. The inverse semigroup S is
called E-unitary if =1(1) = E(S). An equivalent condition to being E-unitary is
that s*s = t*¢ and o (s) = o (¢) implies s = t.

Given a locally compact Hausdorff space X, denote by Iy the inverse monoid
of all homeomorphisms between open subsets of X, with multiplication given by
composition on the largest domain where it is defined. The natural partial order on
Ix is given by f < g if and only if f is a restriction of g to some open subset of X .

The full C *-algebra C*(S) of an inverse semigroup S is the universal C *-algebra
for representations of S by partial isometries. More precisely, it is a C *-algebra
C*(S) with a x-homomorphism ¢: S — C*(S) (which turns out to be injective)
satisfying the universal property that given any *-homomorphism from p: S — A4
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with A a C*-algebra, there is a unique homomorphism of C *-algebras ¢ : C*(S) —
A such that the diagram

§ ————=C*(9)

N

A

commutes. See [22].
The left regular representation A : S — B(£*(S)) of an inverse semigroup S is
defined by

AS, = {8st if s*st = ¢,

0 otherwise.

By the universal property, A extends to C *(.S) and we define the reduced C *-algebra
of S by C*(S) = A(C*(S)). The representation A is faithful on S (and in fact on
the semigroup algebra CS) but not on C *(S) in general. For example, they coincide
for a discrete group G if and only if G is amenable. These two algebras have different
properties that makes one or the other desirable in certain circumstances. It is usually
easier to translate semigroup theorems to C*(.S) because of the universal property,
but difficult to make norm computations. Because the reduced algebra is explicitly
embedded inside B(£2(S)), norm computations are easier in C;*(S). See [22] for
details.

For inverse semigroups with zero, it is more convenient to work with the contracted
versions of these constructions. The contracted versions are defined in the analogous
way but one works in the category of x-semigroups with zero and so identifies the zero
of the inverse semigroup and the zero of the C*-algebra in the case of the universal
C *-algebra. For the left regular representation, one identifies the zero of the inverse
semigroup with the zero of £2(S) in the definition of A. See [4] for details.

A map 0: S — T of inverse semigroups is called a dual prehomomorphism if
0(s)0(s") < O(ss’) all s,s" € S. Let G be a discrete group. A partial action of G
on X is a dual prehomomorphism 6: G — Ix of inverse monoids (so, in particular,
0(1) = 1x); see [11] for the equivalence of this definition with the one in, say [1]. We
write X,—1 for the domain of 6(g) and if x € X -1, then we write gx for 6(g)(x)
(which is an element of X,). Given a partial action of G on X, one can form a
Hausdorff étale groupoid

GxX={(gx)|geG,xe€ Xz}

with the subspace topology of the product topology. We identify X with {1} x X,
which will be the unit space. The domain and range maps are given by d(g, x) = x
and r(g,x) = gx. The product is defined by (g, x)(k,y) = (gh,y), when x =
hy. The inverse is given by (g,x)™' = (g~!, gx). This construction appears in
Abadie [2], but was considered independently by Lawson and Kellendonk [11] in the
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discrete setting. We call G x X the partial transformation groupoid of the partial
action 6.
Abadie [2] proved the following result.

Theorem 2.1 (Abadie). Let 0: G — Ix be a partial action of a discrete group on a
locally compact Hausdorff topological space X. Then the universal C*-algebra of
G x X is isomorphic to the universal partial action cross product Co(X) % G.

An action of an inverse semigroup S on X is a morphism 6: S — [Ix such that
the union of the domains of 65 with s € S is X. We write X, for the domain of 6,
for an idempotent e € E(S). From an inverse semigroup action one can define the
groupoid of germs, which is similar to the partial transformation groupoid defined
above. Let

Q={(s,x) € S XX | x € Xgxs},

and define an equivalence relation on 2 by (s, x) ~ (¢, y) if x = y and there exists
e in E(S) such that x € X, and se = te. Equivalently, s ~ ¢ if x = y and there
exists u < s, such that x € X,,=,. The class of (s, x) is denoted by [s, x].

The groupoid of germs S x X of the action 0 is the set 2/~ with multiplication
given by [s, x][t, y] = [st, y] provided that x = 6;(y). The inverse of [s, x] is
[s*, 65(x)]. The topology has basis consisting of all sets of the form

(s, U)={[s,x] | x e U}

where s € S and U is an open subset of X. For a detailed construction of this
groupoid see [4].

A semi-character of a semilattice E is a non-zero semilattice homomorphism
¢: E — {0,1}. The space E (topologized as a subspace of {0, 1}£) of semi-
characters is fundamental because C*(F) =~ CO(E ). Every inverse semigroup S
acts on its space of semi-characters. Putting £ = E(S), fore € E, let

D(e)={peE|pl) =1}

It is a clopen subset of E and the sets of the form D(e) and their complements are a
subbasis for the topology on E. Define, for each s € S a mapping Bs: D(s*s) —
D(ss™) by Bs(¢)(e) = ¢(s*es) foreach e € E, ¢ € D(s*s). Then B: § — Iz
given by S(s) = fBs is an action. Usually, we write s¢ for S5(¢). Paterson’s universal
groupoid ¢4 (S) is the groupoid of germs of the action § [22], [4], [26]. Paterson [22]
proved that C*(S) = C*(¥4(S)) and C;*(S) = C(¥4(3)).

3. The C *-algebra of an E -unitary inverse semigroup

Let S be a (countable) E-unitary inverse semigroup with idempotent set £ and
maximal group image G = G(.5). Our goal in this section is to show that C*(S) and
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C(S) are partial action cross products C*(E) x G and C*(E) %, G, respectively.
The first author in his thesis gave a direct construction of a partial action of G on
C*(E) and showed the corresponding cross product algebra was isomorphic to the
algebra C*(S). We use here the theory of partial actions of groups on topological
spaces. In particular, we show that the universal groupoid ¢4(S) of S is isomorphic
to the partial transformation groupoid G X E of an appropriate partial action of G
on E.

We wish to construct a partial action 6: G — Iz. Itis well-known in inverse
semigroup theory that G acts partially on E: this is one of Lawson’s interpretations of
McAlister’s P-theorem [11]. We extend the partial action to E to define . Tn some
sense, this result is not unprecedented. In fact, it is known that ¢ (S) is algebraically
the underlying groupoid of a certain inverse semigroup 7" containing S [17]. Itis easy
to verify that if S is E-unitary, then 7T is as well and they both have maximal group
image G. Therefore, G acts partially on E(T) = E and the underlying groupoid
of T is the partial transformation groupoid G x E; this is essentially the content of
McAlister’s P-theorem as interpreted via [11]. So what we need to do is make sure
that everything works topologically. However, we do not assume here any knowledge
of the P-theorem or the inverse semigroup structure on 4(S).

Define 0: G — Iz by setting

o= | BG

seo—1(g)

where we are viewing partial functions as relations. To show that 8(g) is a well-
defined continuous map, we just need to show thatif o(s) = o(¢) and ¢ € D(s*s) N
D(t*t), then s = tp (where we drop B from the notation). To prove this, we need
a well-known fact about E-unitary inverse semigroups.

Lemma 3.1. Let S be an E-unitary inverse semigroup and suppose s,t € S satisfy
o(s) = o(t). Then ts*s = st*t is the meet of s,t in the natural partial order.
Moreover, if u = ts*s, then u*u = s*st*t.

To obtain now that 6(g) is well defined, suppose that o(s) = o(¢) and ¢ €
D(s*s) N D(t*t). Setting u = ts*s = st*t, we have by Lemma 3.1 that D (u*u) =
D(s*st*t) = D(s*s) N D(t*t) and u < s,¢t. Thus ¢ € D(u*u) and s¢ = up =
tg. So 6(g) is a well-defined continuous function with open domain X,—1 =
Useo—1(g) P(s*s). From the definition, it is immediate that 6(g™") = 6(g)~"
and so 0(g): Xg,-1 — X, is a homeomorphism, and hence belongs to /5. Since
Ueer D(e) = E, it follows that 0(1) = 1x. Finally, we verify that 6 is a dual
prehomomorphism by noting that since 0~ (g)o~!(h) € o~ (gh), it follows that

oo = |J B |J B0

seo—1(g) teo—1(h)
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- U W

xeo~l(g)a~1(h)

< U 86

sec—1(gh)
= 0(gh).

This proves that 6 is a partial action. From now on we suppress the notation S, 6.
Next we prove that G x E is isomorphic to ¢(S) as a topological groupoid. This
gives a new proof that 4 () is Hausdorff for F-unitary inverse semigroups. An exact
characterization of inverse semigroups with Hausdorff universal groupoids is given
in [26], Theorem 5.17.

Theorem 3.2. Let S be an E-unitary inverse semigroup with idempotent set E and
maximal group image G. Then the universal groupoid 4(S) is topologically isomor-
phicto G x E.

Proof. Recall that arrows of 4(S) are equivalence classes [s, ¢] of pairs (s, ¢) with
s € S and ¢ € D(s*s), where (s,¢) ~ (¢, V) if and only if ¢ = v and there exists
u € S withu < s,7and ¢ € D(u*u). The topology has basis of open sets (s, U)
where U C D(s*s) is an open subset ofE and (s,U) = {[s.¢] | ¢ € U}

Define functors ®: 4(S) > G x E and ¥: G x E — 4(S) as follows. Define

®[s, 9] = (0(s).¢) and U(g, ) = [s,¢] where s € 0~ (g) and ¢ € D(s*s). First
we show that ® and W are well-defined functors, beginning with ®. As (s, ¢) ~ (¢, %)
implies s and ¢ have a common lower bound, if (s, @) ~ (¢,¥), then ¢ = ¢ and
o(s) = o(r). Moreover, ¢ € X, -1 by construction. Thus @ is well-defined. To see
that W is well-defined, note that if (g,¢) € G x E, then by definition there exists
s €o ! (g)sothat g € D(s*s). Ift € 07 !(g) sothat ¢ € D(t*t), thenu = ts*s is
acommon lower bound for s, t withp € D(s*s)ND(t*t) = D(u*u) by Lemma 3.1.
So (s,¢) ~ (t,¢) and hence W is well-defined. Notice that both ® and W are the
identity map on the unit space E.

It is routine to verify that ® is a functor. Let us verify that W is a functor. Let
(g.¢) € G x E and choose s € 6!(g) with ¢ € D(s*s). Then d(¥(g,¢)) =
dls,9] = ¢ = V(d(g.¢) and r(V(g.¢)) = rs.¢] = s¢ = gp = V(r(g.¢)).
Moreover, if (g, @), (h, V) € G x E withg = hy and s € 6~ 1(g), t € o~ (h) with
¢ € D(s*s), ¥ € D(t*t), then

V(g )W (h.¥) = [s.0llt.¥] = [st. o] = W(gh. V)
since o (st) = gh and
1 =@(s*s) = hy(s*s) = 1Y (s*s) = Y (t*s™st) = Y ((st)*st).

Next observe that if [s, ] € ¢(S), then ¥ ®[s, ¢] = V(o (s),¢) = [s, ¢] since
@ € D(s*s). Also if (g,¢) € G x Eands € o~ !(g) with ¢ € D(s*s), then
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PY(g, ) = P[s,¢] = (g,¢). Thus ® and W are inverse functors. To show they
are homeomorphisms it suffices to show that if (s, U) is a basic open set of 4(S),
then ®(s, U) is open and if U is an open subset of E and g€ G,then¥({g} xU)
is open. But (s, U) = {o(s)} x U, which is open, whereas

V(gixU)= |J . UNDGs™s)),

seo—l(g)
which again is open. This completes the proof. O

Theorem 3.2 gives an alternate proof of the well-known fact [22] that the universal
groupoid of an E-unitary inverse semigroup is Hausdorff.

Since C*(¥4(S)) =~ C*(S) we obtain a new proof of the following result from
the first author’s thesis by applying Theorem 2.1.

Corollary 3.3. Let S be an E-unitary inverse semigroup with idempotent set E and
maximal group image G. Then C*(S) =~ C*(E) x G = Co(E) x G.

We will now show C*(S) =~ C*(E) x, G. If Abadie’s crossed product result
extended to the reduced algebra of the partial transformation groupoid then the iso-
morphism would be immediate, since C;*(¢(S)) = C}(S). The authors suspect
that such a result is true, but in the absence of a proof, we prove the isomorphism
directly. The proof makes use of the original construction of the reduced partial cross
product A x, G of a C*-algebra A by partial action « of a discrete group G [18].
Given a representation 7 : A — B(H) of A on a Hilbert space H and the left regular
representation A of the group G, McClanahan constructs a representation 7 of A on
B(H ® (*(G)) satisfying the covariance condition

AT (X)Ag—1 = T (ag(x)).

Reminiscent of the property that one has for homomorphisms of semidirect prod-
ucts of groups, all representations of partial cross products are of the form p x u
where (p, u) satisfies this covariance condition. Then (7, A) induces a representation
T xA: Ax, G - B(H ® £*>(G)). Moreover, if 7 is faithful then 7 x A is also
faithful [18], Proposition 3.4. Applying this to the left regular representation of the
semilattice, 7 : C*(E) — B({?(E)), we get a faithful representation of C*(E) %, G
on B({?(E) ® £*(G)). Define, fors € S, Fs: G — C*(E) by

*

Fu(g) = {ss ifo(s) =g,

0 else.

The partial crossed product C*(E) x, G is the closed span of the elements Fg [18].
Moreover we can translate covariance in this case to

(T x A)(F5)(8e ® Sg) = ”(eg—la(s*))(se ® Ao(s)g-
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Theorem 3.4. Let S be an E-unitary inverse semigroup with idempotent set E and
maximal group image G. Then C}(S) = C*(E) %, G.

Proof. Let U: £*>(S) — (?(E) ® £*>(G) be the unitary operator given by 85
ds+s ® 8g(s)- Note that U is injective on basis elements because S is E-unitary.
Recall that C*(S) may be viewed as a subalgebra of B(£2(S)) via the left regular
representation A, where

AS, = Oss ifs*st.= t,
0 otherwise.

We will show that U intertwines the operators A and (7 x A)(F;) and therefore
implements a *-isomorphism from C,* (S) to the faithful image of C*(E) %, G inside
B({*(E) ® £>(G)). Given s, t in S,

UASSZ‘ = USst = 8(st)*st (24 Sa(st)a
provided that s*s¢ = ¢. On the other hand,

(7@ x A)(F)IUS; = (7T x A)(Fs) (8%t ® S5(r))
= (O (1%)0(s%) (55™))81t ® So(5)0(r)
= 7 (t*s*st)81¢ @ S5(s)o(t)
= 81+t @ 8g(s)o(r) (provided thatt*r < t*s*st)
= O(st)*st ® 8o (s)-

Notice that the conditions s*st = 1, t*t = t*s*st, and t*t < t*s*st are equiva-
lent and that both operators are O when they fail to hold. O

4. Ideal quotients and reductions

Let S be an inverse semigroup with zero element z. By the contracted universal
and reduced C*-algebras of S we mean the quotient of the usual algebras by the
one-dimensional, central, closed ideal Cz. Since we only will consider contracted
algebras for inverse semigroups with zero, we use the notations C*(S) and C*(S)
for the contracted C *-algebras in this setting. No confusion should arise. These
algebras encode *-representations of S that send z to zero. From now on we identify
z with the 0 of the algebra and drop the notation z.

Exel defines [4] the universal groupoid in this context. If E is a semilattice with
zero, then we redefine E to be the space of all non-zero homomorphisms ¢ : E —
{0, 1} such that ¢(0) = 0. This is a closed invariant subspace of the usual semi-
character space. This abuse of notation should not lead to any confusion.

If ¢ is a groupoid and if X is a subspace of the unit space, then the reduction
“|x of 4 to X is the full subgroupoid of & with unit space X and set of arrows
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{g €9 |d(g),r(g) € X}. The universal groupoid ¢4(S) of an inverse semigroup
S with zero is then the reduction of Paterson’s universal groupoid to the space of
semi-characters sending 0 to 0. One can easily prove, cf. [4], that S and its universal
groupoid have the same universal and reduced C *-algebras in this context.

Anideal of a semigroup S is asubset / suchthat ST UIS C I. The Rees quotient
S/1 is the inverse semigroup obtained by identifying all elements of / to a single
element, which will be the zero of S/1.

Lemma 4.1. Let S be an inverse semigroup (with or without zero) and idempotent
set E. Let I be a proper ideal of S. Let

It={pecE|p(ENTI)=0}.

Then I+ is a closed subspace of E homeomorphic to E(S /1), which moreover is
invariant under the action of S. The restriction of the action of S to I+ factors

through S/ 1 as its usual action of E/(S/\I ) (up to isomorphism).

Proof. 1Itis trivial that a non-zero homomorphism of semilattices with zeroes
v: E(S/1)—{0,1}
is the same thing as a morphism
¢: E(S) —{0,1}

vanishing on / and that the topologies on m ) and 1+ agree under these iden-
tifications. Hence [+ = E/(S/\I ). Also I+ is clearly closed. Suppose that ¢ €
D(s*s) N I+. Then ¢(s*s) = 1 implies that s*s ¢ I and hence s ¢ I. Let us check
that s € I+. Indeed, ife € E N I, then sp(e) = ¢(s*es) = Osince s*es € EN [
and ¢ vanishes on £ N . Thus sg € I+,

Since we saw no element of I is defined on L, it follows that the restricted action
factors through S /1. The action is clearly an isomorphic with the usual action of

S/Ionﬂj/\l). O

The following proposition is an immediate consequence.

Proposition 4.2. Let S be an inverse semigroup and I an ideal. Then 4 (S/1) is
topologically isomorphic to 4 (S)|;..

5. Strongly 0- E -unitary inverse semigroups

If S is an inverse semigroup with zero and G is a group, then a partial homomorphism
¢: S — G is amapping ¢: S \ {0} — G such that p(st) = @(s)@(t) whenever
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st # 0. Notice that the image of ¢ need not be a subgroup of G. If e € E(S) \ {0},
then ¢(e)?> = ¢(e) so p(e) = 1. One calls a partial homomorphism ¢: S — G
idempotent pure if 9~'(1) = E(S). An inverse semigroup S with zero is called
0-E -unitary if s > e # 0 with e idempotent implies s = s2. It is called strongly 0-
E-unitary [14], [9] if it admits an idempotent pure partial homomorphism to a group
(some authors use the term strongly E*-unitary). A strongly 0-E-unitary inverse
semigroup is 0- E-unitary.

Margolis first observed that there is a universal group associated to an inverse
semigroup S with zero [25], [15]. Let S be an inverse semigroup with zero and define
Z (S) to be the group generated by the underlying set of S, subject to the relations
s -t = st if st # 0. Then the identity map on S induces a partial homomorphism
t: S — Z(S) and all partial homomorphisms from S to a group factor uniquely
through this one. Thus S is strongly 0-E-unitary if and only if ¢ is idempotent
pure. Note that if S is finite, one can still have that %/ (S) is infinite so the map ¢
is by no means onto. In fact, the second author showed it is undecidable whether a
finite inverse semigroup is strongly 0- E-unitary [25]. If S is an E-unitary inverse
semigroup, then S = S U {0} is easily verified to be strongly 0-E-unitary with
universal group the maximal group image G(S) of S.

Nearly all the inverse semigroups studied in C *-algebra theory are strongly 0-E -
unitary. For instance, the Cuntz semigroup [22], also known as the polycyclic inverse
monoid [13], on a set X of cardinality at least 2 is strongly O- E-unitary. Recall that
Px = (X | x*y = 8x,). Each non-zero element of Py can be uniquely written wu*
with w, u positive words over X. One has % (Px) = F¥, the free group on X, and
the natural partial homomorphism ¢: Py — Fy takes wu™ to the reduced form of
wu . The non-zero idempotents of Py are the elements of the form uu* and so ¢ is
idempotent pure. More generally, if I is a connected graph (which is not just a single
loop), then the graph inverse semigroup [22] associated to I" is strongly 0- E -unitary
with universal group the fundamental group of the underlying graph. Kellendonk’s
tiling inverse semigroups are also known to be strongly 0- E-unitary [10], [15].

It was independently observed by Margolis, McAlister and the second author
that strongly 0- £ -unitary inverse semigroups are precisely the Rees quotients of E-
unitary inverse semigroups. Namely, if : S — G is an idempotent pure partial
homomorphism such that G is generated by the image of 6 (one can always assume
this), then T = {(s, 8(s))) € S x G is an E-unitary inverse semigroup with maximal
group image G and I = (0 x G) N T is an ideal with T/I =~ S. Conversely, if
T is an E-unitary inverse monoid with maximal group image G and [ is an ideal,
then S = T/ is strongly 0- E-unitary with idempotent pure partial homomorphism
defined by restricting 0 : T — G to the complement of /.

We now obtain quite easily that the C *-algebra of a strongly 0- £ -unitary inverse
semigroup S with universal group G and idempotent set £ is a partial action cross
product C *-algebra for an action of G on C*(E) (remember we are working in the
category of inverse semigroups with 0). Indeed, write S as 7/ I where T is E-unitary
with maximal group image G and [ is an ideal of 7. We saw in Lemma 4.1 that
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E/(E can be identified with the T-invariant closed subspace 7+ of E/(?) From
the definition of the partial action of G on E/‘(—?) if go is defined for g € G and
Q€ E/(?) then there exists an element of ¢ € T with t¢ = gg. It follows that 1+
is invariant under the action of G, and so in particular, G acts partially on E/'(F) via
the identification of f(—i) with I+, Clearly G x f(—\S) is topologically isomorphic
to the reduction of G x E/(?) to /1. Thus, by Proposition 4.2 and Theorem 3.2, we
obtain the following result.

Theorem 5.1. Let S be a strongly 0-E-unitary inverse semigroup with universal
group G and idempotent set E. Then there is a partial action of G on E such
that 9(S) = G x E; in particular, 4(S) is Hausdorff. Consequently, C*(S) =
C*(E)xG = Co(E) x G.

The corresponding result for reduced algebras also holds. The proof is almost
identical to the proof of Theorem 3.4.

Theorem 5.2. Let S be a 0- E -unitary inverse semigroup with idempotent set E and
maximal group image G. Then C}(S) = C*(E) %, G.

Let S be an inverse semigroup with zero and idempotent set £. Recall [4] that
the tight spectrum Eﬁght of E is the closure in £ of the space of ultrafilters (where
a filter F is identified with its characteristic function, which is a semi-character, and
an ultrafilter is a maximal proper filter). This space is invariant under the action of §.
The associated groupoid of germs is denoted %on(S). If S is strongly 0- E-unitary
with universal group G, then the argument above shows that any invariant closed
subspace for the action of § is also invariant for G. Thus we immediately obtain the
following result.

Theorem 5.3. Let S be a strongly 0-E-unitary inverse semigroup S with univer-
sal group G and idempotent set E. Then there is a partial action of G on Eigp
and Gigni(S) = G X Eygns in particular, %ign(S) is Hausdorff. Consequently,
C* (“igni(S)) = Co(Eiign) ¥ G.

Since many of the classical C *-algebras associated to étale groupoids come from
groupoids of the form % () with S strongly 0- £ -unitary [4], the theorem provides
a uniform explanation for many of the partial action cross product results in this
context.

6. Morita equivalence with full cross products

We recall that all locally compact topological spaces are assumed to be o-compact
and all discrete groups and inverse semigroups are assumed to be countable. Let
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0: G — Ix be a partial action of a discrete group G on a locally compact Hausdorff
space X. Define an equivalence relation on G x X by (g, x) ~ (h, y) if and only
if x € Xg-1; and h='gx = y. The class of (g, x) will be denoted [g, x]. The
enveloping action [1] or globalization [11] of the action consists of the quotient
space X = (G x X)/~ (with the quotient topology) equipped with the G -action
given by g’[g, x] = [¢’g, x]. Abadie proved the following result [1].

Theorem 6.1. Suppose that 0 : G — Ix is a partial action of a discrete group G on
a locally compact Hausdorff space X such that X is Hausdorff. Then Co(X) x G
is strongly Morita equivalent to the full cross product Cy ()? ) x G. A similar result
holds for reduced C*-algebras.

Khoshkam and Skandalis prove a more general result than that of Abadie in [12]
using different terminology. Let G be a locally compact group and let ¢ be a lo-
cally compact groupoid. By a continuous cocycle, they mean a continuous functor
0: 9 — G. They say the cocycle p is

* faithful if the map ¢ — % x G x % given by g — (r(g), p(g),d(g)) is
injective;
e closed if the map g — (r(g), p(g),d(g)) is closed;

* transverse if the map G X 4 — G x %, given by (y, g) — (yp(g),d(g)) is
open.

For example, if G is a discrete group acting partially on a locally compact Haus-
dorff space X, then the projection p: G x X — G is a faithful, transverse, continuous
cocycle. The results of Abadie [1] imply that p is closed if and only if the enveloping
action is Hausdorff. The implication that p closed implies the enveloping action is
Hausdorff is also proved in Lemma 1.7 of [12]. It is easy to see that a transverse co-
cycle comes from a partial action if and only if the map g — (p(g), d(g)) is injective,
which is stronger than the cocycle being faithful.

Suppose that we are in the more general situation of a faithful, continuous, trans-
verse cocycle p: 4 — G. Define the enveloping action of p as follows. Let
Y = (G x%y)/~ where (g, x) ~ (h, y) if thereexists y: y — x with p(y) = g7 'h
(note that y is unique by faithfulness if it exists). Write [g, x] for the class of (g, x)
and impose the quotient topology on Y. Notice that G acts continuously on Y by
glh, x] = [gh, x]. The following is a combination of Lemma 1.7 and Theorem 1.8
of [12].

Theorem 6.2 (Khoshkam and Skandalis). Ler p: 4 — G be a faithful, continuous,
transverse, closed cocycle. Then the space Y of the enveloping action is locally
compact Hausdorff and there is a Morita equivalence of ¢ with G x Y. Thus ¢4 is
Hausdorff, C*(9) is strongly Morita equivalent to Co(Y ) X G and C} (%) is strongly
Morita equivalent to Co(Y) %, G.
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Khoshkam and Skandalis used this theorem to deduce that the C *-algebras of
certain E-unitary inverse semigroups are strongly Morita equivalent to cross products
of a group with commutative C *-algebras. This has implications for strongly 0- -
unitary inverse semigroups, as we shall see below. Also their arguments can be made
to work more generally. We develop here the general theory for locally compact
groupoids (see [22] for the precise definition) and then use it to obtain conditions for
a locally compact groupoid to be Morita equivalent to a cross product of an inverse
semigroup with acommutative C *-algebra. Restricting to the case of a group recovers
the results of Khoshkam and Skandalis.

Recall that if ¢ is a topological groupoid, then an action of 4 on a space X consists
of a continuous map p: X — %, and a continuous function 6: ¥4 x4, X — X (the
pullback of d and p), written (g, x) — gx, such that

e p(x)x = x;
¢ g(hx) = (gh)xifd(h) = p(x) and r(h) = d(g);
* the diagram

ngOX o

Ty /

%

X

commutes where 171 : & Xy, X — ¢ is the projection.

In this case, we say that X is a &-space. There is an obvious notion of a morphism
of ¢-spaces.

Given an action (p, 8) of & on a space X, we can form the semidirect product
groupoid given by ¢4 x X = ¢ x4, X. Here, the units are the elements of the form
(p(x), x) and hence (¢ x X)g can be identified with X, which we do from now on.
One has d(g,x) = x and r(g, x) = gx. The product is given by

(g hy)(h,y) = (gh,y)

and the inverse by (g,x)"! = (g~ !, gx). It is not hard to verify that if ¢ is étale,
then so is & x X. Of course, this construction agrees with the previous construction
of the semidirect product of a group with a space (or transformation groupoid) when
¢ is a group. There is a natural projection 77 : ¢ x X — ¢ given by projection to the
first coordinate. Notice that if x € X, then r~1(x) = {(g.g7'x) | r(g) = p(x)},
which is homeomorphic to r~!(p(x)) via the projection . From this it is easy to
see that if {A¢}.eq, is a left Haar system for ¢, then we can define a left Haar system
for 4 x X by putting u*(B) = A?®) (r(B)) for a Borel subset B C r~'(x). The
semidirect product is functorial in the space variable.

We need a few more definitions from topological groupoid theory [19], [7], [8].
Let ¢: ¥ — S be a continuous functor of topological groupoids. Then there is a
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resulting commutative diagram

X3
~ EN
go X go %”ozi%”o I — (6.1)
rxd \L rxd
Y X 4 o x Ay

(282

coming from the universal property of a pullback. One says that ¢ is faithful if ¢ is
a topological embedding in (6.1); it is full if ¢ is an open surjection; and it is fully
faithful if ¢ is a homeomorphism.

A continuous functor ¢: 4 — S is called essentially surjective if the map
dmy: Gy X A — F is an open surjection (where the pullback is over the ¢ and
r). A fully faithful, essentially surjective functor is called a weak equivalence. Two
locally compact groupoids ¢, 7 are said to be Morita equivalent if there is a locally
compact groupoid . and a diagram

a e

|

g’

where ¢ and i are weak equivalences [7], [8].

A theorem of Renault [23] (in the non-Hausdorff case), see also [20], implies
that if 4 and ¢ are Morita equivalent locally compact groupoids, then C*(¥) and
C*(J€) are strongly Morita equivalent, and similarly for C,*(¥¢) and C;* (7).

The following is a generalization of the cocycle result of Khoshkam and Skandalis.

Theorem 6.3. Let ¢ : 4 — S be a faithful morphism of locally compact groupoids.
Suppose in addition that:

(1) the image of ¢ from (6.1) is closed (or equivalently in light of faithfulness, ¢
is a closed map);

(2) themap 2 FC X 00 G — H X 0 Go given by Yy (h, g) = (he(g),d(g)) is

open;

(3) b Xy %o is an open subset of I X sy Go. (This is automatic if I is étale
because I is open in I .)

Then there is a locally compact Hausdorff space X and an action (p, 0) of 7€ on X,



500 D. Milan and B. Steinberg

called the enveloping action of ¢, such that ¢ factors as

o

I x X

N

H

with o a weak equivalence. Thus ¢ is Morita equivalent to € x X.

Proof. LetY = J€ Xy % (pullback of d and ¢) and define an equivalence relation
on Y by (h,e) ~ (k, f) if there exists g: e — f such that ¢(g) = k~'h (and so
in particular (k) = r(k)). The equivalence class of (%, e) is denoted [, e]. Let
X =Y/~andletg: X — Y be the quotient map. Since Y is locally compact, to
prove that X is locally compact Hausdorff, it suffices to show that ¢ is an open map
and ~ is a closed equivalence relation.

Let U be an open subset of X ; we mustshow ¢ ~'¢g(U)isopen. Let V = {(h, g) €
J X9 | (h,r(g)) € U} itis open by continuity of . From the definition of the
equivalence relation ~, we have ¢~ '¢(U) = ¥ (V), which is open by (2). Thus g is
an open map. We can define a map

B:YxY > %, x%%oii%0
by ((h,e),(k, f)) + (f.e,k~'h). The definition of ~ shows that its graph is
precisely B71(¢(%)), and hence ~ is a closed equivalence by (1). We thus have that
X is a locally compact Hausdorff space.

Let us define an action of .77 on X. There is a natural continuous map p: X —
o given by p([h,e]) = r(h). We can define the action map 0: J X 4 X — X
by hlk,e] = [hk,e] when d(h) = r(k). It is a routine exercise to verify that (p, 8)
is indeed an action. Let 7 : JZ x X — 2 be the projection.

Definea: 9 — 7 x X by a(g) = (¢(g), [¢(d(g)),d(g)]). Itis immediate that
¢ = ma. Itis routine to verify that « is a continuous functor. Let us verify that it is
a weak equivalence. First observe that or|¢,: ¢ — X is an open map. Indeed, as
q:Y — X is open, it suffices to check that e — (¢(e), e) is an open map % — Y.
But this map is a homeomorphism % — 5 X 4, % whose codomain is an open
subset of Y by (3).

First we check that « is essentially surjective. This means that we need that the
map (e, (h, x)) — x is an open surjection ¥ xx (€ x X) — X. Suppose that
[h,e] € X with d(h) = ¢(e). Then

(W1 [hee]): [hoe]l — [p(e). €] = afe).

Thus (e, (h~1, [h,e])) +> [h, e], establishing surjectivity. Next we prove openness.
Recall that a groupoid is said to be open if d is open [19]. Any locally compact
groupoid is open due to the existence of a left Haar system. We claim thatif p: J#2~ —
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-Z is a continuous functor between open groupoids such that p| x, : #o — 25 is an
open map, then d o : H#y X ¢, £ — £ is open. Indeed, since d is open, it suffices
to verify that i, is open. But i, is open because open maps are stable under pullback.
Applying this to our setting (since «|y, is open), we conclude that « is essentially
surjective.

To prove that « is fully faithful, we need to show that & defined by

g+ (r(g),d(g),a(g))

is a homeomorphism of ¢ with %y X % xxxx (€ x X). Since ¢ = ma is faithful,
it follows that & is injective and a topological embedding. It is also surjective since if
(e, f, (h, [k, x])) is in the pullback, then [¢( f), f] = [k, x] and [p(e), e] = [hk, x],
whence there exists g: x — f with k = ¢(g) and g’: x — e with ¢(g') =
hk. Then g'g™': f — e satisfies ¢p(g'g™") = hkk™' = h. Thus a(g’'g™!) =
(e, f, (h, [o(f), f]) = (e, f, (h, [k, x])). This completes the proof that « is a weak
equivalence. O

It is easy to see that Theorem 1.8 of [12] for discrete groups is the special case of
the above theorem where 77 is a discrete group. We conjecture that assumption (3)
is unnecessary, but we were unable to show that d 75 is open without it.

Our goal is to apply Theorem 6.3 when 77 = ¢(S) for an inverse semigroup
S. First we want to relate ¢ (.S)-spaces to a class of S-spaces. As usual E denotes
the semilattice of idempotents of S. By an S-space, we mean a pair (X, 8) where X
is a space and 6: § — Iy is a homomorphism such that X = |,z X, where X,
is the domain of 6(e) for e € E. The S-spaces form a category where a morphism
¢: X — Y of S-spaces is a continuous map such that

e o 1(Y,) = X, foralle € E;
* @(sx) = sp(x) for x € Xgxg.

 We say that X is a special S-space if X, is clopen for all e € E. For instance,
E is a special S-space. The reader is referred to [4] for basic definitions and notions
concerning groupoids of germs.

Theorem 6.4. The categories of G(S)-spaces and special S-spaces are isomorphic.
More, precisely each special S-space X has the structure of a 4(S)-space and vice
versa. Moreover, the groupoid of germs S x X of the action of S on X is topologically
isomorphic to the semidirect product 9 (S) x X.

Proof. We just verify the isomorphism at the level of objects; the easy verifications of
the details for morphisms are omitted. First let X be a ¢ (S)-space; assume that the
actionis givenby (p, 8) where p: X — E. Define anaction of S on X as follows. Let
X. = p~Y(D(e)). Then since D(e) is clopen in E, it follows that X, is clopen. Also
X = p_l(E) = U,eg Xe since the D(e) cover E. Define, for s € S, a continuous
map ps: Xgxs —> Xgsx by ps(x) = [s, p(x)]x. This map is well defined since x €
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Xg+5 implies that p(x) € D(s*s) and so [s, p(x)] € 4(S). Continuity is clear from
continuity of p and the action of ¢(S). Also ps*ps(x) = [s*, sp(X)][s, p(x)]x =
[s*s, p(x)]x = x and so ps and pg+ are inverse homeomorphisms.

Next we check that p: S — Iy given by p(s) = ps is a homomorphism. First of
all we have

Xer = p~H(D(ef)) = p~1(D()ND(f)) = p~ (D(e)Np~ (D(f)) = XeNXy.

Secondly, if s <t and x € X, then p(x) € D(s*s) C D(¢*t) and so [s, p(x)] =
[z, p(x)], whence ps < p;. Thus p is order preserving. Thus to check that p is
a homomorphism, we just need to show that p;p; = ps; whenever s*s = ft*
(cf. Theorem 5 in Chapter 3 of [13]). In this case, psps(x) = ps([t, p(x)]x) =
[s, tp(X)][t, p(x)]x = [st, p(x)]x = ps¢(x). Thus p is a special action.

We construct an isomorphism S X X — 4(S) x X by [s,x] = ([s, p(x)], x)
with inverse ([s, p(x)], x) + [s, x]. It is routine to verify that these maps are inverse
continuous functors.

Next suppose that p: S — Iy givesaspecial actionof S on X. Define p: X — E
by
1 xeX.,

p(x)(e)={0 ey

It is easy to see that p(x) € E. The fact that p(x) is a semilattice homomorphism
is trivial since X, N Xy = X,r. It is non-zero exactly because x € X, for some
e € E. To show that p is continuous, it suffices to show that p~!(D(e)) is clopen
foralle € E. But p(x) € D(e) if and only if x € X, and X, is clopen by definition
of a special action. Define the action of 4(S) on X by [s, p(x)]x = sx. We must
show that this is well defined. First of all p(x) € D(s*s) implies that x € Xgx;
and so sx is defined. Also if [, p(x)] = [s, p(x)], then we can find u < s,¢ with
p(x) € D(u*u). But then x € X,*, and so sx = ux = tx. Thus the action is well
defined. Let us verify continuity. Suppose p(x) € D(s*s) and U is a neighborhood
of sx. Then we can find a neighborhood V' C X+, so that x € V and sV C U.
Then (4(S) x5 X) N ((s, D(s*s)) x V) is a neighborhood of ([s, p(x)], x) mapped
by the action into U.

We omit the straightforward verification that these two constructions are inverse
to each other. O

The reader should observe that Paterson’s universal property of ¢(S) [22] is an
immediate consequence of this result.

Let ¢ be a locally compact groupoid and S an inverse semigroup. We define a
continuous, faithful, transverse, closed cocycle ¢ : 4 — S to be a continuous faithful
functor ¢ : 4 — ¥(S) satisfying (1) and (2) of Theorem 6.3 (condition (3) being
automatic as ¢(S) is étale). The following result generalizes Theorem 1.8 of [12]
to inverse semigroups. If S is an inverse semigroup acting on a locally compact
Hausdorff space X, then one can form the cross product C *-algebra Co(X) x S [4],
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Section 9. Moreover, Co(X) x S = C*(S x X) by Theorem 9.8 of [4]. Exel does
not speak of reduced inverse semigroup cross products, but one would presume the
analogous result holds. Theorems 6.3 and 6.4 have the following corollary.

Corollary 6.5. Let p: 4 — S be a continuous, faithful, transverse, closed cocycle
where 9 is a locally compact groupoid and S is an inverse semigroup. Then there
is a locally compact Hausdor{f space X equipped with an action by S so that 9 is
Morita equivalent to the groupoid of germs S x X. Consequently, C* (%) is strongly
Morita equivalent to Co(X) % S. An analogous result holds for reduced C *-algebras
if S is a group.

Our next goal is to apply this result to inverse semigroups, in particular to strongly
0-E-unitary inverse semigroups. First we address a question that does not seem to
have been satisfactorily answered in the literature: the functoriality of the construction
S+ 9(S). If p: E — F is a semilattice homomorphism, then there is obviously
a continuous map ¢ : F — E induced by precomposition with ¢. However, it turns
out that under certain circumstances there is also a continuous map E— F.

A map of topological spaces f: X — Y is said to be coherent if, for each quasi-
compact open subset U of Y, one has that £ ~!(U) is quasi-compact open [6]. It is
natural to say that f is locally coherent if, for each x € X, there is a neighborhood
U of x sothat f|y: U — Y is coherent.

A poset P is naturally a Ty topological space via the Alexandrov topology. The
open sets are the downsets where we recall that a downset is a subset X € P such that
y < xandx € X implies y € X. The continuous maps between posets are precisely
the order preserving ones. The quasi-compact open subsets are easily verified to be
the finitely generated downsets and so a map of posets f: P — Q is coherent if
and only if the preimage of any finitely generated downset is finitely generated. If
p € P, then p¢ denotes the principal downset generated by p.

Recall that afilter F' onaposet P isanon-empty upset (defined dually to downsets)
such that any two elements of F have a common lower bound. For a semilattice,
filters are precisely the non-empty subsemigroups which are upsets. In general,
if B is a non-empty subsemilattice of E, then the up-closure BT = {x € E | x >
f forsome f € B}isafilter. Itis easy to see that the semi-characters of a semilattice
E are in bijection with the filters via the correspondence ¢ + ¢~ !(1) and F > yr.
Thus we can identify E with the space of filters on £. The compact open D(e)
corresponds to those filters containing e.

Letg: E; — E;beasemilattice homomorphism. We can defineamap ¢': Ei —
E, by @(F) = ¢(F)". Thisis well defined since ¢(F) is a non-empty subsemilattice.
The question is: when is the map ¢ continuous? The answer when E has a maximum
is well known [6] and the adaptation for the general case is not difficult.

Proposition 6.6. Let ¢: E1 — E> be a semilattice homomorphism. Then Q: E| —
E5 is continuous if and only if ¢ is locally coherent.
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Proof. Suppose first that ¢ is locally coherent. To establish continuity it suffices to
show that ! (D(e)) is clopen for e € E,. We claim that

'pEen=|J D,

fep™(eY)

and hence is open. Indeed, if ¢(f) < e and f € F where F is a filter, then
e € o(F)' = §(F) and so $(F) € D(e). Conversely, if p(F) € D(e), then there
exists x € p(F) withe > x. If x = ¢(f) with f € F, then f € ¢~ !(e¥) and so
F € D(f). Note that so far we have not used local coherence.

Since £ 1 is covered by the compact open sets D(x) with x € Ej, to establish
that 9~1(D(e)) is closed it suffices to show that D(x) N @~ 1(D(e)) is closed for
each x € FE;. That is, it suffices to show that Ufe(p—l(ei)mﬂ D(f) is closed. Let
X be a downset of E; containing x such that ¢|y is coherent. Then there exists
X1,....%n € X N~ Y(e¥) such that f € X N ¢~ (e¥) if and only if f < x; for
some i. Soif f € ¢~ (e¥) N x}, then one has f = fx < x;x for some i. Also
XjX € @ 1(eY) NxYforall j. As f < x;x implies D(f) € D(x;x) it follows that

U b= D

fep~l(ehH)nxt i=1

and hence is closed. This yields the continuity of @.

Suppose next that ¢ is continuous. We claim that, for each x € Ej, one has
that ¢|,1 : x¥ — E, is coherent. Clearly it suffices to show that if e € E,, then
@~ 1(e¥)Nx¥ is finitely generated as a downset. By continuity $~! (D(e)) is a clopen
subset of £ and hence K = D(x) N @~ 1(D(e)) is compact. The arguments in the
previous paragraph yield

k= | Db

fep~l(eh)nxt

and so there exist x1,...,x, € ¢ 1(e¥) N xV such that f € ¢~ (e¥) N x¥ implies
D(f) € D(x1) U---U D(xp). Let f1 be the principal filter generated by f. If
f1 e D(x;), then f < x;. Thus x1,...,x, generate ¢~ '(e¥) N xV¥ as a downset.
We conclude that ¢ is locally coherent. O

The proof of Proposition 6.6 shows that ¢ : E; — E5 is locally coherent if and
only if ¢|,. : e¥ — E, is coherent for each e € E;. We shall use this later.

Note that local coherence is not automatic. Let E; consist of a top 1, a bottom
0 and an infinite anti-chain X and let £, = {0,1}. Let ¢: E; — E, send the top
of E; to 1 and all remaining elements to 0. Since E; has a top, the remark above
shows that in order for ¢ to be locally coherent, it must be coherent. But ¢! (0V) is
not finitely generated as a downset.
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Proposition 6.7. Let ¢: S — T be a locally coherent homomorphism of inverse
semigroups. Then ¢|g(sy: E(S) — E(T) is locally coherent.

Proof. Put ¥ = ¢|g(s) and suppose that ¢ is locally coherent. Let e € E(S)
and choose a downset X of S containing e so that |y : X — T is coherent. Let
f € E(T) and suppose that 51, ..., s, generate X N ¢~ '(fV) as a downset. Set
e; = es/'s;. Since ¢(s;) < f, we have p(e;) < ¢(s]s;) < f and so the ¢; belong
toy L(fY)Net. Ifx € y~1(f¥) Net, then x < e implies x € X. Therefore,
x < s; for some i. But then x < ¢;. It follows that (£ ¥) N e is generated by
€1,...,em and so ¥ is locally coherent. O

The converse of the above proposition is false. Let E; be the semilattice con-
structed before the propositionandlet 7 = E{U{z} wherez? = landza = a = az
fora € X U {0}. Then E; = E(T) and hence the inclusion ¢ clearly satisfies
t: E; — E(T) is locally coherent. However, t: E; — T is not locally coherent. If
it were, then since £ has a maximum, it would have to be coherent. But it is not
since (! (Zi) = X U {0}, which is not finitely generated as a downset. This example
can be generalized, using Theorem 5.17 of [26] to show that if 7" is an inverse semi-
group such that ¢ (T) is not Hausdorff, then the inclusion ¢: E(T) — T satisfies
t: E(T) — E(T) is locally coherent but t: E(T) — T is not.

Our next goal is to show that Paterson’s universal groupoid construction is func-
torial if one restricts to inverse semigroup morphisms ¢ : S — T such that ¢|g(s) is
locally coherent.

Theorem 6.8. Let ¢: S — T be a homomorphism of inverse semigroups such that
@|E(s) is locally coherent. Then there is a continuous homomorphism ®: < (S) —
YG(T) given by [s, F] + [¢(s), (F)] where F is a filter on E(S) with s*s € F.

Proof. Letus first show that @ is well defined. If s, F] = [t, F], then there exists u <
s,t withu*u € F. Then p(u) < ¢(s), ¢(¢) and p(u)*¢u) € ¢(F)' = $(F). Thus
[0(s), p(F)] = [e(), p(F)]. To verify continuity, let [s, F] € 4(S) and suppose
that (¢, U) is a basic neighborhood of [¢(s), (F)]. Then we can find u < @(s),t
such that u*u € @(F). Thus there exists e € F with ¢(e) < u*u. Consider the
neighborhood

W = (s, D(s*s) N D(e) N §~1(U))

of [s, F]in 4(S). If [s, F'] € W, then ®([s, F']) = [p(s), (F’)] satisfies ¢(F') €
U. Also e € F' implies that u*u € @(F’). It follows that [p(s), (F')] =
[t,o(F")] € (¢,U). Thus @ is continuous.

To verify that ® is a functor, first observe that on objects, ®(F) = @(F) and
so ®(d([s, F]) = @¢(F) = d([e(s), p(F)]) = d(®([s, F])). On the other hand,
®(r([s, F])) = @(sF), whereas r(®([s, F])) = s@(F). Thus we must show that
P(sF) = @(s)o(F).
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If e € (sF), then there exists x € sF with ¢(x) < e. But then s*xs € F
and @(s*xs) < @(s)*ep(s). This shows that p(s)*e@(s) € @(F) and hence e €
©($)@(F). Conversely, ife € ¢(s)@(F), then p(s)*e@(s) € @(F) and so there exists
x € F with ¢(x) < ¢(s)*e@(s). Butthen e > ¢(sxs*) and s*(sxs*)s € F because
s*s € F. Thus sxs* € sF and so e € ¢(sF). We conclude ¢(s)@(F) = @(sF).

Then remaining verification that @ is a functor is the computation

O([s", sFDD([s, F]) = [p(s"), (s F)]lg(s), (F)] = [p(s's), @(F)]
= &([s's, F)).

This completes the proof. O

We introduce a condition, called the Khoshkam—Skandalis condition (or KS con-
dition for short), on an inverse semigroup homomorphism ¢ : § — T that guarantees
that Theorem 6.3 applies to the induced homomorphism ®: 4(S) — 4(T).

Definition 6.9 (KS condition). Let ¢: S — T be an inverse semigroup homomor-
phism. Then ¢ is said to satisfy the KS condition if, for all e, f € E(S), one has
@lesy: eSf — T is coherent.

The KS condition on ¢ implies thatitis locally coherent and hence the restriction of
@ to E(S) is locally coherent by Proposition 6.7. Thus ®: ¢ (S) — ¥ (T) can be de-
fined as per Theorem 6.8. The KS condition was considered by Khoshkam and Skan-
dalis for the special case of the maximal group image homomorphismo: S — G.

In the paper [16], a semigroup homomorphism ¢ : S — T was defined tobe an F -
morphism if ¢~ 1(¢) has a maximum element for each ¢ € T. For instance, S is an F-
inverse monoid if and only if 6: § — G is an F-morphism. The original motivation
for considering F-morphisms was to study partial actions of inverse semigroups. We
claim that an F'-morphism satisfies the KS condition.

Proposition 6.10. An F-morphism satisfies the KS condition.

Proof. Let ¢: S — T be an F-morphism and suppose e, f € E(S). Lett € T
and suppose u is the maximum element in ¢! (¢). Then we have "1 (tV) NeSf =
(euf)¥. Indeed, p(euf) <t andeuf € eSf.Ifs € eSf and p(s) <1, thens < u
and so s = esf < euf. This shows that ¢|.sr is coherent. O

We now prove a series of lemmas that will lead to our main result on Morita
equivalence.

Lemma 6.11. Let ¢: S — T be an inverse semigroup homomorphism satisfying
the KS condition. Abusing notation, we write ¢: 4(S) — 4(T) for the induced
morphism. Let

Y:9(S) > YG(S)o xY(S) x¥4(T) (6.2)
be given by ¥ (g) = (r(g),d(g), ¢(g)). Then ¥ is a closed map.
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Proof. Let X C 4(S) be closed. Since the sets of the form
D(e) x D(f) x (t, D(t*1))

withe, f € E(S)and ¢ € T form a cover of the right-hand side of (6.2) by compact
open sets, it suffices to show ¥ (X) N (D(e) x D(f) x (¢, D(t*t))) is closed in
D(e) x D(f) x (¢, D(t*t)) for all choices of e, f and ¢. Let s1,...,s, be a finite
generating set for eSf N @~ (tV).

Claim 1. One has that
Y(X) N (D(e) x D(f) x (&, D) = (X 0 ({6, Dissi))))
i=1

holds.

Proof of claim. Suppose that [s, F] € X N (s;, D(s]s;)). Without loss of generality,
we may assume s < s;. Then s*s < s's; < f. Thus F € D(f). Similarly,
ss* < s;5] < eandsos*es > s*s € F,yieldinge € sF. Thustoshow that y([s, F])
belongs to the left-hand side, it remains to show that [¢(s), @(F)] € (¢, D(t*t)). First
observe that (s) < @(s;) < t. Alsot*t > ¢(s*s) € ¢(F) and sot*t € ¢(F). Thus
[p(s), p(F)] = [t,@(F)] € (¢, D(t*t)). We conclude ¥ ([s, F]) belongs to the left-
hand side.

Next suppose that [s, F] € X with ¥ ([s, F]) in the left-hand side. Then f € F
and e € sF, whence s*es € F. Thus (esf)*esf = fs*esf € F. Therefore
[s, F] = [esf, F] and so we may assume without loss of generality that s € eSf.
Next, since [¢(s), @(F)] € (¢, D(t*1)), it follows that there exists u € T with u <
@(s),t and u*u € @(F), which in turn means we can find x € F with ¢(x) < u*u.
Then (sx)*(sx) = xs*s € F and so [s, F] = [sx, F]. Also ¢(sx) < g(s)u™u =
u < t. Thus without loss of generality, we may assume ¢(s) < ¢. Therefore, there
exists i with s < s;. Then [s, F] = [s;, F] and hence [s, F] € (s;, D(s;s;)). Thus
¥ ([s, f]) belongs to the right-hand side. O

The desired result follows from the claim because the right-hand side is compact
and hence the left-hand side is as well. But then the left-hand side is closed in the
compact space D(e) x D(f) x (¢, D(t*t)). O

Our next lemma establishes that condition (2) of Theorem 6.3 is always fulfilled in
the case of a groupoid morphism induced by an inverse semigroup homomorphism.

Lemma 6.12. Suppose that ¢ : S — T is an inverse semigroup homomorphism such
that ¢|Es) is locally coherent. Again, we use ¢: 9 (S) — 9 (T) for the induced
morphism. Let

v G(T) X1y, G(S) = G(T) xg(1)0 9(S)o
be given by (h, g) +— (he(g),d(g)). Then v is open.
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Proof. Let X = 9(T) xg(r), 9(S) and Y = Y(T) xy4(1), 4(S)o. Then a typ-
ical element of X is of the form ([t, @(s)@(F)],[s, F]). It is easy to see that a
basic neighborhood of such a point is of the form W = (¢, V) x (s,U)) N X
with U C D(s*s) and V C D(t*t) N D(e(ss*)). We claim the image of W is
N = ((te(s), (s)*V) x U) N Y and hence open.

If ([t, p(s)@(F)],[s, F']) € W, then its image is ([tg(s),@(F')],F') € N
since @(s)@(F’) € V implies ¢(F’') € @(s)*V. Conversely, given an element
(te(s), @(F")], F') € N, wehave [s, F'] € (s,U) and ¢(s)@(F’) € p(ss*)V = V.
Thus ([¢, (s)@(F")], [s, F']) € W with image ([t¢(s), §(F")], F’').

This proves that ¥ is open. O

A crucial notion from inverse semigroup theory [13] is that of an idempotent pure
homomorphism. An inverse semigroup homomorphism ¢: S — T is said to be
idempotent pure if 9~ (E(T)) = E(S), that is, ¢(s) € E(T) implies s € E(S).
For instance, an inverse semigroup S is E-unitary if and only if the maximal group
image homomorphism o: S — G is idempotent pure. Let us say that ¢: S — T is
locally idempotent pure if ¢|ese: eSe — T is idempotent pure for each e € E(S).
An inverse semigroup is said to be locally E-unitary if eSe is E-unitary for each
e € E(S). Clearly, S is locally E-unitary if and only if 0: S — G(S) is locally
idempotent pure. It turns out that being locally idempotent pure is enough to guarantee
that the corresponding morphism of groupoids is faithful, at least if we put aside
topological concerns.

Lemma 6.13. Let ¢: S — T be alocally idempotent pure homomorphism of inverse
semigroups such that ¢|gs) is locally coherent. Denote also by ¢ the induced
morphism 4(S) — 4 (T). Then the map ¥ given by

g+ (r(g),d(g), ¢(g))

is injective. In particular, if ¢ satisfies the KS condition, then the induced morphism
of groupoids is faithful.

Proof. Suppose that ¥ ([s, F]) = ¥ ([t, F’]). Then
F=F, sF=tF and [p(s).0(F)]=[p(t).0(F)].

We need to find u € S such that u*u € F and u < s,t. We can find v <
©(s), o(t) with v*v € @(F). Hence there exists x € F with ¢(x) < v*v. Then
(sx)*(sx), (tx)*(tx) € F and so [s, F] = [sx, F] and [t, F] = [tx, F]. Moreover,
e(sx) = p(s)v*ve(x) = ve(x) = et)v*ve(x) = @(tx). Thus, replacing s by sx
and ¢ by tx, we may assume that ¢(s) = ¢(¢).

Let f = tt*st*. Then f € tt*Stt* and, because ¢(s) = ¢(t), we have
o(f) = ptM)e(s)p)* = p(tt*) € E(T). Thus f € E(S) since ¢ is locally
idempotent pure and hence u = ft < t. Butu = tt*st*t < 5. It remains to
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prove u*u € F. First observe that u*u = t*ts*tt*st*t = t*ts*tt*s. Applying
sF = tF and t*t € F yields tt* € tF = sF and hence s*tt*s € F. Thus
u*u = t*ts*tt*s € F. This establishes [s, F] = [¢, F] and so i is injective.

The last statement follows since Lemma 6.11 shows that ¥ is a closed mapping
and hence a topological embedding, being injective. O

Putting together all these lemmas, we have that if ¢: S — T is a locally idem-
potent pure homomorphism of inverse semigroups satisfying the KS condition, then
0:9(S) — ¥(T) is a continuous, faithful, transverse, closed cocycle. Thus we
have, by an application of Corollary 6.5, the following theorem, which is one of the
main results of this paper.

Theorem 6.14. Letp: S — T be alocally idempotent pure homomorphism of inverse
semigroups satisfying the Khoshkam—Skandalis condition that ¢|.sr is coherent for
all e, f € E(S). Then there is a locally compact Hausdorff space X acted on by
T such that 4(S) is Morita equivalent to the germ groupoid T x X. Consequently,
C*(S) is strongly Morita equivalent to Co(X) x T. Moreover, if T is a group, then
Cx(S) is strongly Morita equivalent to Co(X) %, T.

Our first special case generalizes Theorem 3.10 of [12] and also covers Exam-
ple 3.12 (b) of [12], where a certain locally E-unitary inverse semigroup that is not
E -unitary is considered.

Corollary 6.15. Let S be a locally E-unitary inverse semigroup with maximal group
image homomorphism o: S — G. Suppose that, for all e, f € E(S) and g € G,
one has that eSf N o~ (g) is finitely generated as a downset. Then there is a locally
compact Hausdorff space X and an action of G on X so that C*(S) is strongly Morita
equivalent to Co(X) x G and C(S) is strongly Morita equivalent to Co(X) %, G.

In the E-unitary case, the above condition is equivalent to the enveloping action
being Hausdorff by [12], Proposition 3.9.

Recall that if S is a strongly 0- £ -unitary inverse semigroup with universal group
partial homomorphism 6: S — % (S), then S = T/I where T = {(s,0(s)) | s #
0} U ({0} xZ (S))and I = {0} x Z (S). Moreover, T is E-unitary. It is easy to see
that 7 satisfies the conditions of Corollary 6.15 if and only if (eSf \ {0}) N 0~ 1(g)
is finitely generated as a downset for alle, f € E(S) and g € Z (S). Also it is easy
to see that if y: ¢ — G is a continuous, faithful, transverse, closed cocycle and X
is a closed subset of %, then y: ¢|x — G is also a continuous, faithful, transverse,
closed cocycle. We thus have the following corollary of our previous work.

Corollary 6.16. Let S be a strongly 0-E-unitary inverse semigroup and suppose that
the universal group partial homomorphism 1: S — % (S) satisfies eSf N1~ (g) is
finitely generated as a downset forall e, f € E(S)\ {0} and g € % (S). Then there
is an action of % (S) on a locally compact Hausdorff space X such that C*(S) is
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strongly Morita equivalent to Co(X )@ (S) and C}} (S) is strongly Morita equivalent
to Co(X) %y % (S). The corresponding result holds for the tight C *-algebra of S in
the sense of Exel [4].

One can imitate the argument of [12], Proposition 3.9, to show that the above
condition is equivalent to the enveloping action being Hausdorff.

For example, if | X| > 2 and Py is the polycyclic inverse monoid, then ¢: Py —
Fx is the map taking uw* to the reduced form of uw™!. It is clear that the image
of ¢ consists of all reduced words v that can be written as a positive word multiplied
by the inverse of a positive word. The unique maximal element in (~!(v) is v itself.
It follows immediately that Corollary 6.16 applies to Py. More generally, call an
inverse semigroup S with zero strongly 0- F -inverse if S f N1~ '(g) has a maximum
element, when not empty, for all g € % (S). For an inverse monoid, this is equivalent
to asking that :~1 (g) have a maximum element whenever it is not empty. For instance,
Py is strongly O0-F-inverse, as are the graph inverse semigroups of [22].

Corollary 6.17. Let S be a strongly 0-F -inverse semigroup with universal group
 (S). Then there is an action of % (S) on a locally compact Hausdorff space
X such that C*(S) is strongly Morita equivalent to Co(X) x % (S) and C}(S) is
strongly Morita equivalent to Co(X) X, % (S). The corresponding result holds for
the tight C*-algebra of S in the sense of Exel [4].
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