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On the topology of J(2)

Duc-Manh Nguyen

Abstract. The space # (2) consists of pairs (M, w), where M is a Riemann surface of genus
two, and  is a holomorphic 1-form which has only one zero of order two. There exists a
natural action of C* on #(2) by multiplication to the holomorphic 1-form. In this paper, we
single out a proper subgroup I' of Sp(4, Z) generated by three elements, and show that the
space J(2)/C* can be identified with the quotient '\ g2, where > is the Jacobian locus in
the Siegel upper half space $,. A direct consequence of this result is that [Sp(4,Z) : T'] = 6.
The group I' can also be interpreted as the image of the fundamental group of #(2)/C* in
the symplectic group Sp(4, Z).
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1. Introduction

In this paper we are concerned with translation surfaces in the stratum J¢(2). Each
element of J(2) can be either considered as a translation surface having only one
singularity of angle 67 together with a parallel line field, or a pair (M, w), where M
is a Riemann surface of genus two, and w is a holomorphic 1-form having a single
zero of order two on M. Using the latter viewpoint, we see that C* acts naturally
on J¢(2) by multiplication to the holomorphic 1-form. Note that, if w has only
one zero on M, then this zero must be a Weierstrass point of M. Therefore, the
quotient F#(2)/C* consists of pairs (M, W), where M is a Riemann surface of
genus two, and W is a Weierstrass point of M, two pairs (M7, W;) and (M,, W)
are identified if there exists a conformal homeomorphism ¢: M; — M, such that
$p(Wr) = Ws.

The space #(2) is well known to be a complex orbifold of dimension 4. For
any pair (M, w), let y1, ..., y4 be a basis of the group H;(M, Z). Then the period

mapping
M, w) — (/ a)/ a)) e C*
71 V4
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gives a local chart for #(2) in a neighborhood of (M, w) (see [2], [7], [14]). Con-
sequently, we see that #(2)/C* can be endowed with a complex projective orbifold
structure.

In Section 3, we introduce a construction of translations surface in #(2) from
triples of parallelograms by a unique gluing model. This construction gives rise to
the notion of parallelogram decomposition of surfaces in J€(2). Actually, given a
translation surface (M, ) in J (2), there exist infinitely many parallelogram decom-
positions of (M, w). From a fixed parallelogram decomposition, one can obtain other
ones by applying some elementary moves, which are called 7', S and R, these moves
are realized by some homeomorphisms of the surface M whose actions on the group
H,(M,Z) (in an appropriate basis) are given by the following matrices respectively:

1 1 00 0O 1 0 1
01 00 0O 0 -1 0
T_OOIO’S_0100’
00 0 1 -1 0 1 O
and
1 0 0O
01 00
R_0011
0 0 01

Let " be the group generated by the matrices 7', S and R, then T is a proper
subgroup of Sp(4, Z). The main result of this paper is the following:

Theorem 1.1. There exists a homeomorphism from J(2)/C* to the quotient T'\ $,,
where &5 is the Jacobian locus of Riemann surfaces of genus two in the Siegel upper
half space $,. As a consequence, we have [Sp(4,7Z) : T'] = 6.

Since every Riemann surface of genus two is a two-sheeted branched cover of the
sphere CIP!, there exists a natural identification between #(2)/C* and the moduli
space of pairs (A9, A), where 1o € CIP!, and A is a subset of cardinal five of CP !\ {1}
up to action of Aut(CP?).

Let Mody,¢ denote the mapping class group of the sphere with six punctures, and
Mod(’is, the subgroup of index 6 in Mody ¢ that fixes one of the punctures. The space
J(2)/C* can be identified with the quotient T /Modg 5, where T ¢ is the Teich-
miiller space of the sphere with six punctures. The group I" can be then considered as
the image of Modg 5 in Sp(4, Z). Note that we have an isomorphism between Modj 5
and Bs/Z(Bs), where Bs is the braid group of the closed disk with five punctures,
and Z(Bs) is the center of Bs.

It is well known that the Jacobian locus 5 is the quotient of 7y ¢ by the Torelli
group I,. Thus we have the following commutative diagram
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T’6 \

"

H(2)/C* = To,6/Modg 5

Since the action of —Id on $, is trivial, a direct consequence of Theorem 1.1 is
the following

Corollary 1.2. We have the following exact sequence
11— 1, —> Modgj5 ~ Bs/Z(Bs) — I'/{xld} — 1. (1)

We refer to [11] for a general discussion on symplectic and unitary representations
of braid groups.

The paper is organized as follows: in Section 2, we recall the basic properties
of the Theta functions and give a brief explanation of how these functions allow us
to compute the branched points of hyperelliptic coverings. In the following section,
we introduce the notion of parallelogram decomposition for surfaces in J(2) and
the three elementary moves on those decompositions. We then define the group I
as the group generated by the homology action of the elementary moves. Note that
there are parallelogram decompositions for which some elementary moves can not
be carried out. This means that the set of parallelogram decompositions is not the
right place to study the action of the group generated by the elementary moves. To
fix this problem, in Section 4, we introduce the notion of admissible decomposition,
which generalizes the one of parallelogram decomposition. For every admissible
decomposition, all the elementary moves can be carried out. The key ingredient of
the proof of Theorem 1.1 is the fact that the symplectic homology bases associated
to two admissible decompositions are always related by an element of the group I'.
This fact is the content of Theorem 5.1, which is proven in Section 5. The proof
Theorem 1.1 is then given in Section 6. In the Appendices, we give the proof of the
fact that every surface in J (2) admits parallelogram decompositions, and we give an
explicit family of I"-right cosets in Sp(4, Z).
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Institute for Mathematics, and Institute for Mathematical Sciences, NUS Singapore.
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thanks the referee for his patience and the helpful comments.



516 D.-M. Nguyen
2. Siegel upper half space and Theta functions

In this section, we recall the definition and some basic properties of the theta functions.
Our main references are [13] and [4].

2.1. Siegel upper half space and Jacobianlocus. Forany integer g > 1, the Siegel
upper half space 9, is the space of complex symmetric matrices Z in t(g, C) such
that Im(Z) is positive definite. This space is the quotient of the real symplectic group
Sp(2g, R) by the compact subgroup U(g). The integral symplectic group Sp(2g, Z)
is a lattice in Sp(2g, Z) which acts properly discontinuously on $,. The quotient
Ag = Sp(2g,7Z)\9Hg is the moduli space of principally polarized Abelian varieties
of dimension g. In this paper, by the real symplectic group Sp(2g, R) we mean the
group of real 2g x 2g matrices preserving the symplectic form

0 1
, whereJ—(_1 0).

Let M be a Riemann surface of genus g and let {a;,b1,...,a,,bg} be a sym-
plectic basis of H{(M, Z), that is,

J 0

0 J

(ai,aj) = (bi,bj) =0 and (ai,b]’) = 51']',

where (., .) is the intersection form of H (M, Z). There exist g holomorphic 1-forms
(¢1.....¢g) on M uniquely determined by the following condition:

/.d’i = §jj.

The matrix I1 = (7;;)i,j=1,....g, Where m;; = fb/ ¢;, belongs to ., and we then
have a mapping from the set of pairs (M, {ay, by, ...,ag,bg}) into H4. The image
of this mapping is called the Jacobian locus and is denoted by .

For the case g = 2, it is well known that the complement of £, in 9, is a
union of countably many copies of $; x $1, where $; is the upper half plane
91 ={ze€C : Imz > 0} (see [6], [12]).

2.2. Theta function. Fix aninteger g = 1 and let $, be the Siegel upper half space
of genus g. The Riemann’s theta function is a complex value function defined on
C# x 94 by the following formula

0(z,0) = Z exp (2711 (%INON +! NZ)).

NeZs



On the topology of J(2) 517

The function 6 is holomorphic on C# x $g. We also consider functions defined on
C& x Hg by

e[j] (oy= 3 exp 2 [Y (N + 9o(N + &)+ (N + )= + D))

where €, €’ are integer vectors. These functions are called first order theta functions
with integer characteristic [ & |.

Proposition 2.1. The first order theta function with integer characteristic [ :/] has
the following properties:

Dol +e®, o) =exp2m [£]6 |:e€’] (z,0),

i) 0| ,|(z+0W, o) =exp2m [—Z —U"T"—%"]Q[:,] (z,0),

iii) 6 E, (—z,0) = exp2m1 [%] 0 |:€E,i| (z,0),

[ e +2v

iv) 6 | € +2v

] (z,0) = exp2m1 [%] 6 [:/] (z,0), withv,V' € Z5,
where e® and o® are the k-th column of the matrices 1dg and o respectively.

By the Torelli theorem, we know that a closed Riemann surface M is uniquely
determined by its Jacobian variety J(M ), or equivalently, by the period matrix as-
sociated to a symplectic basis of Hy(M, Z). If M is hyperelliptic, then we can get
more information from the period matrix by using theta functions. We have (cf. [4],
VIL4)

Theorem 2.2. The branched points of the two sheeted representation of a hyperelliptic
Riemann surface are holomorphic functions of the period matrix. Furthermore, the
hyperelliptic surface is completely determined by its period matrix.

To illustrate the ideas of the proof, we will indicate below the method to compute
some of the branched points; details of the calculations can be found in [4], VIL.1 and
VIL4.

Assume that M is the two-sheeted branched covering of CP! ramified above
Ao Azgqn. Letsy, ..., 541 be g+ 1 simple arcs in CP! such that the endpoints
of s; are Ayj—1, Ay, fork =1,...,g+ 1, ands; Ns; = @, fori # j. We can
consider M as the Riemann surface obtained by gluing two copies of CP! slit along
$1,...,5¢+1. Let z be the meromorphic function on M realizing the two-sheeted
branched cover from M to CP!. Let P; denote z7YA;), i =1,...,2g + 2, then
{P1,..., Pygio} is the set of Weierstrass points of M.
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Using PSL(2, C), we may assume that A; = 0, A, = 1 and A4, = co. The
surface M is then the curve defined by the equation

2g—1

w? =z(z—1) H (z —Ai).

i=3

The function z is then characterized, up to a non zero multiplicative constant, by the
property that it has a double zero at Py, a double pole at P, », and it is holomorphic
and non zero elsewhere. First, we specify a symplectic basis {a1,b1,...,ag,bg} of
H{(M,Z) as follows:

o by =z (sk),k =1,..., g+ 1. By construction, by is a simple closed curve
containing P, and Py, and by is preserved by the hyperelliptic involution.

o Letay, k = 1,...,g, be g simple closed curves pairwise disjoint in CcP!
satisfying

* oy intersects transversely sx and sg 41,

» Card{ax N si} = Card{ox Nsg4+1} =1,
carNs; =0if j ¢ {k, g+ 1},

s o N{AL, ..., Azgqa} =D

Let aj be a connected component of z~!(ax). Note that a; and its image
under the hyperelliptic involution are disjoint.

It follows from the construction that the family {a;, b1, ...,ag,bg} is a symplectic
basis of Hy (M, Z). Let {{1,. .., } be the basis of 7 (M), the space of holomor-
phic 1-forms on M, dual to {a;,...,ag}, thatis

/ §i = 6ij.
a

Let IT = (m;j)i,j=1,...g » With m;; = fbj i, be the period matrix associated to
{ai, b1, ... ,ag,bg}. By definition, the Jacobian variety J(M) of M is the quotient
Cé& /A, where A is the lattice in C& which is generated by the column vectors of the
g x 2g matrix (Idg, IT). We denote by e® and 7® k =1,..., g, the k-th columns
of Idg and IT respectively. Let 9: M — J(M) be the map defined by

w(P)=( Pig“l,...,/:gg) e C/A,

where the integrals are taken along any path joining P; to P. From the construction of
the basis {ai, b1, ...,ag,bg}, one can explicitly compute ¢(P;),i =1,...,2g +2,
as functions of (e(l), e g JT(g)). Namely, we have (see Figure 1)
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Figure 1. Symplectic basis on a hyperelliptic Riemann surface.

¢ (p(Pl) =0,
* 9(Py) = 57V,

« 9(P3) = (7™ + W + @),

* 9(Pak+1) = %(7[(1) 4o 7® f oM g kDY
© O(Popr2) = 2@ 4o 4 g & o oy ol D)y

© 9(Prg41) = 2@ + -+ 78 + W),
* p(Pagi2) = ze.

Since IT € $g, we can now consider the first order theta functions with inte-
ger characteristic 0 [ :/] (z, IT). From Proposition 2.1, we see that for any v € A,
0[5](z + v, 1) differs from 6 [ & ] (z, IT) by a multiplicative factor. It turns out
that the multiplicative behavior of the theta functions is such that

_ 0?1198 8] (e(P). )
S(P) = 2[100...0
02598 8] (e(P). D)
is a meromorphic function on M with divisor P? P 2+2, Hence

f =cz wherec e C*.

The constant ¢ can be evaluated at P, since we have f(P,) = cz(P2) = c¢. Using
the fact that ¢(P;) = 17V, we have

[0 8]0
=) = e e (R0, )
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It follows that

6|
62

](%n(l), o2 |

190 8] m
1Gr®. me2[ 4}

0= [(e(P). 1)’

2)

J—

oo
oo (oo

. 0 0..0
0 0..0
.0 0..0

0 0..0
By setting P = Pj, for j = 3,...,2g + 1, we get a formula for A;. Note that
this formula is only useful for j = 3,4,6,..,2g, for other values of j, both the
numerator and denominator vanish. By replacing P, by another Weierstrass point in

the definition of ¢, we can get similar formulae for the A; which can not be computed
directly from (2).

3. The group I

In this section, we define the group I'" and prove some of its properties.

3.1. Construction of surfaces in J# (2) by gluing parallelograms. Any parallelo-
gram in R? is determined by a pair of vectors in R2. In this section, we will represent
any parallelogram by a pair of complex numbers (zy, z;) such that Im(z;z2) > 0,
Im(Zz,z,) is actually the area of the parallelogram. Note that by this convention, the
pairs (21, 22), (22, —21), (—21, —22), (—22, z1) represent the same parallelogram.
Let 271 denote the set {(z1,2,) € C? :Im > 0(Z;2,) > 0}. Given 4 complex
numbers (z1,...,z4) such that (21, z2), (22, 23), (23, z4) all belong to P27, let A,
B, C denote the parallelograms determined by the pairs (z1, z2), (22, 23), (23, z4)
respectively. We can construct a translation surface in # (2) from A, B, C as follows:

* Glue two sides of A corresponding to z; together.

* Glue two sides of A corresponding to z; to two sides of B also corresponding
to z5.

* Glue two sides of B corresponding to z3 to two sides of C also corresponding
to z3.

* Glue two sides of C corresponding to z4 together.

It is easy to check that the surface M obtained from this construction is of genus 2,
equipped with a flat metric structure with a single cone singularity, which arises from
the identification of all the vertices of A, B, C, we denote this point by W. Since
all the gluings are realized by translations, M is a translation surface. We also get
naturally a holomorphic 1-form on M, considered as a Riemann surface, defined as
follows: since translations of R? preserve the holomorphic 1-form dz, the restrictions
of dz into the parallelograms A, B, C are compatible with the gluings and give rise
to a holomorphic 1-form w on M with only one zero at W, which is necessarily of
order two. Clearly, (M, w) € #(2).
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Figure 2. Construction of surfaces in # (2) from three parallelograms.

We know that M is a hyperelliptic surface, it is easy to visualize the hyperelliptic
involution of M from its construction by gluing A, B, C. For each of the parallelo-
grams A, B, C, consider the reflection through its center, one can easily check that
these reflections agree with the gluing on the boundary of A, B, C. Thus, we have
a conformal automorphism 7 of M. One can check that 72 = Id, and the action
of r on H{(M, Z) is given by —Id, therefore T must be the hyperelliptic involution
of M. We can also determine without difficulty the 6 fixed points of t, which are
the Weierstrass points of M: two of which are contained in A, two in C, one in the
interior of B, and the last one is W.

3.2. Parallelogram decompositions and the group I'. Recall that, on translation
surfaces (M, w), a saddle connection is a geodesic segment (with respect to the flat
metric) which joins singularity to singularity, the endpoints of a saddle connection
may coincide. A cylinder C is a subset of M which is isometric to Rx]0, h[/Z,
where the action of Z is generated by (x, y) — (x + £, y) with £ > 0 and maximal
with respect to this property (that is, C can not be embedded into a larger subset C’
isometric to Rx]0, #'[/Z, with ' > ). In other words, C is the union of all simple
closed geodesics in the same free homotopy class. The construction of translation
surfaces in J (2) by gluing parallelograms with the model presented above suggests
the following

Definition 3.1. Let (M, w) be a pair in #(2). A parallelogram decomposition of
(M, w) is a family of six oriented saddle connections {a, b1, b>, ¢1, c2, d } verifying
the following conditions:

* The intersection of any pair of saddle connections in this family is the unique
zero of w.

* by Uby (resp. c1 Ucy) is the boundary of a cylinder which contains a (resp. d).

* The complement of a U by U b, U ¢1 U ¢z U d has three components, each of
which is isometric to an open parallelograms in R2.
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* The orientations of the saddle connections in this family are chosen such that

{(a,b1) = (b1,c1) = {(c1,d) = 1, a goes from b; to b, and d goes from c,
to ¢ (see Figure 3).

by

by

Figure 3. Parallelogram decomposition of surfaces in J(2).

If O = {a,by,bs,c1,c2,d} is a parallelogram decomposition of (M, w) then
(a,b1,c1,d) is not a symplectic basis of H;(M,Z). Let b (resp. ¢) be a simple
closed curve in the cylinder bounded by b; and b, (resp. by c; and ¢;). Let e be a
simple closed curved in the free homotopy class of the closed curve d * (—by), that
ise=d —bin Hi(M,Z), then (a, b, c,e) is a symplectic basis of Hy(M, Z), we
will call it the symplectic basis associated to D.

Given a surface (M, ) in #(2) which is obtained from three parallelograms
A = (21.22), B = (22,23),C = (z3.z4) as in the previous section, let A, B, C be
the subsets of M which correspond to 4, B, C respectively. By construction, A and
C are two cylinders, while Bis an embedded parallelogram. Let a (resp. d) denote
the saddle connection in A (resp. C ) which corresponds to the z; sides of A (resp. z4
sides of C). Let by, b, (resp. c1, ¢2) denote the boundary components of A (resp. C ).
We choose the orientations of a, b1, b,, c1, ¢2, d in such a way that

/(1)221, /(1)2/61)222, /(1)2/0)223, /(,()=Z4.
a by by (41 c2 d

We also choose the numbering of (b1, b,) (resp. (c1, c2)) such that the orientation
of a goes from by to b, and the orientation of d goes from c; to c;. By definition
{a, by, bs,c1,cp,d} is a parallelogram decomposition of (M, ).

A surface (M, w) in J(2) always admits a parallelogram decompositions (see
Appendix A). The following operations allow us to get other decompositions from a
particular one D = {a, by, by, c1,¢2,d}.

1. The T move. let a’ be the saddle connection which is obtained from a by a
Dehn twist in A, then D’ = {a’,by,bs,c1,ca,d} is another parallelogram
decomposition of (M, w) (see Figure 4). Here, we consider both “left” and
“right” Dehn twists.
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by by
P /é a i o'
d X L Ny d :
C C
Ca C1 2 e 1 Co
bz b2

Figure 4. The T move.

2. The S move. If {a,by,by,c1,ca2,d} is a parallelogram decomposition of
(M, w) then D' = {d, —ca, —c1, b1, b, —a} is also a parallelogram decom-
position of (M, w), the minus sign designates the same saddle connection with
the inverse orientation (see Figure 5).

bz bl

a —C1
by —C2 —C2
. YW T b,

‘1 c2 —a

C2

b2 bl

Figure 5. The S move.

3. The R move. Cut M along the saddle connections b1, b, and d, we then obtain
two annuli, one of which is 4, we denote the other by A’ Let ¢}, ¢4 denote

the images of c;, ¢ respectively under a Dehn twist in A’. Assume that 1
c5 can be made into saddle connections in A’, then {a, by, bs,c],c5,d}is a
parallelogram decomposition of (M, w) (see Figure 6).

by

(&) \V\\‘~

Figure 6. The R move.
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Let O’ be another parallelogram decomposition of (M, w) which is obtained
from D by one the moves presented above. Let (a, b, c,e) (resp. (a’,b’,c’,e’)) be
the symplectic basis of Hy (M, Z) associated to D (resp. D’). The following lemma
follows directly from the definitions.

Lemma 3.2. a) If D’ is obtained from D by a T move then

a

c

’
/
/
/
e

b) If D’ is obtained from D by an S move then

b/
c/

e/

¢) If D' is obtained from D by an R move then

1
0
0
0

—1

S oo

+1

0
0

SO = O

1
0
1
0

0

0
1
0

—1

0

S = O

0

1

- o O O

0

0
+1

1

S oo

o o o8 RIEIE

[N RN

We denote by T, S, R the matrices of basis change corresponding to the moves
T, S, R respectively, to fix ideas, we can take

1
1
0
0

S oo~

and

0

0
1
0

0

- o O

SO O =

oo = O

oS = O O

—_—— O O

- o O O

S = O =

SO O =

We denote by I" the subgroup of Sp(4, Z) generated by those matrices.

3.3. Properties of T

Lemma 3.3. We have
() S? = —1d4.
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oy (I 0
(i1) ( o SL(2,Z)> cT.
Gii)) '  Sp4, 7).
(iv) T is not a normal subgroup of Sp(4, 7).

Proof. (i) follows from direct calculation.
(i) We have

S7ITs =

SO o -
SO = O

- o O
-0 O O

Since SL(2, Z) is generated by

1 1 1 0
(60) = (47)
Id>

we deduce that ( 0 SL(g,Z)) is contained in I'.

(iii) The group Sp(4, Z) acts transitively on (Z/27)* \ {0}, but I" has two orbits:
0 containing ¢; = (1,0,0,0) and &, containing e, = (0, 1,0, 0). As a matter of
fact, we have

0,1,1, 1) }
and

(0,1,0,0)

(1,0,1,0) (1,0,0,1) (1,0,1,1)
(1,1,1,0) (1,1,0,1) (1,1,1,1)
(0,0,1,0) (0,0,0,1) (0,0,1,1)

Oy =

Here, we consider the action of Sp(4, Z) and I on (Z/27)* by right multiplication.
(iv) Let

1 0 00
, |1 1 .00
r= 0010
0 0 0 1
Remark that 7’ does not belong to I since it sends e, to an element in &';. We have
2 1 00
—1 ’ -1 0 0 O
rrT = 0O 01 0
0 0 0 1

Observe that 7/~ T T’ sends e to e, thus it does not belong to I'. We can then
conclude that I" is not a normal subgroup of Sp(4, Z). O
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Lemma 3.4. Set

0 0 0 -1
0 0 1 O
U= 0 -1 0 O
1 0 0 O

Then the integral symplectic group Sp(4, 7)) is generated by T, S, R and U.

Proof. See Appendix B. O

4. Admissible decomposition

4.1. Definition. We have seen that for any surface (M, w) in J#(2), given a par-
allelogram decomposition, other decompositions of (M, w) can be obtained by the
elementary moves 7', S and R. However, while T and S are always realizable, the
R move is not, it is only realizable when d * (—b;) * ¢, is homotopic to a saddle
connection. In this section, we enlarge the set of decompositions so that the three
elementary moves are always realizable. This leads us to the notion of admissible
decomposition with respect to the pair (M, W). The definition of admissible decom-
position is inspired from parallelogram decomposition and relies on the action of the
hyperelliptic involution of M.

Throughout this section, M is a fixed closed Riemann surface of genus two, W is
a Weierstrass point and t is the hyperelliptic involution of M. For any closed curve
y with basepoint W, we denote by [y] the homotopy class of y in 71 (M, W).

Definition 4.1 (Admissible decomposition). Let {a, b1, b2, c1, c2, d } be six oriented
simple closed curves containing W. We say that {a, by, b>, c1, c2, d } is an admissible
decomposition for the pair (M, W) if

* the intersection of any pair of curves in this family is {W},

* t(a) = —a,t(d) =—d,

* 7(b1) = =D, T(c1) = —c2,

* a \ {W}is contained in an open annulus A bounded by by and b,
* d \ {W} is contained in an open annulus A, bounded by ¢; and ¢,

e M\ (Ap U A.) is homeomorphic to an open disk.
The orientations of {a, b1, b2, c1, c2, d} are chosen such that

e {a,b1) = {a,by) = (c1,d) = (c2,d) = 1, where (.,.) is the intersection
form of H;(M, Z),

* in the annulus Ay, the orientation of a goes from by to b,,

* in the annulus A, the orientation of d goes from ¢ to ¢y,
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« the boundary of the disk M \ (4, U A.) with the induced orientation is
the concatenation by * ¢y * (—b3) * (—c3), which implies in particular that
[b1lleal[ba]Mea]l ™! = Lin (M, W).

Example. If D = {a, by, bs,c1,c2,d} is a parallelogram decomposition for a pair
(M, w), where  is a holomorphic 1-form with double zero at W, then D is an
admissible decomposition for the pair (M, W). Note that on a fixed translation
surface in #(2), there are admissible decompositions which can not be realized as
parallelogram decompositions.

4.2. Projection to the sphere and associated homology basis. Let p: M — CP!
be the two-sheeted branched covering from M onto CPP! ramified at the Weierstrass
points of M. By definition, we have p(P) = p(P’)ifandonlyif P’ € {P, t(P)}. Let
Py, ..., Ps denote the images of the Weierstrass points of M by p, with Py = p(W).
Let D = {a, b1, bs,c1,c2,d} be an admissible decomposition for the pair (M, W).
The projections of the curves in D satisfy (see Figure 7).

* p(a) = a is a simple arc joining Py to another pointin { Py, ..., Ps}. Without
loss of generality, we can assume that the endpoints of a are Py and P;.

« p(b1) = p(bs) = b is a simple closed curve with basepoint Py, b is the
boundary of an open disc D; which contains a \ { Py} and two points of the
set {Py,..., Ps}. We can assume that Dy N {Py,..., Ps} = {P1, P>}.

* p(d) = d isasimple arc disjoint from Dy, joining Py toapointin{Ps, ..., Ps}.
We can assume that the endpoints of d are Py and Ps3.

* p(c1) = p(c2) = ¢ is a simple closed curve with basepoint Py disjoint from
D, ¢ is the boundary of an open disc D, which contains d \ { Py} and two points
in the set { Ps, ..., Ps}. We can assume that D, N {Py,..., Ps} = {P3, P4}.

(]

Figure 7. Projection of an admissible decomposition to CP L

Remark. The orientations of the curves in D do not determine the orientations of
the curves {a,b,c,d}.



528 D.-M. Nguyen

Let 15* be a simple arc contained in Dy which joins Py to P> such that 15* Na=
{P1}. Observe that b = p~!(b.) is a simple closed curve in M, freely homotopic to
by and b,, and we have t(b) = —b. Similarly, let ¢, be a simple arc in D, joining
P5to Pysuchthaté, Nd = {P3}, then ¢ = p~1(¢4) is a simple closed curve freely
homotopic to ¢y, ¢, such that t(c) = —c. o

Now, let & be a simple arc in CPP! which joins Ps to P4 suchthaté N (hUd) = @
(see Figure 7), then e = p~!(&) is a simple closed curve such that 7(e) = —e. Note
that & is unique up to homotopy with fixed endpoints in CP! \ (b U d).

Recall that a, d are already oriented, and we have an orientation for b which
is induced by the orientation of b1 and b,. Choose the orientation of e such that
(c,e) = 1,then(a, b, d, e)isasymplectic basis of Hy(M, Z). Wewillcall (a, b, c, e)
the basis associated to the decomposition . It is easy to see that this basis is also the
one described in Section 2. Note also that if O is a parallelogram decomposition, then
the two definitions of associated symplectic basis of H1 (M, Z) agree (see Figure 8).

Figure 8. Symplectic homology basis associated to an admissible decomposition.

4.3. Elementary moves. Let & = {a,b;,bs,c1,c2,d} be an admissible decom-
position for the pair (M, W). Leta, b, ¢, d, &, D1, D5 be as above.

e The T move. Let @’ be a simple arc joining Py to P, such that (@’ \ {Po}) C
D; and @’ Na@ = {Po}. The preimage a’ of @’ in M is a simple closed
curves contained in the annulus bounded by b1, b, which satisfies 7(a’) =
—a’. By choosing an appropriate orientation for a’, we see that the family
D' ={d’, by, by, c1,cz,d} is an admissible decomposition for (M, W). The
symplectic homology basis associated to D’ is (a’, b, ¢, ¢) and we have

a 1 £1 0 O a
b | o 100 b
c | | 0O 010 c
e 0 0 0 1 d

We call this transformation the 7" move (see Figure 9).
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Figure 9. T' move for an admissible decomposition.

* The S move. We define the S move for admissible decompositions in the
same way as for parallelogram decompositions, that is, an S move transforms
D into the family D" = {d, —c,, —c1, b1, by, —a}. Too see what happens
to the curves in CP!, let &' be a simple arc in CP; joining P5 to P, such
that &’ N (a U ¢) = @, then the symplectic homology basis associated to D’
is (d,—c,b,e’) where ¢’ = p~1(¢’). It is easy to check that the symplectic
homology bases associated to O and £’ are related by the matrix S.

Figure 10. S move for an admissible decomposition.

* The R move. Let ¢’ be a simple closed curve in CP! with basepoint Py which
is disjoint from D; and bounds an open disc D/, such that (see Figure 11)

« Dy N{Py.....Ps} = {P;, Ps},
* (d \{Po}) C D).

The preimage of ¢’ in M is the union of two simple closed curves ¢}, ¢, with
basepoint W. By choosing an appropriate orientation or ¢}, c5, we see that
the family D’ = {a, b1, by, c}. ¢}, d} is an admissible decomposition. Let ¢,
be a simple arc in D), joining P3 to Ps and let ¢’ be the preimage of ¢}, in M.
Then (a, b, ¢’, e) is the symplectic homology basis associated to D’. One can
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easily check that

a 1 0 0 0 a
b o010 0 b
¢ |10 0 1 #£1 c
e 0 0 O 1 e

Figure 11. R move for an admissible decomposition.

The elementary moves 7', S, R defined above transform an admissible decom-
position for the pair (M, W) into another admissible decomposition for the same
pair. Let us now introduce an elementary move which transforms an admissible de-
composition for the pair (M, W) into an admissible decomposition for another pair
(M, W"). L
_ Leta’ be a simple arc in CP! joining Ps to Py suchthata’ N (b Ud) = @. Let
d’ be a simple arc joining Ps to P, suchthatd’ N (a U ¢) = &. Let b’ and ¢’ be two
simple closed curves with basepoint Ps which are respectively the boundary of the
open disks D) and D) satisfying (see Figure 12)

. Dll ﬂD’Z =g,D;ND;=@,i =1,2,
. Dll N{Po,..., Py} ={Ps, Py}, D,2 N{Po,..., Py} ={P1, P},
« int(@") C D}, int(d") C Dj,.
Then the preimages of @', b'.c',d is an admissible decomposition D’ for the
pair (M, p~'(Ps)). Actually, the family (a@’,b’,¢,d’) gives rise to two admissible
decompositions, each of which is determined by the orientation of @’ = p~!(a’). The

symplectic homology bases associated those decompositions are related by —Id. Let
(a’,b’, ¢, e’) be the symplectic homology basis associated to D', we have

a 0O 0 0 -1 a a
/

cl==l0 S0 o |||
e 1 0 0 O e e

We will call the transformation from D into 9’ the U move.
From the definitions, the following lemma is clear.
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e

Figure 12. U move for admissible decompositions.

Lemma 4.2. Let D be an admissible decomposition for the pair (M, W) and y an
element of the group T'. Then there exists an admissible decomposition D' for the
same pair such that the symplectic homology bases associated to D and D’ are
related by .

From Lemma 3.4, we know that the family {7, S, R, U} generates the group
Sp(4, Z), therefore we have

Lemma 4.3. Let D be an admissible decomposition for the pair (M, W) and A an
element of Sp(4, 7). Then there exist a Weierstrass point W' of M and an admissible
decomposition D’ for the pair (M, W') such that the symplectic homology bases
associated to D and D’ are related by A.

5. Symplectic homology bases associated to admissible decompositions
and the group I'

Let (M, W) be an element of the space #¢(2)/C™*. Our aim in this section is to prove
the following theorem, which is the key ingredient of the proof of Theorem 1.1.

Theorem 5.1. Let D and D’ be two admissible decompositions for the pair (M, W)
with the associated symplectic homology bases (a, b, c,e) and (a’,b’,c’,e’) respec-
tively. Then there exists an element y in " such that

a a
b’ b
i A
e e

In what follows, we denote by 7 the hyperelliptic involution of M, by p the
two-sheeted branched covering from M onto CP', and by Py, ..., Ps the images of
the Weierstrass points of M by p, where Py = p(W). We also equip M with the
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hyperbolic metric in the conformal class of the Riemann surface structure. Note that
7 is now an isometry of M. Recall that, for any closed curve o in M which contains
W, we denote by [«] the homotopy class of « in 7y (M, W).

5.1. Admissible decompositions with common subfamily. Let us first prove the
following

Proposition 5.2. Let D = {a,b1,bs,c1,¢2,d} and D' = {a’, b/,b/z,cl,cz,d } be
two admissible decompositions for the palr (M, W). Assume that b = p(by) and

= p(b}) are homotopic in m; (CPY\ {Pi,..., Ps}, Py). Then there exists an
element y € I' such that the symplectic bases of H 1(M, Z) associated to D and D’
are related by y.

Proof. Since b and b’ are homotopic in 71 (CPY \ {Py,..., Ps}, Py), there exists
a homeomorphism ® of CP! isotopic to the identity relatlve to {Py, ..., P5s} such
that ®(b) = b’ (see [1], Theorem A.4, or [3], Lemma 2.9). The homotopy from
the identity of CP! to ® can be lifted to a homotopy of M which is identity on the
set of Weierstrass points of M. Therefore, we can assume that by U b} = b} U b}
as subsets of M. A priori, the orientations of (b1, b,) and (b}, b}) may not be the
same, but since —Id € I', we can assume that they have the same orientation which
means that by = b in H;(M,Z). Note that the orientation of (b1, b») determines
the orientation of a by the condition (a, 1) = 1, and consequently, we get a unique
numbering of the pair (b1, b,) by the condition that a goes from b; to bs.

By definition, b; U b, is the boundary of an open annulus A which contains both
a \ {W}and a’ \ {W}, therefore there exists an integer 7 such that a’ is homotopic
to the image of a by n Dehn twists in Ap. Thus, by applying the 7" move n times,
we can assume that a’ = a as subsets of M. Let (a,b,c,e) and (a’,b’, ¢’, ') be the
symplectic bases of Hy(M, Z) associated to D and D’ respectively. It follows that
we have the following equality in H; (M, Z)

a/

po| (1 0
¢ 1 \XxX Y
e/

with X,Y € Max(Z). Since (Id2 0) belongs to Sp(4, Z), simple computations

[N RN

show that we must have X = 0 and Y € SL(2, Z). Since the group ( 0 SLE2. Z))
contained in I' (cf. Lemma 3.3), the proposition follows.

5.2. Standard decomposition. Let us now prove the following

Lemma 5.3. Let D = {a, by, by, c1,c2,d} be an admissible decomposition of the
pair (M, W). Let by and cq be the simple closed geodesic in the free homotopy class
of by and ¢y respectively, then we have
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a) bo Ncog = I,
b) t(bo) = —bo, T(co) = —co,
C) w ¢ b() U Co.

Proof. a) Let b (resp. ¢) be a simple closed curve freely homotopic to by (resp.
to ¢1) which is contained in the annulus bounded by b1 and b, (resp. ¢ and ¢;). By
construction b and ¢ are freely homotopic to by and ¢y, respectively, and b N ¢ = @.
It is well known that Card{by N co} is the intersection number (b, c) of the free
homotopy classes of b and c, thus we have that Card{by N co} = 0.

b) By definition, we see that b; is freely homotopic to b, and 7(b;) = —b,
therefore t(by) is freely homotopic to —b;. Now, since by is the unique simple
closed geodesic in the free homotopy class of by, —bg is then the unique simple
closed geodesic in the free homotopy class of —b;. Since t is an isometry, t(bg)
must be simple closed geodesic in the free homotopy class of 7(b;), hence 7(bg) is
freely homotopic to —by, therefore we must have 7(bg) = —by.

¢) Suppose that W € by. Since by is freely homotopic to by, there exists [h] €
m1(M, W) such that [bg] = [h][b1][h]~!. Note that we have [t(bg)] = [bo]™',
therefore

[~ A = [eMWIe G (W]™ = [e@)]al ™ [ba] ™ [alle ()]~

It follows that
[l [A][b1] ™" =[] al[x ()]~ [A. 3)

We deduce that [b;]™! and [a][t(h)]"'[h] commute. But [b,] is a simple closed
non-separating curve, therefore we have

[allc (W]~ '[h] = [b1]" withn € Z. 4)

Recall that t acts by —Id on H{(M, Z), thus (4) implies the following equality in
H,(M,7Z)

nby —a = 2h. (5)
It follows that (a, b1) = 0 mod 2, but by construction we know that {(a, b;) = 1 and

we get a contradiction. We can then conclude that by does not contain W. The same
arguments apply to c¢o and the lemma follows. O

Remark. If a simple closed curve g satisfies t(g) = —g, then g contains exactly
two fixed points of 7, which are Weierstrass points of M.

Let g be a simple closed geodesic in M. We will say that g has Property (&), if
it satisfies

T(g) =—g forW é¢g.

By Lemma 5.3, we know that each admissible decomposition provides us with a
pair of disjoint simple closed geodesics in M satisfying Property (£?). Conversely,
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let (g1, g2) be such a pair of simple closed geodesics, we will construct an admissible
decomposition of (M, W) associated to (g1, g2) as follows:

* Cutopen M along g; and g5, we obtain a 4-holed sphere N which is equipped
with a hyperbolic metric with geodesic boundary. Let gi+ , &; denote the
boundary components of N corresponding to g;, i = 1,2. The curves gl.jE
inherit the orientation of g;. We choose the notations so that the orientation
of g;r agrees with the one induced by the orientation of N. Note that the
hyperelliptic involution r of M induces an isometric involution of N which
interchanges gi+ and g;. By a slight abuse of notation, we will also denote
by t the involution of N.

Let siJr be a path of minimal length in N from W to gi+ , i = 1,2. Note that
by definition, we have s{" N s;' = {W}. Lets; denote the image of sl.+ under
7. Since T is an isometry, s; is a path realizing the distance from W to g;°
in N. In particular, it follows that si+ Ns; = {W}. Note also that, since
the action 7 on the tangent space at W is —Id, the union s; of si+ and s; isa
simple geodesic segment.

Let us denote by §1+ ,8;, 8; the geodesic segments in M corresponding to s;r ,
s; and s;, respectively. Let Pi+, P;~ denote the endpoints of §l+ and ;" in g;,
respectively (it may happen that PiJr = P;7), and let r; be a simple arc in g;
which joins PiJr to P;. It follows that #; = r; U §; is a simple closed curve
in M containing W'.

» We choose the orientations of 1 and /15 such that (hy, g1) =1and (g5, h2) = 1.
Observe that the induced orientation of §; is from P;” to P;", and the orien-
tation of §, is from P, to P, . There exist simple closed curves b and ¢
containing W which satisfy the following:

— band ¢ are disjoint from g; Ll g7,

— b and g, bound an annulus C 1+ which contains EfL ,

— ¢ and g, bound an annulus C,;" which contains 55",

- bné={w}
- bntb)=Nt@) = (W},
— bnt@ =¢éntb)={W}

For b we can take a curve in a neighborhood of st u gfL in N, and for ¢ we
can take a curve in the neighborhood of s; u g; in N. By definition, we have

[b] = 57 % g1 % (=51)] and [¢] = [(=5) * g2 % 5] inmi (M, W).

Since 7(g;) = —gi, the curves 7(b) and g (resp. t(¢) and g») also bound an
annulus denoted by C; (resp. C;") which contains 57 (resp. §5). The union
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C; of CiJr and C; is an annulus which contains g; as a core curve. Following
the orientation of g,, we have two cases:

1. [l;][E][r(l;)][r(c")] = lin (M, W) (see Figure 13). In this case, we
take a = h1,by = b,by = —1(b),c1 = ¢,co = —1(¢),d = hy, then
D ={a,b1,bs,c1,c2,d} is an admissible decomposition for (M, W).

+
81 \\iz

Figure 13. Admissible decomposition associated to a pair of geodesics satisfying (£?): Case 1.

2. [5][1(5)][1(15)][6‘] = 1in w1 (M, W). Consider the two-sheeted ramified
covering p: M — CP!. The images of g1 and g are two simple arcs in CPP'!
whose endpoints are images of the branched points of p. Recall that p has six
branched points, one of which is W, four are contained in g; and g,. We can
assume that the last one is mapped to co. Let ii5 be a simple arc in CP! as
shown on the right of Figure 14. Then i, = p~!(ii») is a simple arc which
joins P2+ to P, and passes through W. We denote by 12; the subarc of i,
from P2+ to W. Observe i, = r(ﬁ;r ) is the subarc from P; to W. One can
easily check that

— (=35) * @S is homotopic to 5] * & * (=5]") in 71 (M, W),

- a3 Ne@y) = (W},

— Uy NCy ={W}.
Consequently, there exists a simple closed curve ¢’ in M containing W such
that

— ¢’" and g, bound an annulus C’ EL which contains ﬁ; ,

— 7(¢’") and g bound an annulus C’; which contains i,
- &dnb=¢n<b) =W},
~ dNe@) = W)
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p(g2) + | p(g1)
p(W)p(5T) | P81
p(P;)l = I Pty |tz

Figure 14. Admissible decomposition associated to a pair of geodesics satisfying (Z?): Case 2.

We have

[]_[( uz)*gz*uz]
= [(— ”2)*52][( s;_)*gZ*sz][( Sz)*”z]

= [6]'E11B)]-

Therefore, [5][¢'][t(0)][t(¢")] = 1 in 71(M, W). Let I, denote the simple
closed curve rp, U fl;— U i, we choose the orientation of h’2 in such a way
that (g, h,) = 1. It follows that, if we take a = hy, by = b, by = —‘L’(I;),
c1 =¢,c, = —t(¢')and d = h), then D = {a,b1,bs,c1,c2,d} is an
admissible decomposition for (M, W) (see Figure 14).

In both cases, we will call O a standard decomposition associated to the pair
of oriented geodesics (g1, g2).

From Lemma 5.3, we know that if & = {a, b1, b2, c1,c2,d} is an admissible
decomposition for the pair (M, W), and by (resp. co) is the simple closed geodesic in
the free homotopy class of by (resp. c1), then bg and ¢y satisfy Property (£?). Hence,
we can consider the standard decompositions associated to (bg, co). The following
proposition tells us that the symplectic bases of H;(M, Z) associated to the two
decompositions are related by an element of the group I'.

Proposition 5.4. Let D = {a, by, by, c1, 2, d} be an admissible decomposition for
the pair (M, W). Let by, co be the szmple closed geodeszcs in the free homotopy
classes of by and ¢y respectively. Let D = {a, bl,bz, (1, Ca, d } be the standard
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decomposition associated to the pair (by, o), then the symplectic bases of Hy (M, Z)
associated to D and D are related by an element in T.

Proof. Since by and by are freely homotopic, there exists a closed curve /& with
basepoint W such that [by] = [h]"![b{][h] in (M, W). We will show that & €
Za & Zby & Zcy in Hi (M, Z). By definition, we have
[c0)] =[] (b1 " (4]
=[] [t GD][e(h)] = [a]~ ;] [ba] " [A][a]
e L0 I 1 i Y e 0 [ L O I I 0 e U 3
= [ (e M@l (1™ = (alle(mla) = Hib] .

It follows that [b1] and [a][t(h)][@]"'[h]~! commute. Since b; is a simple closed
curve, there exists k € Z such that

[allema] ™' (=" = [ba]*.

Therefore, in Hy(M,Z), we have ¢ = a — kb, — 2h. We know that {d,¢;) =
{a,c1) =0and {(a,cy) = (b1,c1) = 0, hence, {h, c¢1) = 0, which implies

heclL=ZaEBZb169Zc1.

Let (a,b,c,e) and (4, B ¢, €) be the symplectic bases of Hy (M, Z) associated to
D and D respectively. We know that there exists y € Sp(4, Z) such that

D O TH
Il
<
Qo S

Since in Hy(M, Z) we have h = bc=canda=a+kb+2he€Za®Zb & Zc,
it follows that y is of the form

x y z O
o 1 0 0
=1 0 0o 1 0
xl y/ Z/ l/

Now, (&,l;) = limplies x = 1, and since z is the c-coordinate of 2k in Za ®Zb & Zc,
we have
a=a-+mb+20c withm, L eZ.

It follows that R
(b,ey=0 = x'=0,
(¢,e)=1 = t' =1,
(a,)=0 = y =-z=-2
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We deduce that
1 m 2 0
1 0 1 0 0
YTl o o 1 o
0 —2¢ n 1
with £, m, n in Z. The proposition follows from Lemma 5.5 here below. O
Lemma 5.5. For any integers £, m, n, the matrix
1 m 2¢ 0
1 0 1 0 0
YTl o o 1 o
0 -2 n 1

belongs to the group T.

Proof. We have shown that the group (I‘(j)z SL(g’Z)) is included in I". Thus

10 20
o (10 i, 0 ) [0 1 00
X_S'(o —Idz)'S'(o —Idz)_ o 0o 10|t
0 -2 0 1
Set
100 0
0100
— ¢~ lp—=1¢ _
Y=5S"T"5=9 01 0
00 11

Now, straight computations show that 7, X and ¥ commute, and y = T"X¢y™".
O

Corollary 5.6. Let D = {a,by,bs,c1,c2,d} and D' = {a’, b}, b}, c}.c5,d'} be
two admissible decompositions of the pair (M, W) such that b is freely homotopic
to by and c; is freely homotopic to £c|. Then the symplectic bases of Hi(M,Z)
associated to D and D’ are related by an element in T.

Proof. Let by, co, c;, be the simple closed geodesics in the free homotopy classes of
b1, ¢1 and ¢ respectively. Let

D =1{4,b1,b2,¢1,¢2,d}
and

N/ ARV N RPN RN Y]
@ ={Cl, 1,b2,C1,Cz,d}
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be the standard decompositions associated to the pairs (b, co) and (bg, c;) respec-
tively. From Proposition 5.4, the symplectic bases of H; (M, Z) associated to  and
D (resp. D’ and ') are related by an element of T".

By assumption, we have c¢p = :tco From the construction of standard decom-

positions, we can assume that b1 = bl, b2 = b , and the corollary follows from
Proposition 5.2. O

5.3. Reducing the number of intersections. By Proposition 5.4, we can now re-
strict ourselves into the case of standard decompositions. Our strategy for the proof
of Theorem 5.1 is to find a sequence {(g7, gé)}os jsk of pairs of disjoint simple
closed geodesics in M satisfying (2?) such that (g?, g9) is the pair associated to D,
(g1 , ) is the palr associated to i)’ and for any 0 < j < k, up to a renumbering,
we have g1 -1 = g1 and Card{g2 'n gz} = 1. We start by proving the following
key lemma

Lemma 5.7. Let g, g1, g2 be three simple closed geodesics of M verifying Property
(Z). Assume that

g1Ngr=0 and Card{gN(g1Ugy)}=n> 1.

Then there exists a simple closed geodesic gz verifying Property (&) such that
Card{gs N (g1 U g2)} = 1. Also, if gz N g1 = @, then Card{g N (g1 U g3)} <
Card{g N (g1 U g2)}. Moreover, fori = 1,2, if g N gi = O, then we can find g3
such that g3 N g; = @.

Proof. We know that each of the curves g1, g contains two Weierstrass points. Let
W’ # W be the other Weierstrass point of M which is not contained in g; U g». We
have two possibilities:

Case 1: W' € g. Let s be the segment of g which contains W’ with endpoints
in g N (g1 U gz). We denote by @1, Q> the two endpoints of s and choose the
orientation of s to be from Q to Q,. Since t(g) = —g and T(W’') = W/, we
deduce that 7(s) = —s and Q;, Q, are interchanged by 7. It follows that Q; and
Q> are both contained in either g, or g,. Without loss of generality, we can assume
that Q1, Q» are contained in g,.

We know that t preserves the orientation of M, since t reverses the orientation
of s and g,, we deduce that s meets both sides of g,. Let r be one of the two
subsegments of g, with endpoints Q1, Q»,, and let W” be the Weierstrass point
which is contained in r. Note that @; and Q, must be distinct, otherwise s = g and
Card{g N (g1 U g»2)} = 1, which is discarded by the hypothesis.

Consider the simple closed curve g5 which is composed by s and . Note that
we have (g5, g2) = =1, therefore g5 # 0 in H{(M,Z) and, in particular, g5 is
an essential, non-separating curve. By construction, we see that 7(g3) = —g5. We
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can move g% slightly in its free homotopy class so that the following conditions are
satisfied:

c g3 Ns ={W',

* 83N g ={W"},

* (g3 = —¢5

By construction, we have

c ghNgL=a.
* Card{g; Ng} = Card{int(r) N g} +1 < Card{g N g} —2+ 1 = Card{g, N
g — 1L
3 g3 vi
T T
o | ] UEe
| 02| |

Figure 15. Case W’ € gs.

Let g3 be the simple closed geodesic in the free homotopy class of g5. Since
7(g5) = —g4, we have 7(g3) = —g3, as t(g3) is the simple closed geodesic in the
free homotopy class of 7(g5). It follows from Lemma 5.8 below that g3 does not
contain W, therefore we can conclude that g3 verifies Property ().

Let us now show that g3 satisfies the conditions in the conclusion of the lemma.
Let ¢ denote the geometric intersection number between free homotopy classes of
simple closed curves in M. Recall that ((«, 8) = Card{xy, Bo}, Where o and Bo
are the simple closed geodesics in the free homotopy classes of « and 8 respectively
(see [3], [5]). We have

» Card{gz N g1} =1(g5.81) =0,
* Card{gs N g2} = 1(g5. g2) < Card{gj N gz} =1,
 Card{gz N g} = 1(g%, g) < Card{g; N g} < Card{g, N g}.

By construction, we have (g3, g2) = (g5.82) = %1, therefore g3 N g, # . We
deduce that Card{g3 N g>} = 1, and the lemma is proven for this case.
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Case 2: W' ¢ g. Cutting M along the curves g1, g2, we then get a 4-holed sphere
N which is equipped with a hyperbolic metric with geodesic boundary. Let & denote
the union of geodesic arcs with endpoints in dN corresponding to sub-segments of g
with endpoints in g1 U g5. Let §1 be a geodesic arc realizing the distance dy (W', g).
Note that §; does not meet JN. The involution t of M induces an involution on N,
which will be denoted by 7. Let §, denote the image of §; by tiy. Note that §, is
also a geodesic arc realizing the distance dy (W', g).

From the fact that both §1, §, realize the distance in N from W’ to g, we derive
that §; N §; = {W’}, since if any other common point exists, it must be the other
common endpoint in ¢ of both segments, hence it is fixed by 7. But 7 has only
two fixed points in N corresponding to W and W', and by assumption W, W’ ¢ g,
therefore we get a contradiction. Since 7 acts like —Id on the tangent plane at W',
§ = §1 U 85 is in fact a geodesic arc.

Let s be the geodesic arcs in M corresponding to §, and let Q;,i = 1,2, denote
the endpoint of 5. By construction, we have int(s) N (g; U g2) = @, W & s and
7(s) = —s. Let Ry be an endpoint of the subarc of g (with endpoints in g; N g,) that
contains 1, and let r; denote the oriented subarc from Q1 to Ry. We denote by R,
and r; the images of R; and r1 by t respectively. The curvec = (—rq) *(—s1)*S2 %72
is then a simple arc joining Ry to R, verifying t(c) = —c.

Since 7(R1) = R», it follows that either {R;, Ry} C g1, or {R;1, R2} C g».
Without loss of generality, we can assume that Ry, R, are contained in g,, then the
same argument as in Case 1 shows that ¢ meets both sides of g,. Here we have two
issues

* Ry = R;: in this case c is actually a simple closed curve which satisfies

(@) t(c) = —c,
(b) cnNg1 =9,
(c) Card{c N gy} = 1.

We can then find in the neighborhood of ¢ a simple closed curve ¢’, freely
homotopic to c, satisfying (a), (b), (c) such that ¢’ N g = {R}. Let g5 be the
image of ¢’ by the Dehn twist about g,, observe that g5 satisfies (a), (b), (c),
and Card{g N g5} = Card{g N g>} — 1 (see Figure 16). We denote by g3 the
simple closed geodesic in the free homotopy class of g7.

* Ry # Ry: let d be one of the two simples arcs in g, with endpoints R;, R,
then ¢ U d is a simple closed curve invariant under z. We can choose d in
such a way that there exits in the neighborhood of ¢ U d a simple closed curve
g% which satisfies (a), (b), (¢), and Card{g N g5} < Card{g N g} — 2. We
then take g3 to be the closed geodesic in the free homotopy class of g5.

In both cases, using the same arguments as in Case 1, we see that g3 verifies the
required properties. It is also clear from the arguments above that, if in addition, we
have g N gy = I, then g3 N g, = &. The proof of the lemma is now complete. [



542 D.-M. Nguyen

Figure 16. Case W/ ¢ g and Ry = R».

Lemma 5.8. Let ¢ be a simple closed curve in M such that t(c) = —c and W & c.

Let co be the simple closed geodesic in the free homotopy class of c. Then we also
have t(cg) = —co and W € cy.

Proof. Since t(c) = —c, the image of ¢ by the ramified covering p: M — CP!
is a simple arc ¢ with endpoints in { Py, ..., Ps} such that int(¢) N {Py,..., Ps} =
@. Assume that Pj, P, are the endpoints of ¢. Let ¢ be a simple closed curve in
CP! passing through Py = p(W), which bounds a disc D containing ¢ such that
int(D) N {Py,..., Ps} = {P1, P»}. Let d be a simple arc in D which joins Py to an
endpoint of ¢. We have

» p~1(¢) is the union of two simple closed curve ¢y, c2, freely homotopic to ¢,
such that ¢y N ¢y = {W},

« p~1(d) is a simple closed curve d passing through W such that t(d) = —d,
+ p~!(int(D)) is an open annulus bounded by ¢y, ¢, which contains d \ {W}.

Therefore, in the group 71 (M, W), we have [t(c1)] = [c2]™! = [d][c:]7 [d]™!,
[t(d)] = [d]!. Clearly, in the homology level, we have (c,d) = £1. The lemma
then follows from the same arguments as in Lemma 5.3 b) and c). O

Using Lemma 5.7, we can now prove

Proposition 5.9. Let D = {a,b1,bs,c1,¢2,d} and D' = {a’, b}, b5, ¢}, ch,d'} be
two admissible decompositions for (M, W). Asusual, let (a, b, c,e)and (a’,b’,c’, e’)
be the symplectic bases of Hi(M,Z) associated to D and D' respectively. Assume
that by is freely homotopic to b}, then there exists y € I such that

a a
b’ b
i R
e e
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Proof. Let by, co, c; be the simple closed geodesics in the free homotopy classes
of by, c1, ¢ respectively. According to Lemma 5.5, we know that by, co, c(’) verify
Property (£7) and by N co = by N ¢y = .

If ¢y = ¢, the proposition follows from Corollary 5.6. Hence, we only need
to consider the case where c{) = ¢o as subsets of M. In this case, since each of the
curves by, ¢, ¢, contains exactly two Weierstrass points of M and W ¢ by U co U ¢,
we deduce that c¢j; N ¢o # @. Let n be the number of intersections of ¢g and c;,. The
proposition will be proved by induction.

Case n = 1. Note that in this case, the intersection of ¢y and c; must be a
Weierstrass point. We will show that there exist two admissible decompositions
{a,by,by,¢1,¢2,d} and {&/,b’,b’,é’,é/,é’,d’} such that b; = b/ and b;, ¢, ¢’ are
2: €1, €1, 6 i

freely homotopic to b, co and ¢, respectively. We can then use Proposition 5.2 to
conclude. B

Observe that by = p(bo), co = p(co), o = p(cy) are three simple arcs on CP!,
which satisfy

* P() ¢ (l;() U 50 U C_(/))
« bgN(GoUeH) =2
* ¢ and ¢, have a common endpoint and Card{co N ¢y} = 1.

We choose the numbering of { P1, ..., Ps} such that P; and P, are the endpomts
of bo, P3 and P, are the endpoints of ¢y and P4 and Ps are the endpomts of ¢y. Letb
be a simple closed curve in CP?, passmg through Py, which separates b from & U o
(see Figure 17). The pre-image of b in M is the union of two simple closed curves
passing through W, denoted by b1 and bz, which bound an open annulus containing
bo. Let ¢ (resp. ¢) be a simple closed curve in EC]P’1 passing through Py surrounding
Co (resp. ¢y) as shown in Figure 17. Like p~1(b), p~1(¢) (resp. p~1(¢’)) is the union
of two simple closed curves ¢y, ¢, (resp. ¢}, ¢5) which bound an embedded open
annulus in M containing cg (resp. c). We denote by Dy, D, and D/, the open disks
in CP! bounded by b, & and & which contain by, & and Cy» respectively.

Figure 17. Case bg = b), Card{co Nc(} = 1.
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We equip 51 and l;z with the orientation induced by bg (via free homotopy). The
numbering is chosen such that the orientation of b, is also the one induced by the
orientation of the annulus p~! (D). Observe that the family of curves {51 , Z;Z, C1,Ca}
(resp. {131 by, ¢ 1, ¢4} cuts M into two open annulus and one open quadrilateral, which
will be denoted by Q (resp. Q ). We will choose the numbermg and the orientation of
C1, € (resp. ¢, ¢') such thatb1 *Cp % (— bz) x (—Cp) (resp. b1 *Cp %k (— bz) *(—Ch))is
the boundary of Q (resp. Q") with the induced orientation. Remark that it can happen
that ¢; belongs to the free homotopy class of —cg and ¢] belongs to the free homotopy
class of —cy.

We can then add to these families some simple closed curves to obtain two ad-
missible decompositions for (M, W) as follows: let a be a simple arc in Dy joining
Py to an endpoint of by, and let d (resp. d’) denote a simple arc in Dz (resp. in
D)) j joining Py to an endpoint of ¢y (resp. of ép)- Seta = ,o_l(a) d = p~(d)
and d’ = p‘l(d ! ) By choosing appropriate orientations for d,d, and d’, we see
that O = {a, bl,bz,cl,cz,d} and O’ = {a, bl,bz,cl,cz,d } are two admissible
decompositions for (M, W).

Clearly, by construction, we have ¢; (resp. ¢;) is freely homotopic to £cg (resp. to
+c¢;). Therefore, by Corollary 5.6, the symplectic bases of H; (M, Z) associated to
D and D are related by an element of I'. Similarly, the symplectic bases of H;(M, Z)
associated to D’ and D’ are also related by an element of I'. Now, by Proposition 5.2,
we know that the symplectic bases associated to D and D’ are related by an element
of I'. Hence, the proposition is proven for this case.

Case n > 1: By Lemma 5.7, there exists a simple closed geodesic ¢ verifying
Property (&) such that

* Card{cy Nbo} =0,
 Card{cj Nco} =1,
* Card{cy N ¢y} < Card{cy Nco} = n.

Let ©” = {a", b}, b}, c},c5,d"} be the standard decomposition associated to the
pair (bo, cg). The arguments in Case n = 1 show that the symplectic bases associated
to D" and D are related by an element of I'. Now, since Card{cy, N ¢y} < n, the
induction hypothesis implies that the symplectic bases associated to " and D’ are
also related by an element of I', and the proposition follows. O

5.4. Proof of Theorem 5.1. We can now give the proof of Theorem 5.1. Let by, co
be the simple closed geodesics in the free homotopy classes of b; and ¢ respectively.
Note that the roles of b; and c; are interchanged by the S move, and the orientation
of by is irrelevant because —Id = S? € I'. Let b, denote the simple closed geodesic
in the free homotopy class of by. If by = £by, or by = =£cp, then Proposition 5.9
allows us to conclude immediately. Assume that by # =+bo and by # +co. Let
n be the number of intersections of by and by U co. We first remark that n > 0,
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since each of the curves by, cg, b{) contains two Weierstrass points, and by definition
W & (bo U co U by), but there are only six Weierstrass points on M. We proceed by
induction.

Casen = 1: inthis case, we can suppose that b,Nby = @ and Card{byNco} = 1. Let
D" be the standard decomposition associated to the pair (b, by). By Proposition 5.9,
we know that the symplectic bases of Hy (M, Z) associated to O and to D" are related
by an element of ', and the symplectic bases associated to D’ and D" are also related
by an element of I", Theorem 5.1 is then proven for this case.

Casen > 1: by Lemma 5.7, there exists a simple closed geodesic g verifying Property
(£?) such that

e Card{g N (b Uco)} =1,

 Card{by,Ng} < Card{byNco}if gNby = &, and Card{h, N g} < Card{byN
bo}ifgNco = @.

Without loss of generality, we can assume that g N by = @. Let D” be the standard
decomposition associated to the pair of geodesics (bg, g). From Proposition 5.9, we
know that the symplectic bases of H(M, Z) associated to D and D" are related by
an element of I'. Since Card{by N (bo U g)} < Card{b, N (boUcp)}, by the induction
hypothesis, the symplectic bases of H; (M, Z) associated to D" and D’ are related
by an element I". Theorem 5.1 is then proven. O

6. Proof of Theorem 1.1

6.1. The map E. Let .# denote the quotient J#(2)/C*. We define the map Z
from .# to T'\$, as follows: given a pair (M, W) in .# , we associate to (M, W)
the I"-orbit of the period matrix of the symplectic homology basis associated to an
admissible decomposition for (M, W). It follows from Theorem 5.1 that the map &
is well defined. We will show that & is a homeomorphism from ¢ (2)/C* and T\ g5,
which implies Theorem 1.1.

6.2. Injectivity of E. Let (M, W) and (M’, W') be two pairs in .#. Assume that
M and M’ are defined by the equations w? = ]_[fzo (z—A;)andw? = ]_[fzo(z —Ap)
so that W and W' correspond to Ao and A{ respectively. Let IT (resp. IT) be the
period matrix of the symplectic basis associated to an admissible decomposition O
(resp. D) for the pair (M, W) (reps. (M’, W’)). Assume that there exists an element
y of I" such that }:I’ = y-I1. By Lemma 4.2, we know that there exists an admissible
decomposition D for the pair (M, W) such that the symplectic homology bases of
M associated to D and D are related by y. It follows that the period matrix of the
basis associated to D is equal to TT'.
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Using an element of PSL(2, C) we can assume that A = 1| = 0,1, =1}, =1,
and A9 = Ay = oo. Then from Theorem 2.2, we see that the values of A; and A;
(i = 3,4,5) can be computed by the same theta functions, with the same period
matrix. Therefore we have A; = )L;, i = 3,4,5, and it follows that there exists a
conformal homeomorphism ¢: M — M’ such that ¢(W) = W’

6.3. Surjectivity of Z. Let [T be a matrix in 32, we will show that there exists a pair
(M, W) in . suchthat 2((M,W)) = I'-T1. Since II € d, there exists a Riemann
surface of genus two M and a symplectic homology basis whose period matrix is .
Let Wy be a Weierstrass point of M, and let D be an admissible decomposition for
the pair (M, Wy). Let I be the period matrix of the symplectic homology basis of
M associated to D. By definition, there exists an element A € Sp(4, Z) such that
O=4-T1. According to Lemma 4.3, there exists an admissible decomposition
for a pair (M, W), where W is also a Weierstrass point of M, such that the symplectic
homology bases associated to O and :O is related by 4. Consequently, the period
matrix of the basis associated to D is IT and by definition T - I==z E((M,W)).

6.4. Continuity of Z. To prove the continuity of E we will consider the inverse
map E7': I'\d» — .#. Let IT be a matrix in g, then IT is the period matrix of
the symplectic homology basis associated to an admissible decomposition for a pair
(M, W) in .# . There exist complex numbers {19, A1, ..., A5} such that M is the
surface defined by the equation w? = ]_[?20(2 — Ai). We can assume that W is the
Weierstrass point corresponding to A¢. A neighborhood of IT in $, consists of period
matrices of the same symplectic homology basis on Riemann surfaces close to M.

Using PSL(2, C), we can assume that Ao = 0, it follows that w = % is a
holomorphic 1-form with double zero at W. Let D = {a, by,bs,c1,c2,d} be an
admissible decomposition for the pair (M, W). Let (a, b, c,e) be the symplectic
homology basis associated to D, then the map

o: U — C4, (M,a))l—>(/aa),/bw,/;w,/ea)),

is a local chart for #(2) in the neighborhood U of (M w). Let p: M — CP!
be the two-sheeted branched cover from M onto CPP!. Recall that by construction,

p(a) = a, p(b) = by, p(c) = ., p(e) = & are simple arcs in CP! with endpoints
in{Ag,...,As5}. We have

/w—2/ZdZ / _2/*2612 /a)—2/ Zdz / —Z/Zdz

d _
Clearly, the integrals of ez along a, b, Cx, e depend continuously on (Aq,...,As).

w
Since A; can be computed from I1 by some theta functions, we get a continuous map
W from a neighborhood of IT in ¢, into C*. Now, in a neighborhood of TT, the map
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E~1 is the composition of ¥ and the natural projection C*\ {0} — CP3. It follows
immediately that 2! is continuous. Since dim¢ g, = dimc .# = 3, we conclude
that E is a homeomorphism.

6.5. [Sp(4,Z) : T] = 6. We have a natural projection from .# onto the mod-
uli space of closed Riemann surface of genus two Jt,, which is homeomorphic to
Sp(4,Z)\ &2, by associating to any element (M, W) of .# the point M in IN,.
Every Riemann surface of genus two has six Weierstrass points, and the group of
automorphisms of a generic one contains exactly two elements, the identity and the
hyperelliptic involution, both fix all the Weierstrass points. Therefore, the pre-image
of a generic point in ¥, contains exactly six points. Note that —Ids € Sp(4,Z)
acts trivially on $, and the action of Sp(4,Z)/{xId4} on $, is effective. Since
{£ld4} C ', we derive [Sp(4,Z) : T'| = 6. The proof Theorem 1.1 is now com-
plete. O

Appendices
A. Existence of parallelogram decompositions

Recall that on a translation surface (M, w), a saddle connection is a geodesic segment
whose endpoints are singularities of the flat metric (the endpoints need not to be
distinct). A cylinder is a subset of M which is isometric to Rx]0, #[/Z and maximal
with respect to this property, where the action of Z is generated by (x, y) — (x+£, y).
The boundary of a cylinder C is the set C \ C, this boundary is a union of saddle
connections. We say that C is a simple cylinder if the boundary of C is the union of
only two saddle connections.

Proposition A.1 (Existence of parallelogram decompositions). For any translation
surface (M, ®) in #(2), there always exists a parallelogram decomposition on M.

Proof. We first prove that there always exists a simple cylinder in M. By a well
known theorem of Masur (see [8], or [9]), there always exists a closed geodesic y in
M . Let C,, be the (open) cylinder consisting of closed geodesics freely homotopic to
y. Since M is of genus two, and has only one singular points, we have three cases:

a) C, is a simple cylinder.
b) M \ C, is a simple cylinder.
) C,=M.
If a) or b) occurs then we are done. If we are in case c¢), then the pair (M, w)

is obtained from a single parallelogram as shown in Figure 18. Therefore, in this
situation, one can easily find a simple cylinder in another direction.
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Figure 18. Surface admitting a decomposition in one cylinder.

Remark. This argument has been used in the proof of Theorem 7.1 in [10].

Let C; be a simple cylinder in M. Let by, b, denote the two saddle connections
which bound C;. Cutting off C; from M along b; and b,, we get a torus minus two
open disks whose boundaries meet at one point, which is the unique singular point p
of M. Splitting the point p into two points, we obtain then a flat torus with an open
disk removed whose boundary is the union of two parallel segments of same length.
Gluing these two segments together, we obtain a flat torus M; with a marked simple
geodesic arc b. Denote by p;, p» the endpoints of b in M;. Let us show that there
always exist two parallel closed geodesic c1, ¢z in My such thatc; Nb = {p1}, and
c2Nb={pa}.

Choose a direction 6 € [0; 2;r] which is not parallel to b and consider the geodesic
flow g of M; in this direction. Let 7y be the smallest value of ¢ such that 5 > 0
and wé" (h) Nb # @. The value fn must be finite because otherwise the area of stripe
St = Uo<s<: ¥4 (b) tends to infinity as # — oo, which is impossible.

Since wg" (b) and b are parallel and have the same length, 1/1430 (b) contains at least

one endpoint of . Without loss of generality, we can assume that 1//(30 (b) contains
p1. Remark that the stripe Sy, = Uosssto ¥, (a) is the image of a parallelogram P
under an isometric immersion ¢ : P — M such that the restriction of ¢ to int(P) is
injective, and b and wgo (b) are the images of two opposite sides of P. By assumption,
¢~ 1(p1) consists of two points, which belong to two opposite sides of P. It follows
that the image of the segment in P joining these two points by ¢ is a closed geodesic ¢
on M; which satisfies ¢c; N'b = {p,}. Consequently, the closed geodesic ¢, passing
through p, and parallel to ¢; also verifies c; Nb = {p»}.

By construction, we can identify M, \ b with the complement of C; in M. By this
identification, the closed geodesics c¢; and ¢, correspond to two saddle connections
which bound an open cylinder C, disjoint from C;, and the complement of C; U C,
is an open disk isometric to an open parallelogram in R?2.

Let a (resp. d) be a saddle connection contained in C, (resp. C,) which intersects
all the closed geodesics parallel to b; and b, (resp. parallel to ¢; and ¢,). One can
easily check that the family {a, b1, b2, c1, c2, d }, with appropriate orientations, is a
parallelogram decomposition of M. O
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It follows from this proposition that, on any surface (M, w) in J€(2), there exist
infinitely many parallelogram decompositions, since if we have one, we can get

infinitely many others by using elementary moves 7', S, R. Itis also possible to show
that any two parallelogram decompositions are related by elementary moves.

B. Proof of Lemma 3.4

For any g = 1, let o be the permutation of {1, 2, ..., 2g} that transpose 2i and 2i — 1,

fori = 1,...,g. The elementary symplectic matrices are the matrices
g = ) ld2g teij o ifi =0(j);
YT Idog +eij — (=1)'egj)o)  otherwise,

where i # j, and e;; is the matrix whose the (i, j)-th entry is 1 and all other entries
are 0. It is a classical fact that Sp(2g, Z) is generated by elementary symplectic
matrices ([3], Chapter 7). For the case g = 2, we have

1100 1000

0100 0100
"Ee=En=14 01 0| Pe=Fa=|g o1 1
000 1 000 1

1 0 10 100 0

_ 0 1 00 _ 010 —1
"Es=En =g o 1o Bm=Ei=| o0 o
0 -1 0 1 000 1

100 1 1000

0100 01 10
'E14:E32: 011 0 , E41—E23_ 001 0
\0 00 1 100 1

All we need is to verify that E;; (i # j) is contained in the group I'" generated by
{T,R,S,U}. Ttis clear that Eq5, E34, E43 belong to ' C T’. We have

e Fr = U-lT-lu e 1.
e F15=8U € I

Since I' contains

we have

SO O
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therefore
0 -1 0 0
1 0 00
771 _ /
S, =U""5U= 0 0 1 0 eI
0 0 0 1
It follows that
© E31 = ($182)EFH (S18) e,
e Fia= S1E13S1_1 el
e Ey = S2E13S2_1 eI
The lemma is then proven. O

C. A family of T' right cosets in Sp(4, Z)

In this section, we give a partition of the group Sp(4, Z) into I right cosets. Recall
that I is not a normal subgroup of Sp(4, Z) (see Lemma 3.3), and the group Sp(4, Z)
is generated by the matrices T', S, R and U (see Lemma 3.4). Set

F={IU-T, RU-T, SRU-T, URU -T, USRU -T'}.

By Lemma 3.3, we know that the action of I" on (Z/27Z)*\ {0} has two orbits ¢; and
0,, therefore we have a simple criterion to show that an element of Sp(4, Z) does
not belong to I'. Consequently, it is easy to verify that the elements in the family ¥
are all distinct.

We will also determine explicitly the action of T%!, R*! §*1 U*! on ¥ by
multiplication from the left. Note that, since S™! = —S (resp. U™! = —U) and
—Id4 € T, the actions of S and S™! (resp. U and U™!) are identical. Details of the
calculations are lengthly and uninteresting, hence will be omitted. The final result is
resumed in the following table.

r Uu.-r RU-T SRU -T URU -T" | USRU -T
T r Uu.-r RU-T URU -T SRU -T" | USRU -T
R r RU-T Uu-r SRU -T URU -T" | USRU -T
S r U-T | SRU-T RU-T USRU -T' | URU-T
U r URU -T | USRU -T RU-T SRU -T
T-1 r u.-r RU-T URU -T SRU-T' | USRU -T
R™1 RU-T Uu.-r SRU -T URU -T" | USRU -T
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