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On the geometry of the edge splitting complex
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Abstract. The group Out of outer automorphisms of the free group has been an object of
active study for many years, yet its geometry is not well understood. Recently, effort has been
focused on finding a hyperbolic complex on which Out acts, in analogy with the curve complex
for the mapping class group. Here, we focus on one of these proposed analogues: the edge
splitting complex E�n, equivalently known as the separating sphere complex. We characterize
geodesic paths in its 1-skeleton E�1

n algebraically, and use our characterization to find lower
bounds on distances between points in this graph.

Our distance calculations allow us to find quasiflats of arbitrary dimension in E�n. This
shows that E�n: is not hyperbolic, has infinite asymptotic dimension, and is such that every
asymptotic cone is infinite dimensional. These quasiflats contain an unbounded orbit of a
reducible element of Out. As a consequence, there is no coarsely Out-equivariant quasiisometry
between E�n and other proposed curve complex analogues, including the regular free splitting
complex F�n, the (nontrivial intersection) free factorization complex FF n, and the free factor
complex Fn.

Mathematics Subject Classification (2010). 20F65, 20E36.

Keywords. Outer automorphisms of free groups, curve complex, quasi-isometry, hyperbolic-
ity, asymptotic dimension.

1. Introduction

Let Out.Fn/ denote the group of outer automorphisms of the free group Fn of rank n,
where we assume throughout this paper that n > 2. We wish to study the geometry
of Out.Fn/, by examining the geometry of certain spaces on which group acts. There
is a strong analogy between Out.Fn/ and the mapping class group of a surface on the
one hand and arithmetic groups on the other, which has been pursued quite fruitfully
in the last couple of decades. This approach began in earnest with the foundational
paper of Culler and Vogtmann [9], which introduced Outer Space, the analogue for
Out.Fn/ of Teichmüller space for the mapping class group and of symmetric spaces
for arithmetic groups. The work that followed has yielded numerous statements
about the topological, homological, and cohomological properties of Out.Fn/ and
the spaces it acts upon – see for instance [29] for an excellent survey.
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While the topology of Outer Space is well understood, its geometry is not. In
contrast, the geometries of Teichmüller space and the symmetric spaces are well
studied. One key ingredient for the study of Teichmüller space is the celebrated result
of Masur and Minsky, who proved that the curve complex is hyperbolic [25]. The
curve complex is the complex whose vertex set is the set of isotopy classes of simple
closed curves on the surface, and where a k-simplex corresponds to k C 1 isotopy
classes which have representatives that are disjoint. Moreover, there is a ‘nice’ map
from Teichmüller space to the curve complex, so that the hyperbolicity of the curve
complex has led to many further statements on the geometry of Teichmüller space
and the mapping class group [3]. The curve complex has been used, for instance,
to prove quasiisometric rigidity of the mapping class group. The analogous key
ingredients in the study of arithmetic groups are Tits buildings, which again yield, for
instance, rigidity theorems. The ‘correct’ analogue for Out.Fn/ is still unknown, and
much recent effort has been directed towards finding one – in particular, one which
is hyperbolic.

There are many possible ways of defining such an analogue. We will formally
define the most relevant two soon, but we leave definitions of the remaining com-
plexes and graphs to the references. Before we list some of proposed analogues, let
us mention that in most cases they are defined as complexes, but for our purposes (de-
tecting hyperbolicity and distinguishing the spaces up to quasiisometry) it is enough
to consider just 1-skeletons of the complexes. For each complex we will denote its
1-skeleton by adding superscript ‘1’ to the notation of the complex. Although we
will rigorously define and work only with 1-skeletons of the complexes to simplify
exposition, our results apply to the corresponding complexes as well.

Complexes and graphs which deserve mention as possible analogues include: the
sphere complex [15], also called the free splitting complex F�n, and its 1-skeleton
F�1

n, called the free splitting graph [1]; the (common refinement) free factorization
complex, defined in [16] for Aut.Fn/, whose Out.Fn/ version we call the edge split-
ting complex E�n in this paper; the free factor complex Fn (also defined initially for
Aut.Fn/ in [17]); and the intersection graph of Kapovich and Lustig [20]. Kapovich
and Lustig [20] in fact list 9 graphs which could be an analogue of the curve complex.
They include the 1-skeleton of the edge splitting complex which we call the edge
splitting graph E�1

n (called the free splitting graph in [20], though they do not allow
HNN-extensions as vertices) and the 1-skeleton of the free factor complex which we
call the free factor graph F 1

n (called the dominance graph in [20]).
Kapovich and Lustig claim that, among the 9 graphs they list, there are at most 3

quasiisometry classes. Representatives of the three mentioned quasiisometry classes
are the edge splitting graph, the free factor graph, and the intersection graph. We
intend to show that the class containing the edge splitting graph cannot be coarsely
Out.Fn/-equivariantly quasiisometric to the free factor graph, which implies that it
is not equivariantly quasiisometric to the intersection graph either (as there is an
equivariant Lipschitz map from the factor graph to the intersection graph). For our
purposes, it will be more convenient to use what we call the (nontrivial intersection)
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free factorization graph FF 1
n instead of the free factor graph as a representative of the

second quasiisometry class. Note that our free factorization graph is not the 1-skeleton
of Hatcher and Vogtmann’s (common refinement) free factorization complex (herein
called the edge splitting graph), and that this graph was called the dual free splitting
graph in [20], though again in the latter reference they did not allow HNN-extensions
as vertices. We now define the edge splitting graph and the free factorization graph.

Definition 1.1 (E�1
n and FF 1

n). For n > 2, define the edge splitting graph, denoted
E�1

n, to be the graph whose vertices correspond to conjugacy classes Œhx1; : : : ; xki �
hxkC1; : : : ; xni� of free factorizations hx1; : : : ; xki � hxkC1; : : : ; xni of Fn into two
nontrivial free factors. Two vertices of E�1

n are connected with an edge if there exists
a free factorization in each conjugacy class such that the two factorizations have a
common refinement which is a free factorization into three nontrivial factors.

The (nontrivial intersection) free factorization graph FF 1
n has the same vertex

set as E�1
n. Two vertices ŒA � B� and ŒC �D� are connected with an edge in FF 1

n

if one of A \ C , A \D, B \ C , or B \D is nontrivial.

The name of the edge splitting graph comes from Bass–Serre theory, where such
a free factorization is a graph of groups decomposition of Fn with underlying graph
having exactly two vertices and a single edge (with trivial edge group) between them.
Note that the related free splitting graph F�1

n (the 1-skeleton of the free splitting
complex or equivalently the sphere complex) is defined similarly to E�1

n, but also
allows conjugacy classes of splittings of Fn as HNN-extensions as vertices.

There are alternate ways to define each of these objects. In particular, the edge
splitting graph E�1

n is also known as the separating sphere graph, whose vertices are
homotopy classes of separating essential embedded spheres in a 3-manifold with fun-
damental groupFn, and two vertices are adjacent if they have disjoint representatives.
The free factorization graph can equivalently be defined in terms of Bass–Serre the-
ory, where vertices are Bass–Serre trees of free splittings up to Out.Fn/-equivariant
isometry, and adjacency corresponds to having a common elliptic element.

Note there is a natural action of Out.Fn/ on all of these spaces, where for E�1
n

and FF 1
n the action is induced by the action of Out.Fn/ on free factorizations.

There are a few properties known about these spaces and their siblings. Hatcher
showed that the sphere complex, which contains Outer Space as a dense subspace, is
contractible (this gives an alternate proof of contractibility of Outer Space [9], as the
contraction restricts to a contraction of Outer Space). Hatcher and Vogtmann showed
that the edge splitting and free factor complexes – at least the Aut.Fn/ versions
of them, where we do not identify objects which differ by conjugation – are both
.n� 2/-spherical [16], [17] (again, Hatcher and Vogtmann use the terminology ‘free
factorization complex’ in place of ‘edge splitting complex’). It seems to be an open
question whether the Out.Fn/ versions of these complexes are also spherical. To
study Out.Fn/, Guirardel [13] has introduced a notion of intersection form for actions
of a group G on metric simplicial trees (that is, G-trees), which can be applied to
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the specific case of G D Fn. Behrstock, Bestvina, and Clay [2] used Guirardel’s
intersection form to describe the effect of applying fully irreducible automorphisms
to vertices in E�1

n. They also discuss the edge splitting complex (therein called
the splitting complex though HNN extensions are not allowed, as in [20]), and a
related complex called the subgraph complex. Kapovich and Lustig [19], [22] have
also introduced an intersection form (distinct from Guirardel’s), inspired by the work
of Bonahon [8]. Kapovich and Lustig have shown that E�1

n and FF 1
n, as well as

their intersection graph and 6 other related graphs, all have infinite diameter [20].
Recently, Yakov Berchenko-Kogan [4] characterized vertices of distance 2 apart in
the ellipticity graph, a graph quasiisometric to FF 1

n, using Stallings foldings. This
effectively characterizes adjacent vertices in FF 1

n (the latest version of [4] states
that the equivalent results were obtained earlier using different language in [28] and
[21]). Further, Day and Putman [10] proved that another curve complex analogue,
the complex of partial bases, is connected and simply connected. The 1-skeleton of
this complex is called the primitivity graph in [20], where it is also claimed that this
graph is quasiisometric to the free factorization graph FF 1

n. Aramayona and Souto
have shown that Out.Fn/ is precisely the group of simplicial automorphisms of the
free splitting complex F�n [1].

The study of the coarse geometry of Out.Fn/ is currently moving very quickly.
Since the time that this paper first came out, great progress has been made in this area.
In particular, recent works of Bestvina and Feighn [7] and Handel and Mosher [14]
have shown that the free factor graph and the free splitting graph, respectively, are hy-
perbolic spaces on which Out.Fn/ acts. Before these results were known, Behrstock,
Bestvina, and Clay [2] suggested that “there is a hope that a proof of hyperbolicity of
the curve complex generalizes to the [edge splitting] complex”. However, we intend
to prove:

Theorem 5.4. For n > 2, the space E�1
n (and hence E�n) contains a quasiisomet-

rically embedded copy of Rm for every m � 1.

Our proof relies on attaining an understanding of distances in E�1
n. To do so,

we associate vertices of E�1
n with bases of Fn. With this association, we are able to

completely characterize (up to distance 4) the length of a path in E�1
n via a simple

algebraic notion which we call number of index changes. This characterization is
made precise in Theorem 3.2 and the preceding discussion.

To utilize this translation from geometry to algebra, we then introduce an algebraic
notion of complexity of a basis, which we call i -length. The notion of i -length is itself
based roughly on having many subwords of elements of the basis with complicated
Whitehead graphs. Our techniques, in turn, use a theorem of Stallings (see Section 4
for details). The bulk of this paper aims to translate this i -length notion of how
complicated a basis is into a lower bound on distances between vertices in E�1

n, as
shown in the following theorem:

Theorem 5.3. Let x be a basis of Fn, expressed in terms of a fixed standard basis a.
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The distance between a vertex of E�1
n associated to a and one associated to x is at

least jxji
24

� 1, where jxji is the i -length of x.

As immediate corollaries of Theorem 5.4, we obtain:

Corollary 5.5. The space E�1
n is not Gromov hyperbolic.

In other words, E�1
n is not the ‘correct’ curve complex analogue for Out.Fn/.

This shows that the ‘hope’ of [2] is a false one, at least for the edge splitting graph.
Indeed, it might be expected that the edge splitting graph is not hyperbolic: edge
splittings correspond to separating spheres in the sphere complex. But in the mapping
class group world, the subcomplex of the curve complex induced by only allowing
separating curves is itself not hyperbolic [27].

Corollary 5.6. The space E�1
n has infinite asymptotic dimension. The dimension of

every asymptotic cone of E�1
n is infinite.

To the authors’ knowledge, this is the only naturally defined space which has
infinite asymptotic dimension and a natural cocompact group action of a group which
is not known to have infinite asymptotic dimension. Thompson’s group F acts on a
cube complex with arbitrary-dimensional quasiflats [12], but has infinite asymptotic
dimension (moreover, it is proved in [11] that F has exponential dimension growth).
Via private communication, Moon Duchin claims that the Cayley graph of Z with
respect to the infinite generating set consisting of powers of 2 has arbitrary-rank
quasiflats. Thus, we have a group with finite asymptotic dimension acting on a space
with infinite asymptotic dimension. However, this action is not cocompact: the
quotient is a graph with one vertex and infinitely many edges. Both the mapping
class group [5] and arithmetic groups [18] have finite asymptotic dimension, so the
analogy between Out.Fn/ and these groups suggests that Out.Fn/ may in fact have
finite asymptotic dimension.

There is a further interesting consequence of Theorem 5.4. There is a natural map
id� from E�1

n to FF 1
n induced by the identity map on the vertex set. This map id� is

1-Lipshitz: if two free factorizations have a common refinement, then any nontrivial
elliptic element of the common refinement will have translation length 0 on both of the
corresponding Bass–Serre trees. The quasiflats described in the proof of Theorem 5.4
are in fact such that, for every quasiflat, there exists a common elliptic element such
that every vertex in that quasiflat has a representative where one factor contains the
common elliptic element. Thus,

Corollary 5.7. The map id� W E�1
n ! FF 1

n is not a quasiisometry. Moreover, there
is no coarsely Out.Fn/-equivariant quasiisometry between E�1

n and FF 1
n.

An analogous results hold true for the relationships between the free factorization
graph E�1

n and the free factor graph F 1
n and between E�1

n and the free splitting
graph F�1

n. There is a natural (coarsely well defined for n > 2) map† W E�1
n ! F 1

n
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defined by sending a vertex ŒA � B� in E�1
n to the vertex ŒA� in F 1

n . Also there is a
natural embedding { W E�1

n ! F�1
n defined by sending a vertex ŒA � B� in E�1

n to
the vertex ŒA � B� in F�1

n, which is quasisurjection. However, neither of the above
maps is a quasiisometry:

Corollary 5.8. The maps † W E�1
n ! F 1

n and { W E�1
n ! F�1

n are not quasiisome-
tries. Moreover, there is no coarsely Out.Fn/-equivariant quasiisometry between
E�1

n and F 1
n , and between E�1

n and F�1
n.

The last corollary provides a negative answer to a question of Bestvina and Feighn
(the first half of Question 4.4 in [6]).

Finally, taking into account the recent results of Bestvina and Feighn [7] and of
Handel and Mosher [14] claiming hyperbolicity of F 1

n and F�1
n respectively, one

immediately obtains a more general corollary:

Corollary 5.9. The edge splitting graph E�1
n is not quasiisometric to any of FF 1

n,
F 1

n and F�1
n.

This paper is organized as follows. We begin in Section 2 by describing three
ways of viewing an element of Aut.Fn/. Being able to translate between these three
perspectives will be useful at various points in the later proofs. In Section 3, we
describe how to view vertices in E�1

n and FF 1
n as pairs consisting of an element of

Aut.Fn/ and a proper nonempty subset of f1; 2; : : : ; ng up to certain identifications.
This viewpoint allows us to interpret distances in E�1

n algebraically, in terms of
elements of Aut.Fn/, culminating in Theorem 3.2.

Most of the details in the paper are in Section 4. There we introduce the notion of
i -length. For technical reasons, we use three different notions of i -length: fixing
some basis a of Fn, we have simple i -length for abstract words over a, conjugate
reduced i -length for subwords written over a of some other basis of Fn, and full
i -length for bases of Fn themselves. In Section 4, we describe properties of each of
these notions of i -length in turn. The section builds up to, and ends with, Theorem 5.3.

Finally in Section 5, we relate the algebraic notion of i -length to distances in E�1
n,

and use this relationship to prove Theorem 5.4 and its corollaries, described above.
The authors would like to thank Ilya Kapovich, DianeVavrichek, Keith Jones, Dan

Farley, and Karen Vogtmann for useful conversations on this material, and Mladen
Bestvina, Matt Clay, Michael Handel, and especially Lee Mosher for useful com-
ments. Finally, we appreciate the comments and suggestions of anonymous referees
that have helped to enhance the paper.

2. Three interpretations of Aut.Fn/

Fix a basis a D .a1; : : : ; an/ of Fn, considered as an ordered tuple. The group of all
automorphisms of Fn has many interpretations. For our purposes, we will use three
of these interpretations, as follows.
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The first interpretation of Aut.Fn/ is as in bijective correspondence with the set of
ordered bases ofFn. Consider a basis x D .x1; : : : ; xn/ ofFn as an ordered tuple. As
x is a basis, there exists an automorphism �x which maps a to x; as automorphisms
are uniquely specified by their action on a given generating set, �x is unique. Thus,
Aut.Fn/ as a set is in bijective correspondence with the set

X WD fx D .x1; : : : ; xn/ 2 F n
n j x is an ordered basisg:

The second interpretation of Aut.Fn/ is as products of elementary Nielsen auto-
morphisms. Nielsen [26] described a generating set for Aut.Fn/ consisting of four
types of generators:

Definition 2.1. An elementary Nielsen automorphism is an automorphism of Fn for
which there exist indices i , j such that i ¤ j , ak 7! ak for k ¤ i; j , and one of the
following four possibilities holds:

.1/ sij W ai $ aj ;

.2/ ti W ai 7! a�1
i ;

.3/ aij W ai 7! aiaj ;

.4/ a�1
ij W ai 7! aia

�1
j :

The group operation in Aut.Fn/with respect to Nielsen automorphisms is function
composition, where automorphisms are composed as functions, right-to-left. Note
a Nielsen automorphism � acts on the Cayley graph of Aut.Fn/ via the usual left
action. We can interpret this action on the vertices of the Cayley graph in terms of
the correspondence between Aut.Fn/ and X : an automorphism � acting on a basis
x 2 X has image �.x/ D .�x1; : : : ; �xn/ D � B �x.a/.

The third interpretation of Aut.Fn/ is as the group of Nielsen transformations.
A Nielsen transformation is an action on the set of ordered bases of Fn (that is,
on Aut.Fn/, by the first interpretation) which may be decomposed as a product of
elementary Nielsen transformations. These elementary Nielsen transformations are
free-group analogues of the elementary row operations inGLn.Z/ D Aut.Zn/, and,
in fact, induce the elementary row operations under the abelianization mapFn ! Zn.
There are four kinds of elementary Nielsen transformations:

Definition 2.2. An elementary Nielsen transformation is a map on the set of ordered
bases X D fx D .x1; : : : ; xn/g of Fn for which there exist indices i; j such that
i ¤ j , xk 7! xk for k ¤ i; j , and one of the following four possibilities hold:
.1/ �ij W xi $ xj ;

.2/ �i W xi 7! x�1
i ;

.3/ ˛ij W xi 7! xixj ;

.4/ ˛�1
ij W xi 7! xix

�1
j :

Elementary Nielsen transformations of type (3) and (4) are called transvections.
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The group operation in Aut.Fn/ with respect to Nielsen transformations is again
composition, but transformations are composed left-to-right. Nielsen transformations
act on X on the right.

The isomorphism between the groups generated by Nielsen automorphisms and by
Nielsen transformations is clear: the isomorphism is sij 7! �ij , ti 7! �i , aij 7! ˛ij .
Thus, a word in elementary Nielsen transformations may be considered as a word in
Nielsen automorphisms, written in the same order, but with the order of composition
reversed and the action on X on the left instead of the right.

These three interpretations are different aspects of the same concept: the set X

may be viewed as the vertices of the Cayley graph of Aut.Fn/; elementary Nielsen
automorphisms form a generating set of Aut.Fn/ and their action on X corresponds
to the left action of this generating set on its Cayley graph. This is the action such
that an automorphism g takes a vertex v to gv, and takes an edge connecting v to
va to an edge connecting gv and gva for each generator a of Aut.Fn/. Elementary
Nielsen transformations form the same generating set, but with the action on X being
an interpretation of the right action of the generating set on the vertices of its Cayley
graph. When restricted to the action of a generator a of Aut.Fn/, it simply moves
a vertex v across the edge connecting v to va to the vertex va. However, this right
action does not extend to the edges of the Cayley graph.

In his seminal paper [26], Nielsen presented a method for transforming a finite
generating set for a subgroup of a free group into a free basis for that subgroup using
elementary Nielsen transformations. Nielsen’s method is essentially a finite reduction
process, at every step of which a Nielsen transformation is used to ‘simplify’ the finite
generating set. In Lemma 4.20 we will apply this process to the bases of Fn and will
use the following fact, whose proof follows from the proof of Theorem 3.1 in [24].

Proposition2.3. For every basisx of a free groupFn there is a sequenceof elementary
Nielsen transformations .ıj /, 1 � j � t taking the standard basis a of Fn to
x D aı1 : : : ıt such that the sum of the lengths (with respect to a) of elements in the
intermediate bases aı1 : : : ıj is a nondecreasing sequence.

3. Vertices and edges in E�1
n

We wish to view the spaces E�1
n and FF 1

n on which Out.Fn/ acts in the language
of ordered tuples, so that we may apply the dictionary of Section 2 equating tuples,
Nielsen automorphisms, and Nielsen transformations.

We begin with an observation on elements of Out.Fn/. An element of Out.Fn/

is a coset of Aut.Fn/ with respect to the subgroup Inn.Fn/. As such, an element of
Out.Fn/ may be represented by many different n-tuples. In general, we think of an
element of Out.Fn/ as a tuple up to conjugation.

Now consider the graphs E�1
n and FF 1

n. These graphs have the same vertex
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set: vertices correspond to free factorizations of Fn into two nontrivial factors up
to conjugation. We wish to interpret an arbitrary free factorization of Fn into two
factors as a tuple, together with an index set, up to certain equivalences. Let � denote
the set of all proper nonempty subsets of f1; : : : ; ng. We will call an element of �

an index set. Then a tuple x D .x1; : : : ; xn/ together with some index set S 2 �

yields a free factorization of Fn as hxS i � hx xS i, where xS WD fai 2 x j i 2 Sg and
xS WD f1; : : : ; ng � S . Every free factorization may be represented as a tuple/index
set pair, but a given free factorization may be represented by multiple tuple/index set
pairs: any tuple/index set pairs which differ by a self-map of Aut.Fn/� � preserving
the associated free factorization up to conjugation should be identified.

Every such map can be written as a composition of four types of self-maps, defined
by their action on .x; S/ 2 Aut.Fn/ � � as follows:

(1) conjugation of x without changing S ,

(2) permutation of f1; : : : ; ng applied to both x and S ,

(3) exchanging S for xS and leaving x unchanged,

(4) applying transformation� of Aut.Fn/fixing the free factors in the factorization
setwise (i.e. hxS i D h.x�/S i and hx xS i D h.x�/ xS i) without changing S .

The transformation � in the last item is called an S -transformation. If there exists
S 2 � such that � is an S -transformation, we call � an �-transformation.

Note that any self-map from the group mentioned above may be realized as com-
position of the form m1m2m3m4, where mi is a self-map of type .i/.

With this interpretation of vertices of E�1
n, consider edges of E�1

n. Two vertices
represented by A1 � B1 and A2 � B2 of E�1

n are adjacent if there exists a common
refinement of conjugates of the free factorizations. Such a common refinement is of
the form A � C � B , where for some elements g and h of Fn we have Ag

1 D A � C ,
B

g
1 D B , Ah

2 D A, and Bh
2 D C �B . Without loss of generality we can assume that

h is trivial. If .x; S/ is the vertex corresponding to the free factorization A1 � B1,
then .xg ; S/ represents the same vertex of E�1

n and the refinement Ag
1 D A � C

corresponds to applying to xg a transformation � of Fn taking x
g
S to a basis for A

union a basis for C and preserving Bg
1 . Note � fixes both hxg

S i and hxg
xS i, and so is

an S -transformation. Then changing .A�C/�B toA� .C �B/ simply corresponds
to subtracting from S the indices of elements in �.xg/ corresponding to a basis for
C . Of course, by exchanging S for xS , we could have instead added elements to S ,
which corresponds to subtracting elements from xS . Thus, changing .A � C/ � B to
A � .C � B/ corresponds to replacing S with a proper subset of either S or xS . We
call index sets S and S 0 from � compatible if either S 0 or SS 0 is a proper subset of
either S or xS .

Thus, up to conjugation, all edges from the vertex corresponding to .x; S/ are pre-
cisely characterized by a transformation fixing hxS i and hx xS i, followed by replacing
S with a compatible element of � . We have shown:
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Lemma 3.1. The set of edges in E�1
n from a vertex .x; S/ is determined by: a

conjugation of x, an S -transformation, and a choice of new index set compatible
with S .

An edge path p from the vertex represented by .x; S0/ in E�1
n is described by a

sequence: a conjugation �0 of x, an S0-transformation �0, a change of index set to
S1, a conjugation �1 of x�0�0, an S1-transformation �1, a change of index set to S2,
etc.

On such an edge path p, for any i , let .x.i/; Si / be a representative of the vertex
on the edge path immediately before �i is to be applied. Then by construction we
have

x.i/ D �
: : :

�
.x�0�0/

�1�1

��2 : : :
��i�1�i�1

D .x�0�1 : : : �i�1/

�
:::

�
.�0/�0�1

�
�1�2:::

�
�i�1 :

As vertices of E�1
n are only defined up to conjugation, we may assume without loss

of generality that all of the conjugators �i are trivial and

x.i/ D x�0�1 : : : �i�1:

The set Si is not determined uniquely by �i , as �i may be an S -transformation for
many index setsS . However, for any suchS , the vertex .x.i/; S/ is of distance at most
2 away from each of the vertices .x.i � 1/; Si�1/, .x.i/; Si /, and .x.i C 1/; SiC1/

in E�1
n, as follows. That .x.i/; S/ is distance at most 2 from .x.i � 1/; Si�1/

follows from applying �i�1 to .x.i � 1/; Si�1/ and then changing the index set
to S , which requires one edge in E�1

n if Si�1 and S are compatible and 2 edges
otherwise. That .x; S/ is distance at most 2 from .x.i/; Si / follows from applying
the identity transformation to .x.i/; Si / (note the identity transformation is indeed
an Si -transformation) and then changing index set to Si . Finally, for the vertex
.x.i C 1/; SiC1/, since �i is an S -transformation, .x.i C 1/; SiC1/ is the vertex
obtained from .x; S/ by applying �i to x.i/ and then changing the index set to SiC1.

Thus, up to distance 2 at every vertex on the pathp, the pathp is determined by the
sequence of transformations �0; �1; : : : ; �k (see Figure 1). Note that we may reverse
this procedure: take a sequence of transformations �0; �1; : : : ; �k such that each �i

is an �-transformation, choose any S 0
i 2 � such that �i is an S 0

i -transformation, and
obtain an edge path in E�1

n, which is uniquely defined up to distance 2 at each vertex.
A geodesic in E�1

n is then easy to describe. A geodesic, up to distance 2 at each
vertex, is an edge path �0; �1; : : : ; �k such that the transformation � D �0�1 : : : �k

is not a product of fewer than k C 1 �-transformations with the property that the
neighboring transformations are �-transformations with respect to compatible index
sets.

For a given word w in the generating set for Aut.Fn/ consisting of elementary
Nielsen transformations and the identity transformation, we say that w has at most k
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.x�; Sk/

� � �

� � �
: : :

.x; S0/ :::

.xˆ1; S
0
1/

.xˆ1; S1/

.xˆ2; S
0
2/

.xˆ2; S2/

.xˆ3; S
0
3/

.xˆ3; S3/ .xˆk�1; Sk�1/

.xˆk�1; S
0
k�1

/

Figure 1. Shown are two edge paths from the vertex .x; S0/ to the vertex .x�; Sk/ in E�1
n

using the notation of this section. Here, we let ˆi WD �0 : : : �i�1 denote the composition of
�-transformations, where �i is an Si�1-transformation. Thus, x.i/ D xˆi D x�0 : : : �i�1.
The lower path represents the edge path described in the text, and is represented by the sequence
of transformations �0; : : : ; �k . The upper path represents an edge path reconstructed from the
�-transformations �0; : : : ; �k by, for each i D 1; : : : ; k � 1, choosing an arbitrary index set
S 0

i
compatible with S 0

i�1
such that �i is an S 0

i
-transformation. Horizontal edges in the figure

are edges in E�1
n, and vertical and diagonal edges mean that the distance between two vertices

in E�1
n is at most 2.

index changes if w may be expressed as a product of k C 1 disjoint subwords, each
of which is an �-transformation and the neighboring subwords are �-transformations
with respect to compatible index sets. If k is minimal over all such products, we
say w requires k index changes. Since the product of S -transformations is an S -
transformation, we can rephrase the preceding paragraph in the form of the following
theorem.

Theorem 3.2. A geodesic in E�1
n is represented by a product of �-transformations

with the minimal number of index changes, such that the neighboring �-transforma-
tions correspond to compatible index sets. Moreover, a geodesic of length k in E�1

n

requires between k � 4 and k compatible index changes.

We will use this characterization to describe lower bounds on distances in E�1
n

based on properties of the associated transformations in Sections 4 and 5.
We end this section by noting that there is a similar characterization of roses in

the spine Kn of outer space as tuples, up to conjugation and signed permutation (the
signed permutations correspond to graph isomorphisms). With this interpretation,
there are canonical Lipschitz maps from Kn to E�1

n to FF 1
n. It is also worth noting

that the quasiisometry between Out.Fn/ and Kn may be stated in this language:
Let K 0

n be the graph whose vertices are the marked roses of Kn and whose edges
correspond to marked roses lying on a common 2-cell inKn. ThenKn is 2-biLipschitz
equivalent to the graph K 0

n, and K 0
n is biLipschitz equivalent to the Cayley graph of

Out.Fn/with respect to the generating set of elementary Whitehead transformations:
K 0

n is the Schreier graph of Out.Fn/ with respect to this generating set and the finite
subgroup of signed permutations.
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4. The notion of i -length

In this section, we define the notion of i -length and analyze its properties. This notion
is an algebraic tool that will be used to estimate distances in E�1

n. We use the concept
of i -length to refer to a measure of complexity of 3 different kinds of objects: abstract
words in the generators of Fn, subwords of bases of Fn, and bases of Fn themselves.
Our 3 concepts of i -length are: simple i -length, conjugate reduced i -length, and full
i -length, respectively. We use simple i -length to define conjugate reduced i -length,
and conjugate reduced i -length to define full i -length. After defining the three notions
of i -length, we will analyze the properties of each in turn.

Throughout this section, we fix a standard basis a D fa1; : : : ; ang of Fn once and
for all.

4.1. Defining i -length. We motivate our definition of i -length with an example.
LetH WD ha1; : : : ; an�1i denote the subgroup of Fn of rank n� 1 corresponding

to ignoring the generator an. Consider the vertex v0 WD ŒH � hani� as a basepoint in
E�1

n, and think about moving in E�1
n to the vertex v D ŒH � hanhi�, where h is an

arbitrary element of H . Let d denote the distance between v0 and v in E�1
n.

If h is nontrivial, then v ¤ v0, as there is clearly no way of using conjugation to
remove occurrences of all elements ofH from the second factor of any representative
of v. Moreover, as v0 and v both have the same index set, by Theorem 3.2, when h
is nontrivial we have d � 2.

If h is a primitive element inH , then d D 2, as follows. Let h2; : : : ; hn�1 denote
elements of H such that fh; h2; : : : ; hn�1g forms a basis for H . Then

hh; h2; : : : ; hn�1i � hani
is a representative of v0, and

hh; h2; : : : ; hn�1i � hanhi
is a representative of v. Thus, Œhh2; : : : ; hn�1i � hh; ani� is a vertex which is adjacent
to both v and v0.

If h is a power of a primitive element in H , the same argument again shows that
d D 2. Figure 2 shows the path of length 2 connecting ŒH �hani� and ŒH �hanhi� for

ŒH a3hi

ŒH a3i

Œhg; g2 a3i Œhg2 a3; gi

hg; g2 a3gkiŒhg2 a3gk; gi

Figure 2. A path of length 2 in E�1
3.
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n D 3, h D gk , where g is primitive inH and g2 is some coprimitive with g element
such that hg; g2i D H . Repeating the above argument shows that, if we know that h
is a product of j powers of primitive elements inH , then d � 2j . To obtain a lower
bound on d , we need to at least minimize j . Thus, we need to consider how to detect
how many powers of primitives are needed to form h.

One property of a (power of a) primitive element h of H is a classical result of
Whitehead, which states that the Whitehead graph of h, considered as a reduced word
in the alphabet .a � fang/˙1, must have a cut vertex, defined as follows.

Definition 4.1 (Whitehead graph). For a set of freely reduced words x D fx1; : : : ; xkg
in the alphabet a [ a�1, define the Whitehead graph �a.x/ as follows. The set of
vertices of �a.x/ is identified with the set a [ a�1. For every xi 2 x of length n, xi

contributes exactly n � 1 edges to �a.x/, one for each pair of consecutive letters in
xi . The edge added for a aiaj is from the vertex ai to the vertex a�1

j . The augmented

Whitehead graph y�a.x/ is the Whitehead graph �a.x/ together with an additional
edge for each xi 2 x, from the last letter of xi to the inverse of the first letter. In
particular, a word xi D aj of length 1 contributes exactly one edge, from aj to a�1

j ,

to y�a.x/. For a single word w, we abuse notation and write �a.w/ for �a.fwg/ and
y�a.w/ for y�a.fwg/.

If x is cyclically reduced and is a basis for hxi � Fn then the augmented White-
head graph of a set of freely reduced words x is graph-isomorphic to the link of
the unique vertex in the presentation 2-complex of the group Fn=hhxii generated by
a1; : : : ; an with relations x1; : : : ; xk .

Note that a Whitehead graph (or augmented Whitehead graph) may have multiple
edges. Loops at a vertex may appear only in an augmented Whitehead graph and if
and only if at least one of the words in x is not cyclically reduced. An example of the
augmented Whitehead graph, namely y�fa1;a2;a3;a4g.a2

2a
2
3a

2
4/, is shown in Figure 3.

a1 a2 a3 a4

a 1
1 a 1

2 a 1
3 a 1

4

Figure 3. Augmented Whitehead graph y�fa1;a2;a3;a4g.a
2
2
a2

3
a2

4
/.

Definition 4.2 (cut vertex). A cut vertex v of a graph � is a vertex such that � D
�1 [ �2, where �1 and �2 are nonempty subgraphs and �1 \ �2 D fvg. If � is
disconnected, then all of its vertices are cut vertices.
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Whitehead proved [30] that the augmented Whitehead graph of a basis of a free
group has a cut vertex. Note that a power of a primitive has the same augmented
Whitehead graph as the given primitive, so the augmented Whitehead graph of a
power of a primitive must also have a cut vertex. The converse is, of course, not true
– for example, aba3b is not primitive in F2 – but of course the contrapositive is:
having an augmented Whitehead graph with no cut vertex implies the element is not
a primitive or a power of a primitive.

For our purposes, we will need a generalization of Whitehead’s theorem due to
Stallings [28], so we state it now. A subset S ofFn is called separable if there is a free
factorization of Fn with two factors such that each element of S can be conjugated
into one of the factors. In particular, a set is separable if its elements can be conjugated
(possibly by different conjugators) to the elements of some basis of Fn. Thus, a basis
(and the cyclic reduction of a basis) is always separable.

Theorem 4.3 ([28]). If x is a separable set in Fn, then there is a cut vertex in y�a.x/.

Now consider our motivating example of the distance d between v0 D ŒH �hani�
and v D ŒH � hanhi� in E�1

n. Naïvely, we could hope that if we could break up
h, considered as a reduced word, into k subwords such that each subword had an
augmented Whitehead graph with no cut vertex, then d might be bounded from
below by a function of k. However, it may not be the case that such a decomposition
of h ‘breaks’h in the places corresponding to the most efficient way of decomposing
it as a product of powers of primitives: a given primitive might contribute to one or
more of the subwords. But Whitehead’s theorem does not say that the (augmented)
Whitehead graph of any subword of a primitive will have a cut vertex. Indeed, a
primitive element conjugated by an arbitrary word will still be primitive, and the only
reason its augmented Whitehead graph will have a cut vertex will be from the single
self-loop contributed by the last and first letters. If the primitive element is cyclically
reduced, then we may claim that the (non-augmented or augmented) Whitehead graph
of any subword will have a cut vertex, but not otherwise.

The notions of i -length are defined precisely to deal with this delicate effect of
conjugation. Simple i -length ignores conjugation completely, looking only at the
non-augmented Whitehead graph of a word and its subwords. Conjugate reduced
i -length takes all possible conjugations of the subwords of a word into account. Full
i -length then uses conjugate reduced i -length to measure the complexity of an entire
basis.

We are almost ready to give the definitions of i -length, but we need one minor
piece of notation to proceed.

Notation 4.4. Elements ofFn are equivalence classes of words in the alphabet a[a�1

under free reduction. For two words w1 and w2 in this alphabet, we write w1 D w2

if they are equal as words, and w1 Dr w2 if they are equal after free reduction, i.e.
as elements of Fn.
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We now define and study the three notions of i -length, in the following three
sections.

4.2. Simple i -length. The definitions of conjugate reduced and full i -length are
based on the straightforward notion of simple i -length. Simple i -length records the
maximal number of pieces a word can be broken into such that the Whitehead graph
of each piece has no cut vertex.

Definition 4.5 (Simple i -length). Fix an index i 2 f1; : : : ; ng. Let w be a word
which contains no occurrence of a˙1

i . The simple i -length of w, denoted jwjsimple
i ,

is the greatest number t such that w is of the form w1w2 : : : wt , where �a�fai g.wj /

has no cut vertex for each j D 1; : : : ; t . If �a�fai g.w/ has a cut vertex, we define
jwjsimple

i to be zero.

For example, for w D a2
1a

2
2 : : : a

2
n�1a1, we get jwjsimple

n D 1 because �a�fai g.w/
has no cut vertex (so jwjsimple

i � 1), but if w D w1w2 : : : wt for nontrivial wj and
t > 1, then �a�fai g.wj / will have a cut vertex for at least one j (so jwjsimple

i < 2).
It worth pointing out that in the above definition we use standard Whitehead graph,

not the augmented one.
Simple i -length has the following three useful properties, which we will use in

future proofs.

Lemma 4.6. Let w be a freely reduced word in Fn which contains no occurrence of
a˙1

i and let u and v be disjoint subwords of w. Then

jwjsimple
i � jujsimple

i C jvjsimple
i :

Proof. If jujsimple
i > 0 and jvjsimple

i > 0 then consider the partitions of u and v into
jujsimple

i and jvjsimple
i pieces respectively. These partitions induce a partition of w

into jujsimple
i C jvjsimple

i pieces, where the portions of w disjoint from u and v are
appended to the first and last pieces in the partitions of u and v. Note that appending
will not brake the fact that the Whitehead graph of a piece does not have a cut vertex,
because w is freely reduced. If jujsimple

i D 0 (respectively, jvjsimple
i D 0) then we

similarly form a partition ofw into jvjsimple
i (respectively, jujsimple

i ) pieces. In the case
jujsimple

i D 0 and jvjsimple
i D 0 the claim is trivial.

Lemma 4.7. Let u and v be freely reduced words which contain no occurrence of
a˙1

i such that w D uv is freely reduced. Then

jwjsimple
i � jujsimple

i C jvjsimple
i C 1:
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Proof. If jwjsimple
i D 0 then the claim is trivial. Otherwise let w D w1w2 � � �wk be a

partition ofw realizing the simple i -length ofw, and let j denote the first index such
thatwj is not fully contained in u. This gives partitions u D w1w2 � � � .wj �1w

0
j / and

v D .w00
j wj C1/wj C2 � � �wk of u and v showing that

jujsimple
i C jvjsimple

i � .j � 1/C .k � j / D k � 1 D jwjsimple
i � 1:

Lemma 4.8. If w is a cyclically reduced word which contains no occurrence of a˙1
i

and w0 is a cyclic conjugate of w, then

jwjsimple
i � 1 � jw0jsimple

i � jwjsimple
i C 1:

Proof. It is enough to show that cyclic conjugation cannot decrease the simple i -
length by more than 1. Let �.w/ be the initial segment of w such that w0 Dr w

�.w/.
Let w D w1w2 � � �wk be the partition of w realizing the simple i -length of w, and
let j denote the first index such that wj is not fully contained in �.w/. Then w0 can
be partitioned as (w00

j wj C1/ : : : wkw1 : : : .wj �1w
0
j / where wj D w0

jw
00
j . Thus, w0

can be partitioned into at least k � 1 subwords of nontrivial simple i -length, and the
lemma follows.

4.3. Conjugate reduced i -length. Conjugate reduced i -length is based on simple
i -length, but additionally takes conjugation into account.

Definition 4.9 (Conjugate reduced i -length). Fix an index i 2 f1; : : : ; ng. Letw be a
word which contains no occurrence of a˙1

i (thought of as a subword of another word
in the alphabet a˙1). Then w has conjugate reduced i -length at most k if there exist
freely reduced words v1; : : : ; vl ; u1; : : : ; ul such that:

(1) w Dr v
u1

1 v
u2

2 : : : v
ul

l
, where v

uj

j WD u�1
j vjuj , and

(2) k D .l � 1/C jv1jsimple
i C � � � C jvl jsimple

i .

The decomposition of w as vu1

1 v
u2

2 : : : v
ul

l
is called a decomposition, and k is the

conjugate reduced i -length associated to the decomposition. If the associated k is
minimal among all such decompositions, the decomposition is called optimal, and
k is called a conjugate reduced i -length of w and denoted by jwjcr

i . The number
l of factors of the form v

uj

j in the decomposition is called the factor length of the
decomposition.

We now wish to describe some properties of conjugate reduced i -length. However,
before we do so, we need to verify that conjugate reduced i -length is not a trivial
notion of complexity. In this section, we show that there exist words of arbitrary
conjugate reduced i -length. In the process, we develop a useful lemma for working
with i -length. Then, we collect four short lemmas which describe how conjugate
reduced i -length is related to simple i -length, and how conjugate reduced i -length
behaves under conjugation and multiplication.
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Definition 4.10 (canceling pairs). Let w 2 Fn be arbitrary reduced word which
contains no occurrence of a˙1

i . A set of any two subwords of w of the form u,
u�1 is called a canceling pair in w. A family F of canceling pairs in w is called
nested if canceling pairs in F are disjoint and, for any canceling pairs u, u�1 and
v, v�1 in F , v occurs between u and u�1 in w if and only if v�1 does. If F is
a nested family of canceling pairs for w, we abuse notation and let w � F denote
the set of subwords of w which are maximal under inclusion and which do not
intersect any element of any canceling pair in F as subwords of w. Finally, we
define jw � F jsimple

i WD jF j C P
w02.w�F / jw0jsimple

i .

Lemma4.11. Letw 2 Fn be a nontrivial reducedwordwhich contains no occurrence
of a˙1

i and let T be the set consisting of all nested families of canceling pairs of w.
Then

jwjcr
i � min

F 2T

�
max

² jF j
2

� 1; 1

5
jw � F jsimple

i � 3
³�
:

Proof. Let � D v
u1

1 v
u2

2 � � � vul

l
be an optimal decomposition of w realizing its con-

jugate reduced i -length.
First of all, since � is optimal, we may assume that all vj are cyclically reduced

(cyclic reduction of vj cannot increase the conjugate reduced i -length).
Now we will utilize the technique used in the proof of the van Kampen lemma

(see, for example, [23]). The wordw represents a trivial element in the group defined
by the presentation

ha j v1; v2; : : : ; vli: (1)

Consider the van Kampen diagram�0 with boundary label � over the presentation (1)
as depicted in Figure 4. This diagram is a wedge of l “lollipops” corresponding to
l factors of � with “stems” labeled by the uj and with the “candies” (boundaries of
2-cells) labelled by the vj . The base-vertex in�0 is the common vertex of “lollipops”.

v1

v2
vl 1

vl

u1

u2
ul 1

ul

Figure 4. Van Kampen diagram �0 corresponding to decomposition � .

Fix some free reduction process transforming� tow. The j th step of this reduction
process takes the van Kampen diagram �j �1 to the diagram �j , and corresponds to
modifying a pair of adjacent, inversely labeled edges along the boundary cycle of
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�j �1. This has the effect of ‘removing’ this pair of edges from the boundary cycle of
�j in the following sense. If these two edges have just one vertex in common, they
are folded and if this common vertex has degree 2 in �j �1 then the edge obtained by
folding is removed from �j �1. If they have two vertices in common, the union of
2-cells bounded by these two edges is completely removed from �j �1. This folding
or removing defines a new van Kampen diagram �j . At the end of the process we
obtain a van Kampen diagram � with boundary label w shown in Figure 5. Note
that in the reduction process the number of 2-cells in each successive van Kampen
diagram does not grow, so the number l 0 of 2-cells in � does not exceed l .

v1

v2

vl

v3

vj

Bridge set to B

Figure 5. Van Kampen diagram � after folding.

Because each of the vj ’s is cyclically reduced, the boundary of each 2-cell in the
diagram � is labeled by a cyclic conjugate of vj that depends on where along the
boundary one begins reading. The bridge set B� of � is the set of all vertices and
edges whose deletion from the topological realization j�j of� would disconnect it. A
disk-component of � is a subset of � which is the closure of a connected component
of j�j � jB� j. The disk-components of � are joined by (possibly trivial) edge-paths
from the bridge set. Retracting each of these paths to a point produces a new van
Kampen diagram � 0 with a boundary label u obtained from w by removing a nested
family of canceling pairs, denoted F , where each canceling pair corresponds to a path
insideB� whose inner vertices have degree 2. Such a diagram is depicted in Figure 6.
Note that u is not necessarily freely reduced, but that u is the product of subwords
in w � F , all of which are subwords of w and hence freely reduced. The vertices of
degree at least three along the boundary of � 0 split u into subwords w1; w2; : : : ; wk ,
where each wj is a part of the boundary of a 2-cell in � . This partition of u refines
the partition w0

1; w
0
2; : : : ; w

0
r of u induced by w � F .

Collapsing all disc components of � and removing vertices of degree 2 leaves
the tree with e edges and r 0 vertices of degree 1, each of which was obtained by
collapsing one of the disc components. In every such tree we have e � 2r 0. For the
number of canceling pairs in F we get jF j D e C r 00, where r 00 is the number of
disc components in � that collapse to the vertices of degree 2. But since each disc
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w1

w2

wk 1

wk
v1

v2
vl

v3

vj

Figure 6. Van Kampen diagram � 0 after bridge retraction.

component produces at least one w0
j , we get

jF j D e C r 00 � 2r 0 C r 00 � 2.r 0 C r 00/ � 2r (2)

We have by Lemma 4.7 and the last inequality that

jw � F jsimple
i D jF j C

rX
j D1

jw0
j jsimple

i � 2r C
kX

j D1

jwj jsimple
i C .k � r/

D k C r C
kX

j D1

jwj jsimple
i :

(3)

By construction each wj is a subword of a cyclic conjugate v0
t of some vt repre-

senting the label of the boundary of 2-cell in � 0 to which wj belongs. It may happen
that several wj lie on the boundary of one cell labelled by a conjugate of vt , but
by construction these occurrences do not overlap. Let fc1; : : : ; clg denote the set
of 2-cells in �0. Denote by Qct the image of a cell ct in � 0 and assume that vj is a
boundary label of Qcj (that, of course, coincides with a boundary label of cj ). Then
the sum in (3) can be rewritten as

jw � F jsimple
i � k C r C

lX
tD1

X
wj 2@Qct

jwj jsimple
i ; (4)

where if two or more 2-cells in �0 are mapped to the same cell in � 0, then we simply
add extra terms to the righthand side of 4 not jeopardizing the inequality. Since by
Lemmas 4.6 and 4.8,X

wj 2@Qct

jwj jsimple
i � jv0

t jsimple
i � jvt jsimple

i C 1;
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we can transform inequality (4) to

jw�F jsimple
i � kCrC

lX
tD1

.jvt jsimple
i C1/ D jwjcr

i CkCrC1 � jwjcr
i C2kC1: (5)

To finish the proof of the lemma we first prove that k � 2l 0 � 1 � 2l � 1. This
follows by induction on the number l 0 of cells of � as follows. Clearly if l 0 D 1 then
k D 1. Assume that for any bridge-free van Kampen diagram with l 0 � 1 2-cells the
number of arcs along the boundary without vertices of degree at least 3 is at most
2.l 0 �1/�1. Choose a 2-cell c in � whose boundary contains a piece p of boundary
of � and such that after p and interior of c are removed from � the resulting diagram
� � p is still bridge-free and connected. There are several cases describing how p

may be attached to the boundary of � � p. It is straightforward to check that, in all
cases, the attaching of p can increase the number of arcs without vertices of degree
at least 3 by at most 2.

Finally, consider two cases. If jw � F jsimple
i � 5l � 5, then

jwjcr
i � l � 1 � 1

5
jw � F jsimple

i :

But if jw � F jsimple
i > 5l � 5, then since k � 2l � 1 < 2

5
jw � F jsimple

i C 1 we get
from (5)

jwjcr
i � jw � F jsimple

i � 2k � 1 > 1

5
jw � F jsimple

i � 3:
This proves half of the lemma.

For the second part of the lemma note that by 2

jF j � 2.r 0 C r 00/ � 2l

since r 0 C r 00 does not exceed the number of all disk components in � and each disk
component contains at least one cell. Thus,

jwjcr
i � l � 1 � jF j

2
� 1:

The statement of the lemma now follows.

Corollary 4.12. If w is a positive word, then

jwjcr � 1

5
jwjsimple � 3:

Proof. If w is positive, then the only possible family of canceling pairs is the trivial
family.



On the geometry of the edge splitting complex 585

Note, that it’s not true that simple and conjugate reduced i -lengths always coincide
even for positive words. For example, forw D a2

1a
2
2:::a

2
n�1a1 we have jwjsimple

i D 1,
but jwjcr

i D 0 since w D .a3
1a

2
2:::a

2
n�1/

a1 and ja3
1a

2
2:::a

2
n�1jsimple

i D 0 because the
Whitehead graph of a3

1a
2
2:::a

2
n�1 has a cut vertex. However, it might be the case that

this is about all we can do and for positive words jwjcr
i � jwjsimple

i � 1. The weaker
observation above is enough for our purposes.

Corollary 4.13. There exist words of arbitrary (simple, conjugate reduced) i -length.

Proof. It now follows from the previous corollary that, for w D a2
1a

2
2 : : : a

2
n�1a1,

jwl jcr
n � l=5 � 3:

We now state prove some properties of the conjugate reduced i -length.

Lemma 4.14. Conjugate reduced i -length is invariant under conjugation.

Proof. Let w and u be words that do not involve ai , so that wu is a conjugate of
w. Then there is a one-to-one correspondence between decompositions of w and
decompositions of wu defined by

w Dr v
u1

1 v
u2

2 : : : v
ul

l
$ v

u1u
1 v

u2u
2 : : : v

ul u

l
Dr w

u:

Now the statement of the lemma follows from the definition of conjugate reduced
i -length.

The following lemma relates simple and conjugate reduced i -length.

Lemma 4.15. For any reduced word w,

jwjsimple
i � jwjcr

i :

If jwjcr
i > 0, then the Whitehead graph �a�fai g.w/ has no cut vertex.

Proof. A wordw represents a decomposition of itself with one factor whose conjugate
reduced i -length is equal by definition to jwjsimple

i .
If jwjcr

i > 0, then jwjsimple
i > 0. If the Whitehead graph �a�fai g.w/ had a cut

vertex, then since w is freely reduced the Whitehead graph of any subword of w
would also have a cut vertex. This contradicts that jwjsimple

i > 0.

Finally, we have the two lemmas describing how conjugate reduced i -length
behaves under multiplication.

Lemma 4.16. For any words u and v, we have

jujcr
i � jvjcr

i � 1 � juvjcr
i � jujcr

i C jvjcr
i C 1:
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Proof. A decomposition of uv may be obtained by concatenating optimal decom-
positions of u and v. The associated i -length of this decomposition of uv yields
the second inequality. The first inequality follows from the second inequality by
concatenating uv and v�1: jujcr

i D juvv�1jcr
i � juvjcr

i C jvjcr
i C 1.

Thanks to the referee for pointing out a simplified proof of the following lemma.

Lemma 4.17. For any words u, v and w, we have

juvjcr
i � jwjcr

i � 1 � juwvjcr
i � juvjcr

i C jwjcr
i C 1:

Proof. As conjugate reduced i -length is invariant under conjugation by Lemma 4.14,
we get juwvjcr

i D jvuwjcr
i and jvujcr

i D juvjcr
i . The lemma then follows from

Lemma 4.16.

4.4. Full i -length. We are now ready to define the (full) i -length of a basis for Fn

(or more generally a set of words). Given a basis Y , we essentially measure the
maximal conjugate reduced i -length of any subword of any element of Y . However,
we must be very careful to properly account for conjugation. We do so as follows.

Let y be a set of reduced words in the alphabet a˙1. Let Qy denote the set of
elements of y after each of them has been cyclically reduced. Define wL D wL.y/

to be the longest word in the alphabet .a�faig/˙1 such that every occurrence of ai in
every Qy 2 Qy is cyclically preceded by wL and every occurrence of a�1

i is cyclically
followed by w�1

L (note wL could be trivial). Similarly, let wR D wR.y/ be the
longest word in .a � faig/˙1 such that every occurrence of ai in every Qy 2 Qy is
cyclically followed by wR, every occurrence of a�1

i is cyclically preceded by w�1
R ,

and no such occurrence ofwR intersects any such occurrence ofwL (again,wR could
be trivial). Let ˛0 D ˛0

y be the automorphism of Fn which maps ai to w�1
L aiw

�1
R .

Let wC D wC .y/ be the longest word in .a � faig/˙1 such that, in ˛0 Qy , every
occurrence of ak

i either: (a) occurs by itself as an element of ˛0 Qy or (b) appears
cyclically conjugated by wC , so that ak

i is cyclically preceded by w�1
C and cyclically

followed by wC . If every occurrence of ak
i occurs by itself, we declare that wC is

trivial.
If y is a singleton fyg, we abuse notation and write y instead of fyg when applying

any function in this subsection.
Let ˛ D ˛y be the automorphism of Fn which maps ai to w�1

L wCaiw
�1
C w�1

R .
Thus, wL.˛y/ D wR.˛y/ D 1 are trivial. The preimage of ak

i under ˛, after free
reduction of occurrences of w�1

C wC , is w�1
C .wLaiwR/

k wC . Note ˛y may not be
cyclically reduced.

An i -chunk of a word y in the alphabet a˙1 is a cyclic subword of Qy (here again,
Qy denotes the result of a cyclic reduction of y) which contains no a˙1

i and is maximal
among such subwords ordered by inclusion. By definition, every i -chunk of y begins
with either wR.y/ or .wL.y//

�1, and ends with either wL.y/ or .wR.y//
�1.
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For example, in the set y D fa�1
2 a3a4a1a4a2a3; a

�1
4 a�1

1 a�1
4 a�1

3 g, we have
Qy D y . For i D 1, wL.y/ D a3a4, wR.y/ D a4, and wC .y/ D a2. Thus,
˛.a1/ D a�1

4 a�1
3 a2a1a

�1
2 a�1

4 , so that ˛.y/ D fa1a3; a2a
�1
1 a�1

2 g.

Definition 4.18 (Full i -length). Fix an index i 2 f1; : : : ; ng. Let y be a set of words
in the alphabet a˙1. The (full) i -length of y is

jyji WD jwR.y/wL.y/jcr
i :

The following corollary immediately follows from the above definition and Corol-
lary 4.13.

Corollary 4.19. There exist bases of Fn of arbitrary full i -length.

Proof. Consider a basis

x D .a1; a2; : : : ; an�1; anw
l/

of Fn, where w D a2
1a

2
2 : : : a

2
n�1a1. Then, by Corollary 4.13,

jxjn D jwl jcr
n � l=5 � 3:

We now consider properties of full i -length. The key observation for our paper is
the following lemma.

Lemma 4.20. For any basis x of Fn, any x 2 x, and any subword w of an i -chunk
of ˛xx, we have jwjcr

i D 0.

It follows that this result holds for any subset of any basis as well.

Proof. Throughout this proof, for sake of simplicity of notation, we write ˛ for ˛x .
As x is a basis, so is ˛x. By definition, the full i -length of an element or of a set
of elements is invariant under conjugation, where we may even conjugate different
elements in the set by different conjugators. Therefore cyclic reduction of all elements
of˛x does not change any i -length involved. Let y be the set f̨x obtained from˛x by
cyclically reducing every element. Since ˛x is a basis, y is a separable set. Therefore
by Theorem 4.3 the augmented Whitehead graph y�a.y/ of y has a cut vertex. Note
that this graph does not have vertex loops since each word in y is cyclically reduced.

Proof by contradiction: assume that there exists some subword w of an i -chunk
of ˛x with jwjcr

i > 0. As jwjcr
i > 0, by Lemma 4.15, the subgraph � 0 of y�a.y/ on the

vertex set corresponding to a � faig has no cut vertex (since there are no vertex loops
in the graph). It remains to consider the vertices corresponding to a˙1

i in y�a.y/.
Since ai must appear as a letter in x and, hence, in y , by the definition of Whitehead
graph each of ai , a�1

i has at least one neighbor in y�a.y/.
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Consider the case when either ai or a�1
i has exactly one neighbor in y�a.y/.

Without loss of generality, assume ai has exactly one neighbor. If the neighbor b of
ai were in � 0, we would contradict the definition of wR.x/: b�1 should have been
appended to wR.x/.

Thus, the only neighbor of ai must be a�1
i . In this case, each occurrence of a

(resp. a�1) in ˛x must be cyclically followed (resp. preceded) by a (resp. a�1).
The only way for this to occur is if every element of y involving ai is some power of
ai . But elements of y are primitives in Fn as they are conjugates of basis elements
of ˛x. Therefore this power can only be a˙1

i . Moreover, if there are two elements in
y of the form a˙1

i , then there should be two conjugates of a or a�1 in ˛x, which is
impossible because in this case we can obtain a commutator as a primitive element
of Fn. Thus, we may assume without loss of generality that ai is an element of y

and no other element of y contains an occurrence of ai .
Since y was obtained from ˛x by conjugating its elements, the structure of ˛x is

as follows. There is one element of the form aw
i for some w 2 Fn, whose conjugate

in y is ai . All other elements in ˛x are conjugates of words in y not involving ai by
conjugators that may generally contain ai . Then z D .˛x/w

�1
is a basis for Fn one

of whose elements is ai and the others are conjugates of words in y where the words
in y do not involve ai (but the conjugators could).

By Proposition 2.3 there is a sequence .ıj /; 1 � j � t of elementary Nielsen
transformations taking z to the standard basis a obtained from the Nielsen reduction
process. In other words,

.z/
� tY

j D1

ıj

�
D a:

Since the Nielsen reduction process does not increase the length of basis elements,
the element ai in z will be invariant under each transvection ıj . Let S D fj W
ıj does not involve aig and consider the basis

u D .a/
�Y

j 2S

ıj

��1

for Fn. By construction this basis is obtained from z by removing all occurrences
of ai from z except a single occurrence of ai as an element of z. This implies that
all other elements of u form a basis for ha � faigi. On the other hand, elements of
the basis u are conjugates of elements of z. Therefore cyclic reduction of elements
in u gives the set y up to cyclic conjugation. But then y � faig is a separable set
in ha � faigi, and is such that y�a�fai g.y � faig/ has no cut vertex. This contradicts
Theorem 4.3, and shows that neither ai nor a�1

i may have exactly one neighbor in
y�a.y/.

We are left to consider the remaining case, when both ai and a�1
i have at least

two neighbors in y�a.y/. As � 0 contains no cut vertex, the only way for y�a.y/ to still
have a cut vertex in this situation is if ai and a�1

i both have exactly two neighbors in
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y�a.y/, both are neighbors of each other, and both share a common third neighbor,
say b. This means that every occurrence of ak

i , k ¤ 0, in ˛x appears by itself in ˛x

or appears conjugated by b�1. But this contradicts the definition ofwC .x/: the letter
b�1 should have been appended to wC .

As corollaries of the above lemma and definition of the i -length of a set we get
the following statements.

Corollary 4.21. For any basis x of Fn, the maximal conjugate reduced i -length of
an i -chunk of ˛xx over all elements x 2 x is 0.

Lemma 4.22. For any basis x and any x 2 x containing ai ,

jxji � 2 � jxji � jxji C 2:

Proof. By the definition of˛x , for anyx 2 x, j˛xxjcr
i D 0. Without loss of generality,

as i -length is unaffected by conjugation assume that x is such that all of x, ˛0
xx, and

˛xx are cyclically reduced. For simplicity of notation, let ˛0 WD ˛0
x . Note that every

occurrence of ai in ˛0x occurs in a subword of ˛0x in at least one of the following four
forms: ai ,wC .x/

�1ai , aiwC .x/,wC .x/
�1aiwC .x/. Similarly, every occurrence of

a�1
i in ˛0x occurs in a subword of ˛0x in at least one of the forms: a�1

i ,wC .x/
�1a�1

i ,
a�1

i wC .x/, wC .x/
�1a�1

i wC .x/.
Consider the following possible cases.

Case 1. The word ˛0x is a power of ai , so that no occurrence of ai (or its inverse)
appears in x multiplied by wC .x/ (or its inverse). In this case wL.x/ D
wR.x/wL.x/ and wR.x/ is trivial, therefore wR.x/wL.x/ D wR.x/wL.x/

and jxji D jxji .
Case 2. Some occurrences of ai (or its inverse) in ˛0x occur in subwords of ˛0x of

the form wC .x/
�1aiwC .x/ (resp. wC .x/

�1a�1
i wC .x/), while some do not.

Note that the last letter in wC .x/ must differ from the last letter in wR.x/

since these letters do not cancel in wR.x/wC .x/
�1. But this implies that

wL.x/ D wL.x/ and wR.x/ D wR.x/, again implying jxji D jxji .
Case 3. Every ai (resp. a�1

i ) in x occurs in ˛0x in a subword of ˛0x of the form
wC .x/

�1aiwC .x/ (resp. wC .x/
�1a�1

i wC .x/). It follows that wL.x/ con-
tainswC .x/

�1wL.x/ as a terminal segment. It may also contain some portion
w2 of an i -chunk of ˛x.x/ of zero i -length by Lemma 4.20, and finally it may
contain some portion of wR.x/wC .x/. In any case wR.x/ will contain the
rest of wR.x/wC .x/ and possibly some portion w1 of an i -chunk of ˛x.x/

also of zero i -length. Therefore

wR.x/wL.x/ D wR.x/wC .x/w1w2wC .x/
�1wL.x/;
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where w1 and w2 may be trivial. Therefore applying Lemmas 4.17 and 4.16,
and taking into account that conjugation does not change the conjugate reduced
i -length of a subword, we obtain

jxji D jwR.x/wL.x/jcr
i

D jwR.x/wC .x/
�1w1w2wC .x/wL.x/jcr

i

� jwR.x/wL.x/jcr
i C jwC .x/

�1w1w2wC .x/jcr
i C 1

D jwR.x/wL.x/jcr
i C jw1w2jcr

i C 1

� jwR.x/wL.x/jcr
i C jw1jcr

i C jw2jcr
i C 2

D jwR.x/wL.x/jcr
i C 2

D jxji C 2:

Similarly we derive the first inequality

jxji D jwR.x/wL.x/jcr
i

D jwR.x/wC .x/
�1w1w2.w1w2/

�1wC .x/wL.x/jcr
i

� jwR.x/wC .x/
�1w1w2wC .x/wL.x/jcr

i C jw1w2jcr
i C 1

� jwR.x/wL.x/jcr
i C jw1jcr

i C jw2jcr
i C 2

D jwR.x/wL.x/jcr
i C 2

D jxji C 2:

Note that the last case covers all situations when wC .x/ is trivial.

As an immediate corollary we obtain the following statement, which is a basis for
distance estimates in Section 5.

Corollary 4.23. For any bases x and y sharing a common element containing ai ,ˇ̌ jxji � jyji
ˇ̌ � 4:

Proof. Let x be a common element of x and y containing ai . Then by Lemma 4.22
we get ˇ̌ jxji � jxji

ˇ̌ � 2;ˇ̌ jxji � jyji
ˇ̌ � 2:

Combining the above inequalities proves the lemma.
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5. The geometry of E�1
n

5.1. Distance and i -length. We are now ready to estimate distances in E�1
n, based

on how much i -length can change in a single proper nonempty index set.

Lemma 5.1. For any proper nonempty subset S of the index set f1; : : : ; ng, any basis
x D fx1; : : : ; xng ofFn, and any S -transformation � 2 Aut.Fn/which is the identity
on x xS , we have that

jxji � 12 � jx�ji � jxji C 12:

Proof. If there exists some x 2 x xS such that x contains an occurrence of a˙1
i , then

since x 2 x \ x�, by Corollary 4.23ˇ̌ jxji � jx�ji
ˇ̌ � 4;

and the lemma follows.
If no such x exists, choose any x 2 x xS and let y 2 xS be an element of x which

contains an occurrence of a˙1
i . Let x0 WD .x � fxg/ [ fxyg.

The bases x and x0 share y in common, so by Corollary 4.23ˇ̌ jxji � jx0ji
ˇ̌ � 4; (6)

Since x0 and x0� share xy in common, we getˇ̌ jx0ji � jx0�ji
ˇ̌ � 4; (7)

Also there must be an element among z 2 .x�/S containing an occurrence of ai

(otherwise x� would not contain an occurrence of ai ). This element z is common
for bases x� and x0� yielding ˇ̌ jx0�ji � jx�ji

ˇ̌ � 4; (8)

Finally, combining the inequalities (6), (7) and (8), we obtain the statement of the
lemma.

It seems that, with more careful bookkeeping, the constant 12 might be able to be
improved.

Corollary 5.2. Let x be a basis of Fn. Then the number of index changes in a
decomposition into a product of �-transformations of a transformation in Aut.Fn/

taking a to x is bounded below by 1
24

jxji � 1.
Proof. For any index set S , an S -transformation can be written as a product of an
S -transformation which is the identity on xS and an S -transformation which is the
identity on x xS . Applying Lemma 5.1 twice, we see an S -transformation can change
i -length by at most 24. The term “-1” in the statement corresponds to the fact that a
product of k �-transformations requires k � 1 index changes.
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This corollary, combined with Theorem 3.2, shows our main computational the-
orem:

Theorem 5.3. Let x be a basis of Fn, expressed in terms of a fixed standard basis a.
For any index i and any index sets Sa and Sx ,

d
E�1

n
..a; Sa/; .x; Sx// � jxji

24
� 1:

Proof. By Theorem 3.2, d
E�1

n
..a; Sa/; .x; Sx// is greater than or equal to the number

of compatible index changes required to get from .a; Sa/ to .x; Sx/, which, in turn,
is not smaller than the number of arbitrary index changes. By Corollary 5.2 the last
quantity is bounded below by jxji

24
� 1.

5.2. E�1
n is not hyperbolic. Corollary 5.2 is useful for estimating distances in E�1

n.
For instance, we may now apply this corollary to show that E�1

n is not hyperbolic in
the sense of Gromov, by identifying quasiflats – that is, a quasiisometric embedding
Rk ! E�1

n for k > 1.
Let pt WD atC1

1 atC1
2 � � � atC1

n�1a
tC1
1 atC1

2 atC1
1 . Note that for t � 1 the augmented

Whitehead graph of pt looks similar to the graph shown in Figure 3, and removing
vertices corresponding to an and a�1

n will produce graphs without cut vertices. We
propose to embed the integer lattice Zm quasiisometrically into E�1

n by the map
 which takes .k1; k2; : : : ; km/ 2 Zm to the vertex  .k1; k2; : : : ; km/ D .x; S/

of E�1
n, where S is an arbitrary proper nontrivial subset of f1; 2; : : : ; ng and x is

obtained from the standard basis a by replacing an by anp
k1

1 p
k2

2 � � �pkm
m .

Theorem 5.4. The map  yields an m-dimensional quasiflat in E�1
n.

Proof. To see that  is indeed a quasiisometric embedding, consider the images of
two points, .k1; k2; : : : ; km/ and .l1; l2; : : : ; lm/ under . In the domain, these points
are of distance

d D
mX

tD1

jkt � lt j

apart. In the codomain, the distance between .k1; k2; : : : ; km/ and .l1; l2; : : : ; lm/
is the same as the distance between the basepoint a and the point represented by the
standard basis with an replaced by an!, where

! D p�km
m p

�km�1

m�1 � � �p�k1

1 p
l1

1 p
l2

2 � � �plm
m

after free reduction.
By Theorem 5.3 and the definition of full i -length, the latter distance is bounded

below by
1

24
j!jcr

n � 1: (9)
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We claim j!jcr
n � d

11
� 21

11
, as follows. By Lemma 4.11 j!jcr

n can be estimated
from below by

j!jcr
n � min

F 2S

�
max

² jF j
2

� 1; 1

5
j! � F jsimple

n � 3
³�
; (10)

where S is the set consisting of all nested families of canceling pairs in !. Let F

denote the family of canceling pairs in ! that minimizes the bound in (10).
There may be free cancellations of two types in !. First, several full occurrences

of pt may cancel with full occurrences of p�1
t in the middle where p�k1

1 and pl1

1

meet, and second, there may be cancellation of two occurrences of pt for different t .
In the second case, by the definition of pt , the only part that may cancel is a subword
of either the last and/or the first syllable of the form atC1

1 . However, reductions of the
second type preserve Whitehead graphs in the following sense: the Whitehead graph
of the uncanceled subword q of every copy of p˙1

t (with vertices a˙1
n removed) will

still not have a cut vertex. We will call such a subword q a leftover of type t and
denote by q.t/. Each q.t/ contains atC1

2 : : : atC1
n�1a

tC1
1 atC1

2 as a subword.
Consider canceling pairs in F . A lower bound for j! � F jsimple

n is the number
of q.t/’s which do not intersect either element of any pair in F , since each such q.t/

contributes at least 1 to the sum in the definition of j! � F jsimple
n . Therefore we

just need to find a lower bound on the number of such q.t/’s. Some occurrences of
q.t/ will be completely contained in an element of some canceling pair in F with
an occurrence of .q.t//�1 contained in the other element of the same pair. Throwing
away all such occurrences, there are at least jkt � lt j occurrences of .q.t//˙1 left
for each t , and hence at least d possible q.t/’s for t arbitrary. For these remaining
q.t/’s, by the definition of pt , a given canceling pair may involve at most 4 different
occurrences of q.t/’s for possibly different values of t . Indeed, each canceling pair
involves two words, each of which can intersect some q.t/ in an initial segment and/or
a terminal segment. Each such segment can interfere with at most one occurrence of
q.t/. Thus, at most 4jF j of the d remaining q.t/’s are not disjoint from F , and so at
least d � 4jF j occurrences of the q.t/’s do not intersect either element of any pair
in F .

Hence,

1

5
j! � F jsimple

n � 3 � 1

5

�
.d � 4jF j/C jF j� � 3 D d

5
� 3

5
jF j � 3:

From (10) we obtain

j!jcr
n � max

² jF j
2

� 1; d

5
� 3

5
jF j � 3

³
;

If jF j � 2
11
d � 20

11
then

j!jcr
n � jF j

2
� 1 � d

11
� 21

11
:
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But if jF j < 2
11
d � 20

11
then

j!jcr
n � d

5
� 3

5
jF j � 3 > d

11
� 21

11
:

In either case, as claimed, j!jcr
n � d

11
� 21

11
.

Combining this claim with the lower bound in (9), we have that the distance
between the vertices  .k1; k2; : : : ; km/ and  .l1; l2; : : : ; lm/ is bounded below by

d
24�11

� 21
24�11

� 1 D 1
264
d � 95

88
.

We claim the distance between  .k1; k2; : : : ; km/ and  .l1; l2; : : : ; lm/ is also
bounded above by d Cm, as follows. Without loss of generality, fix S D fng. Recall
a vertex in E�1

n is defined up to conjugation. Thus, for any word w,

Œha1; : : : ; an�1i � hani� D Œhaw
1 ; : : : ; a

w
n�1i � haw

n i�:

Thus, the following describes a path from  .k1; k2; : : : ; km/ to  .l1; l2; : : : ; lm/:

 .k1; k2; : : : ; km/ D Œha1; : : : ; an�1i � hanp
k1

1 p
k2

2 � � �pkm
m i�

D Œha1; : : : ; an�1i � hp�k1

1 : : : p�km
m ani�

! Œha1; : : : ; an�1i � hp�k1

1 : : : p�km
m anp

l1�k1

1 i�
D Œha1; : : : ; an�1i � hp�k2

2 : : : p�km
m anp

l1

1 i�
! Œha1; : : : ; an�1i � hp�k2

2 : : : p�km
m anp

l1

1 p
l2�k2

2 i�
D Œha1; : : : ; an�1i � hp�k3

3 : : : p�km
m anp

l1

1 p
l2

2 i�
! � � �
! Œha1; : : : ; an�1i � hp�km

m anp
l1

1 p
l2

2 : : : p
lm�1

m�1 p
lm�km
m i�

D Œha1; : : : ; an�1i � hanp
l1

1 p
l2

2 : : : p
lm�1

m�1 p
lm
m i�

D  .l1; l2; : : : ; lm/:

At each arrow, the above sequence is the same: for some integers i and j , we append
p

j
i to the last factor in a vertex of the form Œha1; : : : ; an�1i � huavi�. We claim this

may be done in via at most 2j C 1 steps in E�1
n, by the following edge path, where

in this sequence, arrows each represent crossing exactly 1 edge of E�1
n:

Œha1; : : : ; an�1i � huavi�
! Œhan�1i � ha1; : : : ; an�2; uanvi�
D Œhan�1i � ha1; : : : ; an�2; uanva

iC1
1 aiC1

2 � � � aiC1
n�2i�
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! Œha3; : : : ; an�2i � ha1; a2; an�1; uanva
iC1
1 aiC1

2 � � � aiC1
n�2i�

D Œha3; : : : ; an�2i � ha1; a2; an�1; uanvpi i�
! Œhan�1i � ha1; : : : ; an�2; uanvpi i�
D Œhan�1i � ha1; : : : ; an�2; uanvpia

iC1
1 aiC1

2 � � � aiC1
n�2i�

! Œha3; : : : ; an�2i � ha1; a2; an�1; uanvpia
iC1
1 aiC1

2 � � � aiC1
n�2i�

D Œha3; : : : ; an�2i � ha1; a2; an�1; uanvp
2
i i�

! � � �
D Œha3; : : : ; an�2i � ha1; a2; an�1; uanvp

j
i i�

! Œha1; : : : ; an�1i � huavpj
i i�

Note here we shown the path when j > 0; the path when j < 0 is similar. Combining
these two descriptions, we have that:

d
E�1

n
. .k1; k2; : : : ; km/;  .l1; l2; : : : ; lm// �

mX
iD1

2jli � ki j C 1 D 2d Cm:

As distances are bounded both above and below, we have a quasiisometric em-
bedding.

As immediate corollaries, we obtain:

Corollary 5.5. The graph E�1
n is not hyperbolic in the sense of Gromov.

This shows that E�1
n does not have the hyperbolicity desired for an analogue for

Out.Fn/ of the curve complex for the mapping class group. The hyperbolicity of the
curve complex was shown by Masur and Minsky [25], and has proven to be useful in
numerous situations.

Corollary 5.6. The space E�1
n has infinite asymptotic dimension. The dimension of

every asymptotic cone of E�1
n is infinite.

Corollary 5.7. The identity map on vertices between E�1
n and FF 1

n is not a quasi-
isometry. Moreover, there is no coarsely Out.Fn/-equivariant quasiisometry between
E�1

n and FF 1
n.

Proof. The first half follows immediately from Theorem 5.4, as the set  Zm � E�1
n

has diameter 1 in FF 1
n: for k ¤ n, the element ak has translation length 0 on the

Bass–Serre tree of every element in  Zm.
For the second half we note that since Out.Fn/ acts on both E�1

n (and FF 1
n) by

isometries, for each � 2 Out.Fn/ the orbits under powers of � of vertices of E�1
n (and
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FF 1
n) are either all bounded or all unbounded. Now consider � 2 Out.Fn/ taking

the standard basis a of Fn to the basis obtained from a by replacing an with anp1.
By construction, for each index set S the orbit of .a; S/ in E�1

n under iterations of
� is unbounded as the i -length of �n.a/ grows. But the same orbit is bounded in
FF 1

n. Thus, there is no coarsely Out.Fn/-equivariant quasiisometry between E�1
n

and FF 1
n because every orbit in FF 1

n under iterations of � is bounded and cannot
be an image of an unbounded orbit in E�1

n.

An analogous results with identical proofs hold true for the relationships between
the free factorization graph E�1

n and the free factor graph F 1
n and between E�1

n and
the free splitting graph F�1

n. There is a natural (coarsely well defined for n > 2)
map † W E�1

n ! F 1
n defined by sending a vertex ŒA � B� in E�1

n to the vertex ŒA�
in F 1

n . This map is induced by the same map on vertices from FF 1
n to F 1

n , which
is a coarsely Out.Fn/-equivariant quasiisometry. Also there is a natural embedding
{ W E�1

n ! F�1
n defined by sending a vertex ŒA �B� in E�1

n to the vertex ŒA �B� in
F�1

n, which is quasisurjection. However, neither of the above maps is a quasiisometry.

Corollary 5.8. The maps † W E�1
n ! F 1

n and { W E�1
n ! F�1

n are not quasiisome-
tries. Moreover, there is no coarsely Out.Fn/-equivariant quasiisometry between
E�1

n and F 1
n , and between E�1

n and F�1
n.

The last corollary provides a negative answer to a question of Bestvina and Feighn
(the first half of Question 4.4 in [6]).

Finally, we mention that the recent results of Bestvina and Feighn [7] and of
Handel and Mosher [14] claiming hyperbolicity of F 1

n and F�1
n respectively, can be

used to generalize Corollaries 5.7 and 5.8.

Corollary 5.9. The edge splitting graph E�1
n is not quasiisometric to any of FF 1

n,
F 1

n and F�1
n.

References

[1] J.Aramayona and J. Souto,Automorphisms of the graph of free splittings. MichiganMath.
J. 60 (2011), no. 3, 483–493. Zbl https://zbmath.org/?q=an:1242.05117 MR 2861084

[2] J. Behrstock, M. Bestvina, and M. Clay, Growth of intersection numbers for free group
automorphisms. J. Topol. 3 (2010), no. 2, 280–310. Zbl 1209.20031 MR 2651361

[3] J. Behrstock, B. Kleiner, Y. Minsky, and L. Mosher, Geometry and rigidity of mapping
class groups. Geom. Topol. 16 (2012), no. 2, 781–888. Zbl 1281.20045 MR 2928983

[4] Y. Berchenko-Kogan, Distance in the ellipticity graph. Preprint, arXiv:1006.4853.

[5] M. Bestvina, K. Bromberg, and F. Koji, Constructing group actions on quasi-trees and
applications to mapping class groups Preprint, arXiv:1006.1939.

http://zbmath.org/?q=an:https://zbmath.org/?q=an:1242.05117
http://www.ams.org/mathscinet-getitem?mr=2861084
http://zbmath.org/?q=an:1209.20031
http://www.ams.org/mathscinet-getitem?mr=2651361
http://zbmath.org/?q=an:1281.20045
http://www.ams.org/mathscinet-getitem?mr=2928983
http://arxiv.org/abs/1006.4853
http://arxiv.org/abs/1006.1939


On the geometry of the edge splitting complex 597

[6] M. Bestvina and M. Feighn, A hyperbolic Out.Fn/-complex. Groups Geom. Dyn. 4
(2010), no. 1, 31–58. Zbl 1190.20017 MR 2566300

[7] M. Bestvina and M. Feighn, Hyperbolicity of the complex of free factors. Adv. Math. 256
(2014), 104–155; Corrigendum ibid. 259 (2014), 843. Zbl 06284922 MR 3177291

[8] F. Bonahon, Geodesic currents on negatively curved groups. In Arboreal group theory
(Berkeley, CA, 1988), Math. Sci. Res. Inst. Publ. 19, Springer, NewYork 1991, 143–168.
Zbl 0772.57004 MR 1105332

[9] M. Culler and K. Vogtmann, Moduli of graphs and automorphisms of free groups. Invent.
Math. 84 (1986), no. 1, 91–119. Zbl https://zbmath.org/?q=an:0589.20022 MR 0830040

[10] Ma. Day and A. Putman, The complex of partial bases for Fn and finite generation of
the Torelli subgroup of Aut.Fn/. Geom. Dedicata 164 (2013), 139–153. Zbl 06171542
MR 3054621

[11] A. Dranishnikov and M. Sapir, On the dimension growth of groups. J. Algebra 347 (2011),
23–39; Corrigendum ibid. 370 (2012), 407–409. Zbl 1277.20051 MR 2846394

[12] D. Farley, Homology of tree braid groups. In Topological and asymptotic aspects of
group theory, Contemp. Math. 394k, Amer. Math. Soc., Providence, RI, 2006, 101–112.
Zbl 1102.20028 MR 2216709

[13] V. Guirardel, Cœur et nombre d’intersection pour les actions de groupes sur les arbres.
Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 6, 847–888. Zbl 1110.20019 MR 2216833

[14] M. Handel and L. Mosher, The free splitting complex of a free group I: hyperbolicity.
Geom. Topol. 17 (2013), no. 3, 1581–1672. Zbl 1278.20053 MR 3073931

[15] A. Hatcher, Homological stability for automorphism groups of free groups. Comment.
Math. Helv. 70 (1995), no. 1. 39–62. Zbl 0836.57003 MR 1314940

[16] A. Hatcher and K. Vogtmann, Cerf theory for graphs. J. London Math. Soc. (2) 58 (1998),
no. 3, 633–655. Zbl 0922.57001 MR 1678155

[17] A. Hatcher and K. Vogtmann, The complex of free factors of a free group. Quart. J. Math.
Oxford Ser. (2) 49 (196) (1998), 459–468. Zbl 0935.20015 MR 1660045

[18] L. Ji, Asymptotic dimension and the integral K-theoretic Novikov conjecture for
arithmetic groups. J. Differential Geom. 68 (2004), no. 3, 535–544. Zbl 1079.55012
MR 2144540

[19] I. Kapovich, Currents on free groups. In Topological and asymptotic aspects of group
theory, Contemp. Math. 394, Amer. Math. Soc., Providence, RI, 2006, 149–176.
Zbl 1110.20034 MR 2216713

[20] I. Kapovich and M. Lustig, Geometric intersection number and analogues of the curve
complex for free groups. Geom. Topol. 13 (2009), no. 3, 1805–1833. Zbl 1194.20046
MR 2496058

[21] I. Kapovich andA. Myasnikov, Stallings foldings and subgroups of free groups. J.Algebra
248 (2002), 608–668. Zbl 1001.20015 MR 1882114

[22] M. Lustig, A generalized intersection form for free groups. Preprint, 2004.

[23] R. C. Lyndon and P. E. Schupp, Combinatorial group theory. Classics Math„ Springer-
Verlag, Berlin 2001. Reprint of the 1977 edition. Zbl 0997.20037 MR 1812024

http://zbmath.org/?q=an:1190.20017
http://www.ams.org/mathscinet-getitem?mr=2566300
http://zbmath.org/?q=an:06284922
http://www.ams.org/mathscinet-getitem?mr=3177291
http://zbmath.org/?q=an:0772.57004
http://www.ams.org/mathscinet-getitem?mr=1105332
http://zbmath.org/?q=an:https://zbmath.org/?q=an:0589.20022
http://www.ams.org/mathscinet-getitem?mr=0830040
http://zbmath.org/?q=an:06171542
http://www.ams.org/mathscinet-getitem?mr=3054621
http://zbmath.org/?q=an:1277.20051
http://www.ams.org/mathscinet-getitem?mr=2846394
http://zbmath.org/?q=an:1102.20028
http://www.ams.org/mathscinet-getitem?mr=2216709
http://zbmath.org/?q=an:1110.20019
http://www.ams.org/mathscinet-getitem?mr=2216833
http://zbmath.org/?q=an:1278.20053
http://www.ams.org/mathscinet-getitem?mr=3073931
http://zbmath.org/?q=an:0836.57003
http://www.ams.org/mathscinet-getitem?mr=1314940
http://zbmath.org/?q=an:0922.57001
http://www.ams.org/mathscinet-getitem?mr=1678155
http://zbmath.org/?q=an:0935.20015
http://www.ams.org/mathscinet-getitem?mr=1660045
http://zbmath.org/?q=an:1079.55012
http://www.ams.org/mathscinet-getitem?mr=2144540
http://zbmath.org/?q=an:1110.20034
http://www.ams.org/mathscinet-getitem?mr=2216713
http://zbmath.org/?q=an:1194.20046
http://www.ams.org/mathscinet-getitem?mr=2496058
http://zbmath.org/?q=an:1001.20015
http://www.ams.org/mathscinet-getitem?mr=1882114
http://zbmath.org/?q=an:0997.20037
http://www.ams.org/mathscinet-getitem?mr=1812024


598 L. Sabalka and D. Savchuk

[24] W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory. Reprint of the
1976 second edition, Dover Publications Inc., Mineola, NY, 2004. Zbl 1130.20307
MR 2109550

[25] H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. I. Hyperbolicity.
Invent. Math. 138 (1999), no. 1, 103–149. Zbl 0941.32012 MR 1714338

[26] J. Nielsen, Die Isomorphismengruppe der freien Gruppen. Math. Ann. 91 (1924), no. 3–4,
169–209. JFM 50.0078.04 MR 1512188

[27] S. Schleimer, Notes on the complex of curves. Preprint 2006, available at
http://www.warwick.ac.uk/~masgar/Maths/notes.pdf. Zbl MR

[28] J. R. Stallings,Whitehead graphs on handlebodies. In Geometric group theory downunder
(Canberra, 1996), de Gruyter, Berlin 1999, 317–330. Zbl 1127.57300 MR 1714852

[29] K. Vogtmann, Automorphisms of free groups and outer space. In Proceedings of the
Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), Geom.
Dedicata 94 2002, 1–31. Zbl 1017.20035 MR 1950871

[30] J. H. C. Whitehead, On certain sets of elements in a free group. Proc. London Math. Soc.
41 (1936), 48–56. JFM 62.0079.04 MR 1575455

Received June 13, 2012; revised September 17, 2012

L. Sabalka, Department of Mathematics and Computer Science, Saint Louis University,
St Louis, MO 63112, U.S.A.

E-mail: lsabalka@slu.edu

D. Savchuk, Department of Mathematics and Statistics, University of South Florida, Tampa,
FL 33620, U.S.A.

E-mail: savchuk@usf.edu

http://zbmath.org/?q=an:1130.20307
http://www.ams.org/mathscinet-getitem?mr=2109550
http://zbmath.org/?q=an:0941.32012
http://www.ams.org/mathscinet-getitem?mr=1714338
http://zbmath.org/?q=an:50.0078.04
http://www.ams.org/mathscinet-getitem?mr=1512188
http://www.warwick.ac.uk/~{}masgar/Maths/notes.pdf
http://zbmath.org/?q=an:
http://www.ams.org/mathscinet-getitem?mr=
http://zbmath.org/?q=an:1127.57300
http://www.ams.org/mathscinet-getitem?mr=1714852
http://zbmath.org/?q=an:1017.20035
http://www.ams.org/mathscinet-getitem?mr=1950871
http://zbmath.org/?q=an:62.0079.04
http://www.ams.org/mathscinet-getitem?mr=1575455

	Introduction
	Three interpretations of 
	Vertices and edges in 
	The notion of i-length
	Defining  i-length
	Simple i-length
	Conjugate reduced i-length
	Full i-length

	The geometry of  ES_n^1
	Distance and i-length
	 is not hyperbolic

	References

