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Abstract. We study the growth of typical groups from the family of p-groups of intermediate
growth constructed by the second author. We find that, in the sense of category, a generic group
exhibits oscillating growth with no universal upper bound. At the same time, from a measure-
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measure), the growth function is bounded by en˛
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1. Introduction

There are few approaches to randomness in group theory. The most known are
associated with the names of Gromov and Olshanskii. For the account of these
approaches and further literature; see [34]. As far as the authors are concerned, these
approaches deal with the models when in certain classes of finitely presented groups
one locates “generic” finite presentations with prescribed properties. These models
are variation of the density model and randomness in them appears in the form of
frequency or density, which correspond to the classic “naive” approach to probability
in mathematics.

The modern Kolmogorov’s approach to probability assumes existence of a space
supplied with a sigma-algebra of measurable sets and a probability measure on it.

There can be different constructions of spaces of groups and one of them was
suggested in [16], where Gromov’s idea from [27] of convergence of marked metric
spaces was transformed into the notion of the compact totally disconnected topo-
logical metrizable space Mk of marked k-generated groups, k � 2. Later it was

1The first two authors were supported by NSF grant DMS-1207699.
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discovered that this topology is related to the Chabauty topology on the space of
normal subgroups of the free group of rank k; see [12]. Observe that in general the
Chabauty topology is defined in the space of closed subgroups of a locally compact
group (there is analogous notion in differential geometry [8]), and that in the case of
a discrete groupG it is nothing but the topology induced on the set of subgroups ofG
by the Tychonoff topology of the space ¹0; 1ºG.

The main result of [16] is the construction of the first examples of groups of
intermediate growth, thus answering a question of Milnor [31]. In fact, an uncountable
family of 3-generated groups was introduced and studied in [16], and among other
results it was shown there that the set of rates of growth of finitely generated groups has
the cardinality of the continuum, and that there are pairs of groups with incomparable
growth (the growth rates of two groups are different but neither grows faster than the
other; in fact, the space of rates of growth of finitely generated groups contains an
anti-chain of the cardinality of the continuum). The possibility of such phenomenon
is based on the fact that there are groups with oscillating growth, i.e., groups whose
growth on different parts of the range of the argument of growth function (which is
a set of natural numbers) behaves alternatively in two fashions: in the intermediate
(between polynomial and exponential) way and exponential way. In this paper we
will use one particular form of oscillating property which will be defined below.
Recent publications [5], [4] [10], and [28] added a lot of new information about
oscillating phenomenon and possible rates of growth of finitely generated groups.
The survey [25] summarizes some of these achievements.

The construction in [16] deals with torsion 2-groups of intermediate growth. It also
provides interesting examples of self-similar groups and first examples of just-infinite
branch groups; see [26]. Later a similar construction of p-groups of intermediate
growth was produced for arbitrary prime p as well as the first example of a torsion
free group of intermediate growth [17]. Observe that, as indicated in [16] and [17],
the torsion 2-group constructed in [1] and torsion p-groups constructed in [36] also
happen to have intermediate growth and for some periodic sequences (like ! D
.012/1 for p D 2) have similar features of groups G! discussed in this paper.

The reason for introducing the space Mk of marked groups in [16] was to show that
this space in the cases k D 2; 3 (and hence for all k) contains a closed subset of groups
homeomorphic to a Cantor set consisting primarily of torsion groups of intermediate
growth. Later other interesting families of groups constituting a Cantor set of groups
and satisfying various properties were produced and used for answering different
questions; see [12] and [33]. The topology on the space Mk was used in [16] and [18]
not only for study of growth but also for investigations of algebraic properties of the
involved groups. For instance, among many ways of showing that the involved groups
are not finitely presented, there is one which makes use of this topology (the topic of
finite presentability of groups in the context of growth, amenability and topology is
discussed in detail in [9]). At present there is a big account of results related to the
space of marked groups and various algebraic, geometric and asymptotic properties
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of groups including such properties as (T)-property of Kazhdan, local embeddability
into finite or amenable groups (so-called LEF and LEA properties), being sofic and
various other properties (see [11] for a comprehensive source of these).

For each k � 2 there is a natural embedding of Mk into MkC1 and one can
consider the inductive limit M D limk Mk which is a locally compact totally dis-
connected space. As was observed by Champetier in [12], the group of Nielsen
transformations over infinite generating set acts naturally on this space with orbits
consisting of isomorphic groups. Any Baire measure on M, i.e., a measure defined on
the sigma algebra generated by compactGı sets (countable intersections of open sets)
with finite values on compact sets, that is invariant (or at least quasi-invariant) with
respect to this action would be a good choice for the model of random finitely gener-
ated group (this approach based on discussions of the second author with E. Ghys is
presented in [23]). Unfortunately, at the moment no such measures were produced.
This is also related to the question of existence of “good” measures invariant (or
quasi-invariant) under the action of the automorphism group of a free group Fk of
rank k � 2, with support in the set of normal subgroups of Fk .

Fortunately, another approach can be used. It is based on the following idea.
Assume we have a compact X � Mk of groups and a continuous map � WX ! X .
Then by the Bogolyubov–Krylov Theorem there is at least one � -invariant probability
measure � on X . Suppose also that we have a certain group property P (or a family
of properties), and that the subset XP � X of groups satisfying this property is
measurable � -invariant (i.e., ��1.XP / D XP ). Then one may be interested in the
measure �.XP / which is 0 or 1, in the case of ergodic measure (i.e., when the only
invariant measurable subsets up to sets of � measure 0 are empty set and the whole
set X). Observe that by (another) Bogolyubov–Krylov Theorem, ergodic measures
always exist in the situation of a continuous map on a metrizable compact space and
are just extreme points of the simplex of invariant measures. The described model
allows to speak about typical properties of a random group from the family .X; �/.

The alternative approach when the measure � is not specified is the study of the
typical properties of groups in compact X from topological (or categorical) point of
view i.e., in the sense of Baire category. Under this approach a group property P

is typical if the subset XP is co-meager i.e., its complement X n XP is meager (a
countable union of nowhere dense subsets of X). It happens quite often that what
is typical in the measure sense is not typical in the sense of category and this paper
gives one more example of this sort.

2. Statement of main results

In Ergodic Theory (and more generally in Probability Theory), one of the most im-
portant models is the model of a shift in a space of sequences. Given a finite al-
phabet Y D ¹s1; : : : ; skº, one considers a space � D Y N of infinite sequences
! D .!n/

1
nD1; !n 2 Y endowed with the Tychonoff product topology. A natural
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transformation in such space is a shift � W� ! �; .�.!//n D !nC1. There is a lot of
invariant measures for the dynamical system .�; �/ and in fact the simplex M� .�/

of invariant measures is Poulsen simplex (i.e., ergodic measures are dense in weak-�
topology).

Let p be prime and consider the set ¹0; 1; : : : ; pº as an alphabet with the cor-
responding set �p D ¹0; 1; : : : ; pºN of infinite sequences endowed with the shift
� W�p ! �p . Let�p;0 denote the subset of sequences which are eventually constant
and �p;1 the set of sequences in which all symbols ¹0; 1; : : : ; pº appear infinitely
often. Note that �p;1 and �p;0 are � invariant.

In [16] and [17] for each ! 2 �p a group G! with a set S! D ¹a; b!; c!º
of three generators acting on the interval Œ0; 1� by Lebesgue measure preserving
transformations was constructed. One of the specific features of this construction is
that if two sequences !; � 2 �p , which are not eventually constant have the same
prefix of length n, then the corresponding groups G! ; G� have isomorphic Cayley
graphs in the neighborhood of the identity element of radius 2n�1. Replacing the
groups G!; ! 2 �p;0 with appropriate limits (again denoted by G!), that is, taking
the closure of the set ¹.G!; S!/ j ! 2 �p n �p;0/º in M3, one obtains a compact
subset Gp D ¹.G!; S!/ j ! 2 �pº of M3 which is homeomorphic to �p (via the
correspondence ! 7! .G!; S!/) and hence homeomorphic to a Cantor set. In what
follows we will continue to keep the notation G!; ! 2 �p to denote these groups
after this modification. Also, quite often we will identify Gp with �p . In the case
p D 2 the new limit groups G! ; ! 2 �2;0 are known to be virtually metabelian
groups of exponential growth while there is no analogous result for the case p > 2.
This is the underlying reason that Theorem 3 below is stated only for p D 2.

Another important feature of the construction is that for all but countably many
! 2 �2 and for all ! 2 �p the groups G! and .G�.!//

p (direct product of p copies
of G!) are abstractly commensurable (i.e., contain isomorphic subgroups of finite
index). Thus the shift � preserves many of group properties on the set of full measure
when � is a � invariant measure supported on �p;1, for instance, the property to
be a torsion group. While for some properties of the groups G! it is quite easy to
decide whether it is typical or not, there are some properties for which such a question
is more difficult to answer. Among them is the property to have a growth function
bounded from above (or below) by a specific function.

Given functions f1; f2W N ! N, we write f1 � f2 if f1 grows no faster than f2

and f1 � f2 if f1 � f2 and f2 � f1. f1 � f2 means that f1 � f2 but f1 œ f2

(precise definitions are given in Section 3). For any ! 2 �p let �!.n/ denote the
growth function of the group G! . It was shown in [16] and [17] that if every symbol
of the alphabet ¹0; 1; : : : ; pº appears in any sufficiently large sub word of a sequence
! then �!.n/ grows slower than en˛

with constant ˛ < 1. At the same time, in the
case p D 2 for any function f .n/ � en there is a sequence ! such that �!.n/ grows
not slower than f .n/.
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The upper and lower bounds by functions of the type en˛
with constant 0 < ˛ < 1

are of special importance in the study of growth of finitely generated groups and there
is a number of interesting results and conjectures associated with them. One of the
main conjectures says that if the growth of a group G is slower than e

p
n then it is

actually polynomial ([20], [25], and [24]). The results of [5] and [4] provide great
progress on the study of intermediate growth. It was shown that groups of the form
A oX G! , with A being a finite group and suitable X , are the first examples of groups
with growth functions exactly equivalent to functions of the form en˛

; 0 < ˛ < 1.
In contrast, the precise computation of growth rate of the groups G! is still open.

We are ready to formulate our results.

Theorem 1. Suppose � is a Borel probability measure on �p that is invariant and
ergodic relative to the shift transformation � W�p ! �p .

a) If the measure � is supported on�p;1, then, there exists ˛ D ˛.�; p/ < 1 such
that �!.n/ � en˛

for �-almost all ! 2 �p .

b) In the case � is the uniform Bernoulli measure on �2, one can take ˛ D 0:999.

Note that the upper bound en˛

in the theorem is universal only as a rate. Namely,
the inequality �!.n/ � en˛

holds for some ˛ < 1 and n � n0 where n0 depends
on !.

If T W Gp ! Gp is the map induced by the shift � , our result can be interpreted as
follows. For any “reasonable” T -invariant measure � on Gp � M3, a typical group
in Gp has growth bounded by en˛

, where ˛ D ˛.�; p/ < 1.
The bound for ˛ given in part (b) of the Theorem 1 is far from to be optimal,

but getting an essentially better bound would require more work. In any case it can
not be below 1=2 as for all groups G! of intermediate growth the corresponding
growth function is bounded from below by en1=2

; see [16], [17], and [19]. The gap
conjecture, discussed in [24] and proven in certain cases, gives more information
about what one can expect concerning possible optimal values of ˛.

In fact, there is nothing special about the space M3 and the following holds.

Theorem 10. For any k � 2 and prime p, Mk contains a compact subset Kk D
¹.M!; L!/ j ! 2 �pº homeomorphic to �p (via the map ! 7! .M! ; L!/) such
that if � is an invariant and ergodic measure supported on �p;1 there exists ˛ D
˛.�; p/ < 1 such that �M!

.n/ � en˛

for �-almost all ! 2 �p .

For k � 3, the group M! is the same as G! , with an appropriate generating set
L! of size k. For k D 2, M! is a 2-generated group constructed from G! as a
subgroup of G! o Z4. When p D 2 and ! D .012/1 it is isomorphic to the 2-group
of Aleshin from [1].
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The proof of Theorem 1 is based on the next result, which has its own interest.
It improves Theorem 3 in [17] (a generalization of Theorem 3.2 in [16]), which
states that if the sequence ! is regularly packed by symbols 0; 1; 2, namely, if there
exists k D k.!/ such that each subsequence of length k of ! contains all symbols
¹0; 1; : : : ; pº, then there is ˛ < 1 such that �!.n/ � en˛

.
To every infinite word ! D l1l2 : : : in�p;1 we associate an increasing sequence

of integers ti D ti .!/, i D 0; 1; 2; : : : . Namely, ti is the smallest integer such
that the finite word l1l2 : : : lti can be split into i subwords each containing all letters
¹0; 1; : : : ; pº. For any C � p C 1 let �p;C denote the set of all infinite words
! 2 �p;1 such that tn.!/ � Cn for sufficiently large n. Given " > 0, let �p;C;"

denote the set of all ! 2 �p;C such that tnC1.!/ 	 tn.!/ � "tn.!/ for sufficiently
large n.

Theorem 2. Given C � p C 1, there exist " > 0 and 0 < ˛ < 1 such that
�!.n/ � en˛

for any ! 2 �p;C;".

Our next result deals exclusively with the case p D 2 (the reason was explained
earlier). Given two functions �1; �2W N ! N such that �1.n/ � �2.n/ � en, let us
say that a group G has oscillating growth of type .�1; �2/ if �1 � �G and �G � �2.
The existence of groups with oscillating growth follows from the results of [16].
Theorem 3 shows that the oscillating growth of [10] and [28] are in fact topologically
generic in G2.

Let �0 D log.2/= log.2=x0/, where x0 is the real root of the polynomial x3 C
x2 C x 	 2. We have �0 < 0:767429.

Theorem 3. a) For any � > �0 and any function f satisfying en� � f .n/ � en,
there exists a dense Gı subset Z � G2 such that any group in Z has oscillating
growth of type .en�

; f /.

b) In particular, there exists a denseGı subset of G2 which consists of groups with
oscillating growth of type .en�

; enˇ
/ for every � and ˇ, �0 < � < ˇ < 1.

c) Given any " > 0 and function f satisfying exp. n

log1�" n
/ � f .n/ � en, there

is a dense Gı subset E � ¹.G!; S!/ j ! 2 ¹0; 1ºNº such that any group in E has
oscillating growth of type .exp. n

log1�" n
/; f /.

Again, all these results generalize to arbitrary k � 2. In particular, the following
theorem holds.

Theorem 30. For each k � 2, � > �0 and function f satisfying en� � f .n/ � en,
Mk contains a compact subset Ck homeomorphic to �2, such that there is a dense
Gı subset C 0

k
� Ck which consists of groups with oscillating growth of type .en�

; f /.
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The reason why oscillating groups are typical in the categorical sense is the ex-
istence of a countable dense subset in G2 consisting of (virtually metabelian) groups
of exponential growth and a dense subset of groups with the growth equivalent to the
growth of the first Grigorchuk group G.012/1 , which is bounded by en�0 due to a
result of Bartholdi [2] (see also [32]). Note also that this is the smallest upper bound
known for any group of intermediate growth. It is used to prove part a). To prove
part c), we use instead a result of Erschler [14] stating that the growth of the group
G! for ! D .01/1 2 �2 is slower than exp. n

log1�" n
/ for all " > 0.

Note that the categorical approach for study of amenability of groups from the
family G2 was suggested by Stepin in [35] where the fact that this family contains a
dense set of virtually metabelian (and hence amenable) groups was used to show that
amenability is a typical property of this family. In fact, all groups in G2 are amenable
as was shown in [16], but Stepin’s paper provided for the first time a categorical
approach to study typical groups in compact subsets of the space of marked groups.

The authors would like to thank the referee for useful remarks and suggestions.

3. Preliminaries

Definition of the groups . The original definition of groups in [16] and [17] is in
terms of measure preserving transformations of the unit interval. We will give here
the alternative definition in terms of automorphisms of rooted trees. For the sake of
notation we will focus on the case p D 2 and the construction in the case p � 3 is
analogous. For more detailed account of this construction; see [21] and [23].

Let us recall some notation: �2 denotes the set all infinite sequences over the
alphabet ¹0; 1; 2º. We identify �2 with the product ¹0; 1; 2ºN and endow it with the
product topology. Let�2;0 be the set of eventually constant sequences and�2;1 be
the set of sequences in which each letter 0,1,2 appears infinitely often. Our notation
here is different from [16] and [17]. Let � W�2 ! �2 denote the shift transformation,
that is if ! D l1l2 : : : then �.!/ D l2l3 : : : . Note that both �2;0 and �2;1 are �
invariant.

For each ! 2 �2 we will define a subgroup G! of Aut.T2/, where the latter
denotes the automorphism group of the binary rooted tree T2 whose vertices are
identified with the set of finite sequences ¹0; 1º�. Each group G! is the subgroup
generated by the four automorphisms denoted by a; b!; c!; d! whose action onto the
tree is as follows.

For v 2 ¹0; 1º�
a.0v/ D 1v and a.1v/ D 0v

and

b!.0v/ D 0ˇ.!1/.v/; c!.0v/ D 0	.!1/.v/; d!.0v/ D 0ı.!1/.v/;

b!.1v/ D 1b�.!/.v/; c!.1v/ D 1c�!.v/; d!.1v/ D 1d�!.v/;
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where

ˇ.0/ D a; ˇ.1/ D a; ˇ.2/ D e;

	.0/ D a; 	.1/ D e; 	.2/ D a;

ı.0/ D e; ı.1/ D a; ı.2/ D a;

and e denotes the identity. From the definition, the following relations are immediate:

a2 D b2
! D c2

! D d2
! D b!c!d! D e: (1)

Observe that the group G! is in fact 3-generated as one of generators b! ; c!; d! can
be deleted from the generating set. We will use the notation A! D ¹a; b!; c!; d!º
for this generating set while S! will denote the reduced generating set ¹a; b!; c!º
(as in Section 2). Algebraically, the action defines an embedding into the semi-direct
product

'! WG! 	! S2 Ë .G�.!/ 
 G�.!//

a 7	! .01/ .e ; e/

b! 7	! .ˇ.!1/ ; b�.!//;

c! 7	! .	.!1/ ; c�.!//;

d! 7	! .ı.!1/ ; d�.!//;

where S2 is the symmetric group of order 2 and .01/ denotes its non-identity element.
Given g 2 G! and x 2 ¹0; 1º, let us denote the x coordinate of '!.g/ by gx (or

by gjx to avoid possible confusion) so that '!.g/ D 
g.g0; g1/. Let us also extend
this to all ¹0; 1º� by

gxv D .gx/v

where x 2 ¹0; 1º and v 2 ¹0; 1º�. For g 2 G! and v 2 ¹0; 1º� the automorphism gv

will be called the section of g at vertex v. Note that if v has length n and g 2 G! ,
then gv is an element of G�n.!/. Given g; h 2 G! and v 2 ¹0; 1º�, we have

.gh/v D gh.v/hv (2)

Topology on the space of marked groups. A marked k-generated group is a pair
.G; S/, whereG is a group and S D ¹s1; : : : ; skº is an ordered set of (not necessarily
distinct) generators of G. The canonical map between two marked k-generated
groups .G; S/ and .H; T / is the map that sends si to ti for i D 1; 2; : : : ; k. Let Mk

denote the space of marked k-generated groups consisting of marked k-generated
groups, where two marked groups are identified whenever the canonical map between
them extends to an isomorphism of the groups.
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There is a natural metric on Mk : two marked groups .G; S/; .H; T / are of distance
1

2m , wherem is the largest natural number such that the canonical map between .G; S/
and .H; T / extends to an isomorphism (of labeled graphs) from the ball of radius
m (around the identity) in the Cayley graph of .G; S/ onto the ball of radius m in
the Cayley graph of .H; T /. This makes Mk into a compact, totally disconnected
topological space.

Alternatively, let a group Fk be free over the ordered basis X D ¹x1; : : : ; xkº
and let N .Fk/ denote the set of normal subgroups of Fk . N .Fk/ has a natural
topology inherited from the space ¹0; 1ºFk of all subsets of Fk . Mk can be identified
with N .Fk/ in the following way. Each .G; S/ 2 Mk is identified with the kernel
of the canonical map between .Fk ; X/ and .G; S/. Conversely, each N C Fk is
identified with .Fk=N; ¹ Nx1; : : : ; Nxkº/, where ¹ Nx1; : : : ; Nxkº is the image of the basis
of Fk in Fk=N . A system of basic open sets are sets of the form OA;B D ¹N C
Fk j A � N;B \ N D ¿º, where A and B are finite subsets of Fk . Or the
topology can be defined by the metric d.N1; N2/ D 2�m, where m D max¹n j
BFk

.n/ \ N1 D BFk
\ N2º. It is easy to see that the topology defined in this way

agree with the definition given in the previous paragraph (see [13] for a survey of
alternative definitions).

Let A! D ¹a; b!; c!; d!º so that F2 D ¹.G!; A!/ j ! 2 �2º is a subset of M4.
F2 is not closed in M4 (see [16]). Given ! 2 �2, let ¹!.n/º � �2 n �2;0 be a
sequence converging to !. It was shown in [16] that the sequence ¹.G!.n/; A!.n//º
converges in M4 to a marked group . zG! ; zA!/ that depends only on !. Moreover,
. zG!; zA!/ D .G! ; A!/ if and only if ! 2 �2 n�2;0. By construction, the group zG!

acts naturally on the binary rooted tree for any ! 2 �2. However the action is not
faithful when ! 2 �2;0. The modified family ¹. zG!; zA!/ j ! 2 �2º is a compact
subset of M4 homeomorphic to �2 via the map zG! 7! !.

Observe that a similar procedure can be applied to the family G2 D ¹.G!; S!/ j
! 2 �2º to obtain a closed subset ¹. zG!; zS!/ j ! 2 �2º in M3. In what follows we
will mostly be concerned with the modified groups. Therefore, we use notation F2

and G2 for the modified families and also drop all tildes.

Growth functions of groups. Given a group G and a finite generating set S of G,
the growth function ofG with respect to S is defined as �S

G.n/ D jB.n/j whereB.n/
is the ball of radius n around the identity in the Cayley graph ofG with respect to the
generating set S .

Given two increasing functions f; gW N ! N, we write f � g if there exists a
constant C > 0 such that f .n/ � g.Cn/ for all n 2 N. Also, let f � g mean
that f � g and g � f with the convention that f � g means f � g but f œ g.
It can be easily observed that � is an equivalence relation and the growth functions
of a group with respect to different generating sets are � equivalent. Therefore one
can speak of the growth of a group meaning the � equivalence class of its growth
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functions. Note that if two groups .G; S/; .H; T / 2 Mk are of distance 2�m, then
�S

G.n/ D �T
H .n/ for n � m.

IfG is an infinite group andH a subgroup of finite index, then the growth functions
ofG andH are � equivalent by Proposition 3.1 in [16] (note that this is not true ifG
is a finite group). Therefore if two finitely generated infinite groups G1 and G2 are
commensurable (i.e., have finite index subgroups H1 and H2 which are isomorphic)
then their growth functions are � equivalent.

There are three types of growth for groups. If �G � nd for some d � 0 then
G is said to be of polynomial growth, if �G � en then it is said to have exponential
growth. If neither of this happens then the group is said to have intermediate growth.
Also the condition �G � en means that G has subexponential growth.

Definition. LetG be a finitely generated group with growth function �G correspond-
ing to some generating set. Let �1; �2 be two functions such that �1.n/ � �2.n/ � en.
G is said to have oscillating growth of type .�1; �2/ if �1 � �G and �G � �2 (i.e.,
neither �1 � �G nor �G � �2).

Equivalently, the groupG has oscillating growth of type .�1; �2/ if for some (and
hence for all) generating set S the following condition is satisfied: for every C 2 N
there exists m D m.C/ such that �S

G.Cm/ < �1.m/ and for every D 2 N there
exists k D k.D/ such that �2.Dk/ < �

S
G.k/.

Regarding the growth of the groups Gp the following are known (recall that �!.n/

denotes the growth function of G! and when ! 2 �p;0, G! denotes the limit group
obtained by the procedure described above).

Theorem 4. (1) If ! 2 �2 n�2;0 or ! 2 �p;1 if p � 3, thenG! is of intermediate
growth.

(2) If ! 2 �2;0 then G! is of exponential growth.

(3) For every ! 2 �2 or ! 2 �p;1; p � 3, we have e
p

n � �!.n/.

(4) If there exists a number r such that every subword of ! of length r contains
all the symbols ¹0; 1; : : : ; pº then �!.n/ � en˛

for some 0 < ˛ < 1 depending only
on r .

(5) There is a subset ƒ � �2 of the cardinality of continuum such that the
functions ¹�!.n/ j ! 2 ƒº are incomparable with respect to �.

(6) For any function f .n/ such that f .n/ � en, there exists ! 2 �2 n�2;0 for
which �!.n/ � f .n/.

(7) If ! D .012/1 2 �2 is the periodic sequence with period 012 then en˛0 �
�!.n/ � en�0 , where ˛0 D 0:5157; �0 D log.2/= log.2=x0/ and x0 is the real root
of the polynomial x3 C x2 C x 	 2 (�0 � 0:7674).

(8) If ! D .01/1 2 �2 is periodic with period 01 then exp. n

log2C" n
/ � �!.n/ �

exp. n

log1�" n
/ for any " > 0.
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Proof. (1) See Theorem 3.1 in [16] and [17].

(2) See Lemma 6.1 in [16].

(3) See Theorem 3.2 in [16] and Theorem 4.4 in [17] where the lower bound e
p

n

is proven for a certain subset of �2 and for �p;1; p � 3. As all groups mentioned
are residually finite p-groups for some prime p and are not virtually nilpotent (which
can be shown in various ways, for example using the fact that the groups are periodic),
the lower bound e

p
n follows from a general result of [19].

(4) See [16] and [7] and [32] for explicit upper bounds depending on r .

(5) See Theorem 7.2 in [16].

(6) See Theorem 7.1 in [16].

(7) See [3] for the lower bound which improved upon [29]. See [2] for the upper
bound.

(8) See [14].

4. Proof of Theorem 1

This section is devoted to the proof of Theorems 1 and 2. We prove these theorems
in the case p D 2. The proof in the case p � 3 is completely analogous. To simplify
notation, we set � D �2 and �1 D �2;1 for the rest of this section.

For any element g of a group G! , ! 2 �, we denote by jgj its length relative
to the generating set A! D ¹a; b!; c!; d!º. If jgj D n, then g can be expanded
into a product s1s2 : : : sn, called a geodesic representation, where each si 2 A! . For
every generator s 2 A! we denote by jgjs the number of times this generator occurs
in the sequence s1; s2; : : : ; sn. Note that the element g may admit several geodesic
representations and jgjs may depend on a representation (for example, b!ad!ab! D
c!ad!ac! for any ! starting with 0). Lemmas 1 and 4 below hold for any possible
value of the corresponding number jgjs .

Lemma 1. .jgj 	 1/=2 � jgja � .jgj C 1/=2 for all g 2 G! .

Proof. It follows from relations (1) that any geodesic representation of an element
g 2 G! is of the form

g D .s1/as2a : : : a.sk/;

where each si 2 ¹b!; c! ; d!º and parentheses indicate optional factors. The lemma
follows.
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Lemma 2. For any word w 2 ¹0; 1º� of length q we have jgw j � 2�qjgj C 1	 2�q .

Proof. First consider the case when w is 0 or 1. Let g D s1s2 : : : sn be a geodesic
representation, where each si 2 A! . It follows by induction from equation (2)
that gw D s1jw1

s2jw2
: : : snjwn

, where wn D w and wi D .siC1 : : : sn/.w/ for
1 � i � n 	 1. Note that each section si jwi

is a generator of the group G�.!/

or e. Moreover, si jwi
D e if si D a. Therefore jgw j � jgj 	 jgja. By Lemma 1,

jgja � .jgj	1/=2. Hence jgw j � .jgjC1/=2. Equivalently, jgw j	1 � 2�1.jgj	1/.
Now it follows by induction on jwj that jgw j 	 1 � 2�q.jgj 	 1/ for any word w

of length q.

For any element g 2 G! and any integer q � 0, let

Lq.g/ D
X

jwjDq

jgw j

Lemma 3. Lq.gh/ � Lq.g/C Lq.h/ for all g; h 2 G! .

Proof. Since .gh/w D gh.w/hw for any word w 2 ¹0; 1º�, it follows that j.gh/w j �
jgh.w/j C jhw j. Summing this inequality over all words w of length q and using the
fact that h acts bijectively on such words, we obtain Lq.gh/ � Lq.g/C Lq.h/.

Lemma 4. Lq.g/ � jgj C 1	 jgjhq
for any q � 1, where hq D b! , c! , or d! if the

q-th letter of ! is 2, 1, or 0, respectively.

Proof. Let n D jgj. Consider an arbitrary geodesic representation g D s1s2 : : : sn,
where each si 2 A! . It follows by induction from Lemma 3 that Lq.g/ � Lq.s1/C
Lq.s2/ C � � � C Lq.sn/. Fix an arbitrary word w 2 ¹0; 1º� of length q. Clearly,
ajw D 1. Further, hqjw D 1 unless w D 1 : : : 1 (in which case hq jw 2 A�q! n ¹aº).
If s is any of the other two generators in A! , then sjw D 1 unless w D 1 : : : 1 (in
which case sjw 2 A�q! n ¹aº) or w D 1 : : : 10 (in which case sjw D a). Therefore
Lq.a/ D 0, Lq.hq/ D 1, and Lq.s/ D 2 if s 2 A! is neither a nor hq. It follows
that Lq.g/ � 2.jgj 	 jgja/ 	 jgjhq

. By Lemma 1, jgja � .jgj 	 1/=2. Hence
2.jgj 	 jgja/ � jgj C 1.

Lemma 5. Suppose that the beginning of length q of the sequence ! contains each
of the letters 0, 1, and 2. Then

Lq.g/ � 5

6
jgj C 7

6
C 2q�1

for all g 2 G! .



On growth of random groups of intermediate growth 655

Proof. We have jgj D jgja C jgjb!
C jgjc!

C jgjd!
whenever all numbers in the

right-hand side are computed for the same geodesic representation of g. By Lemma
1, jgja � .jgj C 1/=2. It follows that jgjs � .jgj 	 1/=6 for some s 2 ¹b! ; c!; d!º.
Lemma 4 implies thatLq0

.g/ � jgjC1	jgjs � 5
6
jgjC 7

6
for some1 � q0 � q. In the

case q0 D q, we are done. Otherwise we notice that Lq.g/ D P
jwjDq0

Lq�q0
.gw/.

By Lemma 4,Lq�q0
.gw/ � jgw jC1 for any wordw. ThereforeLq.g/ � Lq0

.g/C
2q0 � 5

6
jgj C 7

6
C 2q�1.

Note that the growth function of a group is sub-multiplicative, that is, �.nCm/ �
�.n/�.m/ for every n;m 2 N. It is convenient to extend the argument of a growth
function to non-integer values. Given increasing f W N ! N , define Qf W RC ! N
by Qf .x/ D f .dxe/ for all x where dxe is the least natural number bigger than or
equal to x. Observe that f .x C �/ � Qf .x/ whenever � < 1. If f W N ! N is
sub-multiplicative then it is easy to see that Qf .xCy/ � Qf .x/ Qf .y/ for any x; y > 0.

For the remainder of this section let � D 131
132

.

Lemma 6. Suppose that the beginning of length q of the sequence ! features each
of the letters 0, 1, and 2. Then

Q�!.x/ � 22qC1
�

Q��q!

� x

11 � 2q

���.11�2q/

for any x > 0.

Proof. Let n D dxe and consider an arbitrary element g 2 G! of length at most
n. By Lemma 2, we have jgw j � 2�qn C 1 	 2�q for any word w 2 ¹0; 1º� of
length q. We denote by W the set of all words w of length q such that jgw j >
12
11

� 2�q.5
6
n C 7

6
C 2q�1/. In view of Lemma 5, the cardinality of W satisfies

jW j < 11
12

� 2q.
The element g is uniquely determined by its sections on words of length q and its

restriction to the qth level of the binary rooted tree. The number of possible choices
for the restriction is at most 22q

. The number of possible choices for the set W is
also at most 22q

. Once the set W is specified, the number of possible choices for a
particular section gw is at most ��q!.

12
11

�2�q.5
6
nC 7

6
C2q�1// ifw … W and at most

��q!.2
�qnC1	2�q/otherwise. Sincen < xC1, we have2�qnC1	2�q < 2�qxC1

so that ��q!.2
�qnC 1	 2�q/ � Q��q!.x=2

q/. Besides, 12
11

� 2�q.5
6
nC 7

6
C 2q�1/ <

10
11
2�qx C 1 so that ��q!.

12
11

� 2�q.5
6
nC 7

6
C 2q�1// � Q��q!.

10
11
x=2q/. Finally, for

a fixed set W the number of possible choices for all sections of g is

Q��q!

� 10x

11 � 2q

�2q�jW j Q��q!

� x
2q

�jW j � Q��q!

� x

11 � 2q

�10.2q�jW j/C11jW j

� Q��q!

� x

11 � 2q

� 131
132

�11�2q

:
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Consequently,

Q�!.x/ � 22qC1 Q��q.!/

� x

11 � 2q

��.11�2q/
:

As in Section 2, to every infinite word ! D l1l2 : : : in �1 we associate an
increasing sequence of integers ti D ti.!/, i D 0; 1; 2; : : : . The sequence is defined
inductively. First we let t0 D 0. Then, once some ti is defined, we let tiC1 to be
the smallest integer such that the finite word lti C1lti C2 : : : ltiC1

features each of the
letters 0, 1, and 2. Further, let qi D ti 	 ti�1 for i D 1; 2; : : : .

Lemma 7. Let xm D 11m � 2tm for any integer m > 0. Then �!.xm/ � 10�mxm .

Proof. For any integer m > 0 let ˛m D �.11 � 2qm/ and ˇm D 2qmC1. Lemma 6
implies that

Q�� tm�1 .!/.x/ � 2ˇm Q�� tm .!/

� x

11 � 2qm

�˛m

for any x > 0. Since q1 C q2 C � � � C qm D tm, it follows that for any integerm > 0

and real x > 0,

Q�!.x/ � 2Sm Q�� tm .!/

� x

11m � 2tm

�Rm

;

where Rm D ˛1 : : : ˛m and Sm D ˇ1 C ˛1ˇ2 C � � � C ˛1 : : : ˛m�1ˇm. In particular,
�!.xm/ � 2Sm�� tm .!/.1/

Rm D 2Sm5Rm . Since Rm D �mxm, it remains to show
that Sm � Rm.

We have ˛m D 11
2
�ˇm D 131

24
ˇm > 5ˇm. Note that qm � 3 so that ˇm � 16.

Hence ˛m 	 ˇm > 64. Now the inequality Sm � Rm is proved by induction on m.
First of all, S1 D ˇ1 < ˛1 D R1. Then, assuming Sm � Rm for somem > 0, we get
SmC1 D Sm C ˛1 : : : ˛mˇmC1 � Rm C ˛1 : : : ˛mˇmC1 D ˛1 : : : ˛m.1C ˇmC1/ <

RmC1.

Recall some notation from Section 2 (for brevity, we drop index p). For any
C � 0 let �C denote the set of all infinite words ! 2 �1 such that tn.!/ � Cn for
sufficiently large n. Given " > 0, let �C;" denote the set of all ! 2 �C such that
qnC1 D tnC1.!/ 	 tn.!/ � "tn.!/ for sufficiently large n.

Now we can prove the next theorem, which is a more detailed version of Theorem 2
(in the case p D 2).

Theorem 5. Let C > 0 and

˛ > 1 	 log.��1/

log.11 � 2C /
:

Then there exists " > 0 such that �!.n/ � en˛
for any ! 2 �C;".
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Proof. Let

� D log.��1/

log.11 � 2C /
:

Note that 0 < � < 1. Choose " > 0 small enough so that ."C 1/.1 	 �/ < ˛. Let
! 2 �C;". Then there exists an integer N > 0 such that tm � Cm and qmC1 D
tmC1 	 tm � "tm for m � N . By the choice of � we have

�m D
� 1

.11 � 2C /�

�m D 1

.11m � 2Cm/�
� 1

.11m � 2tm/�
D x��

m

for any m � N . Since

xmC1 D 11mC1 � 2tmC1 D 11 � 2qmC1 � 11m � 2tm D 11 � 2qmC1 � xm;

we obtain

x1��
mC1 D .11 � 2qmC1 � xm/

1�� � 111��.11"m � 2"tm � xm/
1��

D 111��x."C1/.1��/
m

� 111��x˛
m:

Consider an arbitrary integer n � xN . We have xm � n � xmC1 for some
m � N . By Lemma 7,

�!.n/ � �!.xmC1/ � 10�mC1xmC1 :

By the above,
�mC1xmC1 � x1��

mC1 � 111��x˛
m � 111��n˛;

hence
�!.n/ � 10111��n˛ D Dn˛

;

where D D 10111��
. Thus �!.n/ � Dn˛ � en˛

.

Suppose � is a Borel probability measure on � that is invariant and ergodic
relative to the shift transformation � W� ! �. Since �1 is a Borel, shift invariant
set, the measure � is either supported on �1 or else �.�1/ D 0. Theorem 1 will
be derived from Theorem 5 using the following lemma.

Lemma 8. If the measure � is supported on �1, then there exists C0 > 0 such that
tn.!/=n ! C0 as n ! 1 for �-almost all ! 2 �. Consequently, �.�C;"/ D 1 for
any C > C0 and " > 0. In the case � is the uniform Bernoulli measure on �, we
can take C0 < 7:3.
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Proof. For any finite wordw over the alphabet ¹0; 1; 2º let T .w/ denote the maximal
number of non overlapping sub-words of w each containing all the letters. Clearly,
T .w/ � jwj=3. It is easy to see that T .w1/ C T .w2/ � T .w1w2/ � T .w1/ C
T .w2/C 1 for any words w1 andw2. It follows by induction that T .w0/CT .w1/C
� � �CT .wk/ � T .w0w1 : : :wk/ � T .w0/CT .w1/C� � �CT .wk/Ck for any words
w0; w1; : : : ; wk .

For any! 2 � and integerm > 0 letTm.!/ D T .!m/, where!m is the beginning
of length m of the sequence !. We are going to show that for �-almost all ! there
is a limit of Tm.!/=m as m ! 1. Note that Tm=m is a bounded (0 � Tm � m=3)
Borel function on �. Let

Im D
Z

�

Tm d�:

If ! 2 �1 then Tm.!/ > 0 for m large enough. Since the measure � is supported
on the set �1, it follows that Im > 0 for m large enough.

Given integers m1; m2 > 0, the beginning of length m1 C m2 of any sequence
! 2 � is represented as the concatenation of two words, the beginning of length
m1 of the same sequence and the beginning of length m2 of the sequence �m1.!/.
Therefore Tm1Cm2

.!/ � Tm1
.!/CTm2

.�m1.!//. Integrating this inequality over�
and using shift-invariance of the measure �, we obtain Im1Cm2

� Im1
C Im2

. Now
the standard argument implies that Im=m ! I asm ! 1, where I D supk�1 Ik=k.
Note that 0 < I � 1=3.

Let �� denote the Borel set of all sequences ! 2 � such that for any integer
m > 0 we have

lim
k!1

1

k

Xk�1

iD0
Tm.�

i .!// D Im:

Birkhoff’s ergodic Theorem implies that �� is a set of full measure: �.��/ D 1.
Consider an arbitrary ! 2 � and integers m > 0 and k � 2m. Let l D bk=mc, the
integer part of k=m. For any integer j , 0 � j < m, we represent the beginning of
length k of ! as the concatenation of lC 1wordsw0w1 : : : wl , wherew0 is of length
j ,wl is of length k	 lmCm	j , and the other words are of lengthm. By the above,

Tk.!/ 	 l �
Xl

iD0
T .wi/ � Tk.!/:

By construction, T .wi/ D Tm.�
.i�1/mCj .!// for 1 � i � l 	 1. Besides,

l � k=m and 0 � T .w0/C T .wl/ � .k 	 lmCm/=3 < 2m=3. Therefore

Tk.!/ 	 k=m 	 2m=3 �
Xl�1

iD1
Tm.�

.i�1/mCj .!// � Tk.!/:

Summing the latter inequalities over j ranging from 0 to m 	 1, we obtain

mTk.!/ 	 k 	 2m2=3 �
X.l�1/m�1

iD0
Tm.�

i .!// � mTk.!/:
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Since 0 � Pk�1
iD.l�1/m Tm.�

i .!// � .k 	 lmCm/m=3 < 2m2=3, it follows that

mTk.!/ 	 k 	 2m2=3 �
Xk�1

iD0
Tm.�

i .!// � mTk.!/C 2m2=3:

Then
ˇ̌
ˇ̌ 1
k
Tk.!/ 	 1

mk

Xk�1

iD0
Tm.�

i.!//

ˇ̌
ˇ̌ � 1

m
C 2m

3k
:

At this point, let us assume that ! 2 ��. Fixing m and letting k go to infinity
in the latter estimate, we obtain that all limit points of the sequence ¹Tk.!/=kºk�1

lie in the interval ŒIm=m	 1=m; Im=mC 1=m�. Letting m go to infinity as well, we
obtain that Tk.!/=k ! I as k ! 1.

Given ! 2 �1, there is a simple relation between sequences ¹Tm.!/ºm�1

and ¹tn.!/ºn�1. Namely, tn.!/ � m if and only if Tm.!/ � n. In particular,
Ttn.!/.!/ D n. Since Tm.!/=m ! I as m ! 1 for any ! 2 ��, it easily follows
that tn.!/=n ! C0, where C0 D I�1, for any ! in �� \�1, a set of full measure.

Now consider the case � is the uniform Bernoulli measure. To estimate the limit
C0 in this case, we are going to evaluate the integral I7. For any integer k � 0

let Nk denote the number of words w of length 7 over the alphabet ¹0; 1; 2º such
that T .w/ D k. Then I7 D 3�7

P
k�0 kNk . Since Nk D 0 for k > 2, we have

N0 C N1 C N2 D 37 and I7 D .N1 C 2N2/=3
7. Let us compute the numbers N0

and N2. A word w of length 7 satisfies T .w/ D 0 if it does not use one of the
letters. The number of words missing one particular letter is 27. Also, there are
three words 0000000, 1111111, and 2222222 that miss two letters. It follows that
N0 D 3 �27 	3 D 381. To computeN2, we represent an arbitrary wordw of length 7
asw1lw2, wherew1 andw2 are words of length 3 and l is a letter. There are two cases
when T .w/ D 2. In the first case, each of the words w1 and w2 contains all letters,
then l can be arbitrary. In the second case, either w1 or w2 misses exactly one letter,
then l must be the missing letter and the other word must contain all letters. It follows
that N2 D .3Š/2 � 3C 2M � 3Š, whereM is the number of words of length 3 that miss
exactly one of the letters 0, 1, and 2. It is easy to observe that M D 33 	 3Š 	 3 D
18, then N2 D 324. Now N1 D 37 	 N0 	 N2 D 2187 	 381 	 324 D 1482.
Finally, I7 D .N1 C 2N2/=3

7 D .1482 C 2 � 324/=37 D 710=729. Now we can
estimate the limits. As shown earlier, I � I7=7 D 710=.7 � 729/ > 100=729, then
C0 D I�1 < 7:3.

Now we are ready to complete the proof of Theorem 1.

Proof of Theorem 1. Take any C > C0, where C0 is as in Lemma 8. By Theorem 5,
there exists " > 0 and 0 < ˛ < 1 such that �!.n/ � en˛

for all ! 2 �C;". The
set �C;" has full measure by Lemma 8. In the case when � is the uniform Bernoulli
measure, we can assume that C < 7:3 by Lemma 8. Consequently, we can choose
˛ D 1	 �, where � D log 132

131
= log.11 � 27:3/. One can compute that � > 0:001.
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5. Proof of Theorem 3

Recall that we are in the case p D 2 so that we use the notation � D �2 and �0 D
�2;0. Also, recall �0 is as defined before Theorem 3. We begin with preliminary
lemmas.

Lemma 9. Let g be a function of natural argument and let Lg � Mk be the subset
consisting of marked groups .G; S/ such that g � �S

G . Then Lg is a Gı subset of
Mk (i.e., a countable intersection of open sets).

Proof. Given .G; S/ 2 Lg and C 2 N, let K D K..G; S/; C / be such that
�S

G.CK/ < g.K/ (such K exists since g � �S
G). Let B..G;S/;C/ denote the ball

of radius 2�CK (in the metric defined in the space of marked groups) centered at
.G; S/. We claim that

Lg D
\

C2N

[
.G;S/2Lg

B..G;S/;C/:

The inclusion � is clear. For the other inclusion, let .H; T / be an element of the right
hand side. Then for any C 2 N there is .G; S/ 2 Lg such that .H; T / 2 B..G;S/;C/.
Therefore for K D K..G; S/; C / we have �T

H .CK/ D �S
G.CK/ < g.K/ and hence

g � �T
H , which shows that .H; T / 2 Lg .

Lemma 10. Let f be a function of natural argument and let Uf � Mk be the subset
consisting of marked groups .G; S/ such that �S

G � f . Then Uf is a Gı subset
of Mk .

Proof. The proof is analogous to the proof of Lemma 9.

Now we are going to prove each part of Theorem 3.

Proof of Theorem 3. a) Suppose we are given � > �0 and a function f .n/ � en. Let
� D .012/1 2 � and recall that we have ��.n/ � en�0 (Theorem 4, part 7). Consider
the set X D ¹.G!; S!/ j �k.!/ D � for some kº � G2. Since G2 is homeomorphic
to � via .G!; S!/ 7! !, the set X is dense in G2. For any ! 2 � n�0, the groups
G! and G�.!/ 
 G�.!/ are commensurable by Theorem 2.2 in [16]. Therefore we
have

�! � �2
�.!/

and for any !, �k.!/ D � it follows that

�! � �2k

� � .en�0
/2

k � en�0
:

Let g.n/ D en�
so that X � Lg , where Lg is defined in Lemma 9.
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According to Theorem 4, part 2, the set Y D ¹.G!; S!/ j ! 2 �0º, which is
dense in G2, consists of groups of exponential growth. In particular, Y � Uf , where
Uf � M3 is defined in Lemma 10. By Lemmas 9 and 10, the sets Lg \ G2 and
Uf \ G2 are dense Gı subsets of G2. Since G2 is compact, their intersection is also
a dense Gı subset of G2. For any .G; S/ 2 Lg \ Uf \ G2, we have g � �S

G and
�S

G � f .

b) This part is a corollary of part a) with f .n/ D e
n

log n as enˇ � f .n/ for any
ˇ < 1.

c) The proof of this part is analogous to part a). Let us denote by�0 D ¹0; 1ºN �
�. We set 	 D .01/1, X D ¹.G!; S!/ j �k.!/ D 	 for some kº and Y D
¹.G!; S!/ j ! 2 �0 \ �0º. According to Theorem 4, part 8, for any " > 0 the

function g.n/ D exp
�

n

log1�" n

�
grows faster than �� . Since g � g2, it follows that

�! � g whenever .G!; S!/ 2 X. It remains to apply Lemmas 9 and 10.

6. Proof of Theorems 10 and 30

As it was mentioned in the introduction there is a natural embedding 
k W Mk ! MkC1

given by 
k..G; A// D .G; A0/, where A0 D ¹a1; : : : ; ak; akC1º if A D ¹a1; : : : ; akº
and akC1 D 1 in G. This induces an embedding 
k;nW Mk ! MkCn for all k; n and,
given a subsetX � Mk , one can consider its homeomorphic image 
k;n.X/ � MkCn.

There are two natural ways of replacing one generating set A of a group G by
another. We can, as just suggested, add one more formal generator representing the
identity (and place it for definiteness at the end), or apply to a generating set Nielsen
transformations, which are given by (see [30]):

i) exchanging two generators,

ii) replacing a generator a 2 A by its inverse a�1,

iii) replacing ai 2 A by aiaj , where ai ¤ aj .

Note that these transform generating sets into generating sets. It is in general incorrect
that two generating sets of size k of a group are related by a sequence of Nielsen
transformations (i.e., by an automorphism of the free group Fk/, but we have the
following result.

Proposition 1. Let .G; A/ 2 Mk and .G; B/ 2 Mn. Let 
k;n.G; A/ D .G; A0/ and

n;k.G; B/ D .G; B 0/, so that .G; A0/; .G; B 0/ 2 MnCk . ThenA0 can be transformed
into B 0 by a sequence of Nielsen transformations.
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Proof. Let

A0 D ¹a1; : : : ; ak; akC1; : : : ; akCnº
and

B 0 D ¹b1; : : : ; bn; bnC1; : : : ; bnCkº;
where akC1 D : : : D akCn D bnC1; : : : D bnCk D 1. For any bi ; 1 � i � n

there is a word Bi 2 ¹a1; : : : ; akº˙ such that bi D Bi . By a sequence of Nielsen
transformations (acting trivially on ai ; i � k) we can transform A0 into A00 D
¹a1; : : : ; ak; B1; : : : ; Bnº D ¹a1; : : : ; ak; b1; : : : ; bnº. In a similar way B 0 can be
transformed into B 00 D ¹b1; : : : ; bn; a1; : : : ; akº by a sequence of Nielsen transfor-
mations. It is clear that B 00 can be obtained from A00 by permuting the generators,
which can be achieved by a sequence of Nielsen transformations.

Taking the inductive limit M D lim! Mk and setting A1 D ¹a1; a2; : : :º, the
previous proposition shows (as observed by Champetier in [12]) that the group of
Nielsen transformations over an infinite alphabet (that is, the group Autfin.F1/ of
finitary automorphisms of a free group F1 of countably infinite rank) acts on M in
such a way that if two pairs .G; A/; .G; B/ 2 M represent the same group then they
belong to the same orbit of the action of Autfin.F1/ on M (and it is clear the points
in the orbit all represent the same group). In [12] it was shown that this action, which
is by homeomorphisms and hence is Borel, is not tame (in other terminology, not
measurable or not smooth). As was mentioned in the introduction, the question of
existence of Autfin.F1/-invariant (or at least quasi-invariant) measure is important
for the topic of random groups.

There are more general ways of embedding Mk into Ml . Assume we have a
subset X D ¹.Gi ; Ai/ j i 2 I º � Mk , where Ai D ¹a.i/

1 ; : : : ; a
.i/

k
º. Let Fk be a

free group on ¹a1; : : : ; akº and suppose that there are words Bj .a1; : : : ; ak/ 2 Fk

for 1 � j � m such that for all i 2 I , the set

Bi D ¹B1.a
.i/
1 ; : : : ; a

.i/

k
/; : : : ; Bm.a

.i/
1 ; : : : ; a

.i/

k
/º

is a generating set for Gi . Let Y D ¹.Gi ; Bi/ j i 2 I º � Mm.

Proposition 2. The map 'WX ! Y given by '..Gi ; Ai// D .Gi ; Bi / is a homeo-
morphism.

Proof. LetX 0 D 
kCm.X/ and Y 0 D 
mCk.Y /. By the previous proposition, there is
an automorphism ofFkCm (realized by a sequence of Nielsen transformations) which
induces a homeomorphism ' of MkCm which maps X 0 onto Y 0. It is clear that ' is
the restriction of 
�1

mCk
B ' B 
kCm to X .

We are ready to prove the theorems.
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Theorems 1 and 3 show that Theorems 10 and 30 hold for k D 4. Using the
previous propositions, it immediately follows that they hold for values k � 4.

For k D 3 observe that by virtue of equations (1), for every ! 2 � we have
d! D b!c! and hence the groups G! are generated by ¹a; b!; c!º. Therefore by
proposition 2 we obtain the result for k D 3.

The case k D 2 is more delicate. There are several methods of embedding a group
into a 2-generated group. We need an embedding that preserves the property to have
intermediate growth. To accomplish this, we use the following trick. Let T be the
rooted tree with branch index 4,2,2,2,… . Given ! 2 �, let e be the automorphism of
T which cyclically permutes the first level vertices and let f! be the automorphism
given by .b! ; c!; a; 1/. Set M! D hx; y!i. This gives an embedding

 WM! 	! S4 Ë G4
!;

x 7	! 
 .1; 1; 1; 1/;

y! 7	! .b! ; c!; a; 1/;

where 
 is the cyclic permutation of order 4 in S4. Let

xM! D hy! ; xy!x
�1; x2y!x

�2; x3y!x
�3i

and observe that xM! has index 4 in M! . The equalities

 .y!/ D .b! ; c!; a; 1/

 .xy!x
�1/ D .c! ; a; 1; b!/

 .x2y!x
�2/ D .a; 1; b!; c!/

 .x3y!x
�3/ D .1; b!; c!; a/

show that xM! is a sub-direct product of G4
! . Hence if G! has intermediate growth

so does M! and if the growth of G! is bounded above by a function of the form en˛

then the same holds for the growth function of M! . Similarly, if G! has oscillating
growth of type .en�

; f /, so does M! .
One can observe that the branch algorithm solving the word problem for groups

G! (described in [16]) can be adapted to the groupsM! : the covering group will be
Z4 � Z2, given a word g in the normal form in Z4 � Z2, one first checks whether the
exponent of e in g is divisible by 4 or not. If not then the element g does not belong
to the first level stabilizer and hence g ¤ 1. Otherwise one computes the sections
of g and then applies the classical branch algorithm to the sections of g with oracle
!. This shows that for two sequences !; � 2 � n�0 which have common prefix of
length n, the Cayley graphs of the groups M! and M� will have isomorphic balls of
radius 2n�1. Therefore we consider the subsetX D ¹.M!; L!/ j ! 2 �n�0º � M2

where L! D ¹x; y!º and take its closure in M2 to obtain a Cantor set in M2. The
new limit groups M! for ! 2 �0 will have a finite index subgroup which is a
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sub-direct product in the group G4
! , and therefore are of exponential growth. Thus

the limit groups M! ; ! 2 �0 will have exponential growth and therefore similar
arguments used to prove Theorem 3 can be applied in this case too. Also note that
when ! 2 �1 then M! andG4

! are abstractly commensurable i.e., have finite index
subgroups which are isomorphic.

For p � 3 a similar construction can be done by setting M! D hx; y!i as the
group of automorphisms of the tree with branch index p2; p; p; : : :, where x is the
cyclic permutation of order p and y! D .b! ; c!; a; 1; : : : ; 1/. One can observe that

M! in this case is a sub-direct product in Gp2

! and M! is abstractly commensurable

with Gp2

�.!/
when ! 2 �p;1. This allows to prove Theorem 1’ in the case p � 3.

7. Concluding Remarks

Let Gum
! ; ! 2 �p;0 denote the unmodified groups as defined in Section 3 (i.e., the

groups before modifying countably many groups corresponding to eventually constant
sequences). Note that for fixed prime p we have Gum

01 D Gum
11 D � � � D Gum

p1 as
subgroups of the p-ary rooted tree. The limit groups G!; ! 2 �p;0 map onto the
corresponding group Gum

! . When p D 2 and ! 2 �2 is a constant sequence, Gum
! is

isomorphic to the infinite dihedral group (Lemma 2.1 in [16]) and hence has linear
growth. This shows that Gum

! has polynomial growth for ! 2 �2;0. For p � 3

and ! 2 �p a constant sequence, the groups Gum
! were considered in [22] and were

shown to be regular branch self-similar groups. As these groups are residually finite
p-groups, the main result of [19] shows that for all such groups e

p
n is a lower bound

for their growth functions. Therefore for all primes p and ! 2 �p;0, the groups G!

have super-polynomial growth. As mentioned in Theorem 4, for p D 2 the groups
G! , ! 2 �2;0, are known to have exponential growth. An extension of this fact
to p > 2 would generalize Theorem 3 to all primes p. For p D 3 and ! 2 �p

a constant sequence, the group Gum
! coincides with the Fabrykowski–Gupta group

studied in [15]. In [6] it was shown that the growth of this group satisfies

en
log 3
log 6 � �.n/ � e

n.log log n/2

log n :

A more general problem is the following. Given two increasing functions �1; �2

such that �i .n/ � �i .n/
p; i D 1; 2 and �1.n/ � �2.n/, consider the set

W	1;	2
D ¹! 2 �p j �1.n/ � �!.n/ � �2.n/º:

As mentioned before, for! 2 �p n�p;0 the groupsG! andG�.!/ are commensurable
and hence �! � �

p

�.!/
. This shows that W	1;	2

is � invariant, and hence for any �
invariant ergodic measure � defined on �p we have �.W	1;	2

/ D 0 or 1. A natural
direction for investigation would be to determine functions �1; �2 for which the set
W	1;	2

has full measure (and make �1; �2 as close to each other as possible while
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keeping �.W	1;	2
/ D 1). Theorem 1, part (b) together with Theorem 4, part (3) can

be interpreted as �.W	1;	2
/ D 1, where �1.n/ D en0:5

; �2.n/ D en0:999
and � is the

uniform Bernoulli measure on �2.
The idea of statements similar to Lemmas 9 and 10, which descends to the paper

of A. Stepin [35], is based on the fact that many group properties are formulated in
“local terms” with respect to the topology on Mk . This includes properties such as to
be amenable, to be LEK (locally embeddable into the classK of groups), to be sofic,
to be hyperfinite, etc. (see, e.g., [11]).

In all these and other cases one can state that for any k the subset XP � Mk

of groups satisfying a local property P is a Gı set in Mk . So if a subset Y � Mk

has a dense subset of groups satisfying property P then it contains dense Gı subset
satisfying property P . In some cases like LEF (locally embeddable into finite groups),
LEA (locally embeddable into amenable groups), sofic and hyperfinite groups, the
corresponding set is a closed subset in Mk and there is not a big outcome of the
above argument. But for properties such as to be amenable, to have particular type of
growth and some other properties, the above observation gives nontrivial information
about the structure of the space of groups.

References

[1] S.V.Alešin, Finite automata and Burnside’s problem for periodic groups. Mat. Zametki11
(1972), 319–328. English transl., Math. Notes 11 (1972), 199–203.
Zbl 0253.20049 MR 0301107

[2] L. Bartholdi, The growth of Grigorchuk’s torsion group. Internat. Math. Res. Notices 1998
(1998), no. 20, 1049–1054. Zbl 0942.20027 MR 1656258

[3] L. Bartholdi, Lower bounds on the growth of a group acting on the binary rooted tree.
Internat. J. Algebra Comput. 11 (2001), no. 1, 73–88. Zbl 1028.20025 MR 1818662

[4] L. Bartholdi and A. Erschler, Growth of permutational extensions. Invent. Math. 189
(2012), no. 2, 431–455. Zbl 1286.20025 MR 2947548

[5] L. Bartholdi and A. Erschler, Groups of given intermediate word growth. Preprint 2011.
arXiv:1110.3650 [math.GR]

[6] L. Bartholdi and F. Pochon, On growth and torsion of groups. Groups Geom. Dyn. 3
(2009), no. 4, 525–539. Zbl 1230.20044 MR 2529946
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