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Relative amenability
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Dédié a Pierre de la Harpe
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Abstract. We introduce a relative fixed point property for subgroups of a locally compact
group, which we call relative amenability. 1t is a priori weaker than amenability. We establish
equivalent conditions, related among others to a problem studied by Reiter in 1968. We record
a solution to Reiter’s problem.

We study the class X of groups in which relative amenability is equivalent to amenability
for all closed subgroups; we prove that X contains all familiar groups. Actually, no group is
known to lie outside X.

Since relative amenability is closed under Chabauty limits, it follows that any Chabauty
limit of amenable subgroups remains amenable if the ambient group belongs to the vast class X.
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1. Introduction

Let G be a locally compact group. Recall that a convex compact G-space is a convex
compact subset of any (Hausdorff) locally convex topological vector space endowed
with a continuous affine representation of G preserving this set. The group G is
called amenable if it fixes a point in every non-empty convex compact G-space. In
this paper, we do not assume G to be amenable, but focus rather on the property of
amenability among closed subgroups of G. To this end, we introduce the following
relative fixed point property.

Definition. A closed subgroup H < G is called relatively amenable (or amenable
relative to G) if H fixes a point in every non-empty convex compact G-space.
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Every amenable subgroup of G is thus relatively amenable. Perhaps it might
come as a surprise that relative amenability is formally weaker than amenability. The
purpose of this paper is to elucidate the relations between these two notions.

One of our initial motivations to consider relative amenability came from the
following question about the space S (G) of closed subgroups of G endowed with the
compact topology defined by Chabauty [12].

Question. Is the set of amenable subgroups closed in $(G)? In other words, is
amenability a closed property with respect to the Chabauty topology?

This problem seems to be open; the only results for general groups that we are
aware of are the almost trivial cases where the limit is either open or contains the
subgroups converging to it (see Section 6). By contrast, it is straightforward to check
that relative amenability is a Chabauty-closed property (Lemma 18). Let us clarify
when the two notions coincide.

Proposition/Definition 1. Given a locally compact group G, the following properties
are equivalent.

(i) Every relatively amenable subgroup is amenable.

(i1) There exists a non-empty convex compact G-space such that the stabiliser of
every point is amenable.

We denote by X the class of locally compact groups satisfying these equivalent con-
ditions.

The point of our first theorem is that the class X is very large indeed. For instance,
it is almost immediate that it contains any group amenable at infinity, i.e. admitting
an amenable continuous action on some compact space [1]. This is the case e.g.
for all connected groups (see [1], §3.3), all algebraic groups over local fields, and
all automorphism groups of (possibly non-Euclidean) locally finite buildings [28].
For discrete groups, it is equivalent to exactness; see [1] and [33]. The only groups
asserted to fail exactness were constructed by Gomov [25] and are often referred to
as “Gromov monsters”.

Theorem 2 (The class X is very large).

(a) X contains all discrete groups.

(b) X contains all groups amenable at infinity.

(c) X is closed under taking closed subgroups.

(d) X is closed under taking (finite) direct products.
(e) X is closed under taking adelic products.

(f) X is closed under taking directed unions of open subgroups.
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Let N <1 G be a closed normal subgroup of a locally compact group G.
(2) If N is amenable, then G € X < G/N € X.
(h) If N is connected, then G € X < G/N € X.
(1) If N is open, then G € X < N € X.
() If N is discrete and G/N € X, then G € X.
(k) If N is amenable at infinity and G/N € X, then G € X.

We do not know of any group outside X; in fact, we don’t even know a group
for which we could conjecture that it lies outside X. Any potential example can
be assumed totally disconnected by (h) and compactly generated by (f). See also
Section 7.D for further discussion.

It can happen that for a specific closed subgroup H < G amenability follows
from relative amenability even without knowing that G belongs to X. This is for
example the case if one assumes H to be open, or normal, or with open normaliser,
as a consequence of the following result. Derighetti [14] considered the following
condition: the trivial representation 1z is weakly contained in the restriction to H
of the quasi-regular representation on L2(G/H ). Recall that the latter is the induced
representation Indg 1y and notice that L?(G/H ) actually contains 1z if H has open
normaliser in G. An example without Derighetti’s condition is SL,(R) in SL,(C),
see [14].

Proposition 3. Let G be a locally compact group and H < G be a closed subgroup
with Derighetti’s condition: 1g < (Indg 17)|H.
If H is relatively amenable, then it is amenable.

We now return to the question on limits of amenable groups. Since relative
amenability passes to limits (Lemma 18), we deduce a positive answer to the original
question in a very large number of cases thanks to Theorem 2.

Corollary 4 (Limits of amenable subgroups). Let G be a locally compact group and
H < G a closed subgroup which is a Chabauty limit of amenable closed subgroups
of G. Then H is amenable provided that at least one of the following conditions
holds:

(1) G belongs to X;

(i) H < G satisfies Derighetti’s condition (e.g. it is open or normal).

In particular, if the answer to the above question is negative in general, then any
counter-example would provide an example of a group not amenable at infinity, which
would necessarily be different from the only known ones since it must be non-discrete
by Theorem 2.
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The proofs of the results presented thus far rely on detailed comparisons of rela-
tive amenability and amenability of closed subgroups from various functional analytic
viewpoints. In order to discuss those, let us first recall that there is a great number
of well-known characterisations of amenability of the locally compact group G, for
instance by the existence of an invariant mean on L*°(G), on C,(G) or on C*(G),
where the latter denotes the bounded right uniformly continuous functions. Turning
to a closed subgroup H < G, we first describe relative versions of such characteri-
sations; see Section 2 for details on the definitions and notation.

Theorem 5 (Relative amenability). Let G be a locally compact group and H < G a
closed subgroup. The following are equivalent:
(i) every non-empty convex compact G-space admits an H -fixed point;

(i) the kernel JY(G, H) of the map L'(G) — LY(G/H) has a bounded right
approximate identity in L} (G);

(iii) there is a left H -invariant mean on Ci'(G);

(iv) there is a G-equivariant continuous linear map «: L>*°(G) — L*°(G/H) with
a(lg) = 1g/u;

(v) there is a map as in (iv) which is positive and of norm one.
Moreover, G-equivariance can be replaced by L'(G)-equivariance in (iv) and (v).

Now comes a point-by-point comparison of these criteria with the case of genuine
(i.e. non-relative) amenability of the subgroup.

Theorem 6 (The classical picture). Let G be a locally compact group and H < G a
closed subgroup. The following are equivalent to the amenability of H :

(i) every convex compact G-space admits an H -fixed point in the closed convex hull
of any H -orbit;

(i) JY(G, H) has a bounded right approximate identity in L§(H);
(iii) there is a left H -invariant mean on Cy(G), or equivalently on L*°(G);

(iv) there is a G-equivariant continuous linear map o: L°°(G) — L°°(G/H) which
is the identity on L>*°(G/H);

(V) there is a G-equivariant conditional expectation a: L*°(G) — L*°(G/H).

Moreover, G-equivariance can be replaced by L' (G)-equivariance in (iv) and (v).

(Recall that a conditional expectation is by definition a positive norm one map which
is L*°(G/H)-linear.)
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The equivalence of (ii) with amenability in Theorem 6 is due to Derighetti [14].
The criterion (iii) is very classical. As for (v), it was first proved in §4.4.5 in [2]. This
criterion is related to Theorem A in [4]; see Section 7.A regarding an apparent gap in
the latter.

The characterisations in terms of J (G, H ) in Theorems 5 and 6 are relevant to
the following question due to Reiter ([38], [37], and [39], §12, Remark 1): given a
closed subgroup H < G, is it true that H is amenable if and only if J'(G, H) has
a bounded right approximate identity?

This was known when H is normal [39], §12(v), and more generally when H
has Derighetti’s condition as defined above [14], Proposition 1. Both conditions are
rather restrictive and fail e.g. for H = SL,(R) in G = SL,(C), see [14]. Based on
the criteria stated in Theorem 6, we deduce an affirmative answer to Reiter’s question.

Theorem 7. Let G be a locally compact group and H < G any closed subgroup.
The following are equivalent:

(1) H is amenable;

(i) the algebra J'(G, H) has a bounded right approximate identity.

Although most functional analytic methods used here are only available for topo-
logical groups when they are locally compact, the general definitions of amenability
and relative amenability make sense for arbitrary topological groups. In that gen-
erality, amenability is less well-behaved; for instance, it is well-known that there
are amenable Polish groups with non-amenable closed subgroups. This shows in
particular that relative amenability is very different from amenability in that setting.

Here is a classical example. Let H be any countable non-amenable group (with
the discrete topology). Let G be the unitary group of the Hilbert space £2(H),
endowed with the strong operator topology (which coincides with the weak operator
topology on G). Then G is a Polish group and H is a discrete subgroup of G via
the regular representation. However, Pierre de la Harpe showed that G is amenable
(Proposition 1(iii) in [16], with a different terminology).

To wrap up this introduction, we propose a generalisation of our fixed point
property to measurable actions. Let G be a locally compact group with a measurable
action on a standard probability space (X, i) preserving the class of u (i.e. preserving
null-sets, but in general not 1). We shall say that this action is relatively amenable if
for any non-empty convex compact G-space K there is a measurable map ®: X — K
which is G-equivariant in the sense that for all g € G we have ®(gx) = gP(x) for
ae. x € X.

This property follows if the action is amenable in Zimmer’s sense (see [50],
§4.3), assuming G second countable. However, the property is a priori weaker. If
X = G/H (endowed with the unique invariant measure class), relative amenability
of the G-action on X is equivalent to the relative amenability of H, see Proposition 19.
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Here are two suggestions: (1) prove that if G belongs to the class X, then relative
amenability of G-actions is equivalent to Zimmer-amenability; (2) in general, prove
that relative amenability of an action is equivalent to the conjunction of the amenability
of the induced equivalence relation with the relative amenability of the stabiliser of
a.e. pointin X.

Note that (2) would imply (1) by using Theorem A of [4] (the problem in the latter
is precisely not an issue in X, see Section 7.A).

Structure of the paper. After a preliminary Section 2 fixing the basic definitions
and notation, we proceed to the proof of Theorem 5 in Section 3. Section 4 collects
the arguments and suitable references needed to establish Theorem 6. Then Section 5
is devoted to the stability properties of the class X; it contains the proof of Theorem 2.
Proposition 3 and Corollary 4 and Theorem 7 are proved in Section 6, while Section 7
presents a few additional observations.

Acknowledgements. We thank Marc Burger for pointing out Portmann’s thesis [35]
to us, where a related relative fixed point property was introduced and studied in-
dependently (see also §7.C below). We thank Matthias Neufang for pointing out
an inaccuracy in a previous draft and indicating the reference [26]. We thank the
anonymous referee for comments that improved the exposition.

2. Notation

All Banach spaces will be over R, but the statements and proofs hold unchanged
over C. We use (-, -) for various duality pairings. Spaces of measurable bounded
function classes are denoted by L°°, while C}, denotes continuous bounded functions.
We endow these spaces with the sup-norm.

The bounded right uniformly continuous functions Ci'(G) on a topological group
G are the continuous vectors in Cy,(G) for the left translation representation, i.e. those
vectors f € Cp(G) such that the associated orbit map G — Cy(G) is continuous.
In particular, the G-action on C{'(G) is jointly continuous and, hence, the space of
means on Ci'(G) is a convex compact G-space for the weak-* topology. When G
is locally compact, the space Ci'(G) coincides with the set of continuous vectors in
L°°(G), and Cohen’s factorisation theorem (see [17], §16.1) implies that C{*(G) is
exactly the set of all convolutions ¢ x f with ¢ € L'(G) and f € L®(G).

We warn the reader that some authors use the opposite conventions for left and right
uniform continuity. With the present convention, the space Cl"(G) of left uniformly
continuous bounded functions is the set of continuous vectors for the right translation
and has no significant interest for this paper. Keeping in mind the apparent gap
between Theorem 5(iii) and Theorem 6(iii), we point out that the existence of a
left H-invariant mean on C[*(G) is equivalent to amenability because a suitable
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right convolution provides an H -equivariant unital map L>*°(G) — CM(G). For
the same reason, the existence of a left H -invariant mean on the space of bilaterally
uniformly continuous bounded functions on G is equivalent to the relative amenability
of H <G.

We now recall the setting considered in 1968 by Reiter [38] and [37]; the facts
below are presented in detail in [42], §8.

Let G be a locally compact group and H < G a closed subgroup. Choose left
Haar measures on G and on H ; this determines a G -quasi-invariant measure on G/ H .
Moreover, integration over H provides a G-equivariant continuous linear surjection

T:LY(G) — LY (G/H).

The kernel of T is denoted by J (G, H) and does not depend on the choices made.
Notice that J (G, H) is a closed left ideal in L' (G) and in particular itself a Banach
algebra. It is moreover a right module over the algebra L} (H ), which is by definition
the kernel of the integration morphism L' (H) — R, but not over L{(G).

A right approximate identity in a normed algebra A is a net {u; };ey in A such that
au; converges to a in norm for all @ € A. It is said bounded if there is a bound on
the norm of all u;. More generally, if M is a normed right A-module and B € A any
subset, we say that M has a [bounded] right approximate identity in B if there is a
[bounded] net {u; };es in B such that mu; converges to m in norm for allm € M.

It is plain how to replace right by left in these definitions, and a [bounded] ap-
proximate identity in a normed algebra refers to the case where both left and right
conditions are satisfied. For instance, normalised densities supported on arbitrarily
small neighbourhoods of the identity provide a bounded approximate identity for
LY(G).

Right before the proof of Theorem 7, we shall clarify the difference with the
terminology used at the time of Reiter’s work in the 1960s—1970s.

Finally, we recall that the inversion map g + g~ ! induces an isometric involu-

tive anti-automorphism f > f* of the Banach algebra L(G) given by f*(g) =
A(g™") f(g™") wherein A is the modular function.

3. Characterising relative amenability

...c’est ce que nous appelons un théoreme relatif.

H. de Balzac, Etudes Analytiques,
in: (Buvres complétes t. 18, p. 646
Houssiaux, Paris (1855).

We proceed to the proof of Theorem 5. In order to clarify the logical structure
of the proof, we denote by (iv);1 and (v);: the statements corresponding to (iv)
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and (v) with G-equivariance replaced by L!(G)-equivariance. The proof consists of
establishing the following implications, the dashed arrows being trivial.

(i) (iit)

=0

L

(ii) (V)L

B
(iv)

There is a pleasant surprise regarding the equivalence of conditions (i) and (iii): the
classical proof in the case H = G can be used verbatim. Therefore we refer either
to Rickert’s original proof [41], Theorem 4.2, or to [23], Theorem 3.3.1.

We denote by £(L°°(G)) the space of continuous linear operators of L°°(G) and
endow it with the G-representation by post-composition with the right translation:

((ga)(f)N(x) = a(f)(xg)

for x,g € G, f € L*(G), a € £(L*°(G)). We denote by £5(L*°(G)) the
invariant closed subspace of those operators that are equivariant for the left translation
G-action, and likewise £,1(G)(L*>°(G)) for the L'(G)-action by left convolution.

It is known (by an approximate identity argument) that &£, 1) € £¢, hence the
implications (iv);1 = (iv) and (v);1 = (v) follow. This inclusion can however
be strict, a fact going back to §4 in [36], for G = R and generalized in [22], [29],
and [43] (notwithstanding the incorrect [40]).

Consider the dual C'(G)* endowed with the dual of the left translation action.
There is a completely canonical identification (compare [11], p. 177)

L1116 (L7(G)) = GI(G)*

whereina € £15)(L*°(G)) andm € C{'(G)* correspond to each other as follows.
For f € C'(G), wesetm( f) = a(f)(e), which makes sense since o must preserve
continuous vectors by G-equivariance, that is, it preserves C;'(G). In the reverse
direction, « is defined from m by

(@(f).9) =m(f o). feL®G).peL(G)

where ([ o@)(s) = (0(s) f.¢) = [ ¢(g) f(gs) dgfors € G. Here f ogisbounded
(by |l@ll1]l f loo) and is indeed in C'(G) (see e.g. [42], §3.6.3); alternatively, this is

apparent from checking f o ¢ = ¢* *x f.

We point out that the L!(G)-equivariance of « is used in the verification that
the assignments o <> m are mutually inverse. The following properties (a)—(c) are
straightforward verifications. As for (d), it can be checked using Cohen’s factorisation
theorem; we shall not use it, but list it for comparison with Theorem 6(iv).
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(a) o = id if and only if m = §,.
(b) The correspondence « <> m is linear, positive, isometric and G-equivariant.
(¢) (1g) = 1g ifand only if m(1g) = 1.

(d) « is the identity on L°°(G/H) if and only if the restriction of m to Ci'(G/H ) is
the Dirac mass at the trivial coset H in G/H.

If follows from the definition of the action that « is H -fixed if and only if it ranges
in L°°(G/H). Therefore, points (b) and (c) above are already sufficient to conclude
that the conditions (iii) and (v); 1 of Theorem 5 are equivalent.

Remark 8. We have tacitly used the canonical isometric identification of L*°(G/H)
with a subspace of L°°(G). Likewise, this induces a canonical isometric identification
of the space £(L*°(G), L*°(G/H)) with a subspace of £(L°(G)). This inclusion
fits into an exact sequence

0 —> £(L%°(G), L®(G/H)) — £(L®(G))
— L(L*®(G), JY(G, H)*) — 0

where the epimorphism is induced via duality by the inclusion J (G, H) — L'(G).
This follows from the general properties of projective tensor products and L!-spaces
established by Grothendieck [24] together with the canonical isometric identification
of £(L%°(G)) with the dual of the projective tensor product L*(G)QL(G).

The proof of (iv) = (iii) is in two steps. First, we notice that the above map
a — misinfactdefined on £ (L°°(G)) since we only used G -equivariance to justify
that a( /) is continuous and hence can be evaluated at the point e. This extended
map is still linear, positive, contractive, G-equivariant and satisfies that «(1g) = 1g
implies m(1g) = 1. The only verification that fails is that it need not be a right
inverse to the map m +— «. In any case, we obtain an H -invariant element m of the
dual of C/'(G) such that m(1g) = 1.

Secondly, we observe that the order structure on C;'(G) (and hence on its dual)
is G-invariant; hence we can replace m by its normalised absolute value m/|m|. The
condition m(1g) = 1 is preserved since 1¢ is the least upper bound for the unit ball
in C{'(G).

Notice in passing that we have obtained an equivariant projection of £ onto
L1y = CF'(G)*; for a description of £¢ itself in terms of a sort of means,
see [26], §5.3.

We shall now establish the implication (ii) = (iv),1. Suppose that J (G, H)
has a bounded right approximate identity {u;};es in L{(G). Choose an ultrafilter
on / dominating the order filter and denote the corresponding ultralimits by ulim;.
We endow £(L°°(G)) with the weak-x* topology coming from its identification with
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the dual of L%°(G)®L'(G). In particular its closed balls are compact by the Banach—
Alaoglu theorem. Therefore, we can define « = ulim; o; where «; is the operator
determined by

(al(f)7(p>:<ﬁ§0_§0*ul)7 feLoo(G)v(peLl(G)

Then « is L' (G)-equivariant and moreover a(1g) = 1¢ since ¢ *u; isin L{(G). It
remains only to justify that «( f) is right H -invariant. Given Remark 8, it suffices to
show that {a; (f), @) converges to zero when ¢ € J!(G, H). This follows because
@ — @ * u; goes to zero since {u; } is an approximate identity.

Finally we establish (iii) = (ii). Assume that we have an H -invariant mean m on
Cp'(G) and consider the element m—4§, in Cj'(G)*. The inclusion C{'(G) — L*°(G)
induces a quotient map of L>°(G)* onto C{'(G)*; therefore, Goldstine’s theorem
provides us with a bounded net {v;};es in L'(G) such that (f,v;) converges to
m(f) — f(e) for all f € C{'(G). The particular case of f = 1g shows that [ v;
converges to zero, and therefore we can assume that each v; lies in L}(G) upon
subtracting a net converging to zero in L!(G).

We claim that forany x € J (G, H), thenet x xv 7 —x converges weakly to zero in
L'(G); we emphasize that weak convergence requires us to pair this net against any ¢
in L*°(G), not just in C{'(G). Let us first explain the (standard) way to conclude the
proof from this claim. The “Mazur trick” states that from any net converging weakly
to zero in a locally convex space one can construct a net of convex combinations
converging to zero. Since taking convex combinations preserves boundedness and
membership to L, we can apply this to the net {(x * v; — X)xer }F,; indexed by
finite sets of F in J'(G, H) and j € J. In particular, we obtain a net of convex
combinations of the form x * u; — x for some net {u;};c; of convex combinations
of v;, finishing the proof. (The Mazur trick is a direct application of Hahn—Banach
and a similar use of it can be found e.g. in [23], §2.4.2, to which we refer for further
details).

In order to prove the claim, fix x € J!(G, H) and ¢ € L*®°(G). Fubini’s theorem
and the left invariance of the Haar measure imply

{g.x xvj) = (q o x. ).
We noted earlier that ¢ ¢ x is in C{(G) and thus the right hand side converges to
(m —8e)(q ¢ x) = {a(q) — q.x)

Since « is H -invariant, («(q), x) vanishes and hence the above expression is (g, —x),
proving the claim.

4. Proofs/references for Theorem 6

Just as in Section 3, we shall denote by (iv); 1 and (v), 1 the statements corresponding
to points (iv) and (v) of Theorem 6 with G-equivariance replaced by L!(G)-equiv-
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ariance. We begin by justifying that these four conditions are equivalent.

Indeed, although (v) is formally stronger than (iv), itis standard that they are equiv-
alent: for instance the same argument as in [30], Lemma 5.3.7, can be applied. This
holds unchanged for (v);1 <= (iv); 1. Moreover, the existence of a G-equivariant
map in this setting is equivalent to the existence of a L!(G)-equivariant map for
the reasons exposed in Section 3; in the present case this is stated explicitly in [7],
Theorem 1.

The equivalence of (ii) with amenability is due to Derighetti, Theorem 2 in [14].

Regarding (iii), the equivalence of amenability with the existence of an H -
invariant mean on L°°(G) can be deduced e.g. from [39], §3, Proposition 1, via
the usual correspondence between means on L°°(G) and nets of positive normalised
densities in L'(G). A mean on L>®(G) restricts of course to a mean on Cy(G); we
should still recall why the existence of an H -invariant mean on Cy,(G) implies that H
is amenable: the map C,(H) — Cy(G) as defined in the proof of Lemma 11 endows
Cy(H ) with an invariant mean.

The fixed point property of amenable groups immediately implies (i). Thus, in
summary, it suffices to prove (i) = (v) and to prove that (v) implies that H is
amenable. The latter is the most difficult implication of the theorem.

For (i) = (v), we endow £(L*°(G)) with the same weak-* topology and G-
representation by right post-composition as in the above proof of Theorem 5. We can
then consider the convex compact G-space K of norm one positive left-G-equivariant
maps @ € £(L*°(G)) with «(1g) = 1g. By assumption, there is an H -fixed point
« in the closed convex hull of the identity. Like the identity, the map « is L*°(G/H)-
linear since the latter property is H -invariant.

Finally, assume that we have a map « as in (v). We shall prove that H is amenable
following the ideas of Zimmer [48] and [49]. We give a complete proof since our
setting is slightly different and Zimmer dealt only with discrete groups in [48], but
all the main ideas are taken from Zimmer’s work. In order to use ergodic theory, we
need to assume for now that G is second countable and we shall indicate at the end
of the proof how to reduce to that case.

Our goal is to find an H -invariant mean on C{'(H ). Since H is second countable,
Cy'(H) is the directed union of its separable closed H -invariant subspaces and by a
compactness argument it suffices to find an H -invariant mean on any such separable
subspace E. Let E* be the contragredient module; we endow the set K C E™* of
means with it weak-* topology, turning it into a (non-empty) convex compact H -
space. We recall that the space L3, (G, E*) of weak-* measurable bounded function
classes on G is dual to the space L!(G, E) of Bochner-integrable function classes
(and likewise on G/H'). We can define an operator

ap: L3(G. E") — L3(G/H. E™)
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by (ag f,v) = a({f,v)) for v € E since there is a canonical identification of
L.(G/H, E*) with £(E, L>*°(G/H)).

Let 0:G/H — G be a Borel section of the projection G — G/H and define
a Borel cocycle y: G x G/H — H by y(g,x) = o(gx)"'go(x). Choose a point
ko € K and define the map :G — K by ¥(g) = o(gH) 'gko, noting that
o(gH) g liesin H. Then ¥ (gg) = y(g,gH)¥(g) for all g, g. We thus obtain
an element agy € LSS (G/H, E*). The fact that « is positive implies that o g ¢
still ranges a.e. in K; indeed it suffices to compose i (respectively ag ) with the
evaluation on a countable dense set of elements v € E that separate K from any other
point in E*.

We claim that o gy is y-equivariant in the sense that for any g € G, the equality
apy(ggH) = y(g,.gH)ag v (gH) holds for a.e. gH. To this end, we first show
that any bounded Bochner-measurable map V:G/H — FE satisfies (agy, V) =
a({(y,V)) ae. on G/H. Since V is Bochner-measurable, it suffices to verify it for
all functions of the form V' = vly for v € E and a measurable set A € G/H
considered also as H -invariant subset of G. Then the definition of o g together with
the L°°(G/H )-linearity of o implies

(e, vly) = (Lqapy,v) = (@e(Aa¥), v) = a((1ay, v)) = a((Y, vly))

as was to be shown. Now we prove the claim; fix some g € G. We need to show
that for all v € E we have (A(g)(ag f),v) = (y(g,—H)ag f,v) ae. on G/H,
where A is the left translation representation. By equivariance of «, the left hand
side is a((A(g)¥, v)), which is a({(y(g, —H)y,v)), that is a((y, y(g, —H)'v)).
In other words, we need to show a({y, y(g,—H) ) = (ag¥, y(g,—H) '),
which holds indeed by taking

V(gH) :=y(g.gH) v

in the statement above.
We finally define a weak-* measurable map

p:G— K

by ¢(g) = go(g ' H)agy (g~ ' H); here go(g~ ' H) € H. The claim implies that
for all g € G we have p(gg) = ¢(g) for a.e. g € G. Choosing a countable dense
subgroup A < G, we have a conull set of g € G for which ¢(gg) = ¢(g) holds for
all g € A. Since E is separable, it follows from the ergodicity of the A-action on
G that there is k € K with ¢(g) = k for a.e. g € G. But by construction, we have
@(hg) = he(g) forall h € H and a.e. g € G; therefore, k is an H -fixed point in K.

It remains only to justify how to reduce to the case where G is second countable.
We first claim that we can assume G compactly generated. Indeed, let Gy < G be the
subgroup generated by some compact neighbourhood U C G of the identity and set
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Hy = HNGy. Then the compactly generated subgroup Gy is openin G. Therefore,
L*°(Gyp) can be viewed as a Gy-equivariantly complemented subspace of L*°(G),
and likewise for L>°(Gy /Hy) in L°°(G/H). To prove the claim, we assume that
there is a G-equivariant conditional expectation from L*°(G) to L*°(G/H). The
L°°(G/H )-linearity implies that the image of L°°(Gy) is in L*°(Gy/Hy), as seen
by multiplying with 15, . Thus we have in particular a Gy -equivariant conditional
expectation from L*°(Gy) to L°°(Gy/Hy). Supposing the compactly generated
case settled, we conclude that Hy is amenable. As U varies, the groups Hy form a
directed family whose union is A, which implies that H is itself amenable as claimed.

We thus assume G compactly generated and reduce to the second countable case.
Since G is in particular o-compact, it admits a compact normal subgroup K < G
with G/ K second countable, see [27], Satz 6. It suffices to prove that HK/K is
amenable. However, any G-equivariant conditional expectation from L°°(G) to
L*°(G/H) restricts to a G/ K -equivariant conditional expectation from L*°(G/K)
to L*°(G/HK) since K is normal. This finishes the reduction to the second countable
case.

5. Stability properties of the class X

We first record the elementary proof of Proposition 1. By design, if G admits a
non-empty convex compact G-space with amenable stabilisers, then any relatively
amenable subgroup is amenable. Suppose conversely thatrelative amenability implies
amenability for all closed subgroups of G. Then Condition (iii) of Theorem 5 shows
that the space of means on C}'(G) has only amenable stabilisers. O

The proof of Theorem 2 requires a number of preparations. We start with the
following property of amenable actions.

Proposition 9. Let G be a locally compact group with a continuous action on a
compact space Z. Let K C C(Z)* be the convex compact G-space of probability
measures on Z with the weak-x* topology.

Then the G-action on Z is amenable if and only if the G-action on K is amenable.

Proof. We recall that the natural G-map Z — K defined by Dirac masses is a
homeomorphism on its image; in particular, the action on Z is amenable if the action
on K is so. For the converse, suppose that the action on Z is amenable. We shall
work with the criterion of (3) in Proposition 2.2 in [1]. That is, there is a net {g; }ies
of compactly supported functions g;: Z x G — Ry such that

(1) lim; sup,cz |1 — [ gi(z, 1) dt| =0,

(2) lim; sup, ez ses [ |8i(s2.51) — gi(z.t)| dt = 0 for any compact S C G.
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We can extend g; by convexity to g;: K x G — Ry by setting g;(u,s) =

[ gi(z,s)dpu(z)for u € K, s € G. The integral makes sense since g; is continuous;
moreover g; remains continuous and compactly supported. The two conditions (1)
and (2) above are inherited by g; because of the built-in uniformity of the convergence.
O

The following consequence will be relevant.

Corollary 10. Let G be a locally compact group amenable at infinity and N < G
an amenable closed normal subgroup. Then G/ N is amenable at infinity.

Proof. By Proposition 9, there is a non-empty convex compact G-space K on which
G acts amenably. Since N is amenable, the convex compact G-space of N -fixed
points KV is non-emptyj; it is still amenable since it is a subspace of K. On the
other hand, it is a G/ N -space; its amenability as G-space implies its amenability as
G/ N -space. (The latter fact is most apparent if one uses the Definition 2.1 in [1] and
projects measures from G to G/N.) O

We next record that relative amenability is inherited by restriction to open sub-
groups.

Lemma 11. Let G be a locally compact group, H < G a closed subgroup and
O < G an open subgroup. If H is amenable relative to G, then H N O is amenable
relative to O.

Proof. At first we shall only use that O is a closed subgroup. Choose a left Haar
measure on O and let 8: G — Ry be a Bruhat function. Recall that this means a
continuous function with the following two properties: (1) for each compact subset
0 C G, the support of B meets OQ in a compact subset; (2) for all g € G one
has fO,B(o_lg) do = 1. Bruhat functions exist, see e.g. [37], Chapter 8, §1.9,
(with a different notation). Given f € Cy(0O), we define a function f on G by
&) =/, B(o™'g) f(0o)do. Then the map f > f is a positive norm one O-
equivariant linear map C,(0O) — Cp(G) with 1o = 1¢. (For the verification that f
is indeed continuous, see e.g. the proof of Proposition 1.12 in [34].)

We now show that f € C'(G) whenever f € C{'(0); this is where we shall use
that O is open in G. We need to prove the continuity of the orbit map G — L*°(G)
associated to f. Since O is open, we can restrict this orbit map to O — L*°(G).
By hypothesis the orbit map O — L°°(0) associated to f is continuous; the desired
assertion follows since the map f +— f is O-equivariant and of norm one.

Finally, the last assertion of the Lemma follows from Condition (iii) of Theorem 5.

O

It is well-known that amenability is stable under forming group extensions. The
following lemma is a slight variation of that fact.
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Lemma 12. Let G, H be locally compact groups, O < G be an open subgroup and
¢: H — G be a continuous homomorphism. Then H is amenable if and only if o (H )
and ¢~ (0) are both amenable.

Proof. The ‘only if” part is clear. Assume conversely that P = ¢~!(0) and m
are both amenable. In order to deduce that H is amenable, it suffices to show that P
is co-amenable in H , i.e. that the transitive H -action on H/ P preserves a mean (see
e.g. [18] or [31] for more on this notion). By hypothesis G; = ¢(H) is amenable,
hence the G-action on G1/0Oq preserves a mean, where O; = G N O. The desired
assertion follows since the homomorphism ¢: H — G; has dense image, and hence
induces an H -equivariant bijection of discrete sets H/P — G1/0;. O

We record the following subsidiary fact, which relies on a combination of the
previous two lemmas.

Lemma 13. Let G be alocally compact group, N <1 G be a closed normal subgroup,
and O < G be an open subgroup containing N. If G/N and O both belong to X,
then so does G.

Proof. Let 9: G — G/ N denote the canonical projection. Let H < G be a closed,
relatively amenable subgroup. Then ¢(H ) is relatively amenable in G/ N, and thus
amenable since G/N € X. Moreover, the intersection H N O is relatively amenable
in O by Lemma 11, and hence amenable since O € X. It follows from Lemma 12
that H is amenable, as desired. O

Proof of Theorem 2(a)—(i). Relative amenability is equivalent to amenability when
G is discrete: this is apparent e.g. by comparing Condition (iii) in Theorems 5 and 6
respectively. This proves (a). We now assume that G is amenable at infinity and
proceed to show that the relative amenability of H < G implies that H is amenable.
By assumption there exists a compact space Z with a continuous amenable G-action.
Relative amenability implies that Z carries an H -invariant probability (Radon) mea-
sure. It follows that H is amenable, since the full stabiliser in G of every probability
measure on Z is amenable by Example 2.7(2) in [1] (the latter fact can alternatively
be deduced from Proposition 9).

The case (c) of subgroups follows from the definitions. For (d), consider a rel-
atively amenable closed subgroup H in a product G; x G,. Let H; be the closure
of the projection of H to G;. Then relative amenability still holds for the subgroup
H; of G;; thus both H; are amenable and hence so is H; x H,. Since H is a closed
subgroup of the latter, H is amenable.

The case (e) of adelic products follows from the combination of (d) with (f), to
which we now turn. Assume that G is the union of a directed family {G; };<; of open
subgroups and let H < G be a relatively amenable closed subgroup. Then H is
the union of the groups H N G;, each of which being relatively amenable in G; by
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Lemma 11. We are thus assuming that each H N G; is amenable, which implies that
H is amenable since the family { H N G; };e; is directed.

From now, we consider a locally compact group G with a closed normal subgroup
N <G.

For (g) we assume N amenable. Any convex compact G/ N -space with amenable
stabilisers still has amenable stabilisers as a G-space. Conversely, assume that there
is a non-empty convex compact G-space with amenable stabilisers. Then the convex
compact G/ N -space of its N-fixed points is non-empty since N is amenable and it
follows G/N € X.

We prove (i) before (h); assume N open. In particular G/ N is discrete, hence
contained in X by (a). If N € X, then G € X by Lemma 13 (applied in the special
case N = O). The converse implication is a special case of (c).

For (h) we assume N connected. SupposefirstG/N € X. Let R = Ramen(G) <
G be the amenable radical of G and recall that G has a finite index open char-
acteristic subgroup G* <1 G containing R such that G*/R is a direct product
G*/R =~ D x S with D totally disconnected and S a connected semi-simple Lie
group (Theorem 11.3.4 in [30]). By point (g), the quotient G/ NR is in X;. The image
of G* in the latter group is a finite index open subgroup of the form D x Sy for some
quotient S; of S; thus D appears as a closed subgroup in G/NR and hence D € X
by (c). Since S is amenable at infinity [1], §3.2(3), we conclude by (d) that D x § is
in X. Now G* € X by (g) and finally G € X by (i).

Conversely, suppose G € X and keep the above notation. By (g), the quotient
G/Risin X and hence sois D by (c). Since (G/R)/S contains D as an open normal
subgroup of finite index, it is in X by (i). Since G/NR is an extension of (G/R)/S
by a connected kernel, it is in X by the first implication. Finally, G/N is an extension
of G/NR by an amenable kernel and hence we conclude by (g). O

In order to establish the last two points of Theorem 2, a few additional tools are
needed; their proofs rely on the assertions from Theorem 2 which have already been
proven.

Lemma 14. Let X be a subclass of X enjoying the following stability properties,
where G denotes a locally compact group and N < G a closed normal subgroup:

(1) if G € Xy, so does any closed subgroup of G;
(2) if G € Xg and N is amenable, then G/N € Xy;
(3) if N € Xo and G/ N is compact, then G € X.

Then X enjoys the following stability property: if N € Xo and G/N € X, then
G e X.

Proof. Let G be a locally compact group and N < G be a closed normal subgroup
such that N € Xp and G/N € X. We need to show that G € X.
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Let us assume in a first case that G is totally disconnected. Then it has a compact
open subgroup U by van Dantzig’s theorem. The product O = N U is openin G and
belongs to Xo by (3), hence to X. By Lemma 13, we infer that G € X, as desired.

We now turn to the general case. By the solution to Hilbert’s fifth problem, the
connected locally compact group (G/N)° has a unique maximal compact normal
(hence characteristic) subgroup W such that (G/N)°/W is a Lie group. Let M be
the pre-image of W in G. Then M/N is compact, so that M € X by (3). By
Theorem 2(g) we have G/M € X and by construction the identity component of
G/M is aLie group.

Let now R denote the amenable radical of M. We have M/R € X by (2) and,
in view of Theorem 2(g), the desired conclusion that G € X will follow if one shows
that G/R € X. Hence we may assume without loss of generality that R = 1.

By Theorem 11.3.4 in [30], the group M has an open characteristic subgroup of
finite index M * isomorphic to a direct product S x D, where S = M ° is a connected
semi-simple Lie group with trivial centre and no compact factor, and D = Z s (M°)
is a totally disconnected group with trivial amenable radical. In particular D is
characteristic in M, hence normal in G. Notice moreover that D € X by (1).

We next claim that G° N D = 1. Indeed, the intersection G° N D is a totally
disconnected closed normal subgroup of G°. Invoking again the solution to Hilbert’s
fifth problem, we find a compact normal subgroup V' of G° such that G°/V is a Lie
group. Since the canonical projection G° — G°/V is proper, the image of G° N D in
the connected Lie group G°/V is a closed totally disconnected normal subgroup. It
must thus be discrete, hence central. It follows that G° N D is compact-by-{discrete
abelian}. Therefore G° N D is amenable, hence contained in the amenable radical of
D, which is trivial. The claim stands proven.

Since (G/M)° is a Lie group, the image of G° under the canonical projection
G — G/M coincides with (G/M)° (see Lemma 2.4 in [10]). In particular G° M
is closed in G. It follows that G°D is also closed. Therefore the image of D in the
quotient G; = G/G° is a closed normal subgroup D; isomorphic to D. In particular
D; € Xy. Moreover, we have G;/D; =~ G/G°D = (G/M*)/(G/M*)° € X
since G/M € X, by using Theorem 2(g) and (h). Since the totally disconnected
case has already been treated, we infer that G; € X, and finally that G € X by
Theorem 2(h). Il

Lemma 15. Let Xo be the class of locally compact groups that are directed unions
of amenable-by-discrete open subgroups. Then X is contained in X and satisfies
conditions (1)—(3) from Lemma 14.

Proof. Every amenable-by-discrete group belongs to X by Theorem 2(a) and (g).
Therefore Xo C X by Theorem 2(f).

It follows from the definition that the class X is closed under passing to closed
subgroups, and to quotients by closed normal subgroups, so that conditions (1) and (2)
from Lemma 14 are satisfied.
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Letnow G be a locally compact group with a closed cocompact normal subgroup
N € Xo. We consider the following set of closed subgroups of G:

F ={G1 < G | Gy is open, compactly generated, and G = G1N}.

Then ¥ is a directed set. Moreover, since G/N is compact, the set ¥ is non-empty
and we have G = | J . Therefore, it suffices to show that each G; € ¥ belongs
to Xo.

Given G € ¥, we have Ny = G; N N € Xy. Moreover G;/N; = GiN/N =
G/N is compact. Since Gy is compactly generated, so is thus N; by [32]. Any
compactly generated group in X is amenable-by-discrete. So is thus N;. In other
words, the amenable radical R of Nj is open in Nj. All we need to show is that the
amenable radical of G, = G1/R is open. The image N, = N;/Rof Ny in G, isa
finitely generated discrete cocompact normal subgroup with trivial amenable radical.
Its centraliser Z = Zg, (N2) is thus open, and the intersection Z N N = Z(N,) is
trivial. Therefore ZN, =~ Z x N5 is an open normal subgroup of G,. Since G,/ N,
is compact, it follows that Z is compact, hence amenable. The amenable radical of
G, therefore contains Z, and is thus open as desired. O

End of proof of Theorem 2. Assertion (j) is now immediate from Lemmas 14 and 15.
For (k), we note that the class Xp of locally compact groups that are amenable
at infinity is contained in X by Theorem 2(b). Moreover X satisfies the three
conditions of Lemma 14 below: (1) is to be found e.g. in [3], §5.2.5(1), (2) follows
from Corollary 10, and (3) is ensured by [3], §5.2.5(ii)). The desired conclusion
follows. O

Remark 16. We have proved an assertion stronger than Theorem 2(j), namely: sup-
pose that N is a directed union of subgroups that are open (in N ) and amenable-by-
discrete. If G/N € X, then G € X.

6. Proof of corollaries
A first application of Theorem 5 is Proposition 3.

Proof of Proposition 3. Let H < G be relatively amenable and suppose that it sat-
isfies Derighetti’s condition; explicitly, this means that there are H -almost-invariant
vectors in the quasi-regular G-representation on L2(G/H ). This implies that there is
an H -invariant mean on L°°(G/H). Indeed, the argument given e.g. in [18], p. 29,
for the case of G-invariant means applies without any change: the mean is a weak-*
accumulation point of the densities constructed by squaring elements of L2(G/H).
Composing such a mean with the map « provided by Theorem 5(v) provides a mean
as required by Theorem 6(iii). O
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Remark 17. It follows from Reiter’s characterisation of amenability that, if the closed
subgroup H < G is amenable, then H satisfies Derighetti’s condition. Therefore,
the converse of Proposition 3 holds and we obtain the following equivalence: Among
the relatively amenable subgroups of G, amenability is equivalent to Derighetti’s
condition.

We now turn to Chabauty limits of amenable groups. Using Fell’s multivariate
continuity [19], Schochetman proved that a limit of a net amenable subgroups remains
amenable when the net consists of subgroups of the limit [44], Theorem 3; this is
however completely trivial with the fixed point definition of amenability. It follows
readily that amenability passes to the limit when the limit is an open subgroup [44],
Corollary 1.

As far as we know, the general case remains unknown. We can however answer
the question whenever the ambient group G belongs to the very large class X, or
when the limit group falls within the scope of Proposition 3. Indeed, the proof of
Corollary 4 follows immediately from:

Lemma 18. In any locally compact group, the set of relatively amenable closed
subgroups is Chabauty-closed.

Proof. Let G be a locally compact group, H < G a closed subgroup and K a non-
empty convex compact G-space. Suppose that H is the limit of a net {H;};e; of
closed subgroups that are relatively amenable. If x; € K is fixed by H;, then any
accumulation point of the net {x; };c; will be fixed by H. O

Before turning to Theorem 7, we clarify the use of terminology. At the time
of Reiter, what was called right approximate units (and confusingly sometimes right
approximate identities) was the existence for each x of anet {u; } such that x xu; — x.
What is now called a right approximate identity (i.e. a netindependent of x) was called
multiple approximate units. However, it was realized in 1971 that both concepts
coincide in any Banach algebra, even preserving the control of the norm of the net;
see [47], [5], and [6].

In the present article, we shall never consider the older approximate units, noting
that the equivalence is not clear when we look at subsets of algebras or at modules.
Nonetheless, the above equivalence should be kept in mind when we quote Reiter’s
work which predates it.

Proof of Theorem 1. We begin by recalling a general fact for any Banach algebra A4
admitting a bounded right approximate identity and any closed left ideal J in A: the
ideal J has a bounded right approximate identity (in itself) if and only if its annihilator

Jti={feA(fu)=0Vuel}

is right-invariantly complemented in the dual A*. The latter means that there is
o € £(A*) with a(A*) = J L, which is the identity on J+, and which is equivariant
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with respect to the dual right A-module structure (which preserves J =+ since J is a
left ideal). This fact was established in [20], §4.1.4, p. 42, see also [21, 6.4]. A more
precise statement under the stronger assumption that A has a bounded approximate
identity can be found in [13], §2. We apply the general statement to A = L(G); in
this special case, it is also established in [7], Theorem 1.

We observe that the usual left A-convolution on A* =~ L°°(G) corresponds to
the dual right A-action via the canonical involution of A recalled in Section 2. It fol-
lows that right A-equivariance is equivalent to the usual left L' (G)-equivariance for
Z(L*®(G)). We now consider J = J (G, H). By the duality principle, the annihi-
lator J+ is identified with L°(G/H). Therefore, an application of the L' (G)-equiv-
ariant version of criterion (iv) in Theorem 6 finishes the proof. Il

7. Further observations

7.A. Measurable actions. We defined relative amenability for actions at the end
of the introduction. The following proposition shows that it generalises indeed the
relative amenability of subgroups.

Proposition 19. Let H be a closed subgroup of a second countable locally compact
group G and endow G/H with the unique (non-zero) G-invariant measure class.
Then the action of G on G/H is relatively amenable if and only if H is amenable
relative to G .

Proof. We suppose that the action is relatively amenable (the reverse implication
being trivial). Let K be a non-empty convex compact G-space; we need to find an
H -fixed point. Since G is second countable, we can assume that K is separable. Let
®: G/H — K be a measurable equivariant map. We argue similarly to the last part
of the proof of Theorem 6: define ¢: G — K by ¢(g) = g®(g~! H). Then, for all
g€ Gandallh € H, we have ¢(gg) = ¢(g) and ¢(hg) = hop(g) forae. g € G.
The conclusion follows as in Theorem 6. O

As a corollary, we see that any example of a non-amenable relatively amenable
subgroup would also show that relative amenability of actions is strictly weaker than
Zimmer-amenability.

According to Theorem A in [4], the stabiliser of almost every point in a Zimmer-
amenable action of a second countable locally compact group G is an amenable
(closed) subgroup of G. It seems that the proof contains a gap. Specifically,
Lemma 4.3 in this reference is equivalent to stating that a subgroup of G is amenable
if and only if it has an invariant mean on C'(G), which is equivalent to relative
amenability. The point in that proof that seems not to be justified is the reference (on
page 816) to Proposition 7.2.7 in [50]; indeed, that proposition uses G-invariance.
However, this issue disappears if G belongs to the class X .



Relative amenability 767

In any case, a general result for groupoids (Corollary 5.3.33 in [3]) implies the
statement of Theorem A in [4].

7.B. On the Reiter condition. One of the well-known equivalent characterizations
of the amenability of a locally compact group G is the Reiter condition, namely the
existence of asymptotically invariant elements in L' (G). More precisely, this means
anet {g; } of positive normalized elements in L' (G) such that gg; —¢; goes to zero in
norm for all g € G. By the Mazur trick, it suffices to have weak convergence to zero.
Moreover, as recalled above, the amenability of H < G is equivalent to requiring
either form of convergence for all g € H.

How, then, can we reformulate relative amenability for H < G in terms of a
Reiter condition? It is not hard to check that this amounts to the convergence of
g@;i — @; to zero (for all g € H) with respect to the right strict topology of L'(G).
The latter is a locally convex topology going back to [9] in the commutative case and
extended to general Banach algebras in [45]. The verification is a direct application
of Cohen’s factorisation.

7.C. Pairs of subgroups. The fixed point property for subgroups that we called
relative amenability can be seen as a particular case of the following.

Definition 20. Let G be a topological group and let L, H < G be subgroups. We
say that L is co-amenable to H relative to G if any convex compact G-space with an
L-fixed point has an H -fixed point. We write L >g H.

Thus, > defines a pre-order on the family of subgroups of G which descends
to conjugacy classes of subgroups. At one end, 1 > H amounts to the relative
amenability of H < G. Atthe other extreme, L > G amounts to the co-amenability
of L < G as studied by Eymard [18] (see also [31] for more equivalent conditions). It
is straightforward that > is closed in the second variable for the Chabauty topology.

It was pointed out to us by Marc Burger that Definition 20 was independently
introduced and studied by Jiirg Portmann in his thesis [35]. Moreover, the following
Rickert-like characterisation is proved in [35], §2.3.5: L >¢ H if and only if there
is an H -invariant mean on Cy'(G/L).

We further record that the argument given above in Section 3 shows that L >g H
is equivalent (for locally compact groups) to the following variant of (iv) in Theorem 5
above: there is a G-equivariant continuous linear map «: L*°(G/L) — L*°(G/H)
with a(1g/2) = 1/ . Arguing as before, one can moreover obtain « to be positive
and normalized.
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7.D. Are there counter-examples?

There is not the smallest probability that, after having been
as obstinate as a mule for two years, she suddenly became
amenable...

H. James, Washington Square,
Macmillan, London (1921), p. 212.

We have already pointed out that Theorem 2 should make it very difficult to find
a non-amenable group H appearing as a relatively amenable closed subgroup of a
locally compact group G. Turning our horses around, we shall now discuss some of
the limitations of Theorem 2.

(1) In contrast to assertions (g) and (h), neither (j) nor (k) are likely to admit a
converse. Indeed, it would then follow in both cases that all locally compact groups
belong to X.

The reason is as follows. As we have established, it suffices to consider a com-
pactly generated totally disconnected locally compact group G. After possibly fac-
toring out a compact kernel, any such group can be written as the quotient of a closed
subgroup G of the automorphism group of a locally finite regular tree by a normal
subgroup N which is free and discrete. (This is explained in [8], §3.4, or in [30],
p. 150.) Now G is amenable at infinity (this is well-known and follows, for instance,
from the general results in [28]). As to N, it is both discrete and amenable at infinity.
Picking up the pieces, a converse to either (j) or (k) would imply that G is in X.

(i) We do not know if the class X is closed under taking arbitrary extensions.
We claim that this question can be reduced to the following: let G be a semi-direct
product G = U x N with U profinite and N € X totally disconnected; is G in X ?

Indeed, if we attempt to apply Lemma 14 to Xo = X, its first two stability
assumptions are granted by Theorem 2. This leaves us with the third, and thus the
general extension problem is reduced to the case where G/N is compact. The same
line of reasoning as in the proof of Lemma 14 further reduces us to the case where
G is totally disconnected. Now G admits an open profinite subgroup U by van
Dantzig’s theorem, and we can assume U.N by an application of Lemma 13. Now
G 1is canonically presented as a quotient of a semi-direct product G = U x N by a
compact kernel isomorphic to N N U, so that our claim follows using Theorem 2(g).

After the first preprint version of this paper was posted, two developments occurred
that provide at least subclasses of X that are stable under extensions. On the one hand,
Deprez and Li proved in [15] that the class of locally compact groups amenable at
infinity is closed under extensions (this was previously proved in the discrete case [3],
§5.2.6). On the other hand, Wesolek [46] exhibited a bootstrap subclass of X that is
stable under extensions and contains all compact, discrete or connected groups.
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(iii) There is an equivalent reformulation of the criterion of Theorem 5(iv) for
relative amenability which highlights the measurability pitfalls that might blur the
distinction between relative amenability and usual amenability of H < G. The
map o corresponds to a G-equivariant element

A€ LS (G/H, (L*(G))Y).

At first sight, this seems to mean a weak-* measurable assignment of a mean A(x)
on L*°(G) for each x € G/H. Now G-equivariance would imply that A(x) is
fixed by the x-conjugate of H in G, which implies that this conjugate is amenable
(Theorem 6(iii)) and hence H is amenable.

Now of course A is only a function class. The fact that L°°(G) is non-separable is
not of much concern: if we are willing to assume G second countable, a compactness
argument reduces us to work in the situation where the mean is defined on a separable
G-invariant closed subspace £ C L°°(G). Moreover, a lifting argument allows us
to choose a representative A of A with good properties. Summing up, what all this
means is that we have a map

A:G/H — E*
(everywhere defined) such that

(1) forall f € E, the map x — (A(x), f) is measurable,
(2) (A(x),1g) = 1 forae. x,
(3) forany g € G and any f € E we have (A(gx), f) = (A(x), gf) for ae. x.

In contrast to other proofs above, one cannot continue the argument by applying

ergodicity to the new map x +— g;f(g_lx) since the action on E* is not weak-
measurable unless G is discrete.

7.E. A structure result. Finally, we present a structure result for certain amenable
actions on locally compact spaces which is related to relative amenability as follows.
In an earlier stage of this work, we realised that relative amenability coincides with
amenability as soon as G admits an amenable action on a locally compact space X
such that the G-representation on Cy,(X) is continuous (for the sup-norm). There are
two obvious examples where this continuity holds:

(1) when X is compact: in this case, amenability of the action implies that G is
amenable at infinity;
(2) when G is discrete. This extends immediately to the case where G is amenable-

by-discrete.

The theorem below shows that in fact these two cases are the only ones. In
particular, any group G admitting such an action belongs to the class X.
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Theorem 21. Let G be any o-compact locally compact group. The following are
equivalent:

(1) G admits an amenable continuous action on a locally compact space X such
that the G -representation on Cy(X) is continuous;

(i1) G is either amenable at infinity or amenable-by-discrete.

This criterion relies on the following characterisation of the continuity of the repre-
sentation on Cy(X). The reformulation in terms of the Stone—Cech compactification
BX is a matter of definitions, whilst (a) = (b) is the core of the statement.

Proposition 22. Let G be a locally compact group acting continuously on a locally
compact space X. We assume that X is o-compact and that G has a countable basis
of identity neighbourhoods. The following are equivalent:

(a) the G-representation on Cy(X) is continuous (for the sup-norm);
(@) the G-action on BX is continuous;

(b) there is an open subgroup O < G preserving a compact set K € X and acting
trivially outside K.

Proof of Proposition 22. (a) = (b). Let {U, }»en be a basis of identity neighbour-
hoods in G and {C, },en a sequence of compact subsets of X whose union covers
X. Suppose (b) fails. We can assume that each U, is compact. We construct in-
ductively g, € G, x, € X, a compact subset K,, € X and a continuous function
fn: X — [0, 1] as follows, with gg, xo, K¢ and fp arbitrary. Let n > 1. Define
K, =C)_{UKu_1U{xy_1,8n—1Xn—1}, where C,_, is any compact neighbour-
hood of C,—;. By assumption, the subgroup generated by U, must move some
point outside the compact set K,_; U U,~ 'K,—1. We can thus choose x, and g,
such that x,, ¢ K,_1, gn € Uy, gnxn # x, and gnx, ¢ K,—1. Applying Tietze’s
extension theorem to the compact set K1 U{x,, gnX,} we obtain a continuous func-
tion f,: X — [0, 1] which coincides with f,_; on K,_; and satisfies f,(x,) = 0,
Jn(gnxn) = 1.

Since the sequence K, is increasing and covers X, the sequence f,, converges to a
function f: X — [0, 1]. In fact, the convergence is uniform on compact subsets since
K, contains a neighbourhood of C; for j < n; therefore f is continuous. However,
f(xn) =0and f(gnx,) = 1foralln > 1 even though g, converges to the identity,
contradicting (a).

(b) = (a). Since G acts by homeomorphisms on X, it suffices to show that the
O-action on BX is continuous. In fact it is enough to consider the action on fX \ K
since this is a neighbourhood of X \ X. The latter action is trivial since fX \ K is
in the closure of X \ K in $X.
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(') = (a). For any compact continuous G-space Z, the G-representation on
C(Z) is continuous for the sup-norm. Therefore this implication follows from the
natural identification Cy(X) =~ C(8X). O

Proof of Theorem 21. (ii)) = (i). If G is amenable at infinity, then by definition it
acts amenably on a compact space X ; we recall that the action on Cp(X) = C(X) is
continuous by compactness. If G has an amenable open normal subgroup A < G, we
let X = G/A.

(i) = (ii). If X is compact, then G is amenable at infinity. We assume henceforth
that X is non-compact and proceed to construct an amenable open normal subgroup
A<G.

Since G is o-compact, there is by [27] a compact normal subgroup N < G such
that G/ N is second countable. The quotient X /N is a locally compact space with
a continuous G/ N -action. Moreover, the amenability, non-compactness and con-
tinuity on Cp(X/N) still all hold — the latter because of the canonical inclusion
Cp(X/N) C Cp(X). A standard procedure provides a second countable equivariant
quotient X /N —»> Y which still retains all these properties. (This consists in taking ¥’
to be the spectrum of a separable G-invariant C *-subalgebra of Cy(X) large enough
to define the sequence of maps in the definition of topologically amenable actions [1];
a countable sequence suffices since G is second countable.) Now Proposition 22 pro-
vides an open subgroup O < G/ N acting trivially outside some compact subset of Y.
The pre-image O’ of O in G is open and we claim that the normal subgroup A of G
normally generated by O’ is amenable; this will complete the proof.

To this end, is suffices to show that for any finite set F € G, the subgroup of
G generated by | J gcF g0’g™ ! is amenable. Since Y is non-compact, the groups
g0g~! have a common fixed point. Now we conclude since the stabiliser of any
point in an amenable action is an amenable subgroup. O
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