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Abstract. We consider pairs of finitely presented, residually finite groups uW P ,! � . We
prove that there is no algorithm that, given an arbitrary such pair, can determine whether or
not the associated map of profinite completions OuW yP ! y� is an isomorphism. Nor do there
exist algorithms that can decide whether Ou is surjective, or whether yP is isomorphic to y� .
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1. Introduction

The profinite completion of a group � is the inverse limit of the directed system of
finite quotients of �; it is denoted y� . The natural map � ! y� is injective if and only if
� is residually finite. A Grothendieck pair is a monomorphism uW P ,! � of finitely
presented, residually finite groups such that OuW yP ! y� is an isomorphism but P is not
isomorphic to � . The existence of Grothendieck pairs was established in [5], raising
the following recognition problem: is there an algorithm that, given a monomorphism
of finitely presented, residually finite groups uW P ,! � , can determine whether or
not Ou is an isomorphism?

We shall resolve this question by proving the following theorem.

1Both authors are supported by the EPSRC. The first author is also supported by a Wolfson Research
Merit Award from the Royal Society. This research was carried out while the second author was a lecturer
in the Department of Mathematics at University College London.
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Theorem A. There are recursive sequences of finite presentations for residually finite
groups Pn D hAn j Rni and �n D hBn j Sni together with explicit monomorphisms
unW Pn ,! �n, such that

(1) yPn Š y�n if and only if the induced map of profinite completions Oun is an
isomorphism;

(2) Oun is an isomorphism if and only if Oun is surjective; and

(3) the set ¹n 2 N j yPn 6Š y�nº is recursively enumerable but not recursive.

The groups �n that we construct are of the form Hn �Hn where Hn is a residually
finite hyperbolic group with a 2-dimensional classifying space.

Theorem A is an outgrowth of our recent work on the profinite triviality problem
for finitely presented groups [9]: we shall prove it by applying the main construction
of [5] to a sequence of finitely presented groups satisfying the following strengthening
of Theorem A in [9].

Theorem B. There is a recursive sequence of finite combinatorial1 CW-complexes
Kn so that

(1) each Kn is aspherical;

(2) H1.Kn; Z/ Š H2.Kn; Z/ Š 0 for all n 2 N; and

(3) the set of natural numbers

¹n 2 N j 1�1Kn © 1º
is recursively enumerable but not recursive.

In Theorem B in [2], the first author proved a less satisfactory version of Theo-
rem A. He too constructed a recursive sequence of pairs �nW Pn ,! �n, with Pn and
�n residually finite, such that there is no algorithm that can determine whether or not
O�n is an isomorphism, nor whether yPn is isomorphic to y�n. But in his construction,
although the �n are given by explicit finite presentations, the subgroups Pn ,! � are
given by specifying a finite generating set †n � � (with a guarantee that Pn D h†ni
is finitely presentable). In [8] we explored in detail the question of when such data is
sufficient to allow the algorithmic construction of a finite presentation for Pn, and in
this situation it is not. Indeed, the lack of an algorithm to present Pn is an essential
feature of the proof of Theorem B in [2]: what is actually proved is that one cannot
decide if O�n is injective (note the contrast with our Theorem A) because there is no
algorithm that can determine if the map H1.P; Z/ ! H1.�; Z/ induced by �n is in-
jective; if one had a finite presentation for both groups, it would be easy to determine
if H1.P; Z/ ! H1.�; Z/ was injective.

1A combinatorial map between complexes is one that maps open cells homeomorphically to open cells,
and a CW complex is combinatorial if the attaching map of each closed k-cell is a combinatorial map
from a polyhedral subdivision of the .k � 1/-sphere.
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Theorem A deals with maps uW P ! � that are assumed to be monomorphisms
of residually finite groups. If one does not require the groups to be residually finite,
then Theorem A in [9] implies immediately that there does not exist an algorithm to
recognise if OuW yP ! y� is an isomorphism: it is enough to consider the case where P

is the trivial subgroup. If one also drops the requirement that uW P ! � is injective,
then the result already follows from the work of Slobodskoi that is invoked in [9]:
Slobodskoi [16] exhibited a finitely presented group G for which there is no algorithm
that can determine which words w have trivial image in yG ; and since finitely generated
profinite groups are Hopfian, w has trivial image in yG if and only if the quotient map
G ! G=hhwii induces an isomorphism of profinite completions.

2. Reducing Theorem A to Theorem B

The reduction of Theorem A to Theorem B follows a template for constructing
Grothendieck pairs that was devised by Bridson and Grunewald [5] and first ap-
plied to algorithmic questions in [3]. The key ingredients are adaptations of the Rips
construction [14] and the 1–2–3 Theorem in [1]. In our case, these will be applied to
the groups �1Kn supplied by Theorem B.

2.1. Rips and Algorithmic 1–2–3. The following adaptation of the Rips construc-
tion is due to Wise [17].

Theorem 2.1 ([17]). There is an algorithm that takes as input a finite group presen-
tation Q � hx j yi and will output a finite presentation H � hx; a; b; c j zi for a
residually finite hyperbolic group H , so that there is a short exact sequence

1 �! N �! H
p�! Q �! 1;

where N D ha; b; ci, the group Q is presented by Q, and pW H ! Q is the map
implicit in the labelling of generators. Moreover, jzj D jyj C 6jxj.

The short exact sequences obtained by applying this theorem with Q D �1Kn

provide input for the following algorithmic version of the 1–2–3 Theorem. Recall
that the fibre product associated to a short exact sequence

1 �! N �! H
p�! Q �! 1

is the pre-image of the diagonal subgroup under the product map

p � pW H � H �! Q � Q:
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Theorem 2.2 ([6]). There exists an algorithm that, given a short exact sequence of
groups 1 ! N ! H ! Q ! 1, a finite generating set for N , a finite presentation
of H , and a finite combinatorial CW-complex that is the 3-skeleton of a K.Q; 1/,
will construct a finite presentation for the associated fibre product P < H � H and
express the generators of P as words in the generators of H � H .

The theorem proved in [6] is actually somewhat stronger than the one we have
stated and is cast in different language; we shall explain the translation. The algorithm
in [6] requires as input a finite presentation for H , a finite generating set for N , a finite
presentation Q for Q, and a set of elements of �2Q that generate it as a ZQ-module.
(Our results in [8] show that this last piece of data is essential.)

In [6], the generators of �2Q are given as identity sequences, which can be thought
of as formal products ‚ � …N

iD1xirix
�1, where the xi are words in the generators

of Q, the r˙1
i are defining relations in Q, and ‚ is freely equal to the empty word.

Given a combinatorial map of a 2-sphere to the standard 2-complex K.Q/ of the
presentation Q, it is easy to associate such a product to it: this is the first, simple step
in the proof of van Kampen’s Lemma where, given a diagram with boundary word w,
one cuts it into a “lollipop diagram,” the boundary of which is labelled by a product
of conjugates of defining relations that is freely equal to w; we are discussing the
case w D ; (see [11], p. 151, or [4], p. 49, for example). Thus, instead of giving
the generators of �2Q as identity sequences, it suffices to give them as combinatorial
maps S2 ! K.Q/.

If one attaches to K.Q/ one 3-cell for each element in a set of maps S2 ! K.Q/,
then the resulting 3-complex will be the 3-skeleton of a K.Q; 1/ if and only if the
homotopy classes of these maps generate �2K.Q/ as a ZQ-module. Changing per-
spective, if one is given a finite combinatorial model for the 3-skeleton of a K.Q; 1/,
one can shrink a maximal tree in the 1-skeleton to make the 2-skeleton a presentation
2-complex, and the set of attaching maps of the 3-cells will serve as a set of generators
for �2 of this presentation.

2.2. Criteria for profinite equivalence. Together, Theorems 2.1 and 2.2 provide
a mechanism that, given a finite combinatorial complex with 2-connected universal
cover and fundamental group Q, will output finite presentations for H � H and P ,
and will describe the inclusion uW P ,! H � H by expressing the generators of P

as words in the generators of H � H . The final step in the reduction of Theorem A
to Theorem B involves identifying when Ou is surjective, when Ou is an isomorphism,
and when yP Š 2H � H .

Lemma 2.3. Let 1 ! N ! H ! Q ! 1 be an exact sequence of groups and
let P < H � H be the associated fibre product. The maps that N ,! H and
P ,! H � H induce on profinite completions are surjective if and only if yQ D 1.
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Proof. If Q has no finite quotients then N is dense in yH , so yN ! yH , which
has compact image, is surjective. Likewise, N � N < P is dense in 2H � H , so
yP ! 2H � H is surjective.

Conversely, if there is a surjection from Q to a non-trivial finite group F , then
the composition H ! Q ! F extends to yH and the kernel of this extension is a
proper closed subgroup containing N . And the image of P in 2H � H is contained
in the proper closed subgroup obtained by pulling back the diagonal of F � F .

The question of when an inclusion induces an isomorphism of profinite comple-
tions is more subtle. The following criterion, due to Platonov and Tavgen [13], plays
a central role in [13], [5], and [3] – see Theorem 5.1 in [5] for a proof.

Proposition 2.4. Let 1 ! N ! H ! Q ! 1 be an exact sequence of finitely
generated groups with fibre product P . If H2.Q; Z/ D 0 and yQ D 1 then the
inclusion uW P ,! H � H induces an isomorphism of profinite completions.

We also need to be sure that yP 6Š 2H � H when Ou is not an isomorphism. Our
proof of this requires a lemma and some notation.

We write Epi.G; S/ for the set of epimorphisms from a group G to a finite group S .
Composition of epimorphisms with the natural map G ! yG defines a bijection

Epi. yG; S/ �! Epi.G; S/;

so if yG1 Š yG2 then there is a bijection

Epi.G1; S/ �! Epi.G2; S/:

Lemma 2.5. Let G be a finitely generated group, let N1; N2 < G be normal sub-
groups that commute, let �i D G=Ni , let Q D G=N1N2, and let S be a non-abelian
finite simple group. Then

jEpi.G; S/j D jEpi.�1; S/j C jEpi.�2; S/j � jEpi.Q; S/j:
Proof. Since S is simple, any epimorphism 'W G ! S must either restrict to an
epimorphism on Ni or else map Ni trivially. Since S is not abelian and N1 commutes
with N2, it cannot be that '.N1/ D '.N2/ D S . Thus Epi.G; S/ is the union
of the set of epimorphisms that map N1 trivially and the set of those that map N2

trivially; the former is bijective with Epi.�1; S/ and the latter with Epi.�2; S/. The
intersection of these sets is the set of epimorphisms where N1N2 maps trivially, and
this is bijective with jEpi.Q; S/j.
Proposition 2.6. Let P < H � H be the fibre product of 1 ! N ! H ! Q ! 1,
where H is finitely generated and Q is finitely presented. Let S be a non-abelian
finite simple group S . There is a bijection from Epi.P; S/ to Epi.H � H; S/ if and
only if Epi.Q; S/ D ;.
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Proof. The 0–1–2 Lemma (see, for instance, Lemma 2.1 in [5]) tells us that P is
finitely generated, so all of the sets Epi.�; S/ under consideration are finite. Let
N1 D P \ .H � 1/, let N2 D P \ .1 � H/, and note that P=Ni Š H (this is the
image of P under projection to one of the factors of H � H ). Also, P=N1N2 Š Q.
Lemma 2.5 tells us that jEpi.P; S/j D 2jEpi.H; S/j if and only if Epi.Q; S/ D ;.
A second application of that lemma, with H �1 in the role of N1 and 1�H in the role
of N2, and H �H in the role of G, implies that jEpi.H �H; S/j D 2jEpi.H; S/j.

2.3. Summary of the reduction. Let Kn be the sequence of complexes given by
Theorem B and let Qn D �1Kn. Combining Theorems 2.2 and 2.1, we obtain (by
means of an algorithmic procedure) finite presentations for residually finite groups
Pn and �n WD Hn � Hn and a monomorphism uW Pn ,! �n. Lemma 2.3 tells us that
Ou is an epimorphism if and only if yQn Š 1, and Proposition 2.4 tells us that yQn Š 1

also implies that Ou is an isomorphism. Finally, since Qn is perfect, yQn © 1 implies
Epi.Q; S/ ¤ ; for some finite non-abelian simple group S , in which case yPn 6Š y�n,
by Proposition 2.6.

3. Universal Central Extensions

In our proof of Theorem B we will need to construct and present universal central
extensions of groups.

A central extension of a group Q is a group zQ equipped with a homomorphism
� W zQ ! Q whose kernel is central in zQ. Such an extension is universal if given
any other central extension � 0W E ! Q of Q, there is a unique homomorphism
f W zQ ! E such that � 0 B f D � .

The standard reference for universal central extensions is [12], pp. 43–47. The
properties that we need here are these: Q has a universal central extension zQ if (and
only if) H1.Q; Z/ D 0; there is a short exact sequence

1 �! H2.Q; Z/ �! zQ �! Q �! 1;

and if Q has no non-trivial finite quotients, then neither does zQ.

The following result is Corollary 3.6 in [3]; the proof relies on an argument due
to Chuck Miller.

Proposition 3.1. There is an algorithm that, given a finite presentation hA j Ri of
a perfect group Q, will output a finite presentation hA j zRi for the universal central
extension zQ. Furthermore, j zRj D jAj.1 C jRj/.
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4. Classifying spaces for universal central extensions

In our earlier work on the triviality problem for profinite completions, we considered a
construction that transforms a presentation P for a group G into an aspherical complex
J.P / with fundamental group JG , such that yJG D yG. (See Definition 7.1 [9], in
which J.P / is denoted by S.P /.) In this section, our main task is to algorithmically
construct an aspherical complex that represents the universal central extension of JG .
We start by recalling the construction of J.P /.

4.1. The main construction. LetX be the standard 2-complex of a finitely presented
group J D hB j Si and let c be a parameterization of the edge corresponding to a
generator ˛ of infinite order. Let P � ha1; : : : ; an j r1; : : : ; rmi be a presentation of
a group G.

Definition 4.1. We define J.P / to be the 2-complex obtained from the standard
2-complex of the presentation P by replacing each 2-cell with a copy of X that is
attached with an annulus along which one can homotop the boundary cycle of the
deleted 2-cell to the loop c in X . Let JG be the fundamental group of J.P /.

Using subscripts to distinguish generators and relations in the m disjoint copies
of J , we get the following presentation of JG :

hB1; : : : ; Bm; a1; : : : ; an j S1; : : : ; Sm; r1˛�1
1 ; : : : ; rm˛�1

m i :

Remark 4.2. (1) The construction of J.P / from P is entirely algorithmic.

(2) The group JG is the fundamental group of a tree of groups T : the underlying
tree is Tm, which has m edges emanating from a central vertex; the local group
at the central vertex is free on ¹a1; : : : ; anº, the other vertex groups are copies
of J , and the edge groups are infinite cyclic.

(3) There is a canonical map JG ! G obtained by quotienting out the generators
Bi , for all i .

We shall require the following basic properties of this construction.

Proposition 4.3. Let X , J , P and G be as above.

(1) If J is perfect, then H1.JG ; Z/ Š H1.G; Z/.

(2) If X is aspherical, then J.P / is aspherical.

(3) If yJ Š 1, then the canonical map JG ! G induces an isomorphism yJG
Š�! yG.
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Proof. If J is perfect, then in the abelianization of JG , the generators from Bi must
all have trivial image for i D 1; : : : ; m. It follows that the abelianization of JG is
the abelianization of the group obtained by deleting all occurrences of the letters Bi

from the given presentation of JG , and this group is G. This proves (1).
Assertion (2) is a standard fact about graphs of aspherical spaces. See, for instance,

Proposition 3.6(ii) in [15].
To prove (3), note that since Ji Š J for i D 1; : : : ; m and yJ Š 1, each Ji < JG

has trivial image under every homomorphism 'W JG ! Q to a finite group. Thus '

factors through the quotient of JG by the normal closure of the Ji , as required.

4.2. Tubular bundles. We now introduce a class of spaces which conveniently
describe the universal central extensions of groups of the form JG .

Definition 4.4. Let d , n and m be positive integers and let Tm be the simplicial tree
with vertex set ¹v0; : : : ; vmº and edge set ¹¹v0; viºW i D 1; : : : mº. A tubular bundle
of type .d I n; m/ is defined by the following data:

(1) a family of finite combinatorial 2-complexes V D .Vi j i D 1; : : : ; m/;

(2) a family C D .ci j i D 1; : : : ; m/, where ci W S1 ! V
.1/

i is a locally injective
loop in the 1-skeleton of Vi ;

(3) a family of non-trivial reduced words R D .�.i/ j i D 1; : : : ; m/ in the free
group Fn D Free.a1; : : : ; an/ of rank n;

(4) a family of elements Z D .zi 2 Zd j i D 1; : : : ; m/.

Canonically associated to these data, there is a .d C 2/-dimensional space

K.V ; C ; R; Z/

defined as follows.
Let Yn denote the n-rose (1-vertex graph) whose 1-cells are oriented and labelled

a1; : : : ; an, and identify words u 2 Fn with edge-loops �uW S1 ! Yn based at
the vertex. Let T D Rd =Zd be the standard d -torus. Let � W Œ0; 1� ! S1 be a
parametrisation of S1. Then K.V ; C ; R; Z/ is the quotient of

.T � Yn/ t
ma

iD1

�
T � S1 � Œ0; 1�

�
i

t
ma

iD1

.T � Vi /

by the equivalence relation that attaches .T � S1 � ¹0º/i to T � Yn by .t; �; 0/ �
.t; ��.i/.�// and attaches .T � S1 � ¹1º/i to T � Vi by .t; �; 1/ � .t C �zi ; ci .�//.

Notation 4.5. When Vi and ci are independent of i (equal to X and c, say) we adopt
the abbreviated notation KX;c.R; Z/ and say that the complex is a tubular bundle of
type .d I n; m/ over .X; c/.

A sequence of such complexes Kn D KX;c.Rn; Zn/ is termed recursive if the
sequences Rn and Zn are recursively enumerable.
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Example 4.6. For fixed .X; c/ and .d I n; m/, the set of all tubular bundles of type
.d I n; m/ over .X; c/ is recursive.

Remark 4.7. (1) Because the attaching maps of the edge spaces are affine, there is a
simple algorithmic process that will subdivide KX;c.R; Z/ into a combinatorial CW
complex, thence a simplicial complex, but it is more natural to work with tubular
bundles since they faithfully and naturally encode the geometry of the situation that
interests us, with an economical amount of defining data.

(2) A technical advantage of tubular bundles over combinatorial CW-complexes
is the flexibility afforded by the fact that the attaching maps of the edge spaces can
map k-cells across cells of dimension greater than k. This is equally natural and
desirable when trying to cellulate torus bundles over the circle, for example.

(3) In Definition 4.4 we restricted to the case where the underlying graph is a tree,
the fibre is a torus, and the vertex spaces are combinatorial 2-complexes. We did so
because this is the case that is needed in the proof of Theorem B, but it is easy to
imagine other contexts in which one would want to relax these constraints.

Our interest in tubular bundles derives from the following proposition, which is
expressed in the notation of Subsection 4.1. In particular, G is the group with presen-
tation ha1; : : : ; an j r1; : : : ; rmi and X is the standard 2-complex of a presentation
for the group J , with ˛ 2 J a generator of infinite order.

Proposition 4.8. If X is aspherical, G is perfect, and H1.J; Z/ Š H2.J; Z/ Š 0,
then the universal central extension of JG is the fundamental group of an aspherical
tubular bundle KX;c.R; Z/ of type .d I n; m/, where d D m � n and R D .ri j i D
1; : : : ; m/.

Proof. Proposition 4.3 assures us that JG is perfect and therefore has a univer-
sal central extension. It also assures us that the 2-dimensional complex J.P / is
aspherical, so H2.JG ; Z/ is the kernel of the second boundary map in the cel-
lular chain complex of J.P /, hence free abelian. The rank of this group can
be calculated by Euler characteristic: on the one hand, since H1.JG ; Z/ Š 0,
we have 	.J.P // D rkH2.J.P /; Z/ C 1; on the other hand, counting cells, we
have 	.J.P // D m	.X/ C .1 � n/, whence 	.J.P // D m � n C 1, since
H1.X; Z/ Š H2.X; Z/ Š 0 implies that 	.X/ D 1.

Thus the universal central extension of JG has the form

1 �! Zm�n �! zJG

p�! JG �! 1: (1)

We are assuming that H2.J; Z/ D H2.X; Z/ Š 0, so restricting to Ji < G for each
i D 1; : : : ; m, we get a central extension

1 �! Zm�n �! p�1.Ji /
p�! Ji �! 1



742 M. R. Bridson and H. Wilton

that splits. And 1 ! Zm�n ! p�1.Fn/
p! Fn ! 1 also splits, where Fn D �1Yn.

We fix splittings 
i W Ji ! zJG and 
0W Fn ! zJG . Since (1) itself does not split, the
splittings 
i and 
0 cannot all agree on the edge groups h˛i i D Ji \ Fn, so at least
one of the elements zi WD 
0.ri/

�1
i .˛i / 2 Zm�n is non-trivial.
Via the projection zJG ! JG , we have an action of zG on the Bass–Serre tree of

the splitting JG D �1T from Remark 4.2. The kernel of the action on this tree is
the centre Zm�n of zJG . The resulting graph-of-groups decomposition of zJG has in
the middle the vertex group p�1.Fn/ Š Fn � Zm�n, and the other vertex groups
are p�1.Ji / D J � Zm�n (where we write D rather than Š because the splitting
is unique); the edge groups are of the form Zm�nC1 D Z � Zm�n, where the edge
morphisms respect the Zm�n D H2.JG ; Z/ factor. We realise this graph of groups as
a graph of spaces with vertex spaces Xi �T m�n and Yn �T m�n, with the edge-space
inclusions represented by the unique base-point preserving affine maps that induce the
desired maps at the level of �1. This inclusion map is the obvious one at the extremal
vertices, with the first factor of Z � Zm�n mapping to 
i .˛i /, the image of ˛i under

the unique splitting of p�1.Ji /
p! Ji . At the middle vertex, the decomposition

p�1.Fn/ Š Fn � Zm�n depends on the choice of splitting 
0W Fn ! p�1.Fn/ and,
correspondingly, while the central factor 1 � Zm�n in the edge group maps to the
second factor of p�1.Fn/, the generator of the first factor Z maps to 
0.ri /, which is

i .˛i /z

�1
i .

Thus we have exhibited zJG as the fundamental group of a graph of spaces whose
total space is KX;c.R; Z/ where R D .ri j i D 1; : : : ; m/ and Z D .zi j i D
1; : : : ; m/ with zi WD 
0.ri/

�1
i .˛i / 2 Zm�n.

Example 4.9. We shall need groups J with yJ D 1 that satisfy the hypotheses of
Proposition 4.8. The first such group was discovered by Graham Higman [10]; it has
the aspherical presentation

J D ha1; a2; a3; a4 j a�1
2 a1a2a�2

1 ; a�1
3 a2a3a�2

2 ; a�1
4 a3a4a�2

3 ; a�1
1 a4a1a�2

4 i:
Many more such examples are described in [5].

5. Proving Theorem B with a recursive class
of tubular bundles of type .dI n; m/

In [9] we constructed a recursive sequence of finite group presentations P .k/ �
hA j Rki (with A a fixed finite alphabet and Rk of a fixed cardinality) so that for the
groups G.k/ D jP .k/j,

¹k 2 N j 1G.k/ © 1º
is recursively enumerable but not recursive. We may also assume that the groups are
perfect. Let n D jAj, let m D jRkj, and let d D m � n.
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We fix a group J as in Example 4.9, take ˛ to be a generator of infinite order
and X to be the standard 2-complex of an aspherical presentation of J . We then
apply the construction of Subsection 4.1 to the sequence of presentations P .k/ to
obtain a recursive sequence of presentations J.P .k// for groups JG.k/.

According to Proposition 4.3, the groups JG.k/ are perfect, the presentations

J.P .k// are aspherical, and yJG.k/ Š 1 if and only if 1G.k/ Š 1. So Theorem B
would be proved at this stage if each H2.JG.k/; Z/ D 0. But Euler characteristic tells
us that this is not the case, because m > n. We therefore pass to the universal central
extension of JG.k/, appealing to Proposition 3.1 to derive a recursive sequence of
finite presentations zPk for the groups zJG.k/ , noting that zJG.k/ has a non-trivial finite
quotient if and only if JG.k/ does.

We will be done if we can describe an algorithm that, taking each zPk in turn,
produces an explicit model for the classifying space K. zPk; 1/.

Proposition 4.8 assures us that zJG.k/ is the fundamental group of an aspherical
tubular bundle KX;c.Rk; Z/ of type .d I n; m/. An obvious algorithm enumerates all
such bundles as Z varies, and the Seifert–van Kampen theorem provides an explicit
presentation for the fundamental group of each. Proceeding along this list of pre-
sentations with a naive search, we will eventually identify an isomorphism between
zJG.k/, as presented by zPk , and a presentation on the list. When such is found, our
algorithm outputs the corresponding complex KX;c.Rk; Z/ as the sought-after model

for the classifying space K. zPk; 1/.
This completes the proof of Theorem B.

Remarks 5.1. (1) The interested reader can verify that the presentations that we
constructed to prove Theorem A have the additional property that the sets An; Bn and
Sn are of fixed cardinality, while jRnj is uniformly bounded.

(2) If there exists a hyperbolic group that is not residually finite, then one can
prove Theorem A much more directly: if such a group exists, then Theorem 9.6 in [9]
will produce a recursive sequence of finite presentations Qn, each presenting a perfect
hyperbolic group Qn, so that there is no algorithm that can determine which of the
groups presented has trivial profinite completion; one can then apply the algorithm
of [7] to construct an explicit model for the 3-skeleton of a classifying space for the
universal central extension zQn; and one can use this sequence of complexes in place
of those yielded by Theorem B.
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