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670 E. Breuillard
1. Introduction

1.1. Groups with polynomial growth. Let G be a locally compact group with left
Haar measure volg. We will assume that G is generated by a compact symmetric
subset 2. Classically, G is said to have polynomial growth if there exist C > 0 and
k > 0 such that for any integer n > 1

volg (") < C - n*,

where Q" = Q...Q is the n-fold product set. Another choice for 2 would only
change the constant C, but not the polynomial nature of the bound. One of the
consequences of the analysis carried out in this paper is the following theorem.

Theorem 1.1 (Volume asymptotics). Let G be a locally compact group with polyno-
mial growth and Q a compact symmetric generating subset of G. Then there exists
c(2) > 0 and an integer d(G) > 0 depending on G only such that the following

holds: e (2")
volg
Jm  — e = <)

This extends the main result of Pansu [27]. The integer d(G) coincides with
the exponent of growth of a naturally associated graded nilpotent Lie group, the
asymptotic cone of G, and is given by the Bass—Guivarc’h formula (4) below. The
constant ¢ (€2) will be interpreted as the volume of the unit ball of a sub-Riemannian
Finsler metric on this nilpotent Lie group. Theorem 1.1 is a by-product of our study
of the asymptotic behavior of periodic pseudodistances on G, that is pseudodistances
that are invariant under a co-compact subgroup of G and satisfy a weak kind of the
existence of geodesics axiom (see Definition 4.1).

Our first task is to get a better understanding of the structure of locally compact
groups of polynomial growth. Guivarc’h [21] proved that locally compact groups of
polynomial growth are amenable and unimodular and that every compactly generated!
closed subgroup also has polynomial growth.

Guivarc’h [21] and Jenkins [15] also characterized connected Lie groups with
polynomial growth: a connected Lie group S has polynomial growth if and only
if it is of type (R), that is if for all x € Lie(S), ad(x) has only purely imaginary
eigenvalues. Such groups are solvable-by-compact and every connected nilpotent
Lie group is of type (R).

It is much more difficult to characterize discrete groups with polynomial growth,
and this was done in a celebrated paper of Gromov [17], proving that they are virtually
nilpotent. Losert [24] generalized Gromov’s method of proof and showed that it
applied with little modification to arbitrary locally compact groups with polynomial
growth. In particular he showed that they contain a normal compact subgroup modulo

'In fact it follows from the Gromov-Losert structure theory that every closed subgroup is compactly
generated.
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which the quotient is a (not necessarily connected) Lie group. We will prove the
following refinement.

Theorem 1.2 (Lie shadow). Let G be a locally compact group of polynomial growth.
Then there exists a connected and simply connected solvable Lie group S of type (R),
which is weakly commensurable to G. We call such a Lie group a Lie shadow of G.

Two locally compact groups are said to be weakly commensurable if, up to moding
out by a compact kernel, they have a common closed co-compact subgroup. More
precisely, we will show that, for some normal compact subgroup K, G/K has a
co-compact subgroup H/K which can be embedded as a closed and co-compact
subgroup of a connected and simply connected solvable Lie group S of type (R).

We must be aware that being weakly commensurable is not an equivalence relation
among locally compact groups (unlike among finitely generated groups). Addition-
ally, the Lie shadow S is not unique up to isomorphism (e.g. Z3 is a co-compact
lattice in both R? and the universal cover of the group of motions of the plane).

We cannot replace the word solvable by the word nilpotent in the above theorem.
We refer the reader to Example 7.9 for an example of a connected solvable Lie group of
type (R) without compact normal subgroups, which admits no co-compact nilpotent
subgroup. In fact this is typical for Lie groups of type (R). So in the general locally
compact case (or just the Lie case) groups of polynomial growth can be genuinely not
nilpotent, unlike what happens in the discrete case. There are important differences
between the discrete case and the general case. For example, we will show that no
rate of convergence can be expected in Theorem 1.1 when G is solvable not nilpotent,
while some polynomial rate always holds in the nilpotent discrete case [9].

Theorem 1.2 will enable us to reduce most geometric questions about locally
compact groups of polynomial growth, and in particular the proof of Theorem 1.1, to
the connected Lie group case. Observe also that Theorem 1.2 subsumes Gromov’s
theorem on polynomial growth, because it is not hard to see that a co-compact lat-
tice in a solvable Lie group of polynomial growth must be virtually nilpotent (see
Remark 7.8). Of course in the proof we make use of Gromov’s theorem, in its gener-
alized form for locally compact groups due to Losert. The rest of the proof combines
ideas of Y. Guivarc’h and D. Mostow and a crucial embedding theorem of H. C. Wang.
Itis given in §7.1 and is largely independent of the rest of the paper.

1.2. Asymptotic shapes. The main part of the paper is devoted to the asymptotic
behavior of periodic pseudodistances (also called periodic metric) on G. We refer
the reader to Definition 4.1 for the precise definition of this term, suffices it to say now
that it is a class of pseudodistances which contains both left-invariant word metrics
on G and geodesic metrics on G that are left-invariant under a co-compact subgroup
of G.
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Theorem 1.2 enables us to assume that G is a co-compact subgroup of a simply
connected solvable Lie group S, and rather than looking at pseudodistances on G,
we will look at pseudodistances on S that are left-invariant under a co-compact
subgroup H. More precisely a direct consequence of Theorem 1.2 is the following
proposition.

Proposition 1.3. Let G be a locally compact group with polynomial growth and p
a periodic metric on G. Then (G, p) is (1, C)-quasi-isometric to (S, ps) for some
finite C > 0, where S is a connected and simply connected solvable Lie group of
type (R) and ps some periodic metric on S.

Recall that two metric spaces (X, dx ) and (Y, dy) are called (1, C)-quasi-isometric
if there exists a map ¢: X — Y such that any y € Y is at distance at most C from
some element in the image of ¢ and if |dy (¢p(x), @(x")) — dx (x,x")| < C for all
x,x' € X.

In the case when S is R? and H is Z¢, it is a simple exercise to show that any
periodic pseudodistance is asymptotic to a norm on R?, i.e. p(e,x)/||x| — 1 as
X — oo, where ||x|| = lim %p(e, nx) is a well defined norm on R?. Burago in [6]
showed a much finer result, namely that if p is coarsely geodesic, then p(e, x) — || x||
is bounded when x ranges over R¢. When S is a nilpotent Lie group and H a lattice
in S, then Pansu proved in his thesis [27], that a similar result holds, namely that
p(e,x)/ |x| — 1 for some (unique only after a choice of a one-parameter group of
dilations) homogeneous quasi-norm |x| on the nilpotent Lie group. However, we
show in Section 8, that it is not true in general that p(e, x) — | x| stays bounded, even
for finitely generated nilpotent groups, thus answering a question of Burago (see also
Gromov [20]). Our main purpose here will be to extend Pansu’s result to solvable
Lie groups of polynomial growth.

As was first noticed by Guivarc’h in his thesis [21], when dealing with geometric
properties of solvable Lie groups, it is useful to consider the so-called nilshadow of
the group, a construction first introduced by Auslander and Green in [2]. According to
this construction, it is possible to modify the Lie product on S in a natural way, by so
to speak removing the semisimple part of the action on the nilradical, in order to turn
S into a nilpotent Lie group, its nilshadow Sy . The two Lie groups have the same
underlying manifold, which is diffeomorphic to R”, only a different Lie product. They
also share the same Haar measure. This “semisimple part” is acommutative relatively
compact subgroup 7'(S) of automorphisms of S, image of S under a homomorphism
T:S — Aut(S). The new product g * & is defined as follows by twisting the old one
g - h by means of T'(S),

gxh:=g-T(g "Hh (1)
The two groups S and Sy are easily seen to be quasi-isometric, and this is why any

locally compact group of polynomial growth G is quasi-isometric to some nilpotent
Lie group. In particular, their asymptotic cones are bi-Lipschitz. The asymptotic cone
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of a nilpotent Lie group is a certain associated graded nilpotent Lie group endowed
with a left invariant geodesic distance (or Carnot group). The graded group associated
to Sy will be called the graded nilshadow of S. Section 3 will be devoted to the
construction and basic properties of the nilshadow and its graded group.

In this paper, we are dealing with a finer relation than quasi-isometry. We will
be interested in when do two left invariant (or periodic) distances are asymptotic? (in
the sense that % — 1 when g — o0). In particular, for every locally compact
group G with polynomial growth, we will identify its asymptotic cone up to isometry
and not only up to quasi-isometry or bi-Lipschitz equivalence (see Corollary 1.9

below). One of our main results is the following theorem.

Theorem 1.4 (Main theorem). Let S be a simply connected solvable Lie group with
polynomial growth. Let p(x, y) be a periodic pseudodistance on S which is invariant
under a co-compact subgroup H of S (see Definition 4.1). On the manifold S, one can
put a new Lie group structure, which turns S into a stratified nilpotent Lie group, the
graded nilshadow of S, and a subFinsler metric doo(x, y) on S which is left-invariant
for this new group structure such that

ple, g)
deo(e, g)

as g — oo in S. Moreover every automorphism in T (H) is an isometry of doo.

The reader who wishes to see a simple illustration of this theorem can go directly
to subsection 8.1, where we have treated in detail a specific example of periodic
metric on the universal cover of the groups of motions of the plane.

The new stratified nilpotent Lie group structure on S given by the graded nilshadow
comes with a one-parameter family of so-called homogeneous dilations {8;}¢=¢. It
also comes with an extra group of automorphisms, namely the image of H under
the homomorphism 7. This yields automorphisms of S for both the original group
structure on S and the new graded nilshadow group structure. Moreover the dilations
{8 }+>0 are automorphisms of the graded nilshadow and they commute with T'(H ).

A subFinsler metric is a geodesic distance which is defined exactly as subRieman-
nian (or Carnot—Caratheodory) metrics on Carnot groups are defined (see e.g. [25]),
except that the norm used to compute the length of horizontal paths is not necessarily
a Euclidean norm. We refer the reader to Section 2.1 for a precise definition.

In Theorem 1.4 the subFinsler metric d is left invariant for the new Lie structure
on § and it is also invariant under all automorphisms in 7'(H ) (these form a relatively
compact commutative group of automorphisms). Moreover it satisfies the following
pleasing scaling law:

doo(8:(x), 81 (y)) = tdeo(x, y), 1>0.

2Yet a finer equivalence relation is (1, C)-quasi-isometry, i.e. being at bounded distance in Gromov—
Hausdorft metric; classifying periodic metrics up to this kind of equivalence is much harder.
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The proof of Theorem 1.4 splits in two important steps. The first is a reduction
to the nilpotent case and is performed in Section 5. Using a double averaging of
the pseudodistance p over both K := T'(H) and S/H, we construct an associated
pseudodistance, which is periodic for the nilshadow structure on S (i.e. left-invariant
by a co-compact subgroup for this structure), and we prove that it is asymptotic to
the original p. This reduces the problem to nilpotent Lie groups. The key to this
reduction is the following crucial observation: that unipotent automorphisms of S
induce only a sublinear distortion, forcing the metric p to be asymptotically invariant
under 7'(H). The second step of the proof assumes that S is nilpotent. This part is
dealt with in Section 6 and is essentially a reformulation of the arguments used by
Pansu in [27].

Incidently, we stress the fact that the generality in which Section 6 is treated (i.e.
for general coarsely geodesic, and even asymptotically geodesic periodic metrics) is
necessary to prove even the most basic case (i.e. word metrics) of Theorem 1.4 for
non-nilpotent solvable groups. So even if we were only interested in the asymptotics
of left invariant word metrics on a solvable Lie group of polynomial growth S, we
would still need to understand the asymptotics of arbitrary coarsely geodesic left
invariant distances (and not only word metrics!) on nilpotent Lie groups. This is
because the new pseudodistance obtained by averaging, see (30), is no longer a word
metric.

The subFinsler metric doo(e, x) in the above theorem is induced by a certain
T (H)-invariant norm on the first stratum m of the graded nilshadow (which is a
T (H)-invariant complementary subspace of the commutator subalgebra of the nil-
shadow). This norm can be described rather explicitly as follows.

Recall that we have® a canonical map 71: S — mj, which is a group homomor-
phism for both the nilshadow and graded nilshadow structures. Then

my(h)
ple, h)

vem . ullo<1t= ) chHuu{
FcCS

he H\F},

where the right hand side is the intersection over all compact subsets F of S of the
closed convex hull of the points 71 (h)/p(e, h) for h € H\F.

Figure 1.2 gives an illustration of the limit shape corresponding to the word metric
on the 3-dimensional discrete Heisenberg group with standard generators. We explain
in the Appendix how one can compute explicitly the geodesics of the limit metric and
the limit shape in this example.

3The subspace m can be identified with the abelianized nilshadow (or abelianized graded nilshadow)
by first identifying the nilshadow with its Lie algebra via the exponential map and then projecting modulo
the commutator subalgebra. The map does not depend on the choice involved in the construction of the
nilshadow. See also Remark 3.7.
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When S itself is nilpotent to begin with and p is (in restriction to H') the word
metric associated to a symmetric compact generating set 2 of H (namely pg (e, h) :=
inf{n € N;h € Q"}), the above norm takes the simple form

{v e my, ||v]eo < 1} = CvxHull{m;(w),w € Q}. 2)
For instance, in the special case when H is a torsion-free finitely generated nilpo-
tent group with generating set 2 and S is its Malcev closure, the unit ball {v €
mi, ||v]leo < 1} is a polyhedron in m. This was Pansu’s description in [27].

However when S is not nilpotent, and is equipped with a word metric pg on a
co-compact subgroup, then the determination of the limit shape, i.e. the determination
of the limit norm || - || .o On the abelianized nilshadow, is much more difficult. Clearly
| - lloo is K-invariant and it is a simple observation that the unit ball for || - || is
always contained in the convex hull of the K-orbit of 71(£2). Nevertheless the unit
ball is typically smaller than that (unless €2 was K-invariant to begin with).

In general it would be interesting to determine whether there exists a simple
description of the limit shape of an arbitrary word metric on a solvable Lie group
with polynomial growth. We refer the reader to Section 8 and §8.2 for an example of
a class of word metrics on the universal cover of the group of motions of the plane,
for which we were able to compute the limit shape.

Another by-product of Theorem 1.4 is the following result.

Corollary 1.5 (Asymptotic shape). Let S be a simply connected solvable Lie group
with polynomial growth and H a co-compact subgroup. Let p be an H -periodic
pseudodistance on S. Then in the Hausdorff metric,

Jlim5).(By(1) = €.

where € is a T (H )-invariant compact neighborhood of the identity in S, B,(t) is
the p-ball of radius t in S and {8;};>0 is a one-parameter group of dilations on S
(equipped with the graded nilshadow structure). Moreover,

€ = {g S S,doo(esg) = 1}

is the unit ball of the limit subFinsler metric from Theorem 1.4.

Proof. By Theorem 1.4, forevery ¢ > Owehave B;__(t—¢t) C By(t) C By (t+¢t)
if ¢ is large enough. Since 5%(Bdoo (t)) =€, forall t > 0, we are done. O

Combining this with Theorem 1.2, we also get the following corollary, of which
Theorem 1.1 is only a special case with p the word metric associated to the generating
set €2.
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Figure 1. The asymptotic shape of large balls in the Cayley graph of the Heisenberg group
H(Z)= (x,y | [x,[x,y]] = [y, [x, y]] = 1) viewed in exponential coordinates.

Corollary 1.6 (Volume asymptotics). Suppose that G is a locally compact group
with polynomial growth and p is a periodic pseudodistance on G. Let B,(t) be the
p-ball of radius t in G, i.e. By(t) = {x € G, p(e, x) < t}, then there exists a constant
c(p) > 0 such that the limit

L Yolg(By(1)
t—>+o00 1d(G)

= c(p) (3)
exists.

Here d(G) is the integer d(Sy), the so-called homogeneous dimension of the
nilshadow Sy of a Lie shadow S of G (obtained by Theorem 1.2), and is given by
the Bass—Guivarc’h formula

d(Sy) =) _ dim(C*(Sw)), “)

k>0

where {C¥(Sy)} is the descending central series of Sy .
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The limit c(p) is equal to the volume volgs (€) of the limit shape € from Corol-
lary 1.5 once we make the right choice of Haar measure on a Lie shadow S of G.
Let us explain this choice. Recall that according to Theorem 1.2, G/K admits a
co-compact subgroup H/K which embeds co-compactly in S. Starting with a Haar
measure volg on G, we get a Haar measure on G/ K after fixing the Haar measure
of K to be of total mass 1, and we may then choose a Haar measure on H/K so that
the compact quotient G/H has volume 1. Finally we choose the Haar measure on S
so that the other compact quotient S/(H/K) has volume 1. This gives the desired
Haar measure volg such that ¢(p) = volg (€).

Note that Haar measure on § is also invariant under the group of automorphisms
T(S) and is thus left invariant for the nilshadow structure on S. Itis also left invariant
for the graded nilshadow structure. In both exponential coordinates of the first kind
(on Su) and of the second kind (as in Lemma 3.10), Haar measure is just Lebesgue
measure.

In the case of the discrete Heisenberg group of dimension 3 equipped with the
word metric given by the standard generators, it is possible to compute the constant
c(p) and the volume of the limit shape as shown in Figure 1.2. In this case the
volume is % (see the Appendix). The 5-dimensional Heisenberg group can also
be worked out and the volume of its limit shape (associated to the word metric
given by standard generators) is equal to 221080790 + 312535 The fact that this number is
transcendental implies that the growth series of this group, i.e. the formal power series
Y =0 |Bo(n)|z" is not algebraic in the sense that it is not a solution of a polynomial
equation with rational functions in C(z) as coefficients (see [33], Proposition 3.3.).
This was observed by Stoll in [33] by more direct combinatorial means. Stoll also
shows there the interesting fact that the growth series can be rational for some other
choices of generating sets in the 5-dimensional Heisenberg group. So rationality of
the growth series depends on the generating set.

Another interesting feature is asymptotic invariance.

Corollary 1.7 (Asymptotic invariance). Let S be a simply connected solvable Lie
group with polynomial growth and p a periodic pseudodistance on S. Let x be the new
Lie product on S given by the nilshadow group structure (or the graded nilshadow
group structure). Then p(e, g * x)/p(e,x) — 1 as x — oo for every g € S.

This follows immediately from Theorem 1.4, when * is the graded nilshadow
product, and from Theorem 6.2 below in the case * is the nilshadow group structure.

It is worth observing that we may not in general replace * by the ordinary product
on S. Indeed, let for instance S = R x R? be the universal cover of the group
of motions of the Euclidean plane, then S, like its nilshadow R3, admits a lattice
I' ~ Z3. The quotient S/ T is diffeomorphic to the 3-torus R3/Z3 and it is easy to
find Riemannian metrics on this torus so that their lift to R? is not invariant under
rotation around the z-axis. Hence this metric, viewed on the Lie group S will not be
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asymptotically invariant under left translation by elements of S. Nevertheless, if the
metric is left-invariant and not just periodic, then we have the following corollary of
the proof of Theorem 1.4.

Corollary 1.8 (Left-invariant pseudodistances are asymptotic to subFinsler metrics).
Let S be a simply connected solvable Lie group of polynomial growth and p be
a periodic pseudodistance on S which is invariant under all left-translations by
elements of S (e.g. a left-invariant coarsely geodesic metric on S). Then there is a
left-invariant subFinsler metric d on S which is asymptotic to p in the sense that

52‘212 — las g — oo.

We already mentioned above that determining the exact limit shape of a word
metric on S is a difficult task. Consequently so is the task of telling when two distinct
word metrics are asymptotic. The above statement says that in any case every word
metric on S is asymptotic to some left-invariant subFinsler metric. So the set of
possible limit shapes is no richer for word metrics than for left-invariant subFinsler
metrics.

We note that in the case of nilpotent Lie groups (where K is trivial), Theorem 1.4
shows that every periodic metric is asymptotic to a left-invariant metric. It is still an
open problem to determine whether every coarsely geodesic periodic metric is at a
bounded distance from a left-invariant metric (this is Burago’s theorem in R”, more
about it below).

Theorems 1.2 and 1.4 allow us to describe the asymptotic cone of (G, p) for any
periodic pseudodistance p on any locally compact group with polynomial growth.

Corollary 1.9 (Asymptotic cone). Let G be a locally compact group with polynomial
growth and p a periodic pseudodistance on G. Then the sequence of pointed metric
spaces {(G, % P, €)}n>1 converges in the Gromov—Hausdorff topology. The limit is
the metric space (N, deo, €), where N is a graded simply connected nilpotent Lie
group and d a left invariant subFinsler metric on N. Moreover the Lie group N
is (up to isomorphism) independent of p. The space (N, dso) is isometric to “the
asymptotic cone” associated to (G, p). This asymptotic cone is independent of the
choice of ultrafilter used to define it.

This corollary is a generalization of Pansu’s theorem (eq. (10) in [27]). We
refer the reader to the book [18] for the definitions of the asymptotic cone and the
Gromov—Hausdorff convergence. We discuss in Section 8 the speed of convergence
(in the Gromov—Hausdorff metric) in this theorem and its corollaries about volume
growth. In particular there is a major difference between the discrete nilpotent case
and the solvable non nilpotent case. In the former, one can find a polynomial rate of
convergence [9], while in the latter no such rate exist in general (see Theorem 8.1).
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1.3. Folner sets and ergodic theory. A consequence of Corollary 1.6 is that se-
quences of balls with radius going to infinity are Folner sequences; namely, we have
the following corollary.

Corollary 1.10. Let G be a locally compact group with polynomial growth and p
a periodic pseudodistance on G. Let B,(t) be the p-ball of radius t in G. Then
{By(t)}t>0 form a Folner family of subsets of G namely, for any compact set F in
G, we have (A denotes the symmetric difference)

volg (FB,(t)AB,(1))
t—+oo volg (B, (1)) B

0. (5)

Proof. Indeed FB,(t)AB,(t) C B,(t 4+ c)\By(t) for some ¢ > depending on F.
Hence (5) follows from (3). O

This settles the so-called “localization problem” of Greenleaf for locally compact
groups of polynomial growth (see [16]), i.e. determining whether the powers of a
compact generating set {Q2"},, form a Folner sequence. At the same time it implies
that the ergodic theorem for G-actions holds along any sequence of balls with radius
going to infinity.

Theorem 1.11 (Ergodic theorem). Let be given a locally compact group G with poly-
nomial growth together with a measurable G-space X endowedwith a G -invariant er-
godic probability measure m. Let p be a periodic pseudodistance on G and B,(t) the
p-ball of radius t in G. Then for any p, 1 < p < 0o, and any function f € LP(X, m)
we have

Flgx)dg = /X fdm

lim ———
t——+00 VO]G(Bp(t)) By(t)

Jor m-almost every x € X and also in L? (X, m).

In fact, Corollary 1.10 above, was the “missing block™ in the proof of the ergodic
theorem on groups of polynomial growth. So far and to my knowledge, Corollary 1.10
and Theorem 1.11 were known only along some subsequence of balls {B,(#,)}x
chosen so that (5) holds (see for instance [10] or [34]). This issue was drawn to my
attention by A. Nevo and was my initial motivation for the present work. We refer
the reader to the A. Nevo’s survey paper [26], Section 5.

It later turned out that the mere fact that balls are Folner in a given polyno-
mial growth locally compact group can also be derived from the fact these groups
are doubling metric spaces (which is an easier result than the precise asymptotics
vol(Q2") ~ cqn?@ proved in this paper and only requires lower and upper bounds
of the form ¢;n?(@ < vol(Q7") < c>n9(@). This was observed by R. Tessera [35]
who rediscovered a cute argument of Colding and Minicozzi [11], Lemma 3.3, show-
ing that the volume of spheres 2711\ Q" is at most some O(n~%) times the volume
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of the ball Q", where § > 0 is a positive constant depending only on the doubling
constant the word metric induced by €2 in G.

In [9], we give a better upper bound (which depends only on the nilpotency class
and not on the doubling constant) for the volume of spheres in the case of finitely
generated nilpotent groups. This is done by showing the following error term in the
asymptotics of the volume of balls: we have vol(Q") = cqn?(©@ 4+ On©G)~r),
where o > 0 depends only on the nilpotency class r of G. We refer the reader to
Section 8 and to the preprint [9] for more information on this.

Finally we note that, while an error term for the volume of balls yields immediately
an upper bound on the volume of spheres, the converse is not true. An example is
given in §8.1 of a Lie group of polynomial growth for which the error term in the
asymptotics for the volume of balls tends to zero arbitrarily slowly. However the
above Colding—Minicozzi—Tessera upper bound on the volume of spheres holds very
generally for any locally compact group with polynomial growth.

1.4. A conjecture of Burago and Margulis. In[7], D. Burago and G. Margulis con-
jectured that any two word metrics on a finitely generated group which are asymptotic
(in the sense that 2L Eg 5; tends to 1 at infinity) must be at a bounded distance from
one another (in the sense that |p1 (e, v) — p2(e, y)| = O(1)). This holds for abelian
groups. An analogous result was proved by Abels and Margulis for word metrics
on reductive groups [1]. S. Krat [23] established this property for word metrics on
the Heisenberg group H3(Z). However using Theorem 1.4 (which in this particu-
lar case of finitely generated nilpotent groups is just Pansu’s theorem [27]) we will
show in Section 8.3, that there are counter-examples and exhibit two word metrics on
H3(Z) x Z which are asymptotic and yet are not at a bounded distance. For more on
this counter-example, and how to adequately modify the conjecture of Burago and
Margulis, we refer the interested reader to [9].

1.5. Organization of the paper. Sections 2—4 are devoted to preliminaries. In Sec-
tion 2 we present the basic nilpotent theory as can be found in Guivarc’h’s thesis [21].
In particular, a full proof of the Bass—Guivarc’h formula is given. In Section 3, we
recall the construction of the nilshadow of a solvable Lie group. In Section 4 we set
up the axioms and basic properties of the (pseudo)distance functions that are studied
in this paper.

Sections 57 contain the core of the proof of the main theorems. In Section 5, we
assume that G is a simply connected solvable Lie group and reduce the problem to
the nilpotent case. In Section 6, we assume that G is a simply connected nilpotent
Lie group and prove Theorem 1.4 in this case following the strategy used by Pansu
in [27]. In Section 7, we prove Theorem 1.2 for general locally compact groups and
reduce the proof of the results of the introduction to the Lie case.
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In the last section we make further comments about the speed of convergence.
In particular we give examples answering negatively the aforementioned question of
Burago and Margulis.

The appendix is devoted to the discrete Heisenberg groups of dimension 3 and 5.
We compute their limit balls, explain Figure 1.2, and recover the main result of
Stoll [33].

The reader who is mainly interested in the nilpotent group case can read directly
Section 6 while keeping an eye on Sections 2 and 4 for background notations and
elementary facts.

Finally, let us mention that the results and methods of this paper were largely
inspired by the works of Y. Guivarc’h [21] and P. Pansu [27].

Nota Bene. A version of this article circulated since 2007. The present version
contains essentially the same material; only the exposition has been improved and
several somewhat sketchy arguments have been replaced by full fledged proofs (in
particular in Sections 3 and 7). This delay is due to the fact that the author was
planning for a long time to improve Section 6 and show an error term in the volume
asymptotics of balls in nilpotent groups. E.Le Donne and the author recently managed
to achieve this and it has now become an independent joint paper [9].

2. Quasi-norms and the geometry of nilpotent Lie groups

In this section, we review the necessary background material on nilpotent Lie groups.
In §2.4, we give some crucial properties of homogeneous quasi norms and reproduce
some lemmata originally due to Y. Guivarc’h which will be used in the sequel. Mean-
while, we prove the Bass—Guivarc’h formula for the degree of polynomial growth of
nilpotent Lie groups, following Guivarc’h’s original argument.

2.1. Carnot-Caratheodory metrics. Let G be a connected Lie group with Lie
algebra g and let m be a vector subspace of g. We denote by | - || a norm on m;.

We now recall the definition of a left-invariant Carnot—Carathéodory metric also
called subFinsler metric on G. Let x,y € G. We consider all possible piecewise
smooth paths £:[0,1] — G going from £(0) = x to §(1) = y. Let &'(u) be the
tangent vector which is pulled back to the identity by a left translation, i.e.

=~k £, ©
u

where £'(u) € g and the notation £(u) - &' (u) means the image of &'(u) under the
differential at the identity of the left translation by the group element &(u). We say
that the path & is horizontal if the vector &' (u) belongs to m; for all u € [0, 1]. We
denote by J the set of piecewise smooth horizontal paths. The Carnot—Carathéodory
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metric associated to the norm || - || is defined by

1
d(x,y) = inf {/0 I§"a)lldu. § € JE, £(0) = x,&(1) = y},

where the infimum is taken over all piecewise smooth paths £:[0, 1] — N with
£(0) = x, £(1) = y that are horizontal in the sense that £ (u) € my for all u. If || - ||
is a Euclidean norm, the metric d(x, y) is also called subRiemannian. In this paper
however the norm || - || will typically not be Euclidean (it can be polyhedral like in the
case of word metrics on finitely generated nilpotent groups) and d(x, y) will only be
subFinsler. If m; = g, and || - || is a Euclidean (resp. arbitrary) norm on g, then d is
simply the usual left-invariant Riemannian (resp. Finsler) metric associated to || - ||.

Chow’s theorem (see, e.g. [19] or [25]) tells us that d(x, y) is finite for all x and
v in G if and only if the vector subspace m 1, together with all brackets of elements of
my, generates the full Lie algebra g. If this condition is satisfied, then d is a distance
on G which induces the original topology of G.

In this paper, we will only be concerned with Carnot—Caratheodory metrics on
a simply connected nilpotent Lie group N. In the sequel, whenever we speak of a
Carnot—Carathéodory metric on N, we mean one that is associated to a norm || - || on
a subspace m such that n = m; @ [n, n] where n = Lie(N). It is easy to check that
any such m generates the Lie algebra n.

Remark 2.1. Let us observe here that for such a metric d on N, forall x € N,
1 ()| < de, x),

where m; is the linear projection map from n (identified with N via exp) to m
with kernel [n, n]. Indeed, 71 gives rise to a homomorphism from N to the vector
space mj. And if £(u) is a horizontal path from e to x, then applying 7; to (6) we
get dd—um(g(u)) = £'(u), hence m1(x) = fol &' (u)du. Hence |1 (x)|| < d(e, x).
Moreover if x € my, there is equality in the above upper bound, namely ||x|| =
d(e, x), because then {rx};c[o,1] is a horizontal path of length |x|| connecting the
identity to x, hence a geodesic. Consequently we see that the image of the unit ball
centered at the identity in N under the projection 7y coincides with the unit ball for
I - || in my and that

{vemy, |lv] =1} = CvxHull {;T(le();))

2.2. Dilations on a nilpotent Lie group and the associated graded group. We now
focus on the case of simply connected nilpotent Lie groups. Let N be such a group
with Lie algebra n and nilpotency class r. For background about analysis on such
groups, we refer the reader to the book [12]. The exponential map is a diffeomorphism
between n and N. Most of the time, if x € n, we will abuse notation and denote the

,X € N\{e}}.
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group element exp(x) simply by x. We denote by {C?(n)}, the central descending
series for n, i.e. C#T1(n) = [n, C?(n)] with C°(n) = nand C"(n) = {0}.
Let (mp),>1 be a collection of vector subspaces of n such that for each p > 1,

CP () = CP(n) ® m,. 7

Then n = ®p21 mp and in this decomposition, any element x in n (or N by abuse
of notation) will be written in the form

X = Z 7p(x)

p=1

where 7, (x) is the linear projection onto m1,.

To such a decomposition is associated a one-parameter group of dilations (6;);=o.
These are the linear endomorphisms of n defined by

8:(x) =t¥x

for any x € m, and for every p. Conversely, the one-parameter group (8;);>0
determines the (mp),>1’s since they appear as eigenspaces of each §;, t # 1. The
dilations §; do not preserve a priori the Lie bracket on n. This is the case if and only if

[mp.mg] € mp4q (8)

for every p and g (where [m,,m,] is the subspace spanned by all commutators of
elements of m, with elements of mg,). If (8) holds, we say that the (m)),>1 form
a stratification of the Lie algebra n, and that n is a stratified (or homogeneous) Lie
algebra. It is an exercise to check that (8) is equivalent to require [m, mp] = mp41
for all p.

If (8) does not hold, we can however consider a new Lie algebra structure on
the real vector space n by defining the new Lie bracket as [x, y]oo = mp44([x. ¥])
if x € mp and y € my. This new Lie algebra ny is stratified and has the same
underlying vector space as n. We denote by N, the associated simply connected Lie
group. Moreover the (8;);>o form a one-parameter group of automorphisms of ne.
In fact the original Lie bracket [x, y] on n can be deformed continuously to [x, ¥]eo
through a continuous family of Lie algebra structures by setting

[x,y]: = 5%([5t)€,5t)’]) )

and letting ¢ — 4o00. Note that conversely, if the §;’s are automorphisms of n, then
[x,y] = mp4q([x, y]) forall x € mp and y € my, and n = ng.
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The graded Lie algebra associated to n is by definition

grn) = @ CPm)/C? (m)

p=0

endowed with the Lie bracket induced from that of n. The quotient map
mp —> CP(n)/CP*(n)

gives rise to a linear isomorphism between n and gr(n), which is a Lie algebra iso-
morphism between the new Lie algebra structure neo and gr(n). Hence stratified Lie
algebra structures induced by a choice of supplementary subspaces (,),>1 as in (7)
are all isomorphic to gr(n).

On N4 the left-invariant subFinsler metrics d associated to a choice of norm
on mj are of special interest. The one-parameter group of dilations {;}; is an
automorphism of N, and that

doo(8:X,8;y) = tdeo(x, y) (10)

for any x, y € N&. The metric space (N, dxo) is called a Carnot group.

If on the other hand the simply connected nilpotent Lie group N is not stratified,
then the group of dilations (8;), associated to a choice of supplementary vector
subspaces m;’s as in (7) will not consist of automorphisms of N and the relation (10)
will not hold.

Note also that if we are given two different choices of supplementary subspaces
m;’s and m;’s as in (7), then the left-invariant Carnot—Caratheodory metrics on the
corresponding stratified Lie groups are isometric if and only if (1, ||-||) and (m], ||-||")
are isometric (a linear isomorphism from m; to m’ that sends | - || to || - || extends
to an isometry of the two Carnot groups).

2.3. The Campbell-Hausdorff formula. The exponential map exp:n — N is a
diffeomorphism. In the sequel, we will often abuse notation and identify N and n
without further notice. In particular, for two elements x and y of n (or N equivalently)
xy will denote their product in N, while x 4+ y denotes the sum in n. Let (§;); be a
one-parameter group of dilations associated to a choice of supplementary subspaces
m;’s asin (7). We denote the corresponding stratified Lie algebra by ne, as above and
the Lie group by N. The product on N is denoted by x * y. On N, the dilations
(8¢); are automorphisms.

The Campbell-Hausdorff formula (see [12]) allows to give a more precise form
of the product in N. Let (e;)1<j<q be a basis of n adapted to the decomposition into
m;’s, thatis m; = span{e;,e; € m;}. Let x = x1e; +--- + xge4 the corresponding
decomposition of an element x € n. Then define the degree d; = deg(e;) to be the
largest j such thate; € C/~'(n). If &« = (a1, ..., 0g) € N? is a multi-index, then
let do, = deg(ei)ay + -+ + deg(eg)ag.
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The Campbell-Hausdorff formula yields

()i = Xi +yi + ) Capx®yP, (1n)

where Cy g are real constants and the sum is over all multi-indices o and B such that
dy + dg < deg(e;),dy > 1 and dg > 1.
From (9), it is easy to give the form of the associated stratified Lie group law

(x* )i =xi+yi+ Y Capx®y?, (12)

where the sum is restricted to those a’s and ’s such that dy, + dg = deg(e;), do > 1
and dg > 1.

2.4. Homogeneous quasi-norms and Guivarc’h’s theorem on polynomial growth.
Let n be a finite dimensional real nilpotent Lie algebra and consider a decomposition

n=m; &---Sm;

by supplementary vector subspaces as in (7). Let (8;);>0 be the one parameter group
of dilations associated to this decomposition, that is §; (x) = ' x if x € m;. We now
introduce the following definition.

Definition 2.2 (Homogeneous quasi-norm). A continuous function | - |:n — Ry is
called a homogeneous quasi-norm associated to the dilations (&;);, if it satisfies the
properties

i |x] =0 <= x=0.

(i) |8;(x)| = t|x]| forallz > 0.

Example 2.3. (1) Quasi-norms of supremum type, i.e. |x| = max, ||z, (x)|| 11,/ r
where || - ||, are ordinary norms on the vector space m,, and 7, is the projection on
mp as above.

(2) |x] = doo(e, x), where ds is a Carnot—Carathéodory metric on a stratified
nilpotent Lie group (as the relation (10) shows).

Clearly, a quasi-norm is determined by its sphere of radius 1 and two quasi-norms
(which are homogeneous with respect to the same group of dilations) are always
equivalent in the sense that

1
- I'ly <l =clhy (13)

for some constant ¢ > 0 (indeed, by continuity, | - | admits a maximum on the
“sphere” {|x|; = 1}). If the two quasi-norms are homogeneous with respect to two
distinct semi-groups of dilations, then the inequalities (13) continue to hold outside
a neighborhood of 0, but may fail near 0.

Homogeneous quasi-norms satisfy the following properties.
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Proposition 2.4. Let || be a homogeneous quasi-norm on n, then there are constants
C, Cq, Cy > 0 such that

(@) |x;| < C -|x|%e€) jfx = x1e, + -+ + Xnep in an adapted basis (¢;);;
(b) (b) |x7' < C-|x;

() () |x+yl=C-(x|+|yD;

(d) (d) |xy] < Ci(|x] + |y]) + Ca.

Properties (a), (b) and (c) are straightforward because |x| = max, ||7,(x)|| ,1,/ r
is a homogeneous quasi-norm and because of (13). Property (d) justifies the term
“quasi-norm” and follows from Lemma 2.5 below. It can be a problem that the
constant Cy in (d) may not be equal to 1. In fact, this is why we use the word quasi-
norm instead of just norm, because we do not require the triangle inequality axiom
to hold. However the following lemma of Guivarc’h is often a good enough remedy
to this situation. Let || - ||, be an arbitrary norm on the vector space m1,.

Lemma 2.5 (Guivarc’h [21], Lemme II.1). Let ¢ > 0. Up to rescaling each || - |,
into a proportional norm Ay| - ||, (A, > 0) if necessary, the quasi-norm |x| =
max, |7, (x) ||;/p satisfies

lxyl < lx|+ [yl +e (14)

forall x,y € N. If N is stratified with respect to (§;); we can take ¢ = 0.

This lemma is crucial also for computing the coarse asymptotics of volume growth.
For the reader’s convenience, we reproduce here Guivarc’h’s argument, which is based
on the Campbell-Hausdorff formula (11).

Proof. We fix A; = 1 and we are going to give a condition on the A;’s so that (14)
holds. The A;’s will be taken to be smaller and smaller as i increases. We set
|x| = max, ||er(x)||},/p and let |x|; = max, ||)Lpnp(x)||11,/p for any r-tuple of A;’s.
We want that for any index p < r,

Apllmp (e)llp = (Ixla + |yla + &)”. (15)

By (11) we have m,(xy) = np(x) + m,(y) + Pp(x,y) where P, is a polynomial
map into m, depending only on the 7; (x) and 7; (y) with i < p — 1 such that

1Py )lp < Cp- D My () Mpoa ()™,

I,m>1,l+m=<p

where My (x) := max; < ||7; (x) ||i1/i and C, > 0 is a constant depending on P, and
on the norms || - ||;’s. Since ¢ > 0, when expanding the right hand side of (15) all
terms of the form |x|a |3 with [ + m < p appear with some positive coefficient,
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say €1 ,. The terms |x |ff and |y |ff appear with coefficient 1 and cause no trouble since
we always have A, ||, (x)[, < |x|i’ and A, ||mp ()|, < |y|f. Therefore, for (15) to
hold, it is sufficient that

ApCp My (X) My (D)™ < &1 x| [¥I7

for all remaining / and m. However, clearly My (x) < Ay - |x|y where Ay =

max,-sk{l/)til/i} > 1. Hence a sufficient condition for (15) to hold is

where & = min &7 ,,. Since A,_; depends only on the first p — 1 values of the A;’s,
it is obvious that such a set of conditions can be fulfilled by a suitable r-tuple A. [

Remark 2.6. The constant C, in Property (d) above can be taken to be O when N is
stratified with respect to the m;’s (i.e. the §;’s are automorphisms), as is easily seen
after changing x and y into their image under §;. And conversely, if C, = 0 for some
8;-homogeneous quasi-norm on N, then N admits a stratification. Indeed, from (11)
and (12), we see that if the §,’s are not automorphisms, then one can find x,y € N
such that, when ¢ is small enough, |8; (xy) —8;(x)8,(y)| = ct"=Y/7 for some ¢ > 0.
However, combining Properties (¢) and Property (d) with C, = 0 above we must
have [6;(xy) — 8;(x)8;(y)| = O(t) near t = 0. A contradiction.

Guivarc’h’s lemma enables us to show the following theorem.

Theorem 2.7 (Guivarc’h ibid.). Let Q2 be a compact neighborhood of the identity in
a simply connected nilpotent Lie group N and pg(x,y) = inf{n > 1,x7 1y € Q"}.
Then for any homogeneous quasi-norm |- | on N, there is a constant C > 0 such that

1
Elxlfpsz(e,X)SCIXIJrC- (16)

Proof. Since any two homogeneous quasi-norms (with respect to the same one-
parameter group of dilations) are equivalent, it is enough to do the proof for one
of them, so we consider the quasi-norm obtained in Lemma 2.5 with the extra
property (14). The lower bound in (16) is a direct consequence of (14) and one
can take there C to be max{|x|,x € Q} + . For the upper bound, it suffices to
show that there is C € N such that for all n € N, if [x| < n then x € Qfn,
To achieve this, we proceed by induction of the nilpotency length of N. The result
is clear when N is abelian. Otherwise, by induction we obtain Cy € N such that
X =y - wCyn - Z Where ; € Q and z € C""1(N) whenever |x| < n. Hence
lz| < |x| + Con - max |w; | + &Cy -n < Cin for some other constant C; € N.
So we have reduced the problem to x = z € m, = C”~!(N) which is central in N.
We have z = z’l’r where |z1| = |z|/n < Cj. Since Q is a neighborhood of the
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identity in NV, the set U of all products of at most dim(m,) simple commutators of
length r of elements in € is a neighborhood of the identity in C"~1(N) (see e.g. [19],
p. 113). It follows that there is a constant C, € N such that z; is in U2, hence the
product of at most C, dim(m,) simple commutators. Then we are done because z
itself will be equal to the same product of commutators where each letter x; € 2 is
replaced by x'. This last fact follows from the following lemma.

Lemma 2.8. Let G be a nilpotent group of nilpotency class r and ny,...,n, be
positive integers. Then for any x1,...,xr € G

ni

P 82 X)) = [ e [ X

To prove the lemma it suffices to use induction and the following obvious fact: if
[x, ¥] commutes to x and y then [x", y] = [x, y]". O

Finally, we obtain the following corollary.

Corollary 2.9. Let Q be a compact neighborhood of the identity in N. Then there
are positive constants C1 and Cy such that for alln € N,

cin? < voly (Q%) < Con?,

where d is given by the Bass—Guivarc’h formula

d=>Yi-dimm,. (17

i>1

Proof. By Theorem 2.7, it is enough to estimate the volume of the quasi-norm balls.
By homogeneity of the quasi-norm, we have

voly{x, |x| <} = t¥voly{x, |x| < 1}. O

Remark 2.10. The use of Malcev’s embedding theorem allows, as Guivarc’h ob-
served, to deduce immediately that the analogous result holds for virtually nilpotent
finitely generated groups. This fact that was also proven independently by H. Bass [3]
by a direct combinatorial argument. See also Tits” appendix to Gromov’s paper [17].
In fact Guivarc’h’s Theorem 2.7 seems to have been rediscovered several times in
the past 40 years, including by Pansu in his thesis [27], the latest example of that
being [22].

3. The nilshadow

The goal of this section is to introduce the nilshadow of a simply connected solv-
able Lie group G. We will assume that G has polynomial growth, although this last
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assumption is not necessary for almost everything we do in this section. The only
statement which will be used afterwards in the paper (in Section 5) is Lemma 3.12
below. The reader familiar with the nilshadow can jump directly to the statement of
this lemma and skip the forthcoming discussion.

3.1. Construction of the nilshadow. The nilshadow of G is a simply connected
nilpotent Lie group Gy, which is associated to G in a natural way. This notion was
firstintroduced by Auslander and Green in [2] in their study of flows on solvmanifolds.
They defined it as the unipotent radical of a semi-simple splitting of G. However, we
are going to follow a different approach for its construction by working first at the
Lie algebra level. We refer the reader to the book [13] where this approach is taken
up.

Let g be a solvable real Lie algebra and n the nilradical of g. We have [g, g] C n.
If x € g, we write ad(x) = ads(x) + ad,(x) the Jordan decomposition of ad(x) in
GL(g). Since ad(x) € Der(g), the space of derivations of g, and Der(g) is the Lie
algebra of the algebraic group Aut(g), the Jordan components ads(x) and ad,(x)
also belong to Der(g). Moreover, for each x € g, ad;(x) sends g into n (because so
does ad(x) and adg(x) is a polynomial in ad(x)). Let b be a Cartan subalgebra of g,
namely a nilpotent self-normalizing subalgebra. Recall that the image of a Cartan
subalgebra by a surjective Lie algebra homomorphism is again a Cartan subalgebra.
Now since g/n is abelian, it follows that h maps onto g/n, i.e. h + n = g. Moreover
adg(x);p, = 0if x € b, because b is nilpotent.

Now pick any real vector subspace v of b in direct sum with n. Then the following
two conditions hold:

(i) vdn=g;
(i) ads(x)(y) =0, forall x,y € v.

From (i) and (ii), it follows easily that ads(x) commutes with ad(y), ads(y) and
ad, (y), for all x, y in v. We have the following lemma.

Lemma 3.1. The map v — Der(g) defined by x — ads(x) is a Lie algebra homo-
morphism.

Proof. First let us check that this map is linear. Let x, y € v. By the above ads(y)
and ad;(x) commute with each other (hence their sum is semi-simple) and commute
with ad, (x) + ad,(y). From the uniqueness of the Jordan decomposition it remains
to check that ad, (x) 4+ ad, () is nilpotent if x, y in v. To see this, apply the following
obvious remark twice to @ = ad,(x) and V' = ad(n) first and then to a = ad,(y)
and V = span{ad,(x), ad((ad(y))"x),n > 1} : Let V be a nilpotent subspace of
GL(g) and a € GL(g) nilpotent, i.e. V" = 0 and a™ = 0 for some n,m € N and
assume [a, V] C V. Then (a + V)"™ = 0.
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The fact that this map is a Lie algebra homomorphism follows easily from the fact
that all ads(x), x € v commute with one another and with [g, g] C n. O

We define a new Lie bracket on g by setting

[x,y]lnv = [x,y] —ads(xy)(y) + ads (yy) (X), (18)

where x, is the linear projection of x on v according to the direct sum v G n = g.
The Jacobi identity is checked by a straightforward computation where the following
fact is needed: ad; (ads(x)(y)) = O for all x, y € g. This holds because, as we just
saw, adg(x)(g) C nforall x € g, and ads(a) = 0ifa € n.

Definition 3.2. Let gy be the vector space g endowed with the new Lie algebra
structure [-, -]y given by (18). The nilshadow Gy of G is defined to be the simply
connected Lie group with Lie algebra gy .

It is easy to check that gy is a nilpotent Lie algebra. To see this, note first that
[on,on]ny C n,andif x € gy and y € nthen [x, y]ny = (ad,(xy) + ad(x,)) ().
However, ad, (xy) + ad(x,) is a nilpotent endomorphism of n as follows from the
same remark used in the proof of Lemma 3.1. Hence gy is a nilpotent.

The nilshadow Lie product on Gy will be denoted by * in order to distinguish
it from the original Lie product on G. In the sequel, we will often identify G (resp.
G ) with its Lie algebra g (resp. gy ) via their respective exponential map. Since the
underlying space of gx was g itself, this gives an identification (although not a group
isomorphism) between G and Gy . Then the nilshadow Lie product can be expressed
in terms of the original product as

gxh=g-(T(g"Hh).

Here T is the Lie group homomorphism G — Aut(G) induced by the above choice
of supplementary subspace v as follows:

T(e%)(e?) = exp(e’“@)p), a,beg. (19)

In other words, T is the unique Lie group homomorphism whose differential at the
identity is the Lie algebra homomorphism d,T: g — Der(g) given by d. T (a)(b) =
adg(ay)b, that is the composition of the map v — Der(g) from Lemma 3.1 with the
linear projection g — g/n >~ v.

It is easy to check that this definition of the new product is compatible with the
definition of the new Lie bracket.
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It can also be checked that two choices of supplementary spaces v as above yield
isomorphic Lie structures (see [13], Chapter III). Hence by abuse of language, we
speak of the nilshadow of g, when we mean the Lie structure on G induced by a
choice of v as above.

The following example shows several of the features of a typical solvable Lie
group of polynomial growth.

Example 3.3 (Nilshadow of a semi-direct product). Let G = R x, R" where ¢; €
GL, (R) is some one parameter subgroup given by ¢, = exp(tA) = k;u, where
A is some matrix in M, (R) and A = A + Ay is its Jordan decomposition, giving
rise to k; = exp(tAs) and u, = exp(tA,). The group G is diffeomorphic to R"*1,
hence simply connected. If all eigenvalues of A are purely imaginary, then G has
polynomial growth. However G is not nilpotent unless A; = 0. So let us assume
that neither Ay nor A, is zero. Then the nilshadow Gy is the semi-direct product
R x,, R™ where u, is the unipotent part of ¢;.

It is easy to compute the homogeneous dimension of G (or Gy ) in terms of the
dimension of the Jordan blocs of A4,,. If nj is the number of Jordan blocks of A4,, of
size k, then

d(G) =1 +Z@nk.
k>1

3.2. Basic properties of the nilshadow. We now list in the form of a few lemmata
some basic properties of the nilshadow.

Lemma 3.4. The image of T:G — Aut(G) is abelian and relatively compact.
Moreover T(T(g)h) = T (h) forany g, h € G.

Proof. Since G has polynomial growth it is of type (R) by Guivarc’h’s theorem.
Hence all ads(x) have purely imaginary eigenvalues. It follows that K is compact.
Since T factors through the nilradical, its image is abelian. The last equality follows
from (19) and the fact that, for all x, y € g, ads(ads(x)(y)) = 0. O

Lemma 3.5. 7(G) also belongs to Aut(Gy) and T is a group homomorphism
Gy — Aut(Gy).

Proof. The first assertion follows from (19) and the fact that d. T is a derivation of
gn as one can check from (18) and the fact that, for all x, y € g, ads(ads(x)(y)) = 0.
The second assertion then follows from Lemma 3.4. O

We denote by K the closure of 7(G) in Aut(G) = Aut(g).

Lemma 3.6 (K-actionon gy ). K preserves v and acts trivially on it. It also preserves
the ideals n and the central descending series {C'(gn)}i of gnN-
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Proof: It suffices to check that ad (v) preserves nand C (gn). It preserves n because
ad(x) preserves n for all x € g. It preserves C*(gn) because it acts as a derivation
of gy as we have already checked in the proof of Lemma 3.5. ]

Remark 3.7 (Well-definiteness of ). It is also easy to check from the definition
of the nilshadow bracket that the commutator subalgebra [gx, gn] and in fact each
term of the central descending series C’(gy ) is an ideal in g and does not depend on
the choice of supplementary subspace v used to defined the nilshadow bracket. In
particular the projection map 71: gy — gn/[gn. gn] is a well defined linear map on
g = gn (i.e. independently of the choice involved in the construction of the nilshadow
Lie bracket).

Lemma 3.8 (Exponential map). The respective exponential maps exp: g — G and
expy: 9N — Gy coincide onn and on v.

Proof. Since the two Lie products coincide on N = exp(n), so do their exponential
map. For the second assertion, note that 7(e~*V)v = v for every v € v because
ads(x)(y) = 0 for all x, y € v. It follows that {e’’}, is a one-parameter subgroup
for both Lie structures, hence it is equal to {expy (tv)};. O

Remark 3.9 (Surjectivity of the exponential map). The exponential map is not always
a diffeomorphism, as the example of the universal cover E of the group E of motions
of the plane shows (indeed any 1-parameter subgroup of E is either a translation
subgroup or a rotation subgroup, but the rotation subgroup is compact hence a torus,
so its lift will contain the (discrete) center of E, hence will miss every lift of a non
trivial translation). In fact, it is easy to see that if g is the Lie algebra of a solvable
(non-nilpotent) Lie group of polynomial growth, then g maps surjectively on the Lie
algebra of E. Hence, for a simply connected solvable and non-nilpotent Lie group
of polynomial growth, the exponential map is never onto. Nevertheless its image is
easily seen to be dense.

However, exponential coordinates of the second kind behave nicely. Note that
[ov.gn] C .

Lemma 3.10 (Exponential coordinates of the second kind). Let {C’ (g N)}iso be the
central descending series of gy (with C1(gn) = [gn, gn]) and pick linear subspaces
mj in gy such that C'(gn) = m; ® C'~Y(gn) fori > 2. Let £ be a supplementary
subspace of C1(gn) in n. Define exponential coordinates of the second kind by
setting

My @®---Dmy LBV —> G,
(C S} > expy (§7) * --- x expy (§1) * expy (V).

This map is a diffeomorphism. Moreover expy (&) * --- x expy (§1) * expy (v) =
efr . ... 81 e for all choices of v € v and & € m;.
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Proof. By Lemma 3.8 the exponential maps of G and Gy coincide on n and on v.
Moreover g * h = g - h whenever g belongs to the nilradical exp(n) of G. Hence

expy (§) * -+~ x expy (§1) * expy (v) = expy (&) - -+ - expy (§1) - expy (v)

:esr. .esl .ev_

The restriction of the map to n is a diffeomorphism onto exp(n), because this map
and its inverse are explicit polynomial maps (the &;’s are coordinates of the second
kind, see the book [12]). Now the map n & v — G sending (n,v) to e” - eV is
a diffeomorphism, because G is simply connected and hence the quotient group
G/ exp(n) isomorphic to a vector space and hence to exp(v). O

Lemma 3.11 (“Bi-invariant” Riemannian metric). There exists a Riemannian metric
on G which is left invariant under both Lie structures.

Proof. Indeed it suffices to pick a scalar product on g which is invariant under the
compact subgroup K = T(G) C Aut(g). O

We identify K = {T(g), g € G} with its image in Aut(g) under the canonical
isomorphism between Aut(G) and Aut(g). Recall that, according to Lemma 3.6, the
central descending series of g is invariant under adg(x) for all x € v and consists of
ideals of g. The same holds for n. It follows that these linear subspaces also invariant
under K. However since K is compact, its action on g is completely reducible.
Therefore we have proved the following lemma.

Lemma 3.12 (K-invariant stratification of the nilshadow). Let g be the Lie algebra
of a simply connected Lie group G with polynomial growth. Let gx be the nilshadow
Lie algebra obtained from a splitting g = n @ v as above (i.e. n is the nilradical and
v satisfies ads(x)(y) = 0 for every x,y € v). Let K := {T(g),g € G} C Aut(G),
where T is defined by (19). Then there is a choice of linear subspaces m;’s and {
such that

gN=m, P---Dmy LD, (20)

where each term is K-invariant, my := £ @ v and the central descending series of
gn satisfies C'(gn) = m; @ C'~Y(gn). Moreover the action on K can be read off
on the exponential coordinates of second kind in this decomposition, namely,

k(e‘g'r R .6’50) — k(eér), -k(eso)
= ek(g’) « tee e ek(s())

= expy (k(§;)) * - -+ x expy (k(§0))-
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4. Periodic metrics

In this section, unless otherwise stated, G will denote an arbitrary locally compact
group.

4.1. Definitions. By a pseudodistance (or metric) on a topological space X, we
mean a function p: X x X — Ry satisfying p(x,y) = p(y,x) and p(x,z) <
p(x,y) + p(y, z) for any triplet of points of X. However p(x, y) may be equal to 0
evenif x # y.

We will require our pseudodistances to be locally bounded, meaning that the
image under p of any compact subset of G x G is a bounded subset of R. To avoid
irrelevant cases (for instance p = 0) we will also assume that p is proper, i.e. the map
y + p(e, y) is a proper map, namely the preimage of a bounded set is bounded (we
do not ask that the map be continuous). When p is locally bounded then it is proper
if and only if y — p(x, y) is proper for any x € G.

A pseudodistance p on G is said to be asymptotically geodesic if for every ¢ > 0
there exists s > 0 such that for any x,y € G one can find a sequence of points
X1 =X, X2,...,X, = yin G such that

n—1
Y p(xi.xitn) < (1+e)p(x, y) @1

i=1

and p(x;, xj+1) <sforalli =1,...,n—1.

We will consider exclusively pseudodistances on a group G that are invariant
under left translations by all elements of a fixed closed and co-compact subgroup H
of G, meaning that forall x, y € G and all h € H, p(hx,hy) = p(x, y).

Combining all previous axioms, we set the following definition.

Definition 4.1. Let G be a locally compact group. A pseudodistance p on G will
be said to be a periodic metric (or H -periodic metric) if it satisfies the following
properties:

(i) pis invariant under left translations by a closed co-compact subgroup H;

(ii) p is locally bounded and proper;

(iii) p is asymptotically geodesic.

Remark 4.2. The assumption that p is symmetric, i.e. p(x,y) = p(y, x) is here
only for the sake of simplicity, and most of what is proven in this paper can be done
without this hypothesis.
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4.2. Basic properties. Let p be a periodic metric on G and H some co-compact
subgroup of G. The following properties are straightforward.

(1) p is at a bounded distance from its restriction to H. This means that if F is a
bounded fundamental domain for H in G and for an arbitrary x € G, if hy
denotes the element of H such that x € A, F, then |p(x, y) — p(hy, hy)| <C
for some constant C > 0.

(2) For all t > 0 there exists a compact subset K; of G such that, for all x, y € G,
we have p(x,y) <t = x" 'y € K,. Conversely, if K is a compact subset
of G, then there exists #(K) > O such that x~'y € K = p(x,y) < t(K).

(3) Ifp(x, y) = s,the x;’sin(21) canbe chosenin suchaway thats < p(x;, Xj+1) <
2s (one can take a suitable subset of the original x;’s).

(4) The restriction of p to H x H is a periodic pseudodistance on H. This means
that the x;’s in (21) can be chosen in H.

(5) Conversely, given a periodic pseudodistance pg on H, it is possible to extend
it to a periodic pseudodistance on G by setting p(x,y) = pu (hyx,h,) where
x = hy F for some bounded fundamental domain F for H in G.

4.3. Examples. Let us give a few examples of periodic pseudodistances.

(1) Let I be a finitely generated torsion free nilpotent group which is embedded as
a co-compact discrete subgroup of a simply connected nilpotent Lie group N. Givena
finite symmetric generating set S of I', we can consider the corresponding word metric
ds on I" which gives rise to a periodic metric on N given by p(x, y) = ds(yx, vy)
where x € yxF and y € y, F if F is some fixed fundamental domain for I" in N.

(2) Another example, given in [27], is as follows. Let N/ I" be a nilmanifold with
universal cover N and fundamental group I". Let g be a Riemannian metric on N/ T.
It can be lifted to the universal cover and thus gives rise to a Riemannian metric g on
N. This metric is I"-invariant, proper and locally bounded. Since I' is co-compact in
N, itis easy to check that it is also asymptotically geodesic hence periodic.

(3) Any word metric on G. That s, if Q2 is a compact symmetric generating subset
of G, let Aq(x) = inf{n > 1, x € Q"}. Then define p(x, y) = Aq(x~'y). Clearly
p is a pseudodistance (although not a distance) and it is G-invariant on the left, it is
also proper, locally bounded and asymptotically geodesic, hence periodic.

(4) If G is a connected Lie group, any left invariant Riemannian metric on G.
Here again H = G and we obtain a periodic distance. Similarly, any left invariant
Carnot—Carathéodory metric on G will do.

Remark 4.3 (Berestovski’s theorem). According to a result of Berestovski [5] every
left-invariant geodesic distance on a connected Lie group is a subFinsler metric as
defined in §2.1.
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4.4. Coarse equivalence between invariant pseudodistances. The next proposi-
tion is basic.

Proposition 4.4. Let py and p; be two periodic pseudodistances on G. Then there is
a constant C > 0 such that forall x,y € G

1
5pz(x, y)—C = pi(x,y) = Cpa(x,y) + C. (22)

Proof. Clearly it suffices to prove the upper bound. Let s > 0 be the number cor-
responding to the choice ¢ = 1 in (21) for p,. From 4.2(2), there exists a compact
subset K in G such that pp(x,y) < 2s => x~ 'y € Ky, and there is a constant
t = t(Kays) > Osuchthat x™'y € Kos => py(x,y) <t. Let C = max{2t/s,1},
andletx,y € G.If po(x, y) < sthenp;(x, y) < ¢ sotherighthand side of (22) holds.
If p2(x, y) > s then, from (21) and 4.2(3), we get a sequence of x;’s in G from x to y
such that s < pa(x;, xj4+1) < 2s and Zjlv p2(xi, Xit1) < 2p2(x, y). It follows that
p1(xi. xiy1) <t forall i. Hence py(x,y) < Y p1(xi, xit1) < Nt < 21py(x.y)
and the right hand side of (22) holds. O

In the particular case when G = N 1is a simply connected nilpotent Lie group, the
distance to the origin x — p(e, x) is also coarsely equivalent to any homogeneous
quasi-norm on N. We have,

Proposition 4.5. Suppose N is a simply connected nilpotent Lie group. Let p; be
a periodic pseudodistance on N and | - | be a homogeneous quasi-norm, then there
exists C > 0 such that for all x € N

1
chTYI=C=pxy) =ClTly+C (23)

Moreover; if py is a periodic pseudodistance on the stratified nilpotent group Nso
associated to N, then again, there is a constant C > 0 such that

1
Epz(e,x) —C < pi(e,x) < Cpa(e, x) + C. (24)

The proposition follows at once from Guivarc’h’s theorem (see Corollary 2.7
above), the equivalence of homogeneous quasi-norms, and the fact that left-invariant
Carnot—Caratheodory metrics on N, are homogeneous quasi norms. However, since
the group structures on N and N, differ, (24) cannot in general be replaced by the
stronger relation (22) as simple examples show.

The next proposition is of fundamental importance for the study of metrics on Lie
groups of polynomial growth.
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Proposition 4.6. Let G be a simply connected solvable Lie group of polynomial
growth and G its nilshadow. Let p and py be arbitrary periodic pseudodistances
on G and Gy respectively. Then there is a constant C > 0 such that forall x,y € G

1

oy y)—C =px.y) = Con(x.y) +C. (25)
Proof. According to Proposition 4.4, it is enough to show (25) for some choice of
periodic metrics on G and Gy . But in Lemma 3.11 we constructed a Riemannian
metric on G which is left invariant for both G and G . We are done. 1

4.5. Right invariance under a compact subgroup. Here we verify that, given a
compact subgroup of G, any periodic metric is at bounded distance from another
periodic metric which is invariant on the right by this compact subgroup. Let K be
a compact subgroup of G and p a periodic pseudodistance on G. We average p with
the help of the normalized Haar measure on K to get

oX(x,y) = / p(xky, yko)dkidks. (26)
KxK
Then the following holds.

Lemma 4.7. There is a constant Cy > 0 depending only on p and K such that for
allki,k, € Kandallx,y € G

lo(xk1, yk2) — p(x, y)| < Co. (27

Proof. From 4.2(2), there exists ¢t = ¢(K) > Osuch that, forall x € G, p(x, xk) <t.
Applying the triangle inequality, we are done. O

Hence we obtain the following proposition.

Proposition 4.8. The pseudodistance pX is periodic and lies at a bounded distance
from p. In particular, as x tends to infinity in G the following limit holds

K
M =1 (28)
x—00 p(e, x)
Proof. FromLemma 4.7 and 4.2(3), it is easy to check that pX must be asymptotically
geodesic, and periodic. Integrating (27) we get that pX is at a bounded distance from
p and (28) is obvious. O

If K is normal in G, we thus obtain a periodic metric pX on G/K such that
pX(p(x), p(»)) is at a bounded distance from p(x, y), where p is the quotient map
G — G/K.
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5. Reduction to the nilpotent case

In this section, G denotes a simply connected solvable Lie group of polynomial
growth. We are going to reduce the proof of the theorems of the Introduction to the
case of a nilpotent G. This is performed by showing that any periodic pseudodistance
pon G is asymptotic to some associated periodic pseudodistance p on the nilshadow
G . We state this in Proposition 5.1 below.

The key step in the proof is Proposition 5.2 below, which shows the asymptotic
invariance of p under the “semisimple part” of G. The crucial fact there is that the
displacement of a distant point under a fixed unipotent automorphism is negligible
compared to the distance from the identity (see Lemmata 5.4 and 5.5), so that the
action of the semisimple part of large elements can be simply approximated by their
action by left translation.

5.1. Asymptotic invariance under a compact group of automorphisms of G.
The main result of this section is the following. Let G be a connected and simply
connected solvable Lie group with polynomial growth and Gy its nilshadow (see
Section 3).

Proposition 5.1. Let H be a closed co-compact subgroup of G and p an H -periodic
pseudodistance (see Definition 4.1) on G. There exist a closed subset Hx containing
H which is a co-compact subgroup for both G and Gy, and an Hg-periodic (for
both Lie structures) pseudodistance pg such that

. pk(e,x)
lim ———= =

=1. 29
A% o) @

The closed subgroup Hx will be taken to be the closure of the group generated by
all elements of the form k (%), where & belongs to H and k belongs to the closure K
in the group Aut(G) of the image of H under the homomorphism 7: G — Aut(G)
introduced in Section 3. It is easy to check from the definition of the nilshadow
product (1) that this is indeed a subgroup in both G and its nilshadow G .

The new pseudodistance pk is defined as follows, using a double averaging pro-
cedure.

pr(x.y) = /H y /K p(gk(x). gk () dkdp(g). (30)

Here the measure u is the normalized Haar measure on the coset space H\ Hg
and dk is the normalized Haar measure on the compact group K. Recall that all
closed subgroups of S are unimodular (since they have polynomial growth by [21],
Lemme I[.3). Hence the existence of invariant measures on the coset spaces.

An essential part of the proof of Proposition 5.1 is enclosed in the following
statement.
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Proposition 5.2. Let p be a periodic pseudodistance on G which is invariant under
a co-compact subgroup H. Then p is asymptotically invariant under the action of
K ={T(h),h € H} C Aut(G). Namely, (uniformly) for all k € K,

ple.k(x)

lim =1 31)

x—o0  p(e, x)
The proof of Proposition 5.2 splits into two steps. First we show thatitis enough to
prove (31) for a dense subset of k’s. This is a consequence of the following continuity
statement.

Lemma 5.3. Let ¢ > 0, then there is a neighborhood U of the identity in K such
that, for all k € U,
—  px.kx))
<e

Imy_yoo————
e e X)

Then we show that the action of 7'(g) can be approximated by the conjugation
by g, essentially because the unipotent part of this conjugation does not move x very
much when x is far. This is the content of the following lemma.

Lemma 5.4. Let p be a periodic pseudodistance on G which is invariant under a
co-compact subgroup H. Then for any ¢ > 0, and any compact subset F in H there
is 5o > 0 such that

lp(e. T'(h)x) — pe. hx)| < ep(e. x)

SJorany h € F and as soon as p(e, x) > sp.

Proof of Proposition 5.2 modulo Lemmata 5.3 and 5.4. As pis assumed to be H -in-
variant, for every h € H, we have p(e, h~'x)/p(e, x) — 1. The proof of the propo-
sition then follows immediately from the combination of the last two lemmata. [

5.2. Proof of Lemmata (5.3) and (5.4). We choose K -invariant subspaces m;’s and
£ of the nilshadow gy of g as in Lemma 3.12 from Section 3. In particular

gN=m; B - Pmy LD,

where each term is K-invariant, n = [gy, gy] @ [and Ci(gy) = m; ® C' 1 (gn).
Moreover §;(x) = t'x if x € m; (here m; = { & v).

We also set v(x) = max; ||&; ||i1/d” if x = expy (&) x---xexpy(§o)and d; =i
ifi > 0and dy = 1. And we let |x| := max; ||x,~||1/di ifx =x4+-4+x1 +x0in
the above direct sum decomposition.

Note that | - | is a §;-homogeneous quasi-norm. Moreover, it is straightforward to
verify (using the Campbell-Hausdorff formula (12) and Proposition 2.4) that v(x) <
C|x| 4+ C for some constant C > 0. In particular & /|x|% remains bounded as |x]|
becomes large.
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Proof of Lemma 5.3. Combining Propositions 4.5 and 4.6, there is a constant C > 0
such thatforall x, y € G, p(x,y) < C|x*~! % y|+ C. Therefore we have reduced to
prove the statement for | - | instead of p, namely it is enough to show that [x*~1 x k(x)|
becomes negligible compared to |x| as |x| goes to infinity and k tends to 1.

It follows from the Campbell-Baker—Hausdorff formula (11) and (12) that, if
x,y € Gy and |x|, |y| are O(¢), then |8%(x xy) —8%()6) *8%(y)| = 0@ V7"), and
similarly |5% (X1 % %X) —5%()61) *e -*5% (xm)| = Op(t~/7), for m elements x;
with |x;| = O(¢). Hence when writing x = expy (&) * --- * expy (§0), and setting
t = |x|, we thus obtain that the following quantity

8 (x* M wk() = [T expy(=t7%E) * [T expy ™ ik(5-1)

o<i<r o<i<r

is a O(t~'/"). Indeed recall from Lemma 3.12 that k(x) = expy (k(&)) * -+ %
expy (k(§0)). As x gets larger, each t~%i & remains in a compact subset of m;.
Therefore, as k tends to the identity in K, each t~% k(&;) becomes uniformly close
to r~% §; independently of the choice of x € Gy as long as r = |x| is large. The
result follows. O

Proof of Lemma 5.4. Recall that hx = h % T'(h)x for all x,h € G (see (1). By
the triangle inequality it is enough to bound p(y, & * y), where y = T'(h)x. From
Propositions 4.5 and 4.6, p is comparable (up to multiplicative and additive constants
to the homogeneous quasi-norm | - |. Hence the Lemma follows from the following
lemma.

Lemma 5.5. Let N be a simply connected nilpotent Lie group and let | - | be a
homogeneous quasi norm on N associated to some 1-parameter group of dilations
(8¢)¢. Forany € > 0 and any compact subset F of N, there is a constant s, > 0 such
that

Ix~'gx| < elx|

forall g € F and as soon as |x| > ;.

Proof. Recall, as in the proof of the last lemma, that for any ¢; > O thereisac, > 0
such thatif # > 1 and x, y € N are such that |x/|, |y| < c1, then

61 (xy) =81(x) *81(¥)| = otV
In particular, if we set ¢t = |x|, then
161 (x7gx) =81 ()7 % 81(g) * 81 (V)] = oot
On the other hand, as g remains in the compact set F, § 1 (g) tends uniformly to

the identity when ¢ = |x| goes to infinity, and &1 (x) remains in a compact set.
t

By continuity, we see that § 1 (x)" ' x81(g) *$ 1 (x) becomes arbitrarily small as ¢
t
increases. We are done. O
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5.3. Proof of Proposition 5.1. First we prove the following continuity statement.

Lemma 5.6. Let p be a periodic pseudodistance on G and € > 0. Then there exists
a neighborhood of the identity U in G and s3 > 0 such that

ple.gx) _

I—¢=< <
p(e, x)

1+¢

as soon g € U and p(e, x) > s3.
Proof. Let py be a left invariant Riemannian metric on the nilshadow Gy .

lp(e, x) — ple, gx)| < p(x,gx) < p(x,g * x) + p(g * x, gx)

However p(a,b) < Cpy(a,b) + C for some C > 0 by Proposition 4.6. Moreover
by (1) we have gx = g * T'(g)x. Hence

[p(e.x) — p(e.gx)| = Con(x.g % x) + Con(x.T(g)x) + 2C.
To complete the proof, we apply Lemmata 5.5 and 5.3 to the right hand side above. [

Proof of Proposition 5.1. Let L be the set of all g € G such that p(e, gx)/p(e, x)
tends to 1 as x tends to infinity in G. Clearly L is a subgroup of G. Lemma 5.6
shows that L is closed. The H -invariance of p insures that L contains H. Moreover,
Proposition 5.2 implies that L is invariant under K. Consequently L contains Hg,
the closed subgroup generated by all k(h), k € K, h € H. This, together with
Proposition 5.2, grants pointwise convergence of the integrand in (29). Convergence
of the integral follows by applying Lebesgue’s dominated convergence theorem.

The fact that pg is invariant under left multiplication by H and invariant under
precomposition by automorphisms from K insures that pg is invariant under *-left
multiplication by any element 7 € H, where * is the multiplication in the nilshadow
G . Moreover we check that T (g) € K if g € Hk, hence Hg is a subgroup of Gy .
It is clearly co-compact in G too (if F is compactand HF = G then H x Fx = G
where Fx is the union of all k(F), k € K).

Clearly pg is proper and locally bounded, so in order to finish the proof, we need
only to check that pg is asymptotically geodesic. By H -invariance of pgx and since
H is co-compact in G, it is enough to exhibit a pseudogeodesic between e and a
pointx € H.Letx =zy---- -z, withz; € H and )_ p(e,z;) < (1 4+ ¢) - p(e, x).
Fix a compact fundamental domain F for H in Hg so that integration in (29) over
H\ Hg is replaced by integration over F. Then for some constant Cr > 0 we have
lp(g,gz) — ple,gz)] < Cr for g € F and z € H. Moreover, it follows from
Proposition 5.2, Lemma 5.6 and the fact that Hx C L, that

ple.gk(z)) = (1 +¢)-ple.z) (32)
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forall g € F, k € K and as soon as z € G is large enough. Fix s large enough
so that Cr < es and so that (32) holds when p(e,z) > 5. As already observed in
the discussion following Definition 4.1, property 4.2(3), we may take the z;’s so that
S

5 < ple,zi) < s.Then nCr < nse < 3ep(e, x). Finally we get for ¢ < 1 and x

large enough

ZpK(e,Zi) <Crn+ 1+ e)zp(e,x)
< Crn + (14 &)’pk(e, x)
< (1 + 10¢) - px (e, x)

where we have used the convergence pg/p — 1 that we just proved. O

6. The nilpotent case

In this section, we prove Theorem 1.4 and its corollaries stated in the Introduction
for a simply connected nilpotent Lie group. We essentially follow Pansu’s argument
from [27], although our approach differs somewhat in its presentation. Throughout
the section, the nilpotent Lie group will be denoted by N, and its Lie algebra by n.

Let m; be any vector subspace of n such that n = m; @ [n,n]. Let m; the
associated linear projection of n onto m;. Let H be a closed co-compact subgroup
of N. To every H -periodic pseudodistance p on N we associate a norm || - ||o on
m1 which is the norm whose unit ball is defined to be the closed convex hull of all
elements 711 (h)/p(e, h) for all h € H\{e}. In other words,

m1(h)
ple, h)

The set E is clearly a convex subset of 1 which is symmetric around O (since p is
symmetric). To check that E is indeed the unit ball of a norm on m; it remains to
see that E is bounded and that 0 lies in its interior. The first fact follows immediately
from (23) and Example 2.3. If O does not lie in the interior of £, then £ must be
contained in a proper subspace of my, contradicting the fact that H is co-compact
inN.

Taking large powers h”", we see that we can replace the set H \ {e} in the above
definition by any neighborhood of infinity in H. Similarly, it is easy to see that the
following holds.

E:={xem,|x|o<1}= chHuu{ he H\{e}}. (33)

Proposition 6.1. Fors > 0 let E be the closed convex hull of all w1 (x)/p(e, x) with
x € N and p(e,x) > s. Then E = (\,-¢ Es.
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Proof. Since p is H -periodic, we have p(e, h"*) < np(e,h)foralln € Nandh € H.
This shows E C (). Es. The opposite inclusion follows easily from the fact that
p is at a bounded distance from its restriction to H, i.e. from 4.2(1). |

We now choose a set of supplementary subspaces (m; ) starting with 77 as in §2.2.
This defines a new Lie product x on N so that Noo = (N, %) is stratified. We can
then consider the *-left invariant Carnot—Carathéodory metric associated to the norm
|| - o as defined in §2.1 on the stratified nilpotent Lie group Noo. In this section, we
will prove Theorem 1.4 for nilpotent groups in the following form.

Theorem 6.2. Let p be a periodic pseudodistance on N and d o the Carnot—Carathéo-
dory metric defined above, then as x tends to infinity in N

. ple.x)
lim ——— = 34
dOO (e ’ X ) ( )
Note that d is left-invariant for the Ny, Lie product, but not the original Lie
product on N.
Before going further, let us draw some simple consequences.

(1) In Theorem 6.2 we may replace doo(e, x) by d(e, x), where d is the left
invariant Carnot—Caratheodory metric on N (rather than N,) defined by the norm
Il llo (as opposed to doo Which is x-left invariant). Hence p, d and d are asymptotic.
This follows from the combination of Theorem 6.2 and Remark 2.1.

(2) Observe that the choice of 1, was arbitrary. Hence two Carnot—Carathéodory
metrics corresponding to two different choices of a supplementary subspace m; with
the same induced norm on n/[n, n], are asymptotically equivalent (i.e. their ratio tends
to 1), and in fact isometric; see Remark 2.1. Conversely, if two Carnot—Carathéodory
metrics are associated to the same supplementary subspace m; and are asymptotically
equivalent, they must be equal. This shows that the set of all possible norms on the
quotient vector space n/[n, n] is in bijection with the set of all classes of asymptotic
equivalence of Carnot—Carathéodory metrics on Neo.

(3) As another consequence we see that if a locally bounded proper and asymptot-
ically geodesic left-invariant pseudodistance on N is also homogeneous with respect
to the 1-parameter group (6;); (i.e. p(e, §;x) = tp(e, x)) then it has to be of the form
p(x,y) = deo(e, x7'y) where d, is a Carnot—Carathéodory metric on Neo.

6.1. Volume asymptotics. Theorem 6.2 also yields a formula for the asymptotic
volume of p-balls of large radius. Let us fix a Haar measure on N (for example
Lebesgue measure on n gives rise to a Haar measure on N under exp). Since doo is
homogeneous, it is straightforward to compute the volume of a d-ball:

vol({x € N, doo(e,x) < t}) = t“Mvol({x € N, dso(e, x) < 1})
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where d(N) = Zizl dim(C’ (n)) is the homogeneous dimension of N. For a pseu-
dodistance p as in the statement of Theorem 6.2, we define the asymptotic volume of p
to be the volume of the unit ball for the associated Carnot—Carathéodory metric do,

AsVol(p) = vol({x € N,d(e, x) < 1}).

Then we obtain as an immediate corollary of Theorem 6.2.

Corollary 6.3. Let p be periodic pseudodistance on N. Then

. 1
t—lirfoo M—N)VOI({x € N, p(e,x) <t}) = AsVol(p) > 0.
Finally, if I" is an arbitrary finitely generated nilpotent group, we need to take
care of the torsion elements. They form a normal finite subgroup 7" and applying
Theorem 6.2 to I'/ T, we obtain the following corollary.

Corollary 6.4. Let S be a finite symmetric generating set of I' and S" the ball of
radius n is the word metric ps associated to S, then

lim —usn = 4. ASVOl05)
n—+oo pdN) vol(N/T)

’

where N is the Malcev closure of T = T /_ T, the torsion free quotient of T, and dg
is the word pseudodistance associated to S, the projection of S in T'.

Moreover, it is possible to be a bit more precise about AsVol(pz). In fact, the norm
|| - lo on my used to define the limit Carnot—Carathéodory distance do, associated to
pg is a simple polyhedral norm defined by

{llx|lo < 1} = CvxHull(71(5),s € S).

More generally the following holds. Let H be any closed, co-compact subgroup
of N. Choose a Haar measure on H so that voly (N/H) = 1. Theorem 6.2 yields
the following statement.

Corollary 6.5. Let Q be a compact symmetric (i.e. @ = Q1) neighborhood of
the identity, which generates H. Let || - |lo be the norm on my whose unit ball is
CvxHull{7m1(2)} and let doo be the corresponding Carnot—Carathéodory metric on
Noo. Then we have the following limit in the Hausdorff topology

lim §1(Q") ={g € N,ds(e.g) <1}

n—-+o00

and Q")
. Volg
ngr_il_loow = voly({g € N,dxo(e, g) < 1}).
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6.2. Outline of the proof. We first devise some standard lemmata about piecewise
approximations of horizontal paths (Lemmata 6.6, 6.7, and 6.10). Then it is shown
(Lemma 6.11) that the original product on N and the product in the associated graded
Lie group are asymptotic to each other, namely, if (§;); is a 1-parameter group of
dilations of N, then after renormalization by & 1, the product of O(¢) elements lying
in some bounded subset of N, is very close to the renormalized product of the same
elements in the graded Lie group N, . This is why all complications due to the fact that
N may not be a priori graded and the §,’s may not be automorphisms disappear when
looking at the large scale geometry of the group. Finally, we observe (Lemma 6.13),
as follows from the very definition of the unit ball £ for the limit norm | - ||o, that
any vector in the boundary of E, can be approximated, after renormalizing by 61 by
some element x € N lying in a fixed annulus s(1 — &) < p(e, x) < s(1 + ¢). This
enables us to assert that any p-quasi geodesic gives rise, after renormalization, to a
doo-geodesic (this gives the lower bound in Theorem 6.2). And vice-versa, that any
dso-geodesic can be approximated uniformly by some renormalized p-quasi geodesic
(this gives the upper bound in Theorem 6.2).

6.3. Preliminary lemmata

Lemma 6.6. Let G be a Lie group and let || - ||e be a Euclidean norm on the Lie
algebra of G and d, (-, ) the associated left invariant Riemannian metric on G. Let
K be a compact subset of G. Then there is a constant Cy = Co(d., K) > 0 such
that whenever dp(e,u) < land x,y € K

|de(xu, yu) —de(x,y)| < Code(x, y)de (e, u).

Proof. The proof reduces to the case when u and x~!y are in a small neighborhood
of e. Then the inequality boils down to the following ||[X, Y]|le < ¢|| X |le||Y || for

some ¢ > 0 and every X, Y in Lie(G). O
Lemma 6.7. Let G be a Lie group, let || - || be some norm on the Lie algebra
of G and let d,(-,-) be a left invariant Riemannian metric on G. Then for every
L > 0 there is a constant C = C(de, | - |, L) > 0 with the following property.

Assume &1,E5:[0, 1] — G are two piecewise smooth paths in the Lie group G with
£1(0) = £&(0) = e. Let & € Lie(G) be the tangent vector pulled back at the
identity by a left translation of G. Assume that sup,cpo 11161 (t)|l < L, and that

JVIE (0 = Ey()]|dt < &. Then

de(£1(1),&(1)) < Ce.
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Proof. The function f(t) = d.(&1(2), £2(¢)) is piecewise smooth. For small dt we
may write, using Lemma 6.6,

ft+dt) — f(t) < de(E1(0)E (1)dt, E1(1)E3(1)d1)
+de (515 ()dt, E2(1)E,(1)dt) — f(t) + o(d?)
< 161@) = & @) lledt + Co f()E5(1)dt |le + o(d?)
<e(t)dt + CoLf(t)dt + o(dt),

where e(t) = ||&](t) — &5(?)]|¢. In other words,

J'@) < et) + CoLf(1)
Since f(0) = 0, Gronwall’s lemma implies that

1
f(1) < eCOL/ e(s)e CoLsds < Ce. O
0
From now on, we will take G to be the stratified nilpotent Lie group N, and
de(-,-) will denote a left invariant Riemannian metric on Ny, While doo (-, ) is a left
invariant Carnot—Caratheodory Finsler metric on N, associated to some norm || - ||
onmg.

Remark 6.8. There is ¢y > 0 such that ¢j ' de (e, x) < doo(e, x) < code(e, x)»l‘ ina
neighborhood of e. Hence in the situation of the lemma we get doo(£1(1), £2(1)) <
Cle% for some other constant C; = C1(L, dso, de).

Lemma 6.9. Let N € N and dy (x, y) be the function in Noo defined by

1
dy(x,y) = inf {/0 IE" @) du. & € Herny. £(0) = x.6(1) = y} ;

where Hpy () is the set of horizontal paths § which are piecewise linear with at most
N possible values for &'. Then we have dy — doo uniformly on compact subsets

0f Neo.-

Proof. Note thatit follows from Chow’s theorem (see e.g. [25] or [19]) that there exists
Ko € N such that A := supy__ (..x)=1 dk, (€, X) < 0o. Moreover, since piecewise
linear paths are dense in L', it follows for example from Lemma 6.7 that for each fixed
X, dp(e,x) — dso(e, x). We need to show that dy (e, x) — dso(e, x) uniformly in
x satisfying d (e, x) = 1. By contradiction, suppose there is a sequence (x; ), such
that dwo (e, x,) = 1 and d,, (e, x,) > 1 + g( for some g9 > 0. We may assume that
(xn)n converges to say x. Let y, = x" ! xx, and 1, = doo(e, yu). Thendg, (e, yn) =
thdk, (e, 8% (yn)) < Aty. Thus dy(e, xp) < dy(e,x) +dy(e, yn) < dy(e, x)+ Aty
as soon as ;zl > Ko. As n tends to co, we get a contradiction. ]



Geometry of locally compact groups of polynomial growth and shape of large balls 707

This lemma prompts the following notation. For ¢ > 0, we let N, € N be the
first integer such that 1 < dy,(e,x) < 1 + ¢ for all x with deo(e, x) = 1. Then we
have the following lemma.

Lemma 6.10. For every x € Noo with dx(e,x) = 1, and all ¢ > 0 there exists a
path £:[0, 1] — Noo in Hpp(n,) with unit speed (i.e. |E'|| = 1) such that £(0) = e
and doo(x, E(1)) < Cae and &' has at most one discontinuity on any subinterval of
[0, 1] of length €" / N,.

Proof. We know that there is a path in #pp_ () connecting e to x withlength £ < 1+-e.
Reparametrizing the path so that it has unit speed, we get a path &j: [0, £{] = Ny in
HpL(N.) With doo (x, £0(1)) = doo(§0(£), E0(1)) < &. The derivative & is constant on
at most NV, different intervals say [u;, u; +1). Let us remove all such intervals of length
< ¢" / N, by merging them to an adjacent interval and let us change the value of &; on
these intervals to the value on the adjacent interval (it doesn’t matter if we choose the
interval on the left or on the right). We obtain a new path §: [0, 1] — N in Hp(n,)
with unit speed and such that £’ has at most one discontinuity on any subinterval
of [0, 1] of length &" / N,. Moreover fol |E'() — &)(¢)||dt < &". By Lemma 6.7 and
Remark 6.3, we have doo (£(1), £0(1)) < Cye, hence

doo(§(1), %) < doo(x, §0(1)) + doo(§0(1).§(1)) = (Cy + De. [

Lemma 6.11 (Piecewise horizontal approximation of paths). Let x * y denote the
product inside the stratified Lie group No, and x - y the ordinary product in N. Let

n € Nandt > n. Then for any compact subset K of N, and any x1, . . ., X, elements
of K, we have
1
de(8y (x1 - o+ 00). 8y (1 %% ) < 1
and

1
de(g%(xl * "'*xn),gtl(nl(xl) * ook T1(Xp))) < €2

where c1, c3 depend on K and d, only.

Proof. Let || - || be a norm on the Lie algebra of N. For k = 1,...,n let z; =
X1+ 0 s Xg—p and yr = Xg41 * -+ % X,. Since all x;’s belong to K, it follows
from (24) that as soon as ¢t > n, all 8% (zx) and 8% (yr) fork = 1,...,n remain in a

bounded set depending only on K. Comparing (12) and (11), we see that whenever
y = O(1) and 5%()() = O(1), we have

1
181 Gey) =8 (e x )l = 0(5). (35)

On the other hand, from (12) it is easy to verify that right *-multiplication by a
bounded element is Lipschitz for || - || and the Lipschitz constant is locally bounded.
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It follows that there is a constant C; > 0 (depending only on K and || - ||) such that
forallk <n

181 ((za - k) * yie) =81 (2h % xx % yi) | < Cull81 (2 - xp) = 81 (2 % xp) |-

Applying n times the relation (35) with x = xq - -+ - xx—; and y = xi, we finally
obtain

I8 et - -+ -0 = 8y ey - xn)| = O(55) = o(;),

where O() depends only on K. On the other hand, using (11), it is another simple
verification to check that if x, y lie in a bounded set, then éde (x,y) < |x =l
< cade(x, y) for some constant ¢, > 0. The first inequality follows.

For the second inequality, we apply Lemma 6.7 to the paths &; and &, starting at
e and with derivative equal on []ni, knil) to nd 1 (xg) for &1 and to n @ for &. We
get

1
de(8) (ry -5 x0). 8) Gy () -5 1 (xa)) = O(=). O

Remark 6.12. From Remark 6.3 we see that if we replace d, by d in the above
lemma, we get the same result with % replaced by 7.

Lemma 6.13 (Approximation in the abelianized group). Recall that || - ||¢ is the norm
on my defined in (33). For any ¢ > 0, there exists so > 0 such that for every s > sg
and every v € my such that ||v||o = 1, there exists h € H such that

(1—2¢)s <ple,h) <(1+¢)s

and

mi(h) .

pleh) o~
Proof. Let ¢ > 0 be fixed. Considering a finite e-net in £, we see that there exists a
finite symmetric subset {g, ..., gp} of H\{e} such that, if we consider the closed
convex hull of § = {f; = m1(g:)/p(e, g)li = 1,...,p}and || - [ the associated
normon my, then || - o < || [le < (1 +2¢)|| - ||o. Up to shrinking § if necessary, we

may assume that || ;|| = 1 for all i’s. We may also assume that the f;’s generate m
as a vector space. The sphere {x, || x|| = 1} is a symmetric polyhedron in m2; and to
each of its facets corresponds d = dim(m) vertices lying in § and forming a vector
basis of my. Let f1,..., f4,say, be such vertices for a given facet. If x € m is of the
form x = Zle Ai fi with A; > 0for 1 <i < d then we see that || x|, = Z;jzl Ais
because the convex hull of f1,..., fy is precisely that facet, hence lies on the sphere
{x. lIxlle = 1}.
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Now let v € my, ||v|lo = 1, and let s > 0. The half line fv, t > 0, hits the
sphere {x, ||x|l¢ = 1} in one point. This point belongs to some facet and there are

d linearly independent elements of §, say fi,..., fg, the vertices of that facet, such
that this point belongs to the convex hull of fi, ..., f;. The point sv then lies in the
convex cone generated by 71(g1), ..., m1(g4). Moreover, there is a constant Cg > 0

(Ce < %maxlfiﬂ, p(e, g;)) such that

=Ce

d
sv— Y nimi(gi)
i=1

&

for some non-negative integers ny, ..., ngz depending on s > 0. Hence

d
> nimi ()

i=1

d
1 1
= niple, &) = =
N N

i=1

1
< ~(lIsvlle + Ce)
e S

C
<142+ =<1+ 3¢,
S

where the last inequality holds as soon as s > C¢/e.
Now leth = gi' - -+ - gh* € H. We have 7y (h) = Zle n;my(g;i) and

ple.h) = ||lmi(M)lo = s — Ce = s(1 —é).
Moreover
d
ple.h) < niple. gi) < s(1+ 3e).
i=1
%, we get the desired result with so(e) =
%maxlsisp ple, gi). U

Changing ¢ into say £ and for say & <

6.4. Proof of Theorem 6.2. We need to show that as x — coin N

,O(e,x) <F ,O(e,x) <1

1 <1i
N R O

First note that itis enough to prove the bounds for x € H. This follows from 4.2(1).

Let us begin with the lower bound. We fix ¢ > 0 and s = s(¢) as in the definition
of an asymptotically geodesic metric; see (21). We know by 4.2(3) and 4.2(4) that as
soon as p(e, x) > s we may find x1,...,x, in H with s < p(e, x;) < 2s such that
x =][xiand ) p(e,x;) < (14+¢)p(e, x).Lett = doo(e, x), thenn < %p(e, X),
hencen < S(C—E)t where C is a constant depending only on p (see (23)). We may then
apply Lemma 6.11 (and the remark following it) to get, ast > n assoonas s(¢) > C,

doo(S%(X), 5%(7[1()(1) ok 1 (X0))) < Cil‘_%
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But for each i we have ||r1(x;)]|o < p(e, x;) by definition of the norm, hence
t = deo(e, x)

<Y llmiG)llo + doo(x. 71 (x1) * -+ % 1 ()

<(1+e)ple,x)+cyt!r.
Since ¢ was arbitrary, letting t — oo we obtain

ple, x)

Iim———>1

T dso(e,x) T

We now turn to the upper bound. Let 1 = dx (e, x) and ¢ > 0. According

to Lemma 6.10, there is a horizontal piecewise linear path {£(u)}ye[0,1] With unit
speed such that deo(81(x). £(1)) < Cze and no interval of length > ]f,—rgcontains
more than one change of direction. Let so(¢) be given by Lemma 6.13 and assume
t > so(e")Ng/e". We split [0, 1] into n subintervals of length uy, - -+ , u, such that &
is constant equal to y; on the i-th subinterval and so(e") < tu; < 2s0(¢"). We have

E(1) = uyyy * -+ * U, y,. Lemma 6.13 yields points x; € H such that

B

and p(e,x;) € [(1 — e")tu;, (1 + €")tu;] (note that ru; > so(e”)). Let & be the
piecewise linear path [0, 1] — Ny with the same discontinuities as £ and where the
value y; is replaced by %f’) Then according to Lemma 6.7, dso (£(1), £(1)) < Ce.
Since p(e, x;) < 4so(¢") for each i, we may apply Lemma 6.11 (and the remark
following it) and see thatif y = x - -+ - Xy,

m1(x;)
tu;

i

doo(é(l)’Stl(y)) < C’l(s)t‘%.

Hence 1
oo (81(%),81(y)) = (C2+ C)e + i ()77
and
ple.y) <Y ple.x;) < (1+e&),
while

plx.y) < Cltdsole. 8y (x™9) + €' < 1(Cdoo(51.(x).81.(7)) + 02 (1).

Hence
ple,x) <t +o0.(1).
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Remark 6.14. In the last argument we used the fact that

I3y a8 (x w0l = 0( L)

tr

if 81 (x) and & 1 (u) are bounded, in order to get for y = xu,
t

doo(e,(stl(u)) < doo((S%(x),(S%(xu)) + doo((?%(xu), 8%(x *u))
< doo(81(x),81()) 4 o(1).

7. Locally compact G and proofs of the main results

In this section, we prove Theorem 1.2 and complete the proof of Theorem 1.4 and its
corollaries. We begin with the latter.

Proof of Theorem 1.4. It is the combination of Proposition 5.1, which reduces the
problem to nilpotent Lie groups, and Theorem 6.2, which treats the nilpotent case. It
only remains to justify the last assertion that d is invariant under 7'(H ).

Since K = T (H) stabilizes m; (see Lemma 3.12 for the definition of m7) and
acts by automorphisms of the nilpotent (nilshadow) structure (Lemma 3.5), given any
k € K, the metric doo(k(x), k(y)) is nothing else but the left invariant subFinsler
metric on the nilshadow associated to the norm ||k (v)|| for v € my (f || - || denotes
the norm associated to do).

However, d is asymptotically invariant under K, because of Proposition 5.1.
Namely doo (e, k(x))/dxo(e, x) tends to 1 as x tends to infinity. Finally de (e, v) =

lv]| and doo (e, k(v)) = ||k(v)|| for all v € m;. Two asymptotic norms on a vector
space are always equal. It follows that the norms || - || and ||k(-)|| on m coincide.
Hence d (e, k(x)) = dwo(e, k(x)) for all x € S as claimed. O

Proof of Corollary 1.8. First some initial remark (see also Remark 2.1). If d is a
left-invariant subFinsler metric on a simply connected nilpotent Lie group N induced
by anorm || -|| on a supplementary subspace 7 of the commutator subalgebra, then it
follows from the very definition of subFinsler metrics (see §2.1) that iy is 1-Lipschitz
between the Lie group and the abelianization of it endowed with the norm || - ||, namely
lr1(x)] < d(e, x), with equality if x € m. From this and considering the definition
of the limit norm in (33), we conclude that || - || coincides with the limit norm of d. In
particular Theorem 6.2 implies that d is asymptotic to the *-left invariant subFinsler
metric do, induced by the same norm || - || on the graded Lie group (Neo, *).

We can now prove Corollary 1.8. By the above remark, the limit metric do
on the graded nilshadow of S is asymptotic to the subFinsler metric d induced by
the same norm || - || on the same (K-invariant) supplementary subspace m; of the
commutator subalgebra of the nilshadow, and which is left invariant for the nilshadow
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structure on S. However, it follows from Theorem 1.4 that do, and the norm || - || are
K-invariant. This implies that d is also left-invariant with respect to the original Lie
group structure of S. Indeed, by (1), we can write

d(gx,gy) = d(g * (T()x), g * (T(g)y)) = d(T(g)x,T(g)y) = d(x,y),
where * denotes this time the nilshadow product structure. We are done. O

Proof of Corollary 1.7. This follows immediately from Theorem 1.4, when * denotes
the graded nilshadow product. If * denotes the nilshadow group structure, then it
follows from Theorem 6.2 and the remark we just made in the proof of Corollary 1.8
(see also Remark 2.1). ]

7.1. Proof of Theorem 1.2. Let G be alocally compact group of polynomial growth.
We will show that G has a compact normal subgroup K such that G/K contains a
closed co-compact subgroup, which can be realized as a closed co-compact subgroup
of a connected and simply connected solvable Lie group of type (R), i.e. of polyno-
mial growth. The proof will follow in several steps.

(a) First we show that up to moding out by a normal compact subgroup, we may
assume that G is a Lie group whose connected component of the identity has no
compact normal subgroup. Indeed, it follows from Losert’s refinement of Gromov’s
theorem ([24], Theorem 2) that there exists a normal compact subgroup K of G such
that G/ K is aLie group. So we may now assume that G is a Lie group (not necessarily
connected) of polynomial growth. The connected component G of G is a connected
Lie group of polynomial growth. Recall the following classical fact.

Lemma 7.1. Every connected Lie group has a unique maximal compact normal
subgroup. By uniqueness it must be a characteristic Lie subgroup.

Proof. Clearly if K1 and K, are compact normal subgroups, then K; K is again a
compact normal subgroup. Considering G/ K, where K is a compact normal sub-
group of maximal dimension, we may assume that G has no compact normal subgroup
of positive dimension. But every finite normal subgroup of a connected group is cen-
tral. Hence the closed group generated by all finite normal subgroups is contained in
the center of G. The center is an abelian Lie subgroup, i.e. isomorphic to a product of
a vector space R”, a torus R /Z™, a free abelian group Z* and a finite abelian group.
In such a group, there clearly is a unique maximal compact subgroup (namely the
product of the finite group and the torus). It is also normal, and maximal in G. [

The maximal compact normal subgroup of Gy is a characteristic Lie subgroup
of Gy. Itis therefore normal in G and we may mod out by it. We therefore have shown
that every locally compact (compactly generated) group with polynomial growth ad-
mits a quotient by a compact normal subgroup, which is a Lie group G whose con-
nected component of the identity G has polynomial growth and contains no compact
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normal subgroup. We will now show that a certain co-compact subgroup of G has
the embedding property of Theorem 1.2.

(b) Second we show that, up to passing to a co-compact subgroup, we may assume
that the connected component Gy is solvable. For this purpose, let Q be the solvable
radical of Gg, namely the maximal connected normal Lie subgroup of Go. Note
that it is a characteristic subgroup of G¢ and therefore normal in G. Moreover
Go/Q is a semisimple Lie group. Since G¢ has polynomial growth, it follows that
Go/ Q must be compact. Consider the action of G by conjugation on Go/Q, namely
the map ¢: G — Aut(Go/Q). Since Go/Q is compact semisimple, its group of
automorphisms is also a compact Lie group. In particular, the kernel ker ¢ is a
co-compact subgroup of G.

The connected component of the identity of Aut(Go/ Q) is itself semisimple and
hence has finite center. However the image of the connected component (ker ¢)o of
ker ¢ in Go/ Q modulo Q is central. Therefore it must be trivial. We have shown that
(ker ¢)¢ is contained in Q and hence is solvable. Moreover (ker ¢)o has no compact
normal subgroup, because otherwise its maximal normal compact subgroup, being
characteristic in (ker ¢)o, would be normal in G (note that (ker ¢)¢ is normal in G).

Changing G into the co-compact subgroup ker ¢, we can therefore assume that
Gy is solvable, of polynomial growth, and has no non trivial compact normal sub-
group. The group G/ Gy is discrete, finitely generated, and has polynomial growth.
By Gromov’s theorem, it must be virtually nilpotent, in particular virtually polycyclic.

(c) We finally prove the following proposition.

Proposition 7.2. Let G be a Lie group such that its connected component of the
identity G is solvable, admits no compact normal subgroup, and with G/ G virtually
polycyclic. Then G has a closed co-compact subgroup, which can be embedded as a
closed co-compact subgroup of a connected and simply connected solvable Lie group.

The proof of this proposition is mainly an application of a theorem of H. C. Wang,
which is a vast generalization of Malcev’s embedding theorem for torsion free finitely
generated nilpotent groups. Wang’s theorem [36] states that any S-group can be em-
bedded as a closed co-compact subgroup of a simply connected real linear solvable
Lie group with only finitely many connected components. Wang defines a $-group to
be any real Lie group G, which admits a normal subgroup A such that G/A is finitely
generated abelian and A is a torsion-free nilpotent Lie group whose connected com-
ponents group is finitely generated. In particular any S-group has a finite index (hence
co-compact) subgroup which embeds as a co-compact subgroup in a connected and
simply connected solvable Lie group. In order to prove Proposition 7.2, it therefore
suffices to establish that G has a co-compact §-group.

We first recall the following simple fact.
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Lemma 7.3. Every closed subgroup F of a connected solvable Lie group S is topo-
logically finitely generated.

Proof. We argue by induction on the dimension of S. Clearly there is an epimorphism
m:S — R. By induction hypothesis F' N ker 7 is topologically finitely generated.
The image of F' is a subgroup of R. However every subgroup of R contains either one
or two elements, whose subgroup they generate has the same closure as the original
subgroup. We are done. Ol

Next we show the existence of a nilradical.

Lemma 7.4. Let G be as in Proposition 7.2. Then G has a unique maximal normal
nilpotent subgroup Gy.

Proof. The subgroup generated by any two normal nilpotent subgroups of any given
group is itself nilpotent (Fitting’s lemma, see e.g. [30], 5.2.8). Let G be the closure
of the subgroup generated by all nilpotent subgroups of G. We need to show that
Gy is nilpotent. For this it is clearly enough to prove that it is topologically finitely
generated (because any finitely generated subgroup of Gy is nilpotent by the remark
we just made). Since G/ Gy is virtually polycyclic, every subgroup of it is finitely
generated ([29], 4.2). Hence it is enough to prove that Gy N Gy is topologically
finitely generated. This follows from Lemma 7.3. O

Incidently, we observe that the connected component of the identity (G )o co-
incides with the nilradical N of Gy (it is the maximal normal nilpotent connected
subgroup of Gy).

We now claim the following lemma.

Lemma 7.5. The quotient group G/ Gy is virtually abelian.

The proof of this lemma is inspired by the proof of the fact, due to Malcev, that
polycyclic groups have a finite index subgroup with nilpotent commutator subgroup
(see e.g. [30], 15.1.6).

Proof. We will show that G has a finite index normal subgroup whose commutator
subgroup is nilpotent. This clearly implies the lemma, for this nilpotent subgroup
will be normal, hence contained in Gy .

First we observe that the group G admits a finite normal series G, < Gp—1 < ...
< G1 = G, where each G; is a closed normal subgroup of G such that G; /G;1 is
either finite, or isomorphic to either Z", R” or R”/Z". This see it pick one of the
G;’s to be the connected component G and then treat G/ G and G separately. The
first follows from the definition of a polycyclic group (G/ G has a normal polycyclic
subgroup of finite index). While for G, observe that its nilradical N is a connected
and simply connected nilpotent Lie group and it admits such a series of characteristic
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subgroups (pick the central descending series), and Go/N is an abelian connected
Lie group, hence isomorphic to the direct product of a torus R”/Z" and a vector
group R”. The torus part is characteristic in Go/N, hence its preimage in Gy is
normal in G.

The group G acts by conjugation on each partial quotient Q; := G;/G;41.
This yields a map G — Aut(Q;). Now note that in order to prove our lemma,
it is enough to show that for each i, there is a finite index subgroup of G whose
commutator subgroup maps to a nilpotent subgroup of Aut(Q;). Indeed, taking the
intersection of those finite index subgroup, we get a finite index normal subgroups
whose commutator subgroup acts nilpotently on each Qj;, hence is itself nilpotent
(high enough commutators will all vanish).

Now Aut(Q);) is either finite (if Q; is finite), or isomorphic to GL, (Z) (in case Q;
is either Z" or R" /Z™) or to GL,,(R) (when Q; ~ R"). The image of G in Aut(Q;)
is a solvable subgroup. However, every solvable subgroup of GL,(R) contains a
finite index subgroup, whose commutator subgroup is unipotent (hence nilpotent).
This follows from Kolchin’s theorem for example, that a connected solvable algebraic
subgroup of GL, (C) is triangularizable. We are done. O

In the sequel we assume that G/ Gy is torsion-free polycyclic. It is legitimate to
do so in the proof of Proposition 7.2, because every virtually polycyclic group has a
torsion-free polycyclic subgroup of finite index (see e.g. [29], Lemma 4.6).

We now claim the following lemma.

Lemma 7.6. Gy is torsion-free.

Proof. Since G/ Gy is torsion-free, it is enough to prove that Gy N Gy is torsion-
free. However the set of torsion elements in Gy forms a subgroup of Gy (if x, y
are torsion, then xy is too because (x, y) is nilpotent). Clearly it is a characteristic
subgroup of G . Hence its intersection with G¢ is normal in G¢. Taking the closure,
we obtain a nilpotent closed normal subgroup 7 of G which contains a dense set
of torsion elements. Recall that Gy has no normal compact subgroup. From this
it quickly follows that 7 is trivial, because first it must be discrete (the connected
component Ty is compact and normal in Gy ), hence finitely generated (by Lemma 7.3),
hence made of torsion elements. But a finitely generated torsion nilpotent group is
finite. Again since G has no compact normal subgroup, 7" must be trivial, and Gy
is torsion-free. O

Now observe that the group of connected components of Gy, namely G /(G )o
is finitely generated. Indeed, since G/Gy is finitely generated (as any polycyclic
group), it is enough to prove that (Go N Gn)/(Gn)o is finitely generated, but this
follows from the fact that Go N Gy is topologically finitely generated (Lemma 7.3).

Now we are almost done. Note that G is topologically finitely generated (again by
Lemma 7.3), therefore sois G/ G . By Lemma 7.5 G/ G y is virtually abelian, hence
has a finite index normal subgroup isomorphic to Z” x R™. It follows that G/ Gy
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has a co-compact subgroup isomorphic to a free abelian group Z"*™. Hence after
changing G by a co-compact subgroup, we get that G is an extension of G (a torsion-
free nilpotent Lie group with finitely generated group of connected components) by
a finitely generated free abelian group. Hence it is an §-group in the terminology of
Wang [36]. We apply Wang’s theorem and this ends the proof of Proposition 7.2.

(d) We can now conclude the proof of Theorem 1.2. By (a) and (b), G has a
quotient by a compact group which admits a co-compact subgroup satisfying the
assumptions of Proposition 7.2. Hence to conclude the proof it only remains to
verify that the simply connected solvable Lie group in which a co-compact subgroup
of G/K embeds has polynomial growth (i.e. is of type (R)). But this follows from
the following lemma (see [21], Theorem 1.2).

Lemma 7.7. Let G be a locally compact group. Then G has polynomial growth if
and only if some (resp. any) co-compact subgroup of it has polynomial growth.

Proof. First one checks that G is compactly generated if and only if some (resp. any)
co-compact subgroup is. This is by the same argument which shows that finite index
subgroups of a finitely generated group are finitely generated. In particular, if €2 is a
compact symmetric generating set of G and H is a co-compact subgroup, then there
is no € N such that Q"0 H = G. Then H N 3" generates H.

If G has polynomial growth and H is any compactly generated closed subgroup,
then H has polynomial growth. Indeed (see [21], Theorem 1.2), if 25 denotes a
compact generating set for A, and K a compact neighborhood of the identity in G,
then

volg (K)volg (%) < volg (KK™' N H)volg (2 K).

This inequality follows by integrating over a left Haar measure of G the function

p(x) = / 1x(h~'x)dh,
QU

where dh is a left Haar measure on H. This integral equals the left hand side of the

above displayed equation, while it is pointwise bounded by volg (xK~! N H) inside

HK and by zero outside HK .

In the other direction, if H has polynomial growth, then G also has, because one
can write 2" C Q% K for some compact generating set 25 of H and some compact
neighborhood K of the identity in G (see Proposition 4.4). Then the result follows
from the following inequality

volg (g )volg (R K) < volu (% volg (24 K),

which itself is a direct consequence of the fact that the function

¥ (x) :=/ lg-1 g (h~'x)dh,
QZ(-H H



Geometry of locally compact groups of polynomial growth and shape of large balls 717

where dh is a left Haar measure on H, satisfies
/ Y (x)dx = volg (4 volg(Qy' K)
G

on the one hand and is bounded below by volg (2g) for every x € Q% K on the
other hand. Ol

Note that the above proof would be slightly easier if we already knew that both
G and H were unimodular, in which case G/H has an invariant measure. But
we know this only a posteriori, because the polynomial growth condition implies
unimodularity; see [21].

Similar considerations show that G has polynomial growth if and only if G/K
has polynomial growth, given any normal compact subgroup K; see e.g. [21].

We end this paragraph with a remark and an example, which we mentioned in the
Introduction.

Remark 7.8 (Discrete subgroups are virtually nilpotent). Suppose I' is a discrete
subgroup of a connected solvable Lie group of type (R), i.e. of polynomial growth.
Then I' is virtually nilpotent. Indeed, a similar argument as in Lemma 7.3 shows
that every subgroup of I is finitely generated. It follows that I" is polycyclic. How-
ever Wolf [37] proved that polycyclic groups with polynomial growth are virtually
nilpotent.

Example 7.9 (A group with no nilpotent co-compact subgroup). Let G be the con-
nected solvable Lie group G = R x (R? x R?), where R acts as a dense one-parameter
subgroup of SO(2, R) x SO(2, R). Then G is of type (R). It has no compact sub-
group. And it has no nilpotent co-compact subgroup. Indeed suppose H is a closed
co-compact nilpotent subgroup. Then it has a non-trivial center. Hence there is a
non identity element whose centralizer is co-compact in G. However a simple ex-
amination of the possible centralizers of elements of G shows that none of them is
co-compact.

7.2. Proof of Corollary 1.6 and Theorem 1.1. Let G be an arbitrary locally com-
pact group of polynomial growth and p a periodic pseudodistance on G.

Claim 1. Corollary 1.6 holds for a co-compact subgroup H of G, if and only if it
holds for G.

By Lemma 7.7, the groups G and H are unimodular, and hence G/H bears a
G-invariant Radon measure volg, g, which is finite since H is co-compact. Now let
F be abounded Borel fundamental domain for H inside G. And let p be the periodic
pseudodistance on G induced by the restriction of p to H, thatis p(x, y) := p(hx, hy)
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where /i is the unique element of H such that x € h, F. By 4.2(1) and 4.2(4), p and
p are at a bounded distance from each other. In particular, B;(r — C) C B,(r) C
B;(r + C). Hence if the limit (3) holds for p, it also holds for p with the same limit.
However, B;(r) = {x € G, p(e, hy) < r} = By, (r)F where pg is the restriction of
pto H.Hence volg (B;(r)) = volg (B, (r))-volg,u (F).By4.2(4), py is a periodic
pseudodistance on H. So the result holds for (H, pg) if and only if it holds for (G, p).
Conversely, if pg is a periodic pseudodistance on H, then po(x, y) := po(hy, hy)isa
periodic pseudodistance on G, hence again volg (B, (1)) = volg (B, (r))-volg (F)
and the result will hold for (H, pg) if and only if it holds for (G, pg).

Claim 2. If Corollary 1.6 holds for G/ K, where K is some compact normal subgroup,
then it holds for G as well.

Indeed, if p is a periodic pseudodistance on G, then the K-average pX, as de-
fined in (26), is at a bounded distance from G according to Lemma 4.7. Now ok
induces a periodic pseudodistance pX on G/K and B,k (r) = Bp—K(r)K . Hence,

volg (B, x (r)) = VOIG/K(BPT(F)) - volg (K). And if the limit (3) holds for p_K it
also holds for pX, hence for p too.

Thus the discussion above combined with Theorem 1.2 reduces Corollary 1.6 to
the case when G is simply connected and solvable, which was treated in Section 5
and 6.

7.3. Proof of Proposition 1.3 and Corollary 1.9

Proof of Proposition 1.3. We say that two metric spaces (X, dy) and (Y, dy) are at
a bounded distance if they are (1, C)-quasi-isometric for some finite C. This is an
equivalence relation. Now if p is H -periodic with H co-compact, then (G, p) is at a
bounded distance from (H, p| H). Hence we may assume that H = G, i.e. that p is
left invariant on G.

Now Theorem 1.2 gives the existence of a normal compact subgroup K, a co-
compact subgroup H containing K and a simply connected solvable Lie group S
such that H/K is isomorphic to a co-compact subgroup of S.

Lemma 4.7 shows that (G, p) is at a bounded distance from (G, pX), where pX
is defined as in (26). Now pX induces a left invariant periodic metric on G/K, and
(G/K, pX) is clearly at a bounded distance from (G, pX). Now by 4.2, its restriction
to H/K is at a bounded distance and is left invariant. Now we set ps(s1,52) =
pX(h1,hy), where (given a bounded fundamental domain F for the left action of
H/K on S) h; is the unique element of H/K such that s; € h; F. Clearly then
(S, ps) is at a bounded distance from (H /K, pX). We are done. O
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We note that our construction of S here depends on the stabilizer of p in G.
Certainly not every choice of Lie shadow can be used for all periodic metrics (think
that R3 is a Lie shadow of the universal cover of the group of motions of the plane).
Perhaps a single one can be chosen for all, but we have not checked that.

Proof of Corollary 1.9. Proposition 1.3 reduces the proof to a periodic metric p on
a simply connected solvable Lie group S. Let d, the subFinsler metric on S (left
invariant for the graded nilshadow group structure Sy ) as given by Theorem 1.4. Let
{8;}: is the group of dilations in the graded nilshadow Sy of S as defined in Section 3.
By definition of the pointed Gromov—Hausdorff topology (see [18]), it is enough to
prove the following statement.

Claim. The following quantity

%p(sl, 52) — doo(aﬁ(sl)’ 8%(‘92))

converges to zero as n tends to +00 uniformly for all sy, sy in a ball of radius O(n)
Jfor the metric p.

Now this follows in three steps. First p is at a bounded distance from its re-
striction to the (co-compact) stabilizer H of p (cf. 4.2(1) and 4.2(4)). Then for
hi,hy € H, we can write p(hy,h2) = p(e, hy'hz). However Proposition 5.1 im-
plies the existence of another periodic distance px on S, which is invariant under
left translations by elements of H for both the original Lie structure and the nil-

shadow Lie structure on S, such that % tends to 1 as x tends to co. Hence

pk (e, hi'ha) = pr(h1,ha) = pk (e, hi~'hy), where x is the nilshadow product on
S. Hence |%p(h1, hy) — %pK(e, ht~1hy)| tends to zero uniformly as /1 and A, vary
in a ball of radius O(n) for p.

Finally Theorem 6.2 implies that |2 px (e, hi™ hy) — 2doo(e. h1™'h2)| tends to
zero and the claim follows, as one verifies from the Campbell Hausdorff formula by
comparing (11) and (12)) as we did in (35), that

oo (81.(11). 81.(12)) — dosle, 81 (1™ h2)

converges to zero.

The fact that the graded nilpotent Lie group does not depend (up to isomorphism)
on the periodic metric p but only on the locally compact group G follows from Pansu’s
theorem [28] that if two Carnot groups (i.e. a graded simply connected nilpotent Lie
group endowed with left-invariant subRiemannian metric induced by a norm on a
supplementary subspace to the commutator subalgebra) are bi-Lipschitz, the under-
lying Lie groups must be isomorphic. This deep fact relies on Pansu’s generalized
Rademacher theorem, see [28]. Indeed, two different periodic metrics p; and p, on
G are quasi-isometric (see Proposition 4.4), and hence their asymptotic cones are
bi-Lipschitz (and bi-Lipschitz to any Carnot group metric on the same graded group,
by (13)). O
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8. Coarsely geodesic distances and speed of convergence

Under no further assumption on the periodic pseudodistance p, the speed of conver-
gence in the volume asymptotics can be made arbitrarily small. This is easily seen if
we consider examples of the following type: define p(x, y) = |[x —y| + |x — y|* on
R where o € (0, 1). Itis periodic and vol(B, (1)) =t — t* + o(t%).

However, many natural examples of periodic metrics, such as word metrics or
Riemannian metrics, are in fact coarsely geodesic. A pseudodistance on G is said
to be coarsely geodesic, if there is a constant C > 0 such that any two points can
be connected by a C-coarse geodesic, that is, for any x,y € G there is a map
g:[0,t] = G witht = p(x, y), g(0) = x and g(¢) = y, such that

lp(g(). g()) = Ju —v|[ = C

for all u, v € [0, t].

This is a stronger requirement than to say that p is asymptotically geodesic;
see (21). This notion is invariant under coarse isometry. In the case when G is
abelian, D. Burago [6] proved the beautiful fact that any coarsely geodesic peri-
odic metric on G is at a bounded distance from its asymptotic norm. In particular
volg (By(t)) =c- t% + O(t?~1) in this case. In the remarkable paper [32], M. Stoll
proved that such an error term in O(t?~!) holds for any finitely generated 2-step
nilpotent group. Whether O (t%~) is the right error term for any finitely generated
nilpotent group remains an open question.

The example below shows on the contrary that in an arbitrary Lie group of poly-
nomial growth no universal error term can be expected.

Theorem 8.1. Let &, > 0 be an arbitrary sequence of positive numbers tending
to 0. Then there exists a group G of polynomial growth of degree 3 and a compact
generating set Q in G and ¢ > 0 such that

volg (22"

< l-e (36)
C -

holds for infinitely many n, although #volg Q") > lasn — +oo.

The example we give below is a semi-direct product of Z by R? and the metric
is a word metric. However, many similar examples can be constructed as soon as
the map 7: G — K defined in §5.1 in not onto. For example, one can consider left
invariant Riemannian metrics on G = R - (R? x R?) where R acts by via a dense
one-parameter subgroup of the 2-torus S! x S!. Incidently, this group G is known
as the Mautner group and is an example of a wild group in representation theory.
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8.1. An example with arbitrarily small speed. In this paragraph we describe the
example of Theorem 8.1. Let G, = Z - R? where the action of Z is given by the
rotation Ry of angle o, & € [0, 1). The group Gy, is quasi-isometric to R? and hence
of polynomial growth of order 3 and it is co-compact in the analogously defined Lie
group G¢ = R x R2. Its nilshadow is isomorphic to R3. The point is that if « is a
suitably chosen Liouville number, then the balls in G, will not be well approximated
by the limit norm balls.

Elements of G, are written (k, x) wherek € Z and x € R?. Let ||x||? = ix%—i—x%
be a Euclidean norm on R?, and let 2 be the symmetric compact generating set given
by {(£1,0)} U {(0, x), ||x|]| < 1}. It induces a word metric pg on G. It follows
from Theorem 1.4 and the definition of the asymptotic norm that pg(e, (k, x)) is
asymptotic to the norm on R* given by po(e, (k,x)) := |k| + ||x|lo where ||x||o is
the rotation invariant norm on R? defined by [|x||3 = §(x7 + x2). The unit ball of
Il - |lo is the convex hull of the union of all images of the unit ball of || - || under all
rotations Ryy, k € Z.

Figure 2. The union of the two cones, with basis the disc of radius 2, represents the limit shape
of the balls Q7 in the group Z x R?, where Z acts by an irrational rotation, with generating
set @ = {(£1,0,0)} U {(0.x1.x2). 2x7 + x3 < 1}.

We are going to choose « as a suitable Liouville number so that (36) holds. Let
8n = (4€,)"/? and choose « so that the following holds for infinitely many 7’s:

1
d(ke.Z + ) = 28, 37)
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forall k € Z, |k| < n. This is easily seen to be possible if we choose « of the form
>~ 1/3" for some suitable lacunary increasing sequence of (1;);.

Note that, since ||x||o > ||x||, we have pg > po. Let S, be the piece of R? defined
by S, = {|0] < .} where 6 is the angle between the point x and the vertical axis
Re,. We claim that if x € Sy, po(e, (k, x)) < n and n satisfies (37), then

S
pale. (k.x)) = [k| + (1+ ) lxlo

It follows easily from the claim that volg (2") < (1 —&,) - volg (B, (n)). Moreover
volg (B, (n)) = ¢ -n® + O(n?), where ¢ = %” if volg is given by the Lebesgue
measure.

Proof of Claim. Here is the idea to prove the claim. To find a short path between the
identity and a point on the vertical axis, we have to rotate by a R, such that ko is
close to % hence go up from (0, 0) to (k, 0) first, thus making the vertical direction
shorter. However if (37) holds, the vertical direction cannot be made as short as it
could after rotation by any of the Ry, with |k| < n.

Note that if pg(e, (k, x)) < n then |k| < n and

pale, (k,x)) = |k| +inf Y || Ry;qxil),

where the infimum is taken over all paths xq,...,xy such that x = )  x; and all
rotations Ry, with |k;| < n. Note that if §, is small enough and (37) holds then
for every x € S, we have || Rgex|| > (1 + 82)|lx[lo. On the other hand |x|o =
> llxillo cos(6;) where 6; is the angle between x; and the x. Hence

S Rkexill =2 Y IReexill + Y [ Reaxi]

16:1<8n 16;1>8n
1
2148 ) xillocos®) + oo D llxillo cos(®h)
16;1<8n 16:1>8n
5
= (1420 - lixllo 0

8.2. Limit shape for more general word metrics on solvable Lie groups of poly-
nomial growth. The determination of the limit shape of the word metric in §8.1 was
possible due to the rather simple nature of the generating set. In general, using the
identity, see (1),

wr- e op = o (T(e)wa) - (T(wp—1- -+ - 01)om)  (38)

itis easy to check that the unit ball of the limit norm ||-|| oo inducing the limit subFinsler
metric d on the nilshadow associated to a given word metric with generating set €2
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is contained in the K-orbit of the convex hull of the projection of €2 to the abelianized
nilshadow, namely the convex hull of K - 71 (£2).

In the example of §8.1, we even had equality between the two. However this is not
the case in general. For example, the limit shape is always K-invariant, but clearly
the limit shape associated to a generating set €2 coincides with the one associated
with a conjugate gQg~! of it, while the convex hull of the respective K-orbits may
not be the same.

Of course if the generating set €2 is K -invariant to begin with, then Q" = Q*” and
we are back in the nilpotent case, where we know that the unit ball of the limit norm
is just the convex hull of the projection of the generating set to the abelianization.
In general however it is a challenging problem to determine the precise asymptotic
shape of a word metric on a general solvable Lie group with polynomial growth, and
there seems to be no simple description analogous to what we have in the nilpotent
case.

Even in the above example G, = Z x4 R?, or in the universal cover of the group
of motions of the plane (in which G, embeds co-compactly), it is not that simple.
In general the shape is determined by solving an optimization problem in which one
has to find the path which maximizes the coordinates of the endpoint. In order to
illustrate this, we treat without proof the following simple example.

Suppose 2 is a symmetric compact neighborhood of the identity in G, = Z x4 R?
of the form Q = (0, Qo) U (1, Q1) U (1, 1)~ ', where Q¢, 21 C R2. Then the limit
shape of the word metric pg associated to €2 is the solid body (rotationally symmetric
around the vertical axis as in Figure 8.1) made of two copies (upper and lower) of a
truncated cone with base a disc on (0, R?) of radius max{rg, r1 } and top (resp. bottom)
a disc on the plane (1, R?) (resp. (—1, R?)) of radius r,, where the radii are given by

1
ro = max{|| x|, x € Qo},r1 = Ediam(Ql),

where diam(£21) is the diameter of 27 and r is given by the integral

2 4o
r, = max{mg (Ql)}2_’ (39)
0 v

where 74 (£21) is the orthogonal projection on the x-axis of image of 2 C R? by a
rotation of angle 6 around the origin. It is indeed convex (note that r, < ry).

For example if 2 is made of only one point, then the limit shape is the same as in
the previous paragraph and as in Figure 8.1, namely two copies of a cone. However
if €2, is made of two points {a, b}, then the upper part of the limit shape will be a
truncated cone with an upper disc of radius r, = "“n;b" (which is the result of the
computation of the above integral).
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Let us briefly explain formula (39). A path of length n reaching the highest z-
coordinate in G is a word of the form (1, w1) - --- - (1, wp), with w; € Q1. By (38)

this word equals
n

(n, Z Rf;lwi).
1
Here w; can take any value in €2;. In order to maximize the norm of the second
coordinate, or equivalently (by rotation invariance) its x-coordinate, one has to choose
w; € 21 at each stage in such a way that the x-coordinate of Rf;la)i is maximized.
Formula (39) now follows from the fact that { R~} <, <, becomes equidistributed
in SO(2, R) as n tends to infinity.

In order to show that max{rg, r1} is the radius of the base disc and more generally
that the limit shape is no bigger than this double truncated cone, one needs to argue
further by considering all possible paths of the form (1, 1) - --- - (€5, w,) Where
e €{0,£1}and )_ ¢; is prescribed.

8.3. Bounded distance versus asymptotic metrics. In this paragraph we answer a
question of D. Burago and G. Margulis (see [7]). Based on the abelian case and the
reductive case (Abels and Margulis [1]), Burago and Margulis had conjectured that
every two asymptotic word metrics should be at a bounded distance. We give below a
counterexample to this. We first give an example (A4) of a nilpotent Lie group endowed
with two left invariant subFinsler metrics d, and d/ that are asymptotic to each other,
i.e. doole,x)/d (e, x) — 1 as x — oo but such that |d (e, x) — d’ (e, x)| is not
uniformly bounded. Then we exhibit (B) a word metric that is not at a bounded
distance from any homogeneous quasi-norm. Finally these examples also yield (C)
two word metrics p; and p, on the same finitely generated nilpotent group which are
asymptotic but not at a bounded distance.

Note that the group G, with pg and pgq from the last paragraph also provides an
example of asymptotic metrics which are not at a bounded distance (but this group
was not discrete).

(A) Let N = R x H3(R) where Hj is classical Heisenberg group and I' =
Z x H3(Z) alattice in N. In the Lie algebran = RV @ hs we pick two different
supplementary subspaces of [n,n] = RZ, i.e. m; = span{V, X,Y} and m| =
span{V + Z, X, Y}, where b3 is the Lie algebra of H3(R) spanned by X, Y and
Z = [X, Y]. We consider the L!-norm on m (resp. m}) corresponding to the basis
(V. X.,Y) (resp. (V + Z, X, Y)). Both norms induce the same norm on n/[n, n]. They
give rise to left invariant Carnot—Caratheodory Finsler metrics on N, say do (resp.
d’.). We use the coordinates (v, x, y,z) = exp(vV + xX + yY + zZ).

According to Remark (2) after Theorem 6.2, dos and d/ are asymptotic. Let us
show that they are not at a bounded distance. First observe that, since V' is central,
doo(e, (v (x,y,2))) = |v|+dHu, (e, (x, y, z)) where dp, is the Carnot—Caratheodory
Finsler metric on H3(R) defined by the standard L!-norm on the span{X, Y}. Sim-
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ilarly d (e, (v; (x,¥,2))) = |[v| + dus(e, (x, ¥,z —v))). If ds and d were at a
bounded distance, we would have a C > 0 such that for all r > 0

|deo (e, (£;(0,0,1))) — 1| < C.

Hence |dp, (e, (0,0,7))| < C, which is a contradiction.
(B) Now let

Q = {(1; (0,0, 1)), (1; (0,0, —1)*%, (0; (1,0, 0))*, (0: (0. 1, 0)) "}

be a generating set for I and pg the word metric associated to it. Let |-| be ahomoge-
neous quasi-norm on N which is at a bounded distance from pg, i.e. |pq (e, g) — |g||
is bounded. Then |- | is asymptotic to pg, hence is equal to the Carnot—Caratheodory
Finsler metric d asymptotic to pg and homogeneous with respect to the same one pa-
rameter group of dilations {§;};~¢. Letm; = {v € n,8;(v) = tv}. Thend is induced
by some norm || - || on 71, whose unit ball is given, according to Theorem 1.4 by the
convex hull of the projections to m; of the generators in €2. There is a unique vector
inmj of the form V + zoZ. Its || - |o-norm is 1 and d (e, (1; (0, 0, zg))) = 1. However
d(e, (v:(x,y.2))) = |[v[ +dHs(e. (x.y.z —vz0)). Since pg(e, (n:(0,0.n))) = n,
we get

d(e. (n:(0,0,n))) — pa(e. (n:(0,0,n))) = dus(e. (0.0, n(1 — zo))).

If this is bounded, this forces zo = 1. But we can repeat the same argument with
(n; (0,0, —n)) which would force zg = —1. A contradiction.

(C) Let now Q5 := {(1;(0,0,0))*, (0; (1,0,0))*, (0; (0, 1,0))*'} and pg,
the associated word metric on I". Then again po and pg, are asymptotic by The-
orem 6.2 because the convex hull of their projection modulo the z-coordinate co-
incide. However pg, is a product metric, namely we have pg, (e, (v; (x,y,2))) =
|v| + p(e, (x, y,z)), where p is the word metric on the discrete Heisenberg group
H3(Z) with standard generators {(1,0,0)*", (0, 1,0)*!}. In particular

PR (e’ (n, (Oa 0’ n))) - 1092 (e’ (n, (0’ 0’ n))) = ,O(e, (0’ 0’ n))

which is unbounded.

Remark 8.2 (An abnormal geodesic). We refer the reader to [9] for more on these
examples. In particular we show there that p; and p, above are not (1, C)-quasi-
isometric for any C > 0. The key phenomenon behind this example is the presence
of an abnormal geodesic (see [25]), namely the one-parameter group {(z; (0, 0, 0))},.

Remark 8.3 (Speed of convergence in the nilpotent case). The slow speed phe-
nomenon in Theorem 8.1 relied crucially on the presence of a non-trivial semisimple
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part in G; this does not occur in nilpotent groups. In [9], we show that for word
metrics on finitely generated nilpotent groups, the convergence in Theorem 6.2 has
a polynomial speed with an error term at least as good as O(d (e, x)_%), where
r is the nilpotency class. We conjecture there that the optimal exponent is % This
involves refining quantitatively the estimates of the above proof of Theorem 6.2.

9. Appendix: the Heisenberg groups

Here we show how to compute the asymptotic shape of balls in the Heisenberg groups
H3(Z) and Hs5(Z) and their volume, thus giving another approach to the main result
of Stoll [33]. The leading term for the growth of H3(Z) is rational for all generating
sets (Proposition 9.1 below), whereas in Hs(Z) with its standard generating set, it
is transcendental. This explains how our Figure 1.2 was made (compare with the
odd [22], Figure 2).

9.1. 3-dim Heisenberg group. Let us first consider the Heisenberg group
H3(Z) = (a.blla.[a.b]] = [b.[a.D]] = 1).

We see it as the lattice generated by ¢ = exp(X) and b = exp(Y) in the real
Heisenberg group H3(R) with Lie algebra hs generated by X, Y and spanned by
X,Y,Z = [X,Y]. Let pg be the standard word metric on H3(Z) associated to the
generating set @ = {a®!, hT1}. According to Theorem 1.4, the limit shape of the
n-ball Q" in H3(Z) coincides with the unit ball €3 = {g € H3(R), d(e,g) < 1}
for the Carnot—Caratheodory metric dy, induced on H3(R) by the £!-norm ||xX +
VY llo = |x| + [yl on my = span{X, ¥} C bs.

Computing this unit ball is a rather simple task. Exchanging the roles of X and Y,
we see that €3 is invariant under the reflection z + —z. Then clearly €3 is of the
form {xX + yY + zZ, with |x| + |y| < 1 and |z| < z(x, y)}. Changing X to —X
and Y to —Y, we get the symmetries z(x,y) = z(—x,y) = z(x,—y) = z(y, x).
Hence when determining z(x, y), we may assume 0 <y <x <1, x +y < 1.

The following well known observation is crucial for computing z (x, y). If£(¢) isa
horizontal path in H3(R) starting fromid, then&(¢) = exp(x(t) X +y ()Y +z(¢)Z),
where &'(t) = x(t)X + y(¢)Y and z(¢) is the “balayage” area of the between the
path {x(s)X + y(s)Y }o<s< and the chord joining O to x(#) X + y(¢)Y.

Therefore, z(x, y) is given by the solution to the “Dido isoperimetric problem”
(see [25]): find a path in the X, Y -plane between 0 and xX + yY of || - ||o-length 1
that maximizes the “balayage area”. Since | - ¢ is the £'-norm in the X, Y -plane,
as is well-known (see [8]), such extremal curves are given by arcs of square with
sides parallel to the X, Y -axes. There is therefore a dichotomy: the arc of square has
either 3 or 4 sides (it may have 1 or 2 sides, but these are included are limiting cases
of the previous ones).
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If there are 3 sides, they have length £, x and y + ¢ with y + £ < x. Hence
l={+x+y+Landz(x,y) =Llx+ %xy. Therefore this occurs when y < 3x—1
and we then have z(x, y) = @

If there are 4 sides, they have length £, x +u, y + £ and u, with £ + y = x + u.
Hence 1 =20+ 2u+x + yand z(x, y) = (£ + y)(x +u) — % This occurs when

— (1+x+y)2 Xy

y > 3x — 1 and we then have z(x, y) 16 2

Henceif 0 <y <x<landx+y <1

x(l—x)_i_1 (I+x+y)? xy
2 y>3x-1 16 2

The unit ball €3 drawn in Figure 1.2 is the solid body €3 = {xX + yY + zZ, with
Ix| + [yl = land [z] < z(x, y)}.

A simple calculation shows that vol(€3) = % in the Lebesgue measure dxdydz.
Since H3(Z) is easily seen to have co-volume 1 for this Haar measure on H3(R)
(actually {xX + yY +zZ,x € [0,1),y € [0,1),z € [0,1)} is a fundamental
domain), it follows that

z2(x,y) = ly<ax—1 (40)

(") 31

= V01(€3) = 7

We thus recover a well-known result (see [4] and [31] where even the full growth
series is computed and shown to be rational).

One can also determine exactly which points of the sphere 0€3 are joined to id
by a unique geodesic horizontal path. The reader will easily check that uniqueness
fails exactly at the points (x, y, £z (x, y)) with |x| < % and y =0, or |y| < % and
x = 0, or else at the points (x, y, z) with |x| + |[y| = 1 and |z] < z(x, y).

The above method also yields the following result.

lim 7
n—oo n

Proposition 9.1. Ler Q2 be any symmetric generating set for H3(Z). Then the leading
coefficient in #(2") is rational, i.e.

. H(Q")
lim =r

n—oo n4

is a rational number.

Proof. We only sketch the proof here. We can apply the method above and compute
r as the volume of the unit CC-ball €(2) of the limit CC-metric d, defined in
Theorem 1.4. Since we know what is the norm || - || in the (x, y)-plane m; =
span (X, Y) that generates ds (it is the polygonal norm given by the convex hull
of the points of 2), we can compute € (£2) explicitly. We need to know the solution
to Dido’s isoperimetric problem for || - || in m1, and as is well known (see [8]) it is
given by polygonal lines from the dual polygon rotated by 90°. Since the polygon
defining || - || is made of rational lines (points in €2 have integer coordinates), any
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vector with rational coordinates has rational || - ||-length, and the dual polygon is also
rational. The equations defining z (x, y) will therefore have only rational coefficients,
and z (x, y) will be piecewisely given by a rational quadratic form in x and y, where
the pieces are rational triangles in the (x, y)-plane. The total volume of € (£2) will
therefore be rational. O

9.2. 5-dim Heisenberg group. The Heisenberg group Hs(Z) is the group generated
by ai, b1, az, by,c with relations ¢ = [ay, b1] = [az, b2], a1 and b; commute with
a, and b, and c is central. Let Q = {al.il, bl.il,i = 1,2}. Let us describe the limit
shape of Q". Again, we see H5(Z) as a lattice of co-volume 1 in the group Hs(R)
with Lie algebra hs spanned by X1, Y1 X5, Y2 and Z = [X;, Y;]. By Theorem 1.4, the
limit shape is the unit ball €5 for the Carnot—Caratheodory metric on Hs(R) induced
by the £'-norm [ x1 X1 + y1Y1 4+ x2 X5 + y2Yallo = [x1] + [y1] + |x2| + [y2].

Since X1, Y7 commute with X5, Y, in any piecewise linear horizontal path in
Hs(R), we can swap the pieces tangent to X; or Y7 with those tangent to X, or Y»
without changing the end point of the path. Therefore if £(¢) = exp(x1(#)X; +
y1()Y1 + x2(t) X2 + y2(¢t) Y2 + z(¢)Z) is a horizontal path, then z(¢) = z1(¢) +
z5(t), where z;(t), i = 1,2, is the “balayage area” of the plane curve {x;(s)X; +
Yi($)Yi}o<s<t-

Since, just like for H3(Z), we know the curve maximizing this area, we can
compute the unit ball €5 explicitly. In exponential coordinates it will take the form
Cs = {exp(x1 X1+ 1 Y1+x2Xo+y2Yo+2Z), [x1|+|y1]+]x2|+]y2| < land|z| <
z(X1, 1, X2, y2)}. Then z(x1, y1, X2, ¥y2) = supg<;<1{z:(x1, ¥1) + 21-¢(x2, ¥2)},
where z;(x, y) is the maximum “balayage area” of a path of length 7 between 0 and
xX + yY.Itis easy to see that z,(x, y) = t?z(x/t, y/t) where z is given by (40).
Hence z; is a piecewise quadratic function of 7. Again z(x1, y1, X2, ¥2) is invariant
under changing the signs of the x;,y;’s, and swapping x and y, or else swapping
1 and 2. We may thus assume that the x;,y;’sliein D = {0 < y; < x; < 1 and
X1+ y1+x2+y2 < l,and xo—y, > x1—y1}. We may therefore determine explicitly
the supremum z (x1, y1, X2, y2), which after some straightforward calculations takes
on D the form

z(x1, y1, X2, y2) = lymax{d;, d»} + 1p max{dy, c1} + 1¢c max{cy, c2}

wheredy = T4+ 2 (1—x;—y1—x2), 1 = 1 (14x1+y1—xp—yp)? 4 2222251
and d» and c, are obtained from d; and c¢; by swapping the indices 1 and 2. The
sets A, B and C form the following partition of D : A = D N{m < x; — y1},
B=DnN{xi—y1 <m < xp—yband C = D N {xp — y» < m}, where
m=(1-x1—x2—y1—y2)/2.

Since €5 has such an explicit form, it is possible to compute its volume. The fact
that z(x1, ¥1, X2, y2) is piecewisely given by the maximum of two quadratic forms
makes the computation of the integral somewhat cumbersome but tractable. Our
equations coincide (fortunately!) with those of Stoll (appendix of [33]), where he
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computed the main term of the asymptotics of #(2") by a different method. Stoll did
calculate that integral and obtained

RO 2009 log(2)
Am =5 = vol(€s) = Se26 + 32805

which is transcendental. It is also easy to see by this method that if we change the
generating set to 29 = {aftlbftlagclbgcl }, then we get a rational volume. Hence the
rationality of the growth series of H5(Z) depends on the choice of generating set,
which is Stoll’s theorem.

One advantage of our method is that it can also apply to fancier generating sets.
The case of Heisenberg groups of higher dimension with the standard generating set
is analogous: the function z({x;},{y;}) is again piecewisely defined as the maxi-
mum of finitely many explicit quadratic forms on a linear partition of the £!-unit ball

o lxil+ il = L.
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