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Abstract. In a group, we introduce a notion of subgroup approximatively of finite index, which
extends the notion of groups approximable by finite groups. We deduce a characterization of
(restricted, permutational) wreath products that are approximable by finite groups.
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1. Introduction

Recall that a group G is approximable by finite groups, abbreviated here as AF if for
every finite subset S of G, the marked group .hSi; S/ is a limit of finite groups in
the space of groups marked by S . Another terminology is “LEF,” which stands for
“locally embeddable into finite groups.”

This property, which is a particular instance of a very general notion due to Malcev,
was introduced and studied in the group-theoretic setting by Gordon and Vershik [4]
and Stëpin [9] is a very natural one and can be characterized in many ways, for
instance G is approximable by finite groups if and only if it is isomorphic to a
subgroup of an ultraproduct of finite groups, if and only if it is isomorphic to an
inductive limit of residually finite groups. A finitely presented group is approximable
by finite groups if and only it is residually finite; however for more general groups
residual finiteness is a stronger property than approximate finiteness.

Here we introduce a generalization of this property for a pair of a group and a
subgroup.

If G is a group, we denote by N .G/ � �.G/ the set of its normal subgroups
and of its subgroups, endowed with the topology induced by inclusion in 2G with the
product topology. The spaces N .G/ and �.G/ are compact, Hausdorff, and totally
disconnected.
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Definition 1.1. Let G be a group and H a subgroup. We say that H is approximately
of finite index (AFI) in G if for every finitely presented group F and every homo-
morphism �W F ! G, the subgroup ��1.H/ is a limit in �.F / of a sequence .Ln/

of finite index subgroups of F .

A simple verification is that for every group, the subset �AFI.G/ of �.G/ of those
subgroups H that areAFI in G, is closed. In particular, it contains the closure of the set
of finite index subgroups. In general it is larger: for instance if G is approximable by
finite groups but not residually finite then ¹1º is AFI in G (this precisely characterizes
that G be approximately finite) but is not a limit of finite index subgroups. However,
for G finitely presented we have

Proposition 1.2. If G is finitely presented, then H � G is AFI in G if and only it is
a limit in �.G/ of finite index subgroups.

A consequence of the definition is the following characterization, which is ex-
tracted from Proposition 2.10.

Proposition 1.3. Let G be a group and H a subgroup. Then H is AFI in G if and
only if there exists a set I , an ultrafilter ! on I , a family .�i / of groups, a family .ƒi /

of subgroups ƒi � �i of finite index, and an injective homomorphism j from G to
the ultraproduct

Q!
i2I �i , such that H D j �1.

Q!
i2I ƒi /.

Remark 1.4. This proposition shows that if we consider the algebraic structure given
by pairs .G; H/ with G a group and H a subgroup, then pairs .G; H/ such that H

is AFI in G are precisely those pairs .G; H/ that are “locally embeddable in” the
class of pairs .G0; H 0/ where G0 ranges over groups and H 0 ranges over finite index
subgroups of G0, in the sense of [7].

We initially introduced this definition in order to obtain a characterization of per-
mutational wreath products that are approximable by finite groups, namely Proposi-
tion 3.1, from which we extract.

Proposition 1.5. Let B be a nontrivial group, G a group and H a subgroup. Consider
the wreath product

W D B oG=H G D
� M

x2G=H

B
�

Ì G:

Then W is AF if and only both B; G are AF, and H is AFI in G.

The following simple corollary (for H D ¹1º) is due to Gordon and Vershik [4].

Corollary 1.6 (Gordon andVershik). If B; G are groups, the standard wreath product
B o G is AF if and only if B and G are both AF.
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This simple statement can appear surprisingly simple by contrast with Gruenberg’s
theorem, which asserts that B o G is residually finite if and only if B is residually
finite, and [either G is finite, or B is abelian]. For completeness, we include its
version for permutational wreath products (Proposition 3.2), from which we extract:

Proposition 1.7. Let W D B oG=H G be a wreath product, where B is non-trivial.
Then W is residually finite if and only if B; G are residually finite, and either

� H are profinitely closed in G and B is abelian, or

� H has finite index in G.

Here “profinitely closed” means closed in the profinite topology, which for a
subgroup of G just means being an intersection of finite index subgroups of G.

If � is a group, a statement stronger than just saying whether � is residually finite
is to describe the largest residually finite quotient �rf of � . For wreath products this
can be stated as follows, leaving aside the degenerate cases.

Proposition 1.8. Let W D B oG=H G be a wreath product with G=H infinite. Let
xH � G be the closure of H in the profinite topology, and let Babr be the residually

finite abelianization of B (see below). Then there is a canonical isomorphism

Wrf ' Babr oG= xH Grf:

In particular, if W D B o G is a standard wreath product with G infinite, there is a
canonical isomorphism

Wrf ' Babr o Grf:

Here Babr is defined as the largest abelian residually finite quotient of B , namely
the quotient of the abelianization Bab by its largest divisible subgroup. Note that if
B is finitely generated then Babr D Bab.

This simple result can be useful to compute the virtual first Betti number. If � is a
group, recall that its first virtual Betti number vb1.�/ D sup b1.ƒ/, where ƒ ranges
over finite index subgroups, and the first Betti number b1.ƒ/ is defined as the Q-rank
of Hom.ƒ; Z/. (If the numbers are infinite we just write 1 and ignore a discussion
between infinite cardinals here.) Actually there are several non-equivalent alternative
definitions of the first Betti number (because b1.Q/ D 0 with this definition and taking
homomorphisms into Q instead of Z, or considering the Q-rank of the abelianization
could yield to a different number), but all of them coincide for finitely generated
groups.

Corollary 1.9. Let W D B oG=H G be a wreath product with G=H infinite. Then its
first virtual Betti number is given by

vb1.W / D b1.B/ŒG W xH� C vb1.G/
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(where 0 � 1 D 0.) In particular, if G an infinite residually finite group and B is
any group, then the first virtual Betti number of the standard wreath product B o G is
equal to

� 1 if Hom.B; Z/ ¤ 0;

� vb1.G/ if Hom.B; Z/ D 0.

Example 1.10. If D1 is the infinite dihedral group, we have vb1.Z o Z/ D 1 and
vb1.D1 o Z/ D 1. This example is considered by Shalom [8] to indicate an example
of two quasi-isometric amenable groups that have distinct first virtual Betti number
(although this contradicts the claim in [8], p. 121, that vb1.D1 o Z/ D 2).

Recall that a group is called large if some finite index subgroup admits the free
group of rank 2 as a quotient. Note that a large group � satisfies vb1.�/ D 1. The
following corollary shows that wreath products do not provide interesting examples
of large groups.

Corollary 1.11. Let W D B oG=H G be a wreath product with G=H infinite. Then
W is large if and only if G is large.

Finite presentability of wreath products was considered in [3]; unlike in the stan-
dard case due to G. Baumslag [1], there are many interesting instances in the permu-
tational case.

Corollary 1.12. Let W D B oG=H G be a finitely presented wreath product. Then
vb1.W / D 1 if and only if vb1.G/ D 1, or b1.B/ ¤ 0 and xH has infinite index in
G. In particular, if W is finitely presented, vb1.W / D 1 if and only if vb1.G/ D 1.

Remark 1.13. It is unknown whether there exists a finitely presented group � that is
not large but satisfies vb1.�/ D 1. (In the finitely generated setting, wreath products
provide plenty of examples, the simplest of which is the well-known Z o Z.)

Remark 1.14. A characterization of permutational wreath products that are linear
over a field of given characteristic was obtained by Wehrfritz [10]. The case of
standard wreath products was done much before in several papers by Vapne and
Wehrfritz (see the references in [10]); for instance a standard wreath product B o G

with G infinite is linear in characteristic zero if and only if B is torsion-free abelian and
G is virtually torsion-free abelian. In particular, if G is an arbitrary infinite residually
finite group, then Z o G is always residually finite, but is linear in characteristic zero
only if G is virtually torsion-free abelian (actually it is never linear over a field of
positive characteristic).
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2. AFI subgroups

Let G be a group and H a subgroup. The following definition is useful to deal with
the definition of being AFI.

Definition 2.1. Let F be a finitely presented group with a homomorphism � into G.
The pair .G; H/ is AFI with respect to .F; �/ the subgroup ��1.H/ is a limit in

�.F / of a sequence .Ln/ of finite index subgroups of F .
The pair .G; H/ is KAFI with respect to .F; �/ if moreover it satisfies the “kernel

condition”: the above sequence .Ln/ can be chosen to satisfy: for every finite subsetU
of Ker.�/, eventually Ln contains the normal closure of U .

Thus, by definition, H is AFI in G if and only if for every finitely presented
group F and homomorphism �W F ! G, the pair .G; H/ is AFI with respect to
.F; �/.

Lemma 2.2. Let G be a group. Then the set of subgroups H � G such that H is
AFI in G is closed in �.G/.

Proof. If .F; �/ is given and Hi ! H , then ��1.Hi/ ! ��1.H/. Therefore if each
��1.Hi / is a limit of finite index subgroups, then so is ��1.H/.

Lemma 2.3. If f W G0 ! G is a homomorphism and H is AFI in G, then f �1.H/ is
AFI in G0. More generally, if �W F ! G0 is a homomorphism with F finitely presented
and .G; H/ is AFI (resp. KAFI) with respect to .F; f B �) then .G0; f �1.H// is AFI
(resp. KAFI) with respect to .F; �/.

Also, if .G; H/ is AFI (resp. KAFI) with respect to .F; �/ and uW F 0 ! F is a
homomorphism between finitely presented groups, then .G; H/ is AFI (resp. KAFI)
with respect to .F 0; � B u/.

Proof. This is immediate.

Lemma 2.4. Assume that G is finitely presented and let H � G be a subgroup. The
following conditions are equivalent:

(i) H is AFI in G;

(ii) H is a limit in �.G/ of finite index subgroups.

Actually the implication (ii) H) (i) holds without assuming G finitely presented.

Proof. (i) H) (ii) is trivial (picking F D G, since G is finitely presented). As-
sume (ii) (G being arbitrary), which means that .G; H/ is AFI with respect to .G; id/.
Let F be a finitely presented group with a homomorphism into G. Then by the last
statement in Lemma 2.3, .G; H/ is AFI with respect to .F; �/.
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Remark 2.5. When G is a group and H is a finitely generated subgroup, condition (ii)
means that H is profinitely closed in G, i.e., is an intersection of finite index subgroups
of G.

Example 2.6. Recall that a group G is called LERF (“locally extended residually
finite”), or “subgroup separable,” if every finitely generated subgroup is profinitely
closed in G. In such a group, every subgroup is AFI: indeed, the set of AFI subgroups
is closed (Lemma 2.2) and contains all finitely generated subgroups by Lemma 2.4.
Since the set of finitely generated subgroups is always dense, it follows that the set
of AFI subgroups is all of �.G/.

In particular, if F is a free group, then every subgroup is AFI in F . Indeed
the LERF property for F was established by M. Hall [6]. Actually, it follows from
Lemma 2.4 and Remark 2.5 that if G is a finitely presented group, then G is LERF
if and only every subgroup of G is AFI in G.

On the other hand, Lemma 2.4 provides examples of non-AFI subgroups. Indeed,
if G is a finitely presented group with no nontrivial finite quotients (e.g. infinite and
simple), then its only AFI subgroup is G itself.

Lemma 2.7. Assume that G is finitely generated. The following assertions are equiv-
alent:

(i) H is AFI in G;

(ii) .G; H/ is AFI with respect to .F; �/ for every finitely presented group F and
every surjective homomorphism �W F ! G;

(iii) .G; H/ is KAFI with respect to .F; �/ for every finitely presented group F and
every surjective homomorphism �W F ! G;

(iv) .G; H/ is KAFI with respect to .F; �/ for some finitely presented group F and
some surjective homomorphism �W F ! G.

Proof. (i) H) (iii) Given .F; �/, fix a finite generating subset in F so that the n-ball
makes sense. Also write Ker.�/ as an ascending union of normal subgroup finitely
generated qua normal subgroups Nn. For every n, in F=Nn, there exists a finite index
subgroup coinciding with H on the n-ball. Let Ln be its inverse image in F . Then
lim Ln D ��1.H/ and .Ln/ satisfies the kernel condition.

(ii) H) (i) Let F be a finitely presented group and �W F ! G be a homomorphism.
There exists a free group of finite rank F 0 so that we can extend � to a surjective
homomorphism �0W F � F 0 ! G. Write .�0/�1.H/ D lim Ln. Then ��1.H/ D
.�0/�1.H/ \ F and is the limit of the sequence .F \ Ln/ in �.F /.

(iii) H) (ii) and (iii) H) (iv) are trivial.

(iv) H) (iii) Suppose that �0W F0 ! G satisfies the condition defining AFI. Let
�W F ! G be a surjective homomorphism. By a simple verification [2], Lemma 1.3(3),
there exists a finitely presented group F 0 with surjective homomorphisms �0 W F 0 ! F ,
�0

0W F 0 ! F0 such that u D �0 B �0
0 D � B �0.
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Write ��1
0 .H/ D lim Ln with Ln of finite index and define Mn D .�0

0/�1.Ln/.
So .�0 B �0

0/�1.H/ D lim Mn, which have finite index in F 0, and satisfy the kernel
condition (for the homomorphism u). Since the kernel of �0 is finitely generated as
a normal subgroup, the kernel condition implies that it is contained in .�0

0/�1.Ln/

for n large enough. It follows that �0.Mn/, which has finite index in F , satisfies
lim �0.Mn/ D lim �0..�0 B �0

0/�1.H// D ��1.H/ and satisfies the kernel condition.

Remark 2.8. On the other hand, the condition “.G; H/ is AFI with respect to .F; �/

for some finitely presented group F and some surjective homomorphism �W F ! G”,
akin to Lemma 2.7, is not interesting as it is satisfied by every pair .G; H/ with G

finitely generated. Indeed, just pick a finitely generated free group with a surjective
homomorphism onto G and use Example 2.6.

Lemma 2.9. If P is a subgroup of G and H is AFI in G then H \P is AFI in G \P .
Conversely, if H \ P is AFI in G \ P for every finitely generated subgroup P of G

then H is AFI in G.

Proof. This is trivial.

Proposition 2.10. The following statements are equivalent:

(i) the subgroup H is AFI in G;

(ii) there exists a set I , an ultrafilter ! on I , a family of groups �i and a family of finite
index subgroups ƒi � �i , and a homomorphism j of G into the ultraproductQ!

�i such that j �1
�Q!

ƒi

� D H .

(iii) Same as (ii), with j injective.

In (ii) and (iii), the �i can be chosen to be finitely presented; if G is countable the set
I can be chosen to be countable. Also if H is normal in G then the ƒi can be chosen
to be normal, and the statements are then also equivalent to: G=H is isomorphic to
a subgroup of some ultraproduct of finite groups.

Proof. (iii) H) (ii) is trivial.

(i) H) (iii) Suppose that H is AFI in G. If X is a set denote by FX the free
group over X , whose basis we denote by .ex/x2X ; if X � G let pX be the unique
homomorphism FX ! G defined by the assignment ex ! x.

Let I be the set of triples .X; N; ƒ/ where X ranges over finite subsets of G,
where N ranges over normal subgroups of FX that are finitely generated qua normal
subgroup and contained in Ker.pX/, and ƒ ranges over finite index subgroups of
FX=N . Denote by �N the projection FX ! FX=N (note that pX factors through
�N ). If
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� Y is a finite subset of G,

� Z a finite subset of Ker.pY /,

� U is a finite subset of p�1
Y .H/,

� V is a finite subset of p�1
Y .G X H/,

let IY;Z;U;V be the set of .X; N; ƒ/ in I such that

� X � Y ,

� N � Z,

� �N .U / � ƒ,

� �N .V / \ ƒ D ;.

Then IY;Z;U;V is non-empty, as a consequence of H being AFI in G. Besides, for all
.Y; Z; U; V / and .Y 0; Z0; U 0; V 0/, we have

IY;Z;U;V \ IY 0;Z0;U 0;V 0 � IY [Y 0;Z[Z0;U [U 0;V [V 0 :

It follows that there exists some ultrafilter ! on I containing IY;Z;U;V for all Y;Z;U;V.
If .X; N; ƒ/ 2 I , consider the (set) map jX;N;ƒW G ! FX =N mapping x 2 X to

its canonical image, and y … X to the trivial element. This induces a map j from G

to
Q!

.X;N;ƒ/2I FX =N . We claim that the latter is an injective homomorphism.
If g; h 2 G, define Y D ¹g; h; ghº and Z D ¹egehe�1

gh
º. Then for every .X; N / 2

IY;Z;;;; we have jX;N .gh/ D jX;N .g/jX;N .h/, and hence j.gh/ D j.g/j.h/.
Similarly, j.g�1/ D j.g/�1. Finally, if g ¤ 1 and Y D ¹gº, then for every
.X; N; ƒ/ 2 IY;;;;;; we have jX;N;ƒ.g/ ¤ 1. It follows that Ker.j / D ¹1º.

If h 2 H , and Y D ¹hº and U D ¹ehº, the element jX;N;ƒ.h/ is equal to �N .eh/,
which by assumption belongs to ƒ, so jX;N;ƒ.h/ 2 ƒ for all .X; N; ƒ/ 2 I¹hº;;;¹hº;;.
Similarly, if g … H , we obtain jX;N;ƒ.h/ … ƒ for all .X; N; ƒ/ 2 I¹hº;;;;;¹hº. It
follows that j �1.

Q!
.X;N;ƒ/ ƒ/ D H .

(ii) H) (i) Suppose there is such a homomorphism j W G ! Q!
i2I �i such that

H D j �1.
Q!

ƒi /. Let F be a finitely presented group and � a homomorphism
F ! G. Since F is finitely presented, there exists a homomorphism

Q
i fi W F !Q

i2I �i lifting j B �. Then Li D f �1
i .ƒi / has finite index in F . Let us check that

lim! Li D ��1.H/ in �.F /.
Suppose x 2 F . Then �.x/ D .fi .x//! . Then

x 2 ��1.H/ () j B �.x/ 2
Y!

ƒi

() 8! i; fi.x/ 2 ƒi

() 8! i; x 2 Li I
this exactly means that lim! Li D ��1.H/.
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All assertions in the last statement, except at first sight the one when H is normal,
hold by construction (in the proof of (i) H) (iii)). Actually, if N is a normal subgroup
in a group A, then H is a limit of finite index subgroups in �.A/ if and only if it is a limit
of finite index normal subgroups (taking the normal closure). It follows that assuming
H normal, if in the proof of (i) H) (iii)) we define I by only considering those
.X; N; ƒ/ with ƒ normal, then the proof works with no change. The last (well-known)
characterization holds since if we have j W G ! Q!

�i with H D j �1.
Q!

ƒi / and
ƒi is normal in �i , then G=H embeds as a subgroup of

Q!
�i=ƒi .

3. Wreath products

3.1. Approximate finiteness

Proposition 3.1. Let W D B oX G be a wreath product, where B is non-trivial and
X is a nonempty union of orbits G=Hi . Then W is AF if and only if B; G are AF and
all Hi are AFI in G.

Proof. Suppose that the condition is satisfied. We can suppose B; G are finitely
generated and X has finitely many G-orbits. Since W embeds in the direct product
of all B oG=Hi

G, we can reduce to the transitive case X D G=H . Writing, in a suitable
space of marked groups, B D lim Bn with Bn finite, we have W D lim Bn oX G.
So we can suppose B finite. Write G D lim Gn where G is a quotient of the finitely
presented group Gn; let Hn be the inverse image of H , so Hn is AFI in G. Then
W D lim B oGn=Hn

Gn. So we are in addition reduced to G finitely presented. Now,
using Lemma 2.4, we can write H D lim Hn with Hn of finite index in G. Then
W D lim B oG=Hn

G. So we are reduced to the case when G=H is finite. Such a
group is abstractly commensurable with a direct product Bk � G and thus is AF.

Conversely assume that W is AF. Then (because X ¤ ;) it follows that B and
G are AF. Let us show Hi is AFI in G, writing H D Hi . We can suppose that G is
finitely generated. If b is a nontrivial element and d the element of B.G=H/ supported
by the base-point with value b, then the centralizer of d in G is exactly H . Fix a
finitely presented group F with a surjective homomorphism p onto U D hG; d i,
with kernel N . Since U is AF, there is a sequence of normal subgroups of finite index
Mn � F tending to N . Write Cn D ¹x 2 F j Œx; d � � Mnº. Then .Cn/ tends to

C D ¹x 2 F j Œx; d � � N º D p�1.H/:

Note that Mn � Cn. It follows that for every finite subset S of N , eventually
Cn contains the normal closure of S (because it contains Mn which is normal and
eventually contains S ). So .U; H/ is KAFI with respect to .F; p/. By Lemma 2.7,
it follows that H is AFI in U . By Lemma 2.9, it follows that H is AFI in G.

By definition of AFI, it follows that C=N (the centralizer of b) is AFI in hb; Gi,
and restricting to G it follows that H is AFI in G.



784 Y. Cornulier

3.2. Residual finiteness

Proof of Proposition 1.8. We first need to show that if B is abelian and residually
finite, if H is closed in the profinite topology and G is residually finite then the
wreath product B oG=H G is residually finite. If � D .bx/x2G=H g is a nontrivial
element, let us find a finite quotient where it survives; if g ¤ 1 this is clear; assume
g D 1. Then there exists a finite index subgroup L containing H such that the
support of .bx/, namely the set of x such that bx ¤ 1, is mapped injectively into
G=L by the canonical projection � W G=H ! G=L. Since B is abelian, the canonical
homomorphism B oG=H G ! B oG=L G mapping .b0

x/x2G=H g0 to .b00
y/y2G=Lg0,

where b00
y D P

¹xj�.x/Dyº b0
x , is well-defined. It maps � to a nontrivial element.

So it is enough to check that W 0 D B oG=L G is residually finite. Since L has
finite index, and hence contains a normal subgroup N of finite index, W 0 admits a
finite index subgroup isomorphic to B ŒGWL� � N , which is residually finite; so W 0 is
residually finite as well.

Therefore, in the setting of Proposition 1.8, there is a natural surjective homo-
morphism Wrf ! Babr oG= xH Grf. Let us show it is an isomorphism. This amounts to
showing that

(1) elements of Ker.G ! Grf/ have a trivial image in Wrf;

(2) elements of ŒB; xH� have a trivial image in Wrf;

(3) elements of Ker.B ! Brf/ have a trivial image in Wrf.

(1) is trivial. If � is a group, let pf.�/ be the profinite topology on � . If X is a
subset of G or B , let yX be its image in Wrf.

For (2), observe that the centralizer of yB in yG is closed in . yG; pf. yG// and contains
H , hence contains its profinite closure.

For (3), observe that the set ¹g 2 yG j Œg yBg�1; yB� D 1º is closed and contains
2G X H ; since H has infinite index in G, it has an empty interior in .G; pf.G//. So
2G X H is dense in . yG; pf. yG//, and hence, using that . yG; pf. yG// is Hausdorff, we
deduce that Œg yBg�1; yB� D 1 for all g 2 G; in particular for g D 1 we deduce that yB
is abelian. It follows that elements of ŒB; B� have a trivial image in Wrf; since Wrf is
residually finite, (3) follows.

Proposition 3.2. Let W D B oX G be a wreath product, where B is a non-trivial
group, and X is a non-empty disjoint union of G-orbits G=Hi . Then W is residually
finite if and only if B; G are residually finite, and either

� B is residually finite abelian and all Hi are profinitely closed in G, or

� all Hi have finite index in G.

Proof. Suppose that the condition are satisfied. Then there is a canonical homo-
morphic embedding of W into

Q
i B oG=Hi

G; each factor is residually finite by
Proposition 1.8 and hence so is W .
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Conversely, suppose that W is residually finite. Then G is residually finite. Then
for each i , B oG=Hi

G is residually finite, and it follows from Proposition 1.8 that Hi

is closed in the profinite topology for every i . If for some i , Hi has infinite index, it
follows from Proposition 1.8 that B is residually finite abelian.

3.3. Virtual first Betti number

Proposition 3.3. If G is a group, then vb1.G/ D sup vb1.G=N /, where G=N ranges
over finitely generated virtually abelian quotients of G with no nontrivial finite normal
subgroup. In particular, vb1.G/ D vb1.Grf/.

Note that if � is finitely generated and virtually abelian, say virtually Zk , then
vb1.�/ D k.

Proof. The inequality � is trivial. To show the inequality �, suppose that vb1.G/ � k

and let us find a virtually abelian quotient G=N such that vb1.G=N / � k.
Let M be a finite index normal subgroup of G (say of index `) with b1.M/ � k.

This means that M has k Q-linearly independent homomorphisms into Z. Hence M

has a surjective homomorphism into Zk , say with kernel P . Note that P is normalized
by M . Define N D T

g2G=M gPg�1. Then M=N naturally embeds as a subgroup

of Zk`, hence is free abelian of finite rank, actually at least equal to k since it admits
M=P ' Zk as a quotient. So G=N is a finitely generated, virtually abelian quotient
of G, and vb1.G=N / � k. Actually, we can mod out by its largest finite normal
subgroup (this clearly does not change vb1) to ensure the latter is trivial.

For the last statement, just apply the result to Grf and observe that all finitely
generated virtually abelian quotients of G are actually quotients of Grf.

Lemma 3.4. Let A be an abelian group and B a subgroup of finite index. If
Hom.A; Z/ D 0 then Hom.B; Z/ D 0.

Proof. By contraposition, consider a nonzero homomorphism B ! Z. By injectivity
of the Z-module Q, it extends to a nonzero homomorphism A ! Q, whose image is
virtually infinite cyclic and abelian, hence cyclic, proving the lemma.

Proof of Corollary 1.9. By Propositions 3.3 and 1.8, we have

vb1.W / D vb1.Wrf/ D vb1.Babr oG= xH Grf/:

Let us now discuss. If ŒG W xH� is finite, then Wrf is abstractly commensurable to

B
G= xH
abr � Grf, and hence its virtual first Betti number (which is additive under direct

products) is given by b1.B/ŒG W xH� C vb1.G/ as desired.
If b1.B/ D 0, then for every homomorphism � from W onto a finitely generated

virtually abelian group ƒ, �.B.G=H/ is finite (and normal). Indeed if infinite, then we
would obtain a nonzero homomorphism from some finite index subgroup of B.G=H/
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into Z, and thus contradict Lemma 3.4. So assuming ƒ has no nontrivial finite
normal subgroup, we deduce that B.G=H/ is in the kernel. We deduce (in view of
Proposition 3.3) that vb1.B oG=H G/ D vb1.G/.

The remaining case is when b1.B/ ¤ 0 and ŒG W xH� is infinite, in which case
we have to show that vb1.W / D 1. Indeed, we can find a finite index subgroup
containing H with ŒG W L� arbitrary large. Then we have surjective homomorphisms

B oG=H G � Z oG=H G � Z oG=L G:

By the case of finite index above, we have vb1.Z oG=L G/ � ŒG W L�, and hence
vb1.B oG=H G/ � ŒG W L�. Since the latter number can be chosen arbitrary large, it
follows that vb1.B oG=H G/ D 1.

To deal with largeness, we need to replace finitely generated virtually abelian
groups by the following notion.

Definition 3.5. An extra-free group is a group � which is isomorphic a nontrivial
subdirect product of non-abelian free groups, i.e. such that there exists k � 1 and
non-abelian free groups F.1/; : : : ; F.k/ such that � is isomorphic to a subgroup of the
direct product

Q
i F.i/ all of whose projections on factors are surjective. It is called

of finite rank if all F.i/ can be chosen of finite rank.

This definition allows to define largeness in terms of quotients (rather than virtual
quotients).

Lemma 3.6. A group � is large if and only if it has quotient that is virtually extra-free
of finite rank. In particular, � is large if and only if �rf is large.

Proof. The “if” condition is trivial. Conversely suppose that � is large. Let M be
a normal subgroup of finite index with a surjective homomorphism into F.2/, with
kernel P . Define N D T

g2�=M gPg�1. Then N is normal in G and is also the kernel
of the map defined coordinate-wise as the projection from M to

Q
g2�=M M=gPg�1.

Thus this maps induces an embedding of M=N as a subdirect product of the copies
M=gPg�1 of F2. Thus M=N is extra-free of finite rank and hence G=N is virtually
extra-free of finite rank.

The last statement immediately follows, since virtually extra-free implies residu-
ally finite.

Lemma 3.7. Let � be a group. If � is not large and f is a homomorphism from �

to a virtually extra-free group (or more generally virtually residually free), then its
image f .�/ is virtually abelian.
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Proof. Let ƒ admit a residually free subgroup of finite index ƒ0, and consider a
homomorphism f W � ! ƒ. Define �1 D f �1.ƒ1/. Consider an embedding
i D .ij /j of ƒ1 into a (possibly infinite) unrestricted product

Q
j F.j / of free groups.

Since � is not large, for each j , the composite map ij B f (defined on �1) has an
abelian image. Hence i Bf (defined on �1) has an abelian image. Since i is injective,
it follows that f .�1/ is abelian. Hence f .�/ is virtually abelian.

Proof of Corollary 1.11. Let us assume that G is not large and let us show that W is
not large. By Lemma 3.6, it is enough to show that if f is a homomorphism from W

to an extra-free group, then f is not surjective.
First observe that since every extra-free group is residually finite, f factors through

Wrf, which is naturally isomorphic to Babr oG= xH Gwr. Hence the image of B.G=H/ by
f is an abelian normal subgroup in f .W /. Also, by Lemma 3.7, f .G/ is virtually
abelian. Hence f .W / D f .B.G=H/f .G/ is virtually solvable, so f cannot be
surjective.

Proof of Corollary 1.12. The first statement is a trivial consequence of Corollary 1.9;
the second follows from the fact that if B ¤ 1 and xH has infinite index, then B oG=H G

is not finitely presented [3].
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