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Abstract. It is unknown – yet very likely false – whether left-orderable groups satisfying
a non-trivial identity must be virtually solvable. Starting from this, we explore several no-
tions/conjectures/questions that are closely related. As a concrete result, we provide examples
of left-orders on the free group satisfying no nontrivial law.
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1. Introduction

In the general program of understanding the group of diffeomorphisms of a given
(compact) manifold as an infinite-dimensional analogue of a (simple) Lie group,
several questions arise naturally, as for example the following two.

The Tits alternative. Do all non-virtually-solvable subgroups contain (non-abelian)
free subgroups in two generators?

The Milnor alternative. Does every finitely-generated subgroup have either polyno-
mial or exponential growth? In case of exponential growth, is it necessarily uniform?

A complete answer to all of this (in arbitrary regularity and any dimension) is
far from being available. Nevertheless, several relevant results are known, notably
in the 1-dimensional case. Indeed, the growth alternative fails for groups of C 1

diffeomorphisms of 1-manifolds but holds in class C 1C˛ (yet the question about
uniform growth remains open); see [39]. Concerning the Tits alternative, it is known
to be false in class C 1 (a counter-example is given by the smooth realization of
Thompson’s group F by diffeomorphisms of the interval [21]), though it is an open
question in the real-analytic case.
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The validity of the Tits alternative obviously implies that if the underlying group
satisfies a (nontrivial) law, then it must be virtually-solvable. (Note, however, that
for linear groups, this can be easily established without using Tits’ theorem [50] just
passing to the Zariski closure and using the classification of algebraic Lie groups.)
In this work, we will consider this baby form of the Tits alternative for groups acting
on 1-manifolds. More precisely, we deal with the next question.

Question (i). Let � be a subgroup of the group HomeoC.R/ of orientation-preserving
homeomorphisms of the real line. If � satisfies a law, must it be virtually-solvable?

This question can be addresed more generally for groups of homeomorphisms
(diffeomorphisms) of any manifold. However, as every group acting on the interval
can be realized as a group acting on any manifold – this can be made even preserving
any C k regularity1 – the 1-dimensional case appears as the first nontrivial case to deal
with. Note moreover that in dimension 1, the case of (groups of homeomorphisms
of) the circle reduces to that of the real line (equivalently, to the interval) due to the
validity of the Ghys-Margulis weak form of the Tits alternative (see [33] and [20])
that we state as follows: if � is a subgroup of HomeoC.S1/ without free subgroups,
then its commutator subgroup acts with global fixed points. (Thus, after opening the
circle at one of these fixed points, we obtain an action of Œ�; �� on the real line...)

We strongly suspect a negative answer to the question above (perhaps even in
the framework of amenable groups). Nevertheless, our goal is mostly to discuss
the problem from several viewpoints, to provide partial positive results and eventual
applications that are interesting by themselves, and to address many related questions.

Every subgroup of HomeoC.R/ is obviously torsion-free. We hence start by
noticing that it is already nontrivial to give examples of torsion-free groups satisfying
laws and which are non-virtually-solvable. However, following a suggestion of Y.
de Cornulier, one may produce a lot of examples by using the next classical lemma
of Higman [25]: if F is a free group and N a normal subgroup, then F=ŒN; N � is
torsion-free. As a consequence, if F=N satisfies a law W.a1; : : : ; an/ D id and is non-
virtually-solvable, then F=ŒN; N � is torsion-free, non-virtually-solvable, and satisfies
the law ŒW.a1; : : : ; an/; W.anC1; : : : ; W.a2n//� D id. Recall, moreover, that there
are many examples of non-virtually-solvable groups satisfying laws. Actually, there
well-known non-amenable examples, as for instance the Burnside groups B.n/, with
n > 666 an odd integer, defined by (see [1])

B.n/ WD ha; bW W n D id for every (nonempty) word W in a and bi:

Question (ii). If we write B.n/ � F2=N , does the group F2=ŒN; N � embed into
HomeoC.R/?

1Roughly, this is done as follows: we view a punctured disk D in the manifold as the union of a disjoint
family of open intervals all arising from the origin; then on each interval we copy the original action, and
we extend all the elements as being the identity outside D; to preserve regularity, prior to this we apply the
Muller–Tsuboi trick, see Exercise 5.1.14 in [37], in order to make all group elements flat at the endpoints.
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There are many other sources of motivation for Question (i) above, most of which
come from the theory of left-orderable groups. Recall that a group is said to be left-
orderable if it admits a total order relation that is invariant under left multiplication
(a left-order, for short). Such a group is necessarily torsion-free, but the converse
is far from being true. Actually, it is a well-known fact that a countable group is
left-orderable if and only if it embeds into HomeoC.R/; see Theorem 6.8 in [18].
The next question was addressed by Linnell.

Question ([30]). Let � be a left-orderable group. Assume � contains no free sub-
group. Is � locally indicable? (i.e. does every finitely-generated subgroup homo-
morphically surjects into Z?)

Although the answer to this question is unclear, a major evidence pointing in the
affirmative direction is a beatiful theorem of Morris-Witte [35]: every amenable, left-
orderable group is locally indicable. In our approach, we should stress that even for
left-orderable groups satisfying a law, local indicability remains an open question.
A relevant case concerns Engel type laws. To properly state this, given two elements
f; g in a group � , we let the nth-commutator Œf; g�n of f and g be inductively
defined by Œf; g�1 WD fgf �1g�1 and Œf; g�kC1 WD ŒŒf; g�k; g�1. One says that the
group satisfies the nth-Engel condition (or it is an n-Engel group) if Œf; g�n D id for
all f; g in � , and that it is an Engel group if it is n-Engel for some n2N.

Engel’s condition remains somewhat mysterious beyond the framework of finite
or linear groups. A central question of Plotkin asks whether every finitely-generated
torsion-free Engel group is locally nilpotent. This has been shown to be true when
n � 4 (even without the assumption of torsion-freenes; see [24]), but remains open in
general. (Yet Juhasz and Rips have recently announced a negative answer for large-
enough n.) Plotkin’s question has been also addressed under stronger conditions than
torsion-freeness. For example, a theorem of Kim and Rhemthulla establishes that bi-
orderable Engel groups are nilpotent [27]. This has been extended under the weaker
condition of local indicability [22], but remains open for general left-orderable groups
for n > 4 (see [31] for the case n D 4).

Locally indicable groups are particularly important in the theory of left-orderable
groups. According to Conrad [14] and Brodski [9], these groups are those that support
a left-order with a property slightly weaker than bi-invariance (see [38] for a simpler
proof Brodski’s theorem). Although the original Conrad’s definition of this property
is quite involved (see [6] and [28]), it was noticed in [26] and [38] that it is equivalent
to a much simpler one: for every f � id and g � id, one has fg2 � g. This naturally
suggests introducing the notion of verbal property for an order: given a (nonempty)
reduced word W D W.a; b/ carrying positive and negative exponents, we say that a
left-order on a group is a W -order if W.f; g/ is always a positive element (i.e. larger
than the identity) whenever both f and g are positive. For example, the W -orders
for W.a; b/ WD a�1ba are the bi-invariant ones, and the Conradian orders are the
W -orders for W.a; b/ WD a�1ba2.
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Question (iii). Does there exist a word W such that the W -orders are those that
satisfy an specific and relevant algebraic property different from bi-orderability or
local indicability?

Conradian orders are special not only from a verbal viewpoint, but also from a
dynamical one. Indeed, it has been shown in [38], and later pursued in [43], that the
Conradian orders are those for which there is no resilient pair; more precisely, there
are no group elements f; g; h1; h2 satisfying

h1 � f nh1 � f nh2 � gnh1 � gnh2 � h2 (1)

for all n 2 N. (Note that it suffices to check this for n D 1 to garantee it for all
n � 1, but this way of stating is more natural in view of the discussion below.) As
a consequence, if a group admits non Conradian orders, then it must contain free
subsemigroups; in particular, it cannot satisfy a semigroup law. (The latter facts were
first established in [32] using quite different arguments.)

In our approach, what is relevant with condition (1) is that it is somewhat related
to our strategy to rule out laws in groups having a rich-enough action. Indeed, assume
that for all k 2 N, there are group elements f; g and hi ; h0

i ;
Nhi ; Nh0

i , i 2 ¹1; : : : ; 2kC1º,
such that for each nonzero integer n,

either Nhi�1 � f n.hi / � f n.h0
i/ � Nh0

i�1

or Nhi � f n.hi / � f n.h0
i / � Nh0

i

(2)

whenever i 2¹2; : : : ; 2k C 1º, and

either hi � gn. Nhi / � gn. Nh0
i / � h0

i

or hiC1 � gn. Nhi / � gn. Nh0
i / � h0

iC1

(3)

whenever i 2 ¹1; : : : ; 2kº. Then, as we will see below (c.f. Example 5.2), the
underlying group cannot satisfy any law. This motivates still another

Question (iv). Does there exist an algebraic description of the set of orders for
which (2) and (3) cannot hold simultaneously for any group elements and some
n > 2? In particular, does it coincide with the set of W -orders for a certain word W ?

2. Some results

(a) Groups of diffeomorphisms satisfying laws. As already mentioned, the Tits
alternative fails in Diff1

C .Œ0; 1�/, and it is an open question in the group Diff!
C.Œ0; 1�/

of real-analytic diffeomorphisms. However, as we next state, its baby form remains
true in the latter context.
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Theorem A. Every subgroup of Diff!
C.Œ0; 1�/ satisfying a law is solvable.

Note that the result above forces virtually-solvable subgroups of Diff!
C.Œ0; 1�/ to

be solvable. (This was already known; see also Corollary 2 in [5] and and Remark 6.4
in [42].)

It is very likely that Theorem A is still true for subgroups of Diff1C˛
C

.Œ0; 1�/.
(The C 1 case is unclear to the author.) However, besides of a much more technical
work, this would certainly require a different viewpoint, hence we will address this
seemingly hard issue elsewhere. Just to give a flavour on the difficulties here, let us
mention that Theorem A is still true for groups of piecewise-linear homeomorphisms
of the interval. Indeed, if such a group is non-solvable, then a result of Bleak [5]
establishes that it contains a copy of the group G defined by

G WD
M

n�0

Gn; where G0 WD Z and GnC1 WD Gn o Z:

Moreover, by a result of Akhmedov (see Lemma 2.1 in [4]), G satisfies no nontrivial
law. Unfortunately, our method of proof does not yield the fact that G satisfies no
law, despite the fact that G can be realized as a group of C 1 diffeomorphisms of the
interval (see [41]).

Question (v). It is indeed known that the girth of G is infinite, that is, for suitable
changes of the generating system, the length of the shortest nontrivial relation can
be made arbitrarily large; see [3]. Is the girth of finitely-generated, non-solvable
subgroups of Diff!

C.Œ0; 1�/ infinite as well?

Besides standard analytical methods used to deal with groups of diffeomorphisms
of 1-manifolds, the proof of Theorem A relies on a key argument to rule out laws in
groups. This corresponds to a kind of “finite ping-pong lemma” that seems having
been unexploited in full generality though widely known to the specialists (compare §4
of [8] and [7]). This strategy suits perfectly in case of relations of type (2) and (3)
above.

Remark 2.1. The group Diff!
C.Œ0; 1�/ is residually solvable (just by truncating the

Taylor series expansions of group elements at the origin). However, this is not enough
to establish solvability in the case where some nontrivial law is satisfied, as shown by
Theorem 8 in [15]. However, truncating series produces not only solvable but also
algebraic (over the reals) quotiens. An argument using Zariski closures may them be
implemented to deduce Theorem A in a more algebraic (yet nontrivial) way. Again,
it is hopeless to try to use a similar argument in lower regularity, hence we do not
pursue this issue here and we leave the details to the reader.
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(b) An approach to Linnell’s question and beyond. The results of this subsection
arose during several discussions with B. Deroin and V. Kleptsyn. They are almost
direct consequences of [17], yet they deserve to be isolated in order to stress two
major open questions in the subject.

As previously recalled, countable left-orderable groups are those that act on the
real line by (orientation-preserving) homeomorphisms without a global fixed point. If
the group is finitely-generated, such an action preserves a non-empty, closed minimal
set, and is of one of the three types below:

I. either it admits a discrete countable orbit or it is semiconjugate to the action of
a dense group of translations;

II. it is not of type I and, up to a semiconjugacy if necessary, there is a homeomor-
phism of (semiconjugate) the real line with no fixed point that commutes with
the (semiconjugate) action;

III. it is of neither type I nor type II.

This classification is inspired from (the proof of) Theorem 7.1 in [17]. An almost
direct consequence (details are given latter) is the next

Theorem B. Let � be a finitely-generated, left-orderable group having an action on
the real line that is not of type III. Then either � homomorphically surjects into Z,
or it contains a free subgroup in two generators.

In particular, if there were no finitely-generated group all of whose faithful actions
on the real line are of type III, then the answer to Linnell’s question above would be
affirmative. Besides this, there is another major question that would solve in the
affirmative under the same assumption: no lattice in a higher-rank simple Lie group
would embed into HomeoC.R/ (compare [51] and [29]). Indeed, on the one hand,
actions of type I lead to surjective homomorphisms into the reals just by taking
translations numbers. On the other hand, actions of type II yield actions on the
circle (viewed as the space of orbits of the commuting homeomorphism) that have
no invariant probability measure (otherwise, we fall into type I). Both cases are
impossible for higher rank lattices: the former contradicts Kazhdan’s property (T),
and the latter contradicts a theorem of Ghys [19].

The discussion above shows the relevance of the next question.

Question (vi). Does there exist a finitely-generated, left-orderable group all of whose
actions on the real line without global fixed points are of type III?

Clearly, this is much related to the next still open question.

Question (vii). Does there exist a finitely-generated, left-orderable, simple group?
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(c) Verbal properties of left-orders. Our main result in this direction was obtained
in collaboration with C. Rivas. Although not very surprising, it is by no means
straighforward: the free group F2 admits left-orders that satisfy no verbal property.
Actually, this is the case of “most” left-orders on F2, as we next explain.

Recal that the set LO.�/ of left-orders on a given left-orderable group � carries
a natural topology, where two orders are close if they coincide on a large finite set.
This topology is metrizable if the group is countable. For instance, if � is finitely
generated, one way let dist.�; �0/ be the inverse of the radius of the largest ball
centered at the origin where � and �0 coincide. The result below is stated (and
proved) only for the free group in two generators, but it can be easily extended to the
case of more generators.

Theorem C. The set of left-orders on the free group F2 satisfying no verbal property
is a Gı -dense subset of the space of left-orders of F2.

This result seems very different in nature to Theorems A and B. Nevertheless,
as it will become clear along the proof, it relies on elementary combinatorial and
dynamical arguments that are quite close to those involved in the proof of these two
Theorems. Actually, for pedagogical reasons, we will prove our results in the reverse
order.

Acknowledgments. The author is strongly indebted to A. Akhmedov, Y. de Cor-
nulier, B. Deroin, V. Kleptsyn, and C. Rivas, for quite useful and inspiring discus-
sions, and for kindly allowing to include in this work several remarks and results
that arose in these meetings. The author was funded by the Anillo Research Project
1103 DySyRF and the CNRS (UMR 8628, Univ. d’Orsay) via the ERC starting grant
257110 “RaWG.” He also acknowledges the IHP for the hospitality during the time
this article was written, and would like to thank C. Bleak, T. Delzant, É. Ghys, and
R. Strebel for their interest and useful references, as well as T. Smirnova-Nagnibeda
for the motivation to write this article.

3. Verbal properties of left-orders

3.1. Left-orders on F2 violating a prescribed verbal property. The construction
of such orders is done using a very simple dynamical idea. To do this, recall that any
group � of orientation-preserving homeomorphisms of the real-line can be ordered
by declaring f � g if and only if f .0/ > g.0/. This order is left-invariant yet not
necessarily total. To make it total, we just need to consider more “references points”
than the origin; see [38] for details.

Next, given a reduced word W in two letters and carrying positive and negative
exponents, we will construct two homeomorphisms of the real line f; g, both moving
the origin to the right, such that the element W.f; g/ moves the origin to the left. Then
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the order on hf; gi defined above satisfies f � id, g � id, and W.f; g/ � id. Via
the (parhaps non-faithful) action of F2 WD ha; bi given by '.a/ WD f and '.b/ WD g,
this induces a partial left-invariant order on F2, still denoted by �. If it is not total,
we may consider a convex extension: if �0 is any left-order on F2, we define �� by
letting c �� id if and only if either '.c/ � id, or '.c/ and id are �-incomparable
(i.e. '.c/.0/ D 0) and c �0 id. Then �� is a left-order on F2 that satisfies f �� id,
g �� id, and W.f; g/ �� id, as desired.

The construction of the desired action is done as follows. By interchanging
a and b if necessary, we may assume that the word W D W.a; b/ writes in the
form W D W1a�nW2, where W2 is either empty or a product of positive powers
of a and b, the integer n is positive, and W1 is arbitrary. Let us consider two local
homeomorphisms defined on a right neighborhood of the real line such that f .0/ > 0,
g.0/ > 0 and W2.f; g/.0/ < f n.0/. This can be easily done by taking f .0/ � g.0/

and letting g be almost flat on a very large right-neighborhood of the origin. If W1 is
empty, just extend f and g into homeomorphisms of the real line. Otherwise, write
W1 D ank bmk : : : an2bm2an1bm1 , where all mi ; ni are nonzero excepting perhaps
nk . The extension of f and g to a left-neighborhood of the origin depends on the
signs of the exponents mi ; ni , and is done in a constructive manner. Namely, first
extend f slightly so that f �nW2.f; g/.0/ is defined and f has a fixed point x1 to
the left of the origin. Then extend g to a left-neighborhood of the origin so that
gm1f �nW2.f; g/.0/ < x1 and g has a fixed point y1 to the left of x1. Note that
m1 > 0 forces g to be right-topologically-attracting towards y1 on an interval containg
f �nW2.f; g/.0/, whereas m1 < 0 forces right topological repulsion. Next, extend f

to a left neighborhood of x1 so that f n1gm1f �nW2.f; g/.0/ < y1 and f has a fixed
point x2 to the left of y1. Again, if n1 > 0, this forces right-topological-attraction
towards x2, whereas n1 < 0 implies right-topological-repulsion.

Continuing the procedure in this manner (see Figure 1 for an illustration), we get
partially-defined homeomorphisms f; g for which

0 > f nk gmk : : : f n2gm2f n1gm1f �nW2.f; g/.0/ D W.f; g/.0/:

Extending f; g arbitrarily into homeomorphisms of the real line, we finally obtain the
desired action.

3.2. Genericity of non-verbal orders. If � is left-orderable, then it acts by conju-
gacy (equivalently, by right translations) on its space of left-orders. We denote by �h

the image of � under h defined by letting f �h g if and only if f h�1 � gh�1. Note
that given a word W , the subset of W -orders is preserved under the conjugacy ac-
tion. Based on the work of McCleary [34], Clay [12] and, independently, Rivas [46],
proved that F2 carries left-orders whose orbits under the conjugacy action are dense.
(This easily yields a new proof of the fact that the space of left-orders of F2 is a Cantor
set; see [34] and [38].) We next show that these orbits are made of orders satisfying
no verbal property.
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f

g

Figure 1. W1 D an2bm2an1bm1 , where m1 > 0; n1 < 0; m2 < 0; n2 > 0.

Lemma 3.1. Every left-order on F2 having a dense orbit under the conjugacy action
satisfies no verbal property.

Proof. Given a reduced word W in two letters carrying positive and negative expo-
nents, let �0 be a left-order on F2 that is not a W -order. Then there exist �0-positive
elements f; g in � such that W.f; g/ is �0-negative. If � has a dense orbit under the
conjugacy action, then there exists h 2 � such that �h satisfies these three inequal-
ities, namely, f; g are both �h-positive, whereas W.f; g/ is �h-negative. Hence,
hf h�1, hgh�1 are both �-positive, whereas hW.f; g/h�1 D W.hf h�1; hgh�1/ is
negative. This shows that � does not satisfy the W -verbal property.

The proof of Theorem C can be now finished by a standard Baire type argument.
Indeed, let us enumerate as ¹W1; W2; : : :º all reduced words in two letters carrying
positive and negative exponents. By the preceding Lemma, for each Wi , the set
LOWi

.F2/ of Wi -orders on F2 has empty interior. By the definition of the topology
on LO.F2/, this set is closed. Therefore, the complement of the union

S
i LOWi

.F2/

is a Gı -dense set. This complement corresponds to the set of left-orders satisfying
no verbal property.

Question (vii). It is a nontrivial fact that the real-analytic homeomorphisms of the
line given by x 7! x C 1 and x 7! x3 generate a free group [13]. By analyticity, a
Gı -dense subset S of points in the line have a free orbit under this action. Given a
point x 2 S , we may associate to it the left-order on F2 defined by f � g whenever
f .x/ > g.x/. Is the set of x 2 S for which the associate order satisfies no verbal
property still a Gı -dense subset of R?
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4. An approach to Linnell’s question and beyond

As we have already suggested, the proof of Theorem B is somewhat tautological.
Indeed, for actions of type I, a homomorphism into the reals is provided by the
translation number. For actions of type II, we consider the action on the circle obtained
as the quotient space of the commuting homeomorphism. This action cannot preserve
a probability measure, otherwise the original action on the line would be of type I.
Therefore, by the weak Tits alternative (see [33] and [20]), the group contains free
subgroups in two generators.

Because of the proof above, it becomes desirable a closer look at actions of type III.
This is done by the next proposition.

Proposition 4.1. Let � be a finitely-generated subgroup of HomeoC.R/. If � acts
with no global fixed point, then its action is of type III if and only if the following
condition is satisfied: there exist c < c0 such that for all pairs of points a < b and
a0 < b0 in the real line such that a < c < c0 < b, there is g 2 � such that g.a/ < a0

and g.b/ > b0.

Proof. One direction is obvious: the presence of “expanding elements” prevents types
I and II. To show the converse, assume the action of � is of neither type I nor type II.
Let K �R be a minimal invariant closed set for the �-action (see Proposition 2.1.12
in [37]). There are three cases.

� If K is discrete, then it consists of a bi-infinite sequence of points ordered on
the real line, which necessarily diverges in each direction (because � admits no
global fixed point). The action is hence of type I.

� If K is the whole line, then there are two subcases.

– If the action is free, then by Hölder’s theorem, it is conjugate to an action by
translations (see §2.2.4 in [37]), hence of type I.

– If it is non-free, then there must exist g 2 � and a point x0 2 R which is fixed
by g and such that g has no fixed point in an interval of type Œx0 � "; x0� or
Œx0; x0 C "�. In each case, the corresponding interval contracts into the point x0

under iterates of g. As the action is minimal, for each x 2 R we may consider
the supremum '.x/ of the y 2 .x; 1/ for which there exists a sequence fk 2 �

such that fk.Œx; y�/ converges to a single point in R. Clearly, the function
'W R ! R [ ¹1º is �-equivariant and nondecreasing. If '.x/ D 1 for some
x, then this holds for all x. We claim that this allows performing the desired
expansions. Indeed, as '.a0/ D 1, the interval Œa; b0� can be contracted towards
a point y0 2 R by a sequence fk 2 � . As the action is minimal, there is h 2 �

such that h.y0/ 2 .a; b/. Then for a large-enough k, the element g WD .hfk/�1

satisfies g.a/ < a0 and g.b/ > b0.
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Assume next that '.x/ belongs to R for all x. We claim that ' is a homeo-
morphism of R. Indeed, ' has to be continuous, otherwise the interior of the
complement of its image would be an open �-invariant set, which contradicts
the minimality of the �-action. Surjectivity follows from that ' is nondecreas-
ing and continuous, and injectivity is proved by contradiction: otherwise, the
set of points having a neighborhood on which ' is constant would be open and
�-invariant, thus contradicting minimality.

Therefore, since ' has no fixed point and is �-equivariant, we have that the
action, if not of type I, is of type II.

� Finally, if K is not the whole line, then it is locally isomorphic to a Cantor set, so
that the action is semiconjugate to that of a group acting minimally on R. (Just
by the classical trick of collapsing connected components of the complement
into points.) We may hence apply the previous arguments, thus either showing
that the action is semiconjugate to an action by translations or inducing elements
in the original group that realize the desired expansions. We just need to take
care in choosing both c < c0 lying in K (or in different connected components
of its complement).

Example 4.2. The free group F2 admits actions of the three types above. Actions of
type I come as dynamical realizations (in the sense of [18], Teorem 6.8) of bi-orders
on F2 (which do exist according to a classical result of Magnus; see e.g. [16]). Actions
of type II are obtained just by lifting to the real line the generators of a Schotky group
of circle homeomorphisms (this can be hence realized inside ePSL.2; R/). Finally,
actions of type III can be built “by hand”. Actually, arguments as those of the previous
section show that “most actions” of F2 are of type III.

Example 4.3. Actions of the Baumslag–Solitar group

BS.1; 2/ WD ha; bW bab�1 D a2i

on the line (without fixed points) were classified up to semiconjugacy in [47]. These all
come from different inclusions in the affine group, except for four non-semiconjugate
actions in which the element b acts with no global fixed point. The former actions
are of type III, whereas the latter are of type I.

Example 4.4. There are many examples of groups all of whose actions on the line
are of type I. Concerning this, we may address the next question.

Question (ix). What are the left-orderable groups for all actions, the restriction to
finitely-generated subgroups are of type I?
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According to [38], this is equivalent to asking for the groups all of whose left-orders
are Conradian. This includes left-orderable groups with no free subsemigroups (e.g.
all torsion-free, nilpotent groups) as well as groups with finitely many left-orders [28].

An element g of a left-orderable group � is said to be cofinal if for every action
on the real line with no global fixed point, g fixes no point. Clearly, if a finitely-
generated, left-orderable group � has a cofinal, central element, then no action is of
type III.

Example 4.5. The lifting in ePSL.2; R/ of the .2; 3; 7/ triangle group has the presen-
tation

G D hf; g; hW f 2 D g3 D h7 D fghi:

This example was introduced by Thurston in [49]; it is the first example in the literature
of a group of homeomorphisms of the real line with no nontrivial homomorphisms
into the reals (hence no action of type I). The central element � WD fgh is cofinal.
(Indeed, if � D f 2 D g3 D h7 has a fixed point, then this is fixed by f; g; h, hence
by the whole group.) As a consequence, every action of G is of type II.

Example 4.6. The center of the braid group is generated by the square of the so-called
Garside element �n, which satisfies

�2
n D .�1�2 � � � �n�1/n D .�2

1 �2 � � � �n�1/n�1:

(Here, the �i ’s are the canonical (Artin) generators of Bn.) It was shown by Clay
in [11] that �n is cofinal in Bn. We do not know whether there exist type III actions
of the commutator subgroups ŒBn; Bn� for n � 5 (these groups do not admit actions
of type I since they admit no nontrivial homomorphism into the reals; the actions
obtained by the Nielsen-Thurston method, see [48] and [44], are of type II). Actually,
we do not known any example of a finitely-generated, left-orderable group all of
whose actions on the line with no global fixed point are of either type II or type III,
and both types arise.

The classification into three types according to the dynamical properties can be
made not only for actions on the line, but also for left-orders on a given left-orderable
group. We will address this issue elsewhere.

5. Groups of diffeomorphisms satisfying laws

5.1. A ping-pong like lemma. Below we give a “finite version” of the classical
ping-pong lemma of Klein (see [23] for a discussion of the original version).
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Lemma 5.1. Let � be a group acting by bijections on a set X . Assume that for every
k 2 N, there exist elements f; g in � and nonempty subsets A1; : : : Ak; B1; : : : ; Bk

of X such that

� for all nonzero integers n, we have f n.Ai/ � Bi for i 2 ¹1; : : : ; kº, and
gn.Bi / � AiC1 for i 2 ¹1; : : : ; k � 1º;

� the sets A1 and Bk are disjoint.

Then � satisfies no nontrivial law.

Proof. As it is well-known, if a group satisfies a law, then it satisfies a law in two
letters. (This easily follows from that the free group in two generators contain copies
of free groups on arbitrarily many generators.) Let W D W.a; b/ be a word in two
letters representing a group law. By conjugating W by a power of a if necessary, we
may assume that it has the form

W D ank bmk�1ank�1 � � � bm1an1 ;

where all exponents are nonzero. Consider the elements f; g and the sets Ai ; Bi

provided by the hypothesis for the integer k. We have

W.f; g/.A1/ D f nk gmk�1f nk�1 � � � f n2gm1f n1.A1/

� f nk gmk�1f nk�1 � � � f n2gm1.B1/

� f nk gmk�1f nk�1 � � � f n2.A2/

� : : :

� f nk .Ak/

� Bk :

Since A1 and Bk are disjoint, this implies that W.f; g/ is a nontrivial element of � .
Thus, � does not satisfy the law given by W .

Example 5.2. Assume that a group � with a left-order � contains group elements
satisfying (2) and (3). Given two group elements f 0 � g0, denote Œf 0; g0� the set of
group elements h0 satisfying f 0 � h0 � g0. If we let

Ai WD

i�1[

j D�iC1

ŒhkC1Cj ; h0

kC1Cj � and Bi WD

i�1[

j D�i

Œ NhkC1Cj ; Nh0

kC1Cj �;

then conditions (2) and (3) translate into that the hypothesis of the preceding Lemma
are satisfied.
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Example 5.3. For the Thompson group F , given k 2N, choose an element g having
exactly 2k C1 fixed points inside �0; 1Œ, all of them transversal. Denote (and number)
these points so that p1 < : : : < p2kC1. Let f be another element having 2k fixed
points ¹q1; : : : ; q2kC1º in �0; 1Œ, all of them transversal, so that p1 < q1 < p2 <

q2 : : : < p2kC1 < q2kC1. (Such an f can be taken as a conjugate of g, but this is
irrelevant here.) Let A and, respectively, B , be the union of (small-enough) disjoint
neighborhoods of the points pi and qi . By looking at all combinatorial possibilities,
one can easily see that A and B contain subsets A1; : : : ; Ak; B1; : : : ; Bk satisfying
the conditions of Lemma 5.1 with respect to very large powers f N and gN . Indeed,
for the set A1 we take a small neighborhood of pkC1, for B1 the union of small
neighborhoods of qk and qkC1, for A2 the union of small neighborhoods of pk , pkC1

and pkC2, and so on. The reader should notice that this argument – which is nothing
but a dynamical restatement of that of the preceding Example – is not so far away
from the proof in §5 of [8], that F satisfies no law, despite the fact – also proved
in [8] – that it contains no free subgroup in two generators; see [10] for a completely
different proof.

Remark 5.4. In the example above, we do not really need that f and g have exactly
2k C1 fixed points. What is essential is that they have at least 2k C1 fixed points that
are intertwined as above and that they admit no common fixed point in the interval
Œp1; q2kC1�. We leave the details of this to the reader.

5.2. A proof of Theorem A. We start by recalling that a solvable group of real-
analytic diffeomorphisms of the closed interval is necessarily metabelian, and its
action is topologically conjugate to that of an affine group provided there is no global
fixed point in the interior; see [20]. The crucial step of the proof is given by the next
proposition.

Proposition 5.5. Let � be a subgroup of Diff!
C.Œ0; 1�/ for which there exists N � 1

such that every nontrivial group element has at most N fixed points. Then � is
metabelian.

Let us mention that Akhmedov has recently shown a C 1C˛ version of this result;
see [2]. To keep this work reasonably self-contained, below we offer an elementary
proof of the Proposition (in the real-analytic setting). This relies on next lemma.

Lemma 5.6. Let � be a non-metabelian subgroup of Diff!
C.Œ0; 1�/ having no global

fixed point other than 0 and 1. Then for all points 0 < p1 < : : : < pn < 1 and
all " > 0, there is an element f 2 � that doesn’t fix any of these points, though
jf .pi / � pi j < " for all i .
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Proof. Recall that non-metabelian groups of real-analytic diffeomorphisms of the
interval contain local flows in their closure2 (see [36] and [45]; in particular, they act
minimally on .0; 1/ (see also Proposition 3.9 in [20]). Hence, it suffices to show that
every given interval can be mapped (expanded) into intervals whose endpoints are as
close to 0 and 1 as desired. (Indeed, the conjugate flow will hence provide the desired
elements for small translation parameters.) As we may certainly assume that � is
finitely generated, this amounts to saying that the action of � on .0; 1/ is of type III
(see Proposition 4.1).

Suppose the action is of type I, that is, � either preserves an infinite discrete set
in .0; 1/ or is semiconjugate to a group of translations. Then every element in the
commutator subgroup Œ�; �� fixes infinitely many points of .0; 1/. By analyticity,
these elements are necessarily trivial, hence � is abelian, which is a contradiction.

Assume the action is of type II. If g 2 � is nontrivial and has a fixed point, then the
whole (infinite) orbit of this point under the homeomorphism that commutes with the
action is made of points that are fixed by g, which contradicts analyticity. Therefore,
the action of � on .0; 1/ is free, hence by Hölder’s theorem the group is abelian,
which is again a contradiction. (Actually, this also contradicts the fact that the action
was of type II, hence not of type I.)

The proof of Proposition 5.5 proceeds by induction on the maximum N of the
number jmaxFix

0 .�/j of fixed points in .0; 1/ of a nontrivial element. If N D 0, then
the action is free on the interior. By Hölder’s theorem, the group � is abelian, and
its action is conjugate to that of a group of translations. For N D 1, a theorem
of Solodov establishes that � must be metabelian, and its action is conjugate to
that of an affine group see §2.2.4 of [37]. Assume that the claim holds for groups
with nontrivial elements having at most N � 1 fixed points, and let � be a group with
jmaxFix

0 .�/j D N . To show that it is metabelian, we may suppose that it has no global
fixed point other than 0 and 1. Assume for a contradiction that � is non-metabelian.
We claim that � must contain

� a nontrivial element h;

� an element f satisfying f .x/ > x for all x < 1 very close to 1 and having an
order of contact to the identity at the origin smaller than that of h (in the sense
that f .x/=h.x/ goes to 0 as x converges to the origin along points x for which
h.x/ ¤ 0);

� an element g with exactly N fixed points, all of them topologically transversal,
having an order of contact to the identity at the endpoint 1 smaller than that of f

and such that g.x/ > x for all x < 1 very close to 1.

2Actually, this is rather elementary for groups acting on the interval: see footnote 3.
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Indeed, the element h comes from that � is nontrivial. Let r � 1 be such that all
elements in the r th commutator subgroup �r have contact order to the identity at the
origin smaller than that of h. If � is non-metabelian, then it is non-solvable; therefore,
�r cannot be abelian, hence it acts non-freely. Let f be a nontrivial element therein
such that f .x/ > x for all x < 1 very close to 1. Let s � 1 be such that the order of
contact to the identity at 1 of all elements in �rCs is smaller than that of f . If � is
non-metabelian, then so is �rCs , hence j maxF ix

0 .�rCs/j D N (otherwise, we could
apply the induction hypothesis). Let p1; : : : ; pN be the set of fixed points in .0; 1/ of
an element Ng therein having a maximal number of fixed points. Applying Lemma 5.6,
we get elements gk 2 �rCs that move but very little all these points. We claim that
for a large-enough k, we can take our desired element g as being one of gk Ng, g�1

k
Ng.

Indeed, on the one hand, for each pi at which Ng is topologically transversal, both
gk Ng and g�1

k
Ng have at least a fixed point close to it (if k is large enough). On the

other hand, for each pj at which Ng is tangent to the identity, one of gk Ng, g�1
k

Ng has at
least two fixed points in a small neighborhood of pj , and the other one no fixed point
therein (again, this provided k is large enough). Therefore,

Fix0.gk Ng/ C Fix0.g�1
k Ng/ � 2N;

where the inequality is strict if at least one of the fixed points detected above is not
topologically transversal. This obviously implies our claim.

Having the elements f; g; h at hand, we will next search for a contradiction. Let
a be the smallest fixed point of h in .0; 1�. Since � has no global fixed point in .0; 1/,
up to conjugating g, we may assume that Fix0.g/ � .0; a � "/ for a certain " > 0.
Changing h by h�1 if necessary, we may also assume that h.x/ < x for small x. Let
fk WD h�kf hk . It is well-known that fk must uniformly converge to the identity3

on any interval Œ0; a � "� (see for instance Lemma 4.4 in [40]).
Now, since fk uniformly converges to the identity on any compact subinterval of

Œ0; a/ and the interior fixed points of g are transversal and contained in .0; a/, for a
large-enough k we have that the graph of fk must cross that of g at least at N points
in .0; a/. Moreover, it has to cross that of g near 1, as the contact order of g at 1 is
smaller than that of fk . (See Figure 2.) Therefore, the element f �1

k
g (is nontrivial

and) has at least N C 1 fixed points, which is a contradiction. This closes the proof
of Proposition 5.5.

Proof of Theorem A. Let � be a non-metabelian subgroup of Diff!
C.Œ0; 1�/. By

Proposition 5.5, for every k � 1, the group � contains an element f having at
least 4k C 2 fixed points at the interior; actually, according to the proof, these points
can be supposed to be transversal. Using Lemma 5.6, we may slightly perturb f

(just by left composition with an element that moves very little these points) into a
certain g 2 � still having 4k C 2 transversal fixed points but all different from those

3This argument may be also used to replace the previous use of the Nakai-Rebelo’s theorem on the
existence of local flows in the adherence of non-solvable groups.
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0 a 1

g

fk

Figure 2. The graphs of fk and g cross N D 3 times in .0; a/ and once more close to 1.

of f . After such a perturbation, we may easily find a sequence of at least 2k C 1

intertwined fixed points p1 < q1 < p2 < q2 : : : < p2kC1 < q2kC1 of f and g,
respectively. Using Lemma 5.1, a modification of the argument of Example 5.3 (see
Remark 5.4) then shows that � satisfies no law.
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