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1. Introduction

We present here a general approach to different classical measure-theoretic and metric
constructions in hyperbolic dynamics: expanding maps, hyperbolic groups, Anosov
flows, etc.. It is based on the notion of a hyperbolic groupoid, which was introduced
in [21].

1The author was supported by NSF grant DMS1006280.
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We construct natural classes of measure and metric on the unit space of a hyper-
bolic groupoid. The metric is a generalization of what is sometimes called the visual
metric on the boundary of the hyperbolic group. It was defined in the original paper
of M. Gromov [9], 7.2.K, and has several equivalent definitions, see [8] and [5], for
example. The word “visual” comes from an interpretation of the metric as measuring
the “angle” between infinite geodesics converging to points on the boundary. It is
used to associate (quasi)conformal structure on the ideal boundary of a hyperbolic
space, see [19] and references therein.

Independently, natural metrics were associated with hyperbolic dynamical sys-
tems. For example, D. Fried defined such a metric for Smale spaces in [7]. This
includes Anosov diffeomorphisms, basic sets of axiom A diffeomorphisms, etc.
A natural analog of Fried’s metric is also well known for Anosov flows, see [11].
One of results of our paper is that these metrics coincide with visual metrics for
naturally defined hyperbolic graphs.

The measure constructed here is equivalent to the Hausdorff measure for the
visual metric, and is a direct generalization of the Patterson–Sullivan measure on the
boundary of a hyperbolic group; see [23], [27], and [4].

Applying this generalization to hyperbolic groupoids associated with Anosov
flows and Smale spaces, we recover the classical Bowen–Margulis, or Sinai–Ruelle–
Bowen measures. We get in this way a new approach to defining these measures: we
represent the stable and unstable leaves as boundaries of Gromov hyperbolic graphs
and then apply the Patterson–Sullivan construction.

Classically, Bowen–Margulis measure was constructed using Markov encoding
of the dynamical system, or by counting periodic orbits, or as measure of maximal
entropy see [1], [26], [17], and [2]. Iff is a hyperbolic complex rational function, then
the measure of maximal entropy can be defined as the Brolin–Lyubich measure [15]
(weak limit of uniform distributions on f �n.t / for a generic point t ). Note that this
approach is very close to the classical Patterson–Sullivan construction (weak limit of
uniform distributions on balls of a hyperbolic graph). We show in our paper that this
is true in general: all these measures are Patterson–Sullivan measures associated with
naturally defined Gromov hyperbolic graphs. Note that this fact was known before
for geodesic flows, see [28] and [13]. In some way, we generalize the results of [28]
and [13] to arbitrary hyperbolic dynamical systems (quasi-flows).

Both the metric and the measure depend on the choice of a concrete Busemann
(quasi-)cocycle � on the groupoid of germs, which can be seen as a time scale of a
dynamical system. The Busemann cocycle will play then the role of a logarithm of
the derivative, in the sense that an elementF of the pseudogroup multiplies the metric
in a neighborhood of a point x roughly by e�˛�.F;x/ and the measure by e�ˇ�.F;x/
for some positive numbers ˛ and ˇ. Here .F; x/ denotes the germ of F at x, and ˇ
is the entropy of the groupoid (with respect to the cocycle �).

Different choices of the cocycle may be natural in different situations. For exam-
ple, if f is a hyperbolic rational function restricted to its Julia set, then there are two
natural choices for �. We can set the values of � on the germs of f to be equal to �1.
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Then the corresponding measure is the measure of maximal entropy (Brolin–Lyubich
measure) and the metric is the dynamical metric. The other natural choice is setting
the value of � on a germ of .f; z/ to be equal to � ln jf 0.z/j. In this case the metric
(up to a local bi-Lipschitz equivalence) is the usual metric on C, and the measure is
the Hausdorff measure on the Julia set, see Example 6.3.

The fact that Bowen–Margulis measure for an Anosov flow is equivalent to the
Hausdorff measure associated with a natural metric on the stable and unstable leafs
(which follows now from Corollary 5.5) was proved by B. Hasselblatt [11]. In
the case of a geodesic flow on a negatively curved manifold this was proved by
U. Hamenstädt [10].

Overview of the paper. In Section 2, we give a short overview of the notions
developed in [21]. We remind the basic notations of the theory of pseudogroups and
groupoids of germs, recall the notion of a log-scale, and review the main definitions
related to hyperbolic groupoids and Smale quasi-flows, duality theory for hyperbolic
groupoids, and properties of minimal hyperbolic groupoids.

We define the metric on the space of units of the groupoid in Section 3. Every
Busemann cocycle �WG ! R determines a natural “logarithmic scale” on the bound-
ary of the Cayley graph equal to the associated Gromov product. Its value `.�1; �2/ is
equal to minimum of the value of � along a geodesic path connecting �1 and �2 in the
Cayley graph of G. Using the Cayley graph of the dual groupoid G> instead, we get
a log-scale ` on the space of units of G. For any sufficiently small real number ˛ > 0
we can find a metric jx � yj on G.0/ such that c�1e�˛`.x;y/ � jx � yj � ce�˛`.x;y/
for some constant c > 1. We call such a metric hyperbolic metric of exponent ˛.

We show (Proposition 3.3) that for every germ g 2 G there exists a neighborhood
U 2 zG of g and a constant c > 1 such that

c�1e�˛�.g/ � jU.x/ � U.y/j
jx � yj � ce�˛�.g/;

for all x; y in the domain of U . Moreover, we show that in some sense this property
completely characterizes the hyperbolic metrics, see Theorem 3.6. In particular, we
show that if zG acts by conformal maps on a compact subset of C, then the usual
metric on C is a hyperbolic metric of exponent 1 for G with respect to the cocycle
�.F; x/ D � ln jF 0.x/j, see Proposition 3.7.

In “Growth and Entropy” we show that growth of cones (graded by the cocycle �)
in a Cayley graph of a hyperbolic groupoid is exponential, and give lower and upper
estimates of the form ceˇn on the growth, where ˇ depends only on the pair .G; �/,
and is called the entropy of the graded groupoid .G; �/. In fact, we prove more general
estimates, which can be used to construct Gibbs measures for hyperbolic groupoids.

Patterson–Sullivan measures for hyperbolic groupoids are constructed in Sec-
tion 5. It is a generalization of the classical construction, were we use the Cayley
graphs of the dual groupoidG> to construct the measure for the groupoidG. The mea-
sure� is characterized by the property that the Radon–Nicodim derivative dF��

d�
.x/ is
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estimated from below and from above by functions of the form ce�ˇ�.F;x/, where ˇ
is the entropy of .G; �/. We also prove that the Patterson–Sullivan measure is equiv-
alent to the Hausdorff measure of dimension ˇ=˛ for the hyperbolic metric on G.0/

of exponent ˛ (see Corollary 5.5).
Note that in all these results the map �WG ! R is a quasi-cocycle: the equality

�.g1g2/ D �.g1/C�.g2/ holds only up to an additive constant. In particular, we get
only upper and lower estimates on the Radon–Nicodim derivative of the Patterson–
Sullivan measure.

On the other hand, if �WG ! R is Hölder continuous with respect to the hyper-
bolic metric on G (a condition depending only on G and �), then our results can be
made sharper. This case is analyzed in Section 6. We develop a duality theory for
Hölder continuous cocycles, and show that in this case there exists a unique (up to a
multiplicative constant) measure � satisfying

dF��
d�

.x/ D e�ˇ�.F;x/:

Moreover, in this case it is easy to construct an invariant measure on the geodesic
flow of G. In all classical examples coming from Anosov flows, Smale spaces,
and hyperbolic rational functions the natural cocycles are Hölder continuous, and
our constructions produce the classical Sinai–Ruelle–Bowen and Bowen–Margulis
measures.

2. Hyperbolic groupoids

2.1. Groupoids and pseudogroups. Here we give a short review of notions related
to pseudogroups and groupoids of germs. For more, see [21].

A pseudogroup zG acting on a spaceX is a collection of homeomorphisms between
open subsets of X which is closed under

� compositions,

� taking inverses,

� restricting onto open subsets,

� taking unions (if for a homeomorphism F WU ! V there exists a covering ¹Uiº
of U by open sets such that F jUi

2 zG, then F 2 zG).

We also assume that the identical homeomorphism X ! X belongs to zG.

Example 2.1. Let G be a group of homeomorphisms of a space X. Then the pseu-
dogroup generated byG (i.e., the smallest pseudogroup containing G) is the set of all
homeomorphisms F WU ! V between open subsets of X such that for every x 2 U
there exists gx 2 G such that gx and F coincide on a neighborhood of x.
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It is convenient in many cases to consider elements F WU ! V of a pseudogroup
as sets of germs. Namely, a germ of an element of zG is the equivalence class of a
pair .F; x/, where F 2 zG, and x belongs to the domain of F . Two pairs .F1; x/ and
.F2; x/ are equivalent if there exists a neighborhood U of x such that F1jU D F2jU .
The set of germs of zG is a groupoid, i.e., it is a small category of isomorphisms with
respect to the usual composition and taking inverses. We will denote the groupoid of
germs of zG by G. For a germ g D .F; x/ 2 G we denote

o.g/ D x; t.g/ D F.x/;

and call them origin and target of g. Similarly, we will denote forF 2 zG by o.F / and
t.F / the domain and range ofF , respectively. Germs of the identity homeomorphism
X ! X are called units of the groupoid and are identified with the corresponding
points of X . We will also denote the set of units of a groupoid G by G.0/.

We use the notation

GA D ¹g 2 GW o.g/ 2 Aº; GB D ¹g 2 GW t.g/ 2 Bº;
and

GBA D GA \ GB ; GjA D GAA :

We also denote by G.2/ the set ¹.g1; g2/W t.g2/ D o.g1/º of composable pairs of the
groupoid G.

The groupoid of germs G of a pseudogroup zG has a natural topology. Namely, a
basis of topology is given by the collection of open sets of the form

¹.F; x/W x 2 o.F /º:
The groupoid G is topological with respect to this topology, i.e., multiplication
G.2/ ! G and inversion G ! G are continuous.

On the other hand, the pseudogroup zG is uniquely determined by the topological
groupoid G. We say that F � G is a bisection if oWF ! o.F / and tWF ! t.F /
are homeomorphisms. Then every bisection F determines a homeomorphism from
o.F / to t.F / by the rule o.g/ 7! t.g/ for g 2 F . It is easy to see that such
homeomorphisms are elements of zG and that every elementF 2 zG defines a bisection
¹.F; x/W x 2 o.F /º. Hence, zG is the pseudogroup of bisections of the groupoid of
germs G. We will identify F 2 zG with the corresponding bisection (which is a
subset of G). We will use therefore terminology of pseudogroups and groupoids as
equivalent languages describing the same object.

Two units x; y 2 G.0/ belong to one G-orbit if there exists g 2 G such that
x D o.g/ and y D t.g/. A subset Y � G.0/ is said to be a G-transversal if it
intersects every G-orbit.

Suppose that f W Y ! G.0/ is a local homeomorphism such that f .Y / is a
G-transversal. Then localization zGjf of zG is the pseudogroup generated by all
lifts by f of elements of zG, i.e., by homeomorphisms F WU ! V between open
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subsets of Y such that f jU and f jV are homeomorphisms, and f jV BF Bf j�1U 2 zG.
We write the germs of the localization zGjf as triples .x; g; y/, where g 2 G, and
x; y 2 Y are such that f .x/ D o.g/ and f .y/ D t.g/.

In particular, if U D ¹Uiºi2� is an open covering of a G-transversal, then the
corresponding localization GjU consists triples .i; g; j / 2 � � G � � such that
o.g/ 2 Ui and t.g/ 2 Uj , which are multiplied by the rule

.i1; g1; j1/ � .i2; g2; j2/ D .i2; g1g2; j1/;

where the product is defined if and only if j2 D i1 and t.g2/ D o.g1/.

Definition 2.1. Two groupoids of germs G1;G2 are said to be equivalent if there
exists a pseudogroup zG acting on G

.0/
1 tG

.0/
2 such that Gj

G
.0/
1

D G1, Gj
G

.0/
2

D G2,

and every G-orbit is a union of one G1-orbit and one G2-orbit.

One can show that two groupoids of germs are equivalent if and only if they have
isomorphic localizations.

A general definition of equivalence of topological groupoids (not only groupoids
of germs) is a bit more complicated, see [21], 2.2.2, and references therein.

We will often deal with covers of compact subsets of G by elements of zG. The
following statement is proved in [21], Lemma 2.1.1.

Lemma 2.1. Let zG be a pseudogroup acting on a metric space. Let C � G be a
compact set, and let U � zG be a covering of C . Then there exists � > 0 such that for
every g 2 C there exists U 2 U such that g 2 U and the �-neighborhood of o.g/ is
contained in o.U /.

If � satisfies the conditions of the lemma for a covering U, then we say that � is a
Lebesgue’s number of the covering. If g 2 U 2 zG and the �-neighborhood of o.g/
is contained in o.U /, then we say that g is �-contained in U .

2.2. Logarithmic scales. It will be convenient sometimes to work with the following
version of the notion of distance.

Definition 2.2. A log-scale on a set X is a function `WX � X ! R [ ¹C1º such
that

(1) `.x; y/ D `.y; x/ for all x; y 2 X ;

(2) `.x; y/ D C1 if and only if x D y;

(3) there exists ı > 0 such that for any x; y; z 2 X we have

`.x; z/ � min.`.x; y/; `.y; z//� ı:
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It is a simple corollary of the Frink’s metrization lemma (see, for instance [21],
Proposition 1.1.1) that for every log-scale and for all sufficiently small numbers ˛ > 0
there exists a metric jx � yj on X and a number C > 1 such that

c�1e�˛`.x;y/ � jx � yj � ce�˛`.x;y/

for all x; y 2 X . We say in this case that jx � yj is an associated metric of exponent
˛ for the log-scale. Note that any two metrics associated with ` are Hölder equivalent
to each other (moreover, they are “snowflake equivalent,” i.e., one is bi-Lipschitz
equivalent to a power of the other). In particular, they define the same topology.

Accordingly to the definition of an associated metric, we say that a mapf between
two sets with log-scales is Lipschitz if there exists c > 0 such that `.f .x/; f .y// �
`.x; y/ � c for all x; y. A map f is bi-Lipschitz if it is invertible, and the maps f
and f �1 are Lipschitz. A map f is Hölder if there exist constants c > 1 and � > 0
such that `.f .x/; f .y// � c`.x; y/ � � for all x; y.

Definition 2.3. Two log-scales `1; `2 on a set X are said to be Lipschitz equivalent
if j`1.x; y/ � `2.x; y/j is uniformly bounded for all x; y such that x ¤ y. They are
Hölder equivalent if there exist constants c > 1 and � > 0 such that

c�1`1.x; y/ � � � `2.x; y/ � c`1.x; y/C �

for all x; y.

Let zG be a pseudogroup acting on a space G.0/. A Lipschitz structure on zG (or
on the corresponding groupoid of germs G) is a log-scale on G.0/ such that every
element of zG is locally bi-Lipschitz with respect to the log-scale. More on Lipschitz
structures on pseudogroups, see [21], Section 2.5.1.

We will use the following notations. Let F and G be two real-valued functions.
We write F

:D G if the difference jF � Gj is uniformly bounded for all values
of the variables. We will write F � G if there exists a constant c > 1 such that
c�1F � G � cF for all values of the variables.

2.3. Hyperbolic groupoids. Our notion of a hyperbolic groupoid will be in some
sense a generalization of the notion of a Gromov hyperbolic group (though it will com-
bine two notions of hyperbolicity: large scale Gromov hyperbolicity, and dynamical
hyperbolicity). In order to define the Gromov hyperbolicity, we need an appropriate
notion of a Cayley graph of a groupoid. The idea is rather straightforward, but we
want the definition to be invariant under equivalence of groupoids, which introduces
some technical details.

We say that a subset X of the set of units of a groupoid G is a topological
transversal if X contains an open transversal of the groupoid.

Definition 2.4. A compact generating pair .S; X/ of a groupoid G is a compact
subset S � G and a compact topological transversal X such that for every g 2 GjX
there exists n such that the set

S
0�k�n.S [ S�1/k is a neighborhood of g in GjX .
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If .S; X/ is a generating pair of G and x 2 X , then the Cayley graph G.x; S/ is
the directed graph with the set of vertices GXx in which there is an arrow from g to h
whenever there exists s 2 S such that h D sg. If G.x; S/ is Gromov hyperbolic,
then we denote its boundary by @G.x; S/.

The Cayley graph G.x; S/ does not depend, up to quasi-isometry, on the choice
of the generating pair, similarly to the group case. It depends, however, on the choice
of the basepoint x.

Definition 2.5. A groupoid of germs G is hyperbolic if there exists a compact gen-
erating pair .S; X/ and a metric j � j defined on a neighborhood of X, such that all
elements of zG are locally Lipschitz with respect to j � j, and

(1) for every x 2 X the Cayley graph G.x; S/ is ı-hyperbolic (where ı does not
depend on x);

(2) each element g 2 S is a germ of a contraction F 2 zG;

(3) for every x 2 X there exists !x 2 @G.x; S/ such that every directed path in the
Cayley graph G.x; S�1/ is (uniformly) a quasi-geodesic converging to !x;

(4) o.S/ D t.S/ D X .

Here a mapF is a contraction if there exists 0 < � < 1 such that jF.x/�F.y/j �
�jx � yj for all x; y in the domain of F . A .�;ƒ/-quasi-geodesic is a (finite or
infinite) sequence v0; v1; : : : ; of vertices such that jvi � viC1j < � for all i , (where
jvi � viC1j is the combinatorial distance in the graph) and ji � j j � ƒjvi � vj j for
every pair of indices i; j . A collection of quasi-geodesics is said to be uniform if they
are .�;ƒ/-quasi-geodesics for a common choice of the numbers � and ƒ.

Example 2.2. LetG be a Gromov hyperbolic group. Consider the action ofG on its
boundary @G. Let G be the groupoid of germs of the action. Let us assume that all
germs of any non-trivial element of G are non-trivial (this is true for all torsion-free
groups, but also for many other). Take any finite generating set of G, and let S be
the set of germs of its elements. Then .@G; S/ is a compact generating pair of G.
The Cayley graph G.x; S/ naturally coincides with the Cayley graph of G. One can
show (it is simple but not absolutely trivial, since S does not satisfy the conditions of
Definition 2.5) that the groupoid G is hyperbolic. Note that !x from condition (3) of
Definition 2.5 is the point x 2 @G itself.

Example 2.3. Let f WX ! X be an expanding covering map of finite degree greater
than one, where X is a compact metric space. For instance, we can take the map
f W R=Z ! R=Z given byf .x/ D dx .mod 1/ for some integerd satisfying jd j > 1.
Here expanding means that there exist numbers � > 0 and L > 1 such that we have
jf .x/ � f .y/j � Ljx � yj for all x; y 2 X such that jx � yj < �.

Let F be the groupoid of germs of the pseudogroup generated by f , i.e., by
restrictions of f to open sets U such that f WU ! f .U / is a homeomorphism.
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Let S be the set of germs of the maps f �1W f .U / ! U . Then .S; X/ is a compact
generating pair. It is easy to show that the Cayley graphs F.x; S/ are regular trees
of degree degf C 1. Every vertex has deg f outgoing arrows (germs of branches of
f �1) and one incoming arrow (germ of f ). Note also that elements of S are germs of
contractions. It is easy to check that .S; X/ satisfies the conditions of Definition 2.5,
and therefore F is a hyperbolic groupoid.

Example 2.4. Previous example can be generalized to the case when f WX ! X

is an expanding map of a non-constant degree. Consider the following example.
Let X be a finite alphabet, and let P be a finite set of finite words over X . Let X
be the set of all infinite sequences x1x2 : : : of elements of X such that no subword
xixiC1 : : : xiCk belongs to P . Then X is a one-sided shift of finite type. The shift
map f .x1x2 : : :/ D x2x3 : : : is expanding with respect to a natural metric on X . In
the same way as in the previous example, we can consider the groupoid F generated
by the germs of f , and check that it is hyperbolic. The only difference is that the
Cayley graphs of F are non-regular trees.

2.4. Busemann cocycles. An important role in the study of hyperbolic groupoids
is played by the Busemann cocycles associated with the special points !x from
condition (3) of Definition 2.5. It plays in some sense a role of time in dynamics of
the groupoid.

Recall that the Busemann cocycle ˇ! on a Gromov-hyperbolic graph 	 , where
! 2 @	 , is given by

ˇ!.v1; v2/ D lim
v!!

.jv1 � vj � jv2 � vj/;

where v1; v2 are vertices of the graph, j � j is the combinatorial metric on the graph,
and we choose any one of the partial limits on the right-hand side. The number ˇ!
is uniquely defined, up to an additive constant, i.e., for any other choice ˇ0

! of the
partial limits we have supv1;v2

jˇ!.v1; v2/�ˇ0
!.v1; v2/j � C for some C depending

only on ı.

Definition 2.6. An �-quasi-cocycle on a groupoid G is a map �WGjX ! R, where
X is a topological transversal, such that

(1) for everyg 2 GjX there exists a neighborhoodU ofg such that j�.g/��.h/j < �
for all h 2 U \ GX ;

(2) j�.g1g2/ � �.g1/ � �.g2/j < � for any composable pair g1; g2 of elements of
GjX .

A graded groupoid is a groupoid G together with a quasi-cocycle. Two quasi-
cocycles �1WGjX1

! R and �2WGjX2
! R define the same grading (are strongly

equivalent) if there exists a quasi-cocycle �WGjX1tX2
! R such that j�.g/ � �1.g/j

and j�.h/ � �2.h/j are bounded (where g 2 GjX1
and h 2 GjX2

).
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One can check that the Busemann cocycle ˇ!x
.g1; g2/ on the Cayley graph

G.x; S/ depends (up to an additive constant) only on g1g�1
2 . We get thus a quasi-

cocycle �.g1g�1
2 / D ˇ!x

.g1; g2/, which we will also call a Busemann quasi-cocycle
on the groupoid G.

More generally, we adopt the following definition.

Definition 2.7. Let G be a hyperbolic groupoid, and let .S; X/ be a generating
pair satisfying the conditions of Definition 2.5. A quasi-cocycle � on G is called a
Busemann quasi-cocycle if there exist C > 1 and D > 0 such that

C�1n �D � �.s1s2 � � � sn/ � CnCD

for all composable sequences s1; s2; : : : ; sn 2 S .

It is shown in [21] that every quasi-cocycle of the form �.g1g
�1
2 / D ˇ!x

.g1; g2/

satisfies the conditions of Definition 2.7 and that the definition does not depend on
the choice of the generating pair.

A graded hyperbolic groupoid .G; �/ is a hyperbolic groupoid together with a
strong equivalence class of a Busemann quasi-cocycle.

Example 2.5. Let F be the groupoid generated by the germs of an expanding self-
covering f WX ! X of a compact metric space X , see Example 2.3. We can define
a continuous cocycle �WF ! Z (i.e., a map satisfying �.g1g2/ D �.g1/C �.g2/ for
all composable g1; g2 2 F) by the condition �.f; x/ D �1 for every x 2 X . Then �
is the Busemann cocycle on the Cayley graphs of F, which are trees.

2.5. Some technical definitions and lemmas

Definition 2.8. We say that a subset C � G of a graded hyperbolic groupoid .G; �/,
where � is a Busemann �-quasi-cocycle, is positive if for every g 2 C we have
�.g/ > 2�.

A subset C � G is contracting if for every g 2 C there exists a contracting map
U 2 zG such that g 2 U .

If C is positive, then for every composable product : : : g2g1 of elements of
C the path g1; g2g1; g3g2g1; : : : is a quasi-geodesic path converging to a point of
@G.x; S/ n ¹!xº.

We denote
@Gx D @G.x; S/ n ¹!xº;

where @G.x; S/ is the boundary of the hyperbolic graph G.x; S/. One can show that
@G.x; S/, !x , and @Gx do not depend on the choice of .S; X/. Denote also by GXx
the space GXx [ @Gx , i.e., the completion of the Cayley graph G.x; S/with the point
!x removed. Note that GXx does not depend on S (but depends on X).
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If .S; X/ is a compact generating pair satisfying the conditions of Definition 2.5,
then we denote

Tx D
[
n�0

Sn \ Gx;

i.e., Tx is the set of elements ofGx representable as a product of elements of S (where
inverses are not allowed).

Similarly, we denote Tg D S
n�0 Sn �g for g 2 G. We obviously have a bijection

x 7! x � g between Tt.g/ and Tg .

We denote by Tg the intersection of the closure of Tg in GXx with @Gx for x D
o.g/. It is equal to the set of points of @Gx that can be represented as infinite products

: : : g2g1g D lim
n!1gn � � �g1 � g

for gi 2 S . We will denote xTg D Tg [ Tg .
The following proposition is proved in [21], Proposition 3.3.1.

Proposition 2.2. Let .G; �0/ be a graded hyperbolic groupoid. Let X be a compact
topological G-transversal. Choose a metric j � j on a neighborhood yX of X satisfy-
ing the conditions of Definition 2.5, and an �-quasi-cocycle �W jGj zX ! R strongly
equivalent to �0.

Then there exist a compact generating set S of GjX such that

(1) for every g 2 S we have �.g/ > 3�;

(2) o.S/ D t.S/ D X;

(3) there exists � 2 .0; 1/ such that every g 2 S has a �-contracting neighborhood
U 2 zGj yX ;

(4) every element g 2 GjX is equal to a product of the form gn � � �g1 � .hm � � �h1/�1
for some gi ; hi 2 S .

The following proposition is proved in the same way as [21], Proposition 3.4.4.

Proposition 2.3. Let .S; X/ be a generating pair of G satisfying the conditions of
Proposition 2.2. Then there exists a compact setA � GjX such that for every h 2 GX
there exists a 2 A such that xTah is a neighborhood of xTh.

2.6. Smale quasi-flows. The classical notion of a Smale space (see [26] and [25]) is
a topological generalization of the axiom-A diffeomorphisms (when restricted to the
basic set) and Anosov diffeomorphisms. We present here a generalization of Ruelle’s
definition that will include Anosov flows (restricted to a transversal). Moreover, in
our definition time is additive only up to a finite error, so that our notion is general
enough to include “geodesic flow” on a Gromov hyperbolic group.
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Let R be a topological space. A direct product structure on R is given by a
continuous map Œ�; �
WR � R ! R such that

Œx; x
 D x; ŒŒx; y
; z
 D Œx; z
; Œx; Œy; z

 D Œx; z


for all x; y; z 2 R. One can show that if Œ�; �
 defines a direct product structure, then
we can find topological spaces A;B and a homeomorphism � WA � B ! R such
that Œ�.a1; b1/; �.a2; b2/
 D �.a1; b2/. Namely, we can take A D P1.R; x/ and
B D P2.R; x/, where

P1.R; x/ D ¹y 2 RW Œx; y
 D xº; P2.R; x/ D ¹y 2 RW Œx; y
 D yº; (1)

and �.y1; y2/ D Œy1; y2
.

A local product structure on a spaceX is given by a covering ofX by open subsets
Ri (rectangles) together with direct product structures Œ�; �
Ri

on them such that for
every pairRi ; Rj of rectangles and for every t 2 Ri [Rj there exists a neighborhood
U of t and a direct product structure Œ�; �
U on it such that Œx; y
Ri

D Œx; y
U and
Œx; y
Rj

D Œx; y
U whenever the corresponding expressions are defined. We call the
covering ofX by rectangles satisfying the above conditions atlas of the local product
structure.

If X is a space with a local product structure, then an open subset R � X and a
direct product structure Œ�; �
R on R is a rectangle of X if when we add it to an atlas
of X , we get again an atlas of X . In particular, we can define the maximal atlas of a
local product structure consisting of all rectangles of X .

We say that a metric jx � yj agrees with a local product structure on X if for
every rectangle R D A �B of X there exist metrics j � jA and j � jB on A and B such
that restriction of jx � yj onto R is locally bi-Lipschitz equivalent to the metric

j.a1; b1/ � .a2; b2/jR D max¹ja1 � a2jA; jb1 � b2jBº:

A pseudogroup zG acting on a space X with a local product structure preserves
the local product structure if for every germ .F; z/ of zG there exist rectangles Ri
and Rj such that z 2 Ri , F.z/ 2 Rj and F.Œx; y
Ri

/ D ŒF.x/; F.y/
Rj
for all x; y

belonging to a neighborhood of z. Note that if zG preserves a local product structure
then for every germ g 2 G of zG there exist rectangles Ro.g/ D Ao.g/ � Bo.g/

and Rt.g/ D At.g/ � Bt.g/ and a neighborhood F 2 zG of g such that o.F / D Ro.g/,
t.F / D Rt.g/, and the mapF WRo.g/ ! Rt.g/ can be decomposed into a direct product
of maps AF WAo.g/ ! At.g/ and BF WBo.g/ ! Bt.g/. In particular, the groupoid of
germs G of zG has a local product structure in a natural way. Projections of the germ
g are the germs P1.g/ and P2.g/ of AF and BF , respectively, at the points a 2 A

and b 2 B such that .a; b/ D o.g/. We also denote AF D P1.F / and BF D P2.F /.
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Definition 2.9. A Smale space is a homeomorphism f WX ! X of a compact metric
space together with a local product structure on X such that f preserves the local
product structure, and is uniformly expanding on the sets P1.R; x/ and uniformly
contracting on the sets P2.R; x/.

Our goal is to “quasify” this definition. First of all, we will have a pseudogroup
acting on X rather than one homeomorphism. Time will be given then by a quasi-
cocycle �. We also want the pseudogroup to be a quasi-flow in the sense that � induces
quasi-isometries of the Cayley graphs of the groupoid of germs with R.

Let G be a groupoid of germs preserving a local product structure on G.0/, and
let � be a quasi-cocycle defined on a restriction of G onto a compact topological
transversal X . We say that � agrees with the local product structure if there exists an
open covering R ofX by rectangles and a constant c > 0 such that if Pi .g1/ D Pi .g2/
for some g1; g2 2 G and i 2 ¹1; 2º, then j�.g1/ � �.g2/j < c.

A groupoid G preserving a local product structure on G.0/ is locally diagonal if
there exits a covering R of a topological G-transversal by rectangles such that if for
g 2 G either P1.g/ or P2.g/ is a unit, then g is a unit.

Definition 2.10. A Smale quasi-flow is a groupoidG together with an �-quasi-cocycle
�WGjX ! R and a local product structure on G.0/ such that there exists a compact
generating pair .S; X/, a metric j � j defined on a neighborhood of X , and a number
� 2 .0; 1/ such that

(1) the metric j � j and the quasi-cocycle � agree with the local product structure;

(2) zG acts by locally Lipschitz transformations with respect to j � j;
(3) o.S/ D t.S/ D X , and �.g/ > 3� for all g 2 S ;

(4) for every g 2 S there exists a rectangular neighborhood F 2 zG of g such that
restrictions of F and F �1 onto P1.o.F /; x/ and P2.o.F /; x/, respectively, are
�-contractions for all x 2 o.F /;

(5) for every compact subset C � X and for every real number k > 0 the closure
of the set ¹g 2 GjX W j�.g/j � kº is compact;

(6) the groupoid G is locally diagonal.

For definition of sets Pi .R; x/, see (1) on page 894. We denote P1 and P2 in the
case of a Smale quasi-flow by PC and P�, respectively.

Let .G; �/ be a Smale quasi-flow. Then, informally, its Ruelle groupoids PC.G/
and P�.G/ are groupoids generated by the projections PC.g/ and P�.g/ of the
elements g 2 G onto the stable and unstable directions of the local product structure.

More precise definition is as follows. Let R be a covering of a topological G-
transversal by sufficiently small rectangles. Consider localization GjR of G onto R,
and denote by PC.G/ and P�.G/ the groupoids of germs of pseudogroups generated
by projections PC.F / and P�.F / of rectangular elements of the pseudogroup zGjR.
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It is proved in [21] that groupoids PC.G/ and P�.G/ are well defined up to equivalence
of groupoids (i.e., their equivalence class does not depend on the choice of R). They
are called Ruelle groupoids of the quasi-flow G.

We will need the following technical result of [21], Proposition 4.2.1.

Proposition 2.4. Every Smale quasi-flow is equivalent to a groupoid H satisfying the
following properties.

The space of units H.0/ is a disjoint union of a finite number of rectangles W1 D
A1 � B1; : : : ; Wn D Am � Bm.

There exists an open transversal X0 equal to the union of open sub-rectangles
W B
i D AB

i �BB
i � Ri such that the closure ofRB

i is compact. Denote byX the union
of closures of the rectangles W B

i .
There exists a finite set � of elements of the pseudogroup zH such that

(1) every F 2 � is a rectangle AF � BF D PC.F / � P�.F /;
(2) for every F 2 � there exist i; j 2 1; : : : ; n such that o.F / � Wi , t.F / � Wj ,

o.AF / D Ai , t.BF / D Bj ;

(3) intersections of o.F / and t.F / with X are non-empty;

(4) AF and B�1
F are �-contracting for some � 2 .0; 1/;

(5) S D ¹.F; x/W x; F.x/ 2 Xº is a generating set of HjX (i.e., .S; X/ is a generat-
ing pair);

(6) o.S/ D t.S/ D X;

(7) �.g/ > 2� for all germs of elements of �;

2.7. Dual groupoid. If G is a Gromov hyperbolic group, then it acts by right mul-
tiplication on the left Cayley graph of G, hence it acts by homeomorphisms on its
boundary @G. For a general hyperbolic groupoid G there is no natural action of G on
the boundaries of its Cayley graph. An element g 2 G just maps the boundary of the
Cayley graph G.t.g/; S/ to the boundary of the Cayley graph G.o.g/; S/. We get in
this way only an action of G on the disjoint union of the boundaries of the Cayley
graphs based at different points.

But the union of the boundaries @Gx D @G.x; S/ n ¹!xº has a natural local
product structure coming from the fact that if two points x; y are close to each other
in X , then the positive cones Tx , Ty in the Cayley graphs G.x; S/, G.y; S/ based at
x and y are almost isomorphic to each other. If we introduce a topology on the union
of the boundaries @Gx compatible with this local product structure, then the action of
G on it will be a Smale quasi-flow. We can project this quasi-flow and get a natural
groupoid acting on the boundaries of the Cayley graphs of G.

So, G does not act on its boundary, but there is another groupoid, which we
denote G> acting on it. An interesting fact is that G> is also hyperbolic, and .G>/>
is equivalent to G. We call G> the dual groupoid to G.

We will give now two formal definitions of the dual groupoid. Their equivalence
is proved in [21].
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Definition 2.11. Let G be a hyperbolic groupoid with a compact generating pair
.S; X/. Let T1 � GXx and T2 � GX

0

y be compact neighborhoods of points �1 2 @Gx
and �2 2 @Gy . Here GXx is the union of the set of vertices GXx of the Cayley graph

G.x; S/with @Gx D @G.x; S/n¹!xº,X 0 is a compact neighborhood ofX , and GX 0

y

is defined using a generating pair .S 0; X 0/, where S 0 	 S .
A continuous map F WT1 ! T2 is an asymptotic automorphism if the following

condition holds. If sequences gn; hn 2 T1\Gx eventually leave every finite set, and
g�1
n hn 2 S for all n, then F.gn/�1F.hn/ eventually belongs to S 0, and

jgnh�1
n � F.gn/F.hn/�1j �! 0

as n ! 1, where j � j is a metric on S 0.

Note that since S 0 is compact, the definition does not depend on the choice of the
metric on S 0.

For an asymptotic automorphism F WT1 ! T2, consider its restriction to the
interior in @Gx of T1 \ @Gx . It will be a homeomorphism from an open subset of
@Gx to an open subset of @Gy . The set of germs of such homeomorphisms does not
depend on the choice of the generating pairs .S; X/, .S 0; X 0/, hence we can consider
the groupoid of all germs of such local homeomorphisms of the formal disjoint unionF
x2G.0/ @Gx .

Definition 2.12. The dual groupoid G> is the groupoid of germs of restrictions of
asymptotic automorphisms to the boundaries @Gx , for x 2 X .

Let us give an equivalent definition of the dual groupoid, which uses explicit
asymptotic automorphisms.

Let .G; �/ be a graded hyperbolic groupoid. Let .S; X/ be a generating pair of G
satisfying the conditions of Proposition 2.2 for the quasi-cocycle �. Let � be a finite
covering of S by contracting positive elements of zG.

LetA � G be a compact set satisfying the conditions of Proposition 2.3. Suppose
also that for any two sequences gi ; hi of germs of elements of � an equality : : : g2g1 �
g D : : : h2h1 � h for some g; h, o.g/ D o.h/ 2 X implies that for all sufficiently big
n there exists m and a 2 A such that agn � � �g1g D hm � � �h1h. Existence of such
a set A follows from hyperbolicity of the Cayley graphs of G and the fact that all
directed paths in G.x; S/ are quasi-geodesics.

Find then a finite covering A D ¹U º of A by bi-Lipschitz elements of zG. Let yA
be the set of germs of the elements of A.

The following lemma is proved in [21], Lemmas 3.6.3, and 4.6.1.

Lemma 2.5. Let � be a common Lebesgue’s number of the coverings � , A, and A�1
of S , A, and A�1, respectively. There exists 0 < ı0 < � such that the following
condition is satisfied.
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Let Ui ; Vi , i D 1; 2; : : : be finite or infinite sequences of elements of the set
� [ A in which at most one element belongs to A. Let jx � yj < ı0 for x; y 2 X ,
the �-neighborhoods of Ui � � �U1.x/ and Vi � � �V1.x/ are contained in o.UiC1/ and
o.ViC1/, respectively. Then an equality

.: : : U2U1; x/ D .: : : V2V1; x/

of finite or infinite products of germs implies

.: : : U2U1; y/ D .: : : V2V1; y/:

Fix ı0 satisfying the conditions of Lemma 2.5. Suppose that g 2 GjX and h 2 G
are such that jt.g/ � t.h/j < ı0. For a finite or infinite product � D : : : g2g1g 2 xTg ,
where gi 2 S , find elements Ui 2 � such that gi is �-contained in Ui . Define then

Rhg.�/ D : : : U2U1 � h: (2)

By Lemma 2.5, Rhg.�/ depends only on g, h, and � (and does not depend on the

choice of the generators gi or the choice of the elements Ui ). Note thatRhg.�/ … GjX
in general (even for � 2 GXx ).

For every h 2 G we have a natural homeomorphism � 7! � � h from @Gt.h/ to
@Go.h/ defined by

: : : g2g1 � g 7! : : : g2g1 � gh:
Note that every germ of this homeomorphism is also a germ of a transformation of
the form R

gh
g for some g 2 Gt.h/.

The natural log-scale (the Gromov product) ` on GXx is defined by the condition
that `.�1; �2/ is equal to the minimal value of � on a geodesic path connecting �1
to �2. It is a log-scale, which is well defined, up to bi-Lipschitz equivalence, by the
strong equivalence class of �.

The proof of the following proposition is straightforward.

Proposition 2.6. Let g 2 GX and h 2 G are such that Rg
h

is defined. Then the
map Rg

h
is bi-Lipschitz with respect to the natural log-scale. Moreover, there exists

a constant c > 0 (not depending on g and h) such that

`.�1; �2/C �.g/ � �.h/ � c � `.R
g

h
.�1/; R

g

h
.�2//

� `.�1; �2//C �.g/ � �.h/C c

for all �1; �2 2 xTh. It particular, Rg
h

is a homeomorphism between Th and Rg
h
.Th/.

Here ` is defined using a generating set of GjX2
where X2 contains o.�/ [ t.�/.
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It is proved in [21], Theorem 4.3.1, that the disjoint union @G D S
x2G.0/ @Gx has

a natural topology and a local products structure coming from the mapsRhg . Namely,

if U 2 zG is a sufficiently small neighborhood of an element g 2 G, and � is an
interior point of Tg , then a neighborhood of � in @G is the set

Rg;U D
[
h2U

Rhg.T
B
g /;

where T B
g is the interior of Tg � Go.g/. The set Rg;U is naturally homeomorphic to

o.U / � T B
g , where the homeomorphism is given by the map

.x; �/ 7! Œx; �
U WD R.U;x/g .�/: (3)

These direct product decompositions agree with each other, and we get in this way a
local product structure and topology on @G. For more details, see [21], Section 3.7.

Every U 2 zG defines a local homeomorphism of @G with domain @Gt.U / and
range @Go.U /, mapping � 2 @GU.x/ for x 2 t.U / to � � .U; x/. The groupoid of
germs of the pseudogroup generated by such maps is called the geodesic quasi-flow
of G. Its elements can be written as pairs .�; g/, where � 2 @Gt.g/, o.�; g/ D �, and
t.�; g/ D � � g. We denote the geodesic flow by @G Ì G.

The following theorem is proved in [21], Theorem 4.6.2.

Theorem 2.7. The space dGX of germs of restrictions of the maps Rhg , for g 2
GjX ; h 2 G onto open subsets of the disjoint union

F
x2X @Gx is a groupoid (i.e., is

closed under taking compositions and inverses), and depends only on G and X .

The dual groupoid G> of a hyperbolic groupoid G is defined in [21] as the projec-
tion P�.@GÌG/. It is also shown in [21], Section 4.6, that this definition is equivalent
to the following.

Definition 2.13. Let G be a hyperbolic groupoid. The dual groupoid G> is any
groupoid equivalent to dGX .

The groupoid dGX is not second countable, but it is equivalent to a second count-
able groupoid.

2.8. Minimal hyperbolic groupoids. LetG be a hyperbolic groupoid and let .S; X/
be its generating pair. We say that a Cayley graph G.x; S/ is topologically mixing if
for every point � 2 @Gx and every neighborhoodU of � inGXx the set of accumulation
points of t.U \ GXx / contains the interior of X .

The following description of topologically mixing hyperbolic groupoids is given
in [21], Proposition 4.7.1.
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Proposition 2.8. Let G be a hyperbolic groupoid. Then the following conditions are
equivalent.

(1) Some Cayley graph of G is topologically mixing.

(2) Every Cayley graph of G is topologically mixing.

(3) Every G-orbit is dense in G.0/.

Definition 2.14. We say that a hyperbolic groupoid G is minimal if it satisfies the
equivalent conditions of Proposition 2.8.

For the proof of the next proposition and theorem, see [21], Section 4.7.

Proposition 2.9. If G is minimal, then the groupoid dGx equal to restriction of dGX
onto @Gx is equivalent to the groupoid dGX , and G> is also minimal.

The following theorem is one of central results of [21].

Theorem 2.10. Let G be a minimal hyperbolic groupoid. Then the groupoid G> is
hyperbolic, and the groupoid .G>/> is equivalent to G.

This duality theorem holds not only for minimal groupoids, but for all hyperbolic
groupoids whose geodesic flow is locally diagonal.

3. Hyperbolic metric

Recall that a hyperbolic groupoids together with a strong equivalence class of the
cocycle is a graded hyperbolic groupoid. In different situations different gradings
are natural.

Example 3.1. Let f be a hyperbolic complex rational function. Then f is expanding
with respect to a Riemanian metric on a neighborhood of the Julia set of f , hence the
groupoid F generated by the germs of the action of f on its Julia set is hyperbolic,
where the grading �WF ! Z is given by the degree of germs. Namely, every element
of F is a composition g D .f n; x/�1 B .f m; y/ for some points x; y of the Julia set.
We define then �.g/ D n � m. The Cayley graphs of F are regular trees and � is
equal to the Busemann cocycle associated with the point of its boundary given by the
path x; f .x/; f 2.x/; : : :. This example is discussed in detail in [21].

On the other hand, it is easy to see that the map

�1..F; x// D � ln jF 0.x/j; (4)

for F 2 zF, is also a Busemann quasi-cocycle, and hence .F; �1/ is also a graded
hyperbolic groupoid.
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If .G; �/ is a graded hyperbolic groupoid, then .@G Ì G; Q�/ is a graded groupoid
where Q�.g; �/ D �.g/ is the lift of the quasi-cocycle � to the geodesic quasi-flow.
The graded groupoid .@G Ì G; Q�/ is uniquely determined by the graded groupoid
.G; �/.

On the other hand, by [21], Theorem 4.4.1, if .H; �/ is a Smale quasi-flow, then its
projections PC.H/ and P�.H/ onto the stable and unstable directions are hyperbolic,
and there exist quasi-cocycles �C and �� on PC.H/ and P�.H/ such that the functions
j�C.PC.g// � �.g/j and j��.P�.g//C �.g/j are uniformly bounded.

We get hence the following summary of the above facts.

Proposition 3.1. Let .G; �/ be a minimal graded hyperbolic groupoid. There exist
unique, up to strong equivalence, quasi-cocycles Q� and �> on @G Ì G and G> such
that j�.PC.g// � Q�.g/j and j�>.P�.g//C Q�.g/j are uniformly bounded.

It follows directly from the definitions that for every germ .Rhg ; �/ we have

�>.Rg
h
; �/

:D j�.g/ � �.h/j: (5)

Definition 3.1. Let .G; �/ be a graded hyperbolic groupoid with locally diago-
nal geodesic quasi-flow. Then the dual graded groupoid .G; �/> is the groupoid
.G>; �>/ where G> is the hyperbolic groupoid dual to G, and the quasi-cocycle
�>WG> ! R is equal to the projection of the quasi-cocycle �Q�W @GÌG ! R, where
Q� is the lift of �.

Let now .G; �/ be a minimal graded hyperbolic groupoid. The space of units
of G> is locally homeomorphic to boundaries of the Cayley graphs G.x; S/ of G.
The quasi-cocycle � defines a natural log-scale on @Gx by the rule that `�.�1; �2/ is
equal to the minimal value of � along a geodesic path in G.x; S/ connecting �1 to �2.

This log-scale satisfies an estimate (see Proposition 2.6)

`�.R
g

h
.�1/; R

g

h
.�2//

:D `�.�1; �2/C �.g/ � �.h/ (6)

for all �1; �2 2 xTh.
Consequently, we get a Lipschitz structure on G>, which is uniquely determined

(up to bi-Lipschitz equivalence) by the grading �. We will call it the hyperbolic
log-scale associated with �. Since � and �> uniquely determine each other, we will
also say that the defined log-scale is associated with �> (if there is no confusion on
which of the groupoids G and G> the log-scale is defined).

Estimates (6) and (5) immediately imply the following proposition.

Proposition 3.2. Let ` be the hyperbolic log-scale on G associated with the grading
� of the hyperbolic groupoid .G; �/. Then there exists a constant c such that for every
g 2 G there exists a neighborhood U 2 zG such that for any two points x; y 2 o.U /
we have

j`.U.x/; U.y//� .`.x; y/C �.g//j < c:
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Recall that we say that a metric j � j is associated with a log-scale ` if there exists
a constant ˛ > 0 such that

jx � yj � e�˛�`.x;y/

for all pairs of points x; y. We call ˛ the exponent of the associated metric. For every
log-scale there exists a constant ˛0 such that an associated metric exists for every
positive exponent ˛ < ˛0. The biggest ˛0 (called the critical exponent) with this
property can be characterized in the following way.

Let X be a set with a log-scale `. For a positive number n, let 	n be the graph
with the set of vertices X in which two points x; y 2 X are connected by an edge if
and only if `.x; y/ � n. Let dn be the combinatorial distance on the vertex set X of
the graph 	n. A number ˛ > 0 is a lower exponent of .X; `/ if there exists C > 0

such that
dn.x; y/ � Ce˛.n�`.x;y//

for all x; y 2 X and n 2 R.
In the case whenX is the boundary of a hyperbolic graph, and `.�; �/ is the natural

log-scale given by the Gromov product `.x; y/ D 1
2
.jx � x0j C jy � x0j � jx � yj/,

the metric dn.�; �/ is equivalent to the length of a path avoiding the ball of radius n
with center in x0 and connecting vertices on the geodesic paths representing � and �.
Lower exponents are then lower estimates of exponential divergence of the geodesics.

One can show (see, for instance [22], Theorem 3.3) that there exists a metric of
exponent ˛ if and only if ˛ is smaller than some lower exponent. It follows that the
critical exponent ˛0 is equal to the supremum of the lower exponents.

Definition 3.2. A (hyperbolic) metric of exponent ˛ on @Gx associated with the
quasi-cocycle � is a metric of exponent ˛ associated with the hyperbolic log-scale `� .

The hyperbolic metric is called sometimes visual. Note that, by definition, a
metric locally bi-Lipschitz equivalent to a hyperbolic metric of exponent ˛ is also a
hyperbolic metric of exponent ˛.

Thus, a grading � of a hyperbolic groupoid determines for every positive suf-
ficiently close to zero number ˛ a unique locally bi-Lipschitz class of hyperbolic
metrics. Proposition 3.2 is reformulated then as follows.

Proposition 3.3. Let j � j be a hyperbolic metric of exponent ˛ on a graded hyperbolic
groupoid .G; �/. Then there exists a constant c > 1 such that for every g 2 G there
exists a neighborhood U 2 zG such that for every pair of different points x; y 2 o.U /
we have

c�1e�˛��.g/ � jU.x/ � U.y/j
jx � yj � ce�˛��.g/:

In other words, the quasi-cocycle �.g/ is proportional, up to an additive constant, to
the logarithm of the scaling factor of the germ g.
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We will need a more precise version of the last proposition.

Proposition 3.4. Let j � j be a hyperbolic metric of exponent ˛. Let S be a compact
positive subset ofG. Let � be a finite covering ofS by�-contracting positive elements
of zG, where � 2 .0; 1/ is a fixed constant.

Let � > 0 be sufficiently small. Then there exists a constant c > 1 such that if
g1g2 � � �gn is a product of elements of S , and Fi 2 � are such that gi is �-contained
in Fi , then for any two points x; y 2 o.F1 � � �Fn/ on distance less than � from o.gn/
we have

c�1e�˛�.g1���gn/jx�yj � jF1 � � �Fn.x/�F1 � � �Fn.y/j � ce�˛�.g1���gn/jx�yj: (7)

Proof. Note that if � 0 is a finite covering of S subordinate to a covering � , then the
statement of the proposition holds for � if and only if it holds for � 0. Since any two
open coverings of S have a common finite subordinate covering, if the statement is
true for some covering � , then it is true for all coverings.

Let .S1; X1/ be a generating pair of G satisfying Proposition 2.2 and let S � G be
any positive contracting set. Assume thatS1 satisfies the conditions of the proposition.
Let us show that it is satisfied for S .

Let .S2; X2/ be a generating pair of G such that S � GjX2
and X1 � X2. Then

GX1
x is a net in GX2

x . Consequently, every element of GX2
can be represented as a

product a1ga2, where g 2 GX1
and a1, a2 belong to a fixed compact set Q1 � G.

Every path corresponding to a finite or infinite product � � �g2g1 of elements ofS is
a quasi-geodesic (in a uniform way in the corresponding Cayley graph G.o.g1/; S2/).
If the path is infinite, then it converges to a point of @Go.g1/. Since S1 satisfies the
conditions of Proposition 2.2, there exists a compact set Q � G such that every
product gn � � �g1 2 Sn can be represented in the form a1 �sm � � � s1 �a2 for a1; a2 2 Q
and si 2 S1.

Let Q be a finite covering of Q by bi-Lipschitz elements of zG, and let S � zG
be a finite covering of S [ S1 by contractions. Then there exists � > 0 such that
if we have gn � � �g1 D h0sm � � � s1h1 for gi 2 S , si 2 S1, hi 2 Q, and if Gi 2 � ,
Hi 2 Q, and Ui 2 � are such that gi , hi , and si are �-contained in Gi , Hi , and
Ui , respectively, then the compositions Gn � � �G1 and H0Um � � �U1H1 coincide on
the �-neighborhood of o.g1/ D o.h1/, see [21], Corollary 2.4.2. It follows that the
proposition holds for S .

Consequently, it is enough to prove the proposition for any groupoid equivalent
to G.

We can represent G as projection PC.@G Ì G/ of the geodesic quasi-flow and
use a generating set equal to projection of the generating set satisfying conditions
of Proposition 2.4. Then the statement of the proposition will follow from (6) on
page 901 and the fact that the quasi-cocycle Q�W @G Ì G ! R agrees with the local
products structure.
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Corollary 3.5. Let S be a positive compact subset of a hyperbolic groupoid .G; �/,
let � be a finite covering of S by positive contracting elements of zG. Then there exist
c > 0 and � > 0 such that for any product U D F1 � � �Fn of elements of � and for
any two germs g1; g2 of U such that jo.g1/ � o.g2/j < � we have

j�.g1/ � �.g2/j < c:

Proof. There exist � > 0 and c such that for every productU D F1 � � �Fn of elements
of � and every pair x1; x2 2 o.U / for Fi 2 � , such that jx1 � x2j < � we have
c�1e�˛�.U;xi /jx1 � x2j < jU.x1/ � U.x2/j < ce�˛�.U;xi /jx1 � x2j for i D 1; 2. It
implies j�.U; x1/ � �.U; x2/j < 2˛�1 ln c.

Theorem 3.6. Let .G; �/ be a graded hyperbolic groupoid, let .S; X/ be a generating
pair satisfying the conditions of Proposition 2.2 (for an arbitrary metric j � j). A metric
j � j1 defined on a neighborhood ofX is a hyperbolic metric of exponent ˛ if and only
if there exists a finite covering � of S by positive elements of zG such that for every
product F1 � � �Fn of elements of � we have

jF1 � � �Fn.x/ � F1 � � �Fn.y/j1 � e�˛�.g/jx � yj1;

for all x; y 2 o.F1 � � �Fn/, where g is any germ of F1 � � �Fn and the coefficients in
the estimate do not depend on n, Fi , g, x, and y.

Proof. Proposition 3.3 implies the ‘if’ part of the theorem. In order to prove the
theorem in the other direction, is enough to show that if j � j1 and j � j2 are metrics
satisfying the conditions of the theorem, then they are locally bi-Lipschitz equivalent.

There exists a covering � of S satisfying the condition of the theorem for both
metric j� ji . Let � be a common Lebesgue’s number of the covering � for both metrics.

Let x 2 X be an arbitrary point. Let � be an upper bound on the value of the
cocycle � on elements of S . For every n there exists a sequence g1; : : : ; gk of
elements of S such that t.g1 � � �gk/ D x, and n � �.g1 � � �gk/ < n C � C �. Let
Gi 2 � be such that gi is �-contained in Gi . Then, for any i D 1; 2, if

jx � yji < c�1e�˛.nC�C�/� D c�1e�˛.�C�/� � e�˛n;

then .G1 � � �Gk/�1.y/ is defined. Here c > 1 is a sufficiently big constant.
On the other hand, if .G1 � � �Gk/�1.y/ is defined, then jx�yji < cDe�˛n, where

D is an upper bound on the diameters of the sets o.Gi /.
Since jx � yj1 < c�1e�˛.�C�/� � e�˛n for

n D
j ln

�
ce˛.�C�/��1 � jx � yj1

�
�˛

k
;
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we have for all x; y, such that jx � yj is small enough

jx � yj2 < cD exp
�

� ˛
j ln.ce˛.�C�/��1 � jx � yj1/

�˛
k�

< cD exp.ln.ce˛.�C�/��1 � jx � yj1/C ˛/

D c2D��1e˛.�C�C1/ � jx � yj1;

hence j � j1 and j � j2 are locally bi-Lipschitz equivalent.

As an example of application of the previous theorem, consider the following.

Proposition 3.7. Let zG be a pseudogroup acting on a subsetX of C by biholomorphic
maps. Define �.F; z/ D � ln jF 0.z/j and suppose that .G; �/ is hyperbolic. Then
the usual metric jz1 � z2j is a hyperbolic metric on X of exponent 1.

In particular, if zG is the groupoid generated by the restriction of a hyperbolic
complex rational function onto its Julia set, then the usual metric on C (restricted
to the Julia set) is a hyperbolic metric for the groupoid .G; �/, where � is as in
Proposition 3.7.

Proof. Let S be a compact subset of G such that �.s/ > 0 for all s 2 S . Then
�.s/ for s 2 S is bounded from below by a positive constant. Let � be a finite open
covering of S by relatively compact extendable �-contracting elements of zG, where
0 < � < 1. Here an element F 2 zG is extendable if there exists F 0 2 zG containing
the closure of F .

Since the set � is finite, and F 2 � are relatively compact and extendable, there
exist constants � > 0 and c1 > 0 such that for every F 2 � and any x; y 2 o.F /
such that jx � yj < � we haveˇ̌̌

ˇF.x/ � F.y/

.x � y/F 0.x/
� 1

ˇ̌̌
ˇ < c1jx � yj:

Taking � small enough, we may assume that c1� < 1, then

0 < 1 � c1jx � yj <
ˇ̌̌
ˇF.x/ � F.y/
.x � y/F 0.x/

ˇ̌̌
ˇ < 1C c1jx � yj

We also assume that � is less than the Lebesgue’s number of the covering � .
Let us show that � satisfies then the conditions of Theorem 3.6. Suppose that

gngn�1 � � �g1 is a product of elements ofS , andFi 2 � are such that gi is �-contained
in Fi . Let x0; y0 be points on distance less than � from o.g1/. Denote xk D
Fk � � �F1.x0/ and yk D Fk � � �F1.y0/. Then jxk � yk j < ��k .
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We have

j.Fn � � �F1/0.x0/j
D jF 0

n.xn�1/j � jF 0
n�1.xn�2/j � � � jF 0

1.x0/j

D
ˇ̌̌
ˇF 0
n.xn�1/.xn�1 � yn�1/

xn � yn

ˇ̌̌
ˇ �ˇ̌̌

ˇF 0
n�1.xn�2/.xn�2 � yn�2/

xn�1 � yn�1

ˇ̌̌
ˇ � � �

ˇ̌̌
ˇF 0
1.x0/.x0 � y0/
x1 � y1

ˇ̌̌
ˇ �

ˇ̌̌
ˇxn � yn
x0 � y0

ˇ̌̌
ˇ :

The last product is less than

.1� c1jxn�1 � yn�1j/�1.1 � c1jxn�2 � yn�2j/�1 � � �
.1� c1jx0 � y0j/�1 �

ˇ̌̌
ˇxn � yn

x0 � y0

ˇ̌̌
ˇ

<

ˇ̌̌
ˇxn � yn

x0 � y0

ˇ̌̌
ˇ

1Y
kD0

.1� c1��k/�1;

where the infinite product is convergent. Similarly, j.Fn � � �F1/0.x0/j is bigger than

.1C c1jxn�1 � yn�1j/�1.1C c1jxn�2 � yn�2j/�1 � � �
.1C c1jx0 � y0j/�1 �

ˇ̌̌
ˇxn � yn
x0 � y0

ˇ̌̌
ˇ

>

ˇ̌̌
ˇxn � yn
x0 � y0

ˇ̌̌
ˇ

1Y
kD0

.1C c1��
k/�1:

We have shown that there exists a constant c2 > 1 such that for any two points
x; y from the �-neighborhood of o.g1/ we have

c�1
2 jU 0.x/j <

ˇ̌̌
ˇU.x/ � U.y/

x � y
ˇ̌̌
ˇ < c2jU 0.x/j

whereU D Fn � � �F1. It follows that c�2
2 jU 0.y/j < jU 0.x/j < c22 jU 0.y/j for all such

x; y. In particular,

c�2
2 jU 0.o.g1//j D c�2

2 e��.gn���g1/ < jU 0.x/j < c22 jU 0.o.g1//j D c22e
��.gn���g1/;

hence

c�3
2 e��.gn���g1/ <

ˇ̌̌
ˇU.x/ � U.y/

x � y

ˇ̌̌
ˇ < c32e��.gn���g1/;

which implies by Theorem 3.6 that jx�yj is a hyperbolic metric for the cocycle �.
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4. Growth and Entropy

4.1. Growth of graded hyperbolic groupoids

Definition 4.1. We say that a quasi-cocycle  WGjX ! R is dualizable if there exists
a quasi-cocycle � > onG> such that lifts of and � > to the geodesic flow @GÌG
are strongly equivalent.

Here lift of a quasi-cocycle  to the geodesic flow @GÌG is given by  .�; g/ D
 .g/. Recall that @G Ì G is also equivalent to the geodesic flow of G>, by [21],
Theorem 4.5.1.

Any Busemann quasi-cocycle is dualizable by [21], Theorem 4.4.1. Another
obvious example of a dualizable cocycle is the constant zero cocycle. We will see
later that any Hölder continuous cocycle is dualizable.

We are mostly interested in the case when  is constant zero.

Theorem 4.1. LetG be a minimal hyperbolic groupoid graded by a Busemann quasi-
cocycle �WGjX ! R. Let  WGjX ! R be a dualizable quasi-cocycle.

There exists a positive number� and a number ˇ such that for every x 2 X and
for any compact neighborhood C of � 2 @Gx in GXx there exist positive constants k1
and k2 such that

k1e
ˇn �

X
g2C\Gx ;n����.g/�n

e .g/ � k2e
ˇn

for all sufficiently large n.

If  is constant zero, then the sum in Theorem 4.1 is just the number of elements
of C \ Gx in the thickened level set ¹gW n �� � �.g/ � nº of the cocycle �. The
theorem thus shows precise estimates of growth of these level sets. We will need
these estimates later, when we will define the measure on the boundary of the Cayley
graph as a weak limit of rescaled counting measures on the level sets of �.

Definition 4.2. The number ˇ from Theorem 4.1 is called pressure of relative to �.

Proof. Let us prove at first the following technical result.

Proposition 4.2. Let .G; �/ be a minimal graded hyperbolic groupoid, and let X be
a compact topological G-transversal. Then there exists a compact generating set S
of GjX satisfying the conditions of Proposition 2.2, and such that there exists r0 > 0
such that for every x 2 X the set Tx contains a point �x such that the ball of GXx of

radius r0 (with respect to a metric associated with the natural log-scale on GXx ) and
center in �x is contained in xTx .
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Proof. Let S1 be a generating set satisfying conditions of Proposition 2.2. Denote by
xT .1/g and T

.1/
g the sets defined with respect to the set S1. There exists a compact set

A � GjX and a positive number r1 such that for everyg 2 GjX the set
S
a2A\Gtg

xT .1/ag

contains the r1-neighborhood of xT .1/g (see Proposition 2.3). There exists then an
integer n > 0 such that S D S1 [ ASn1 satisfies the conditions of Proposition 2.2.

Then it will satisfy the condition of our proposition for any point �x 2 T
.1/
x � Tx .

Let � > 0 be such that � and  are �-quasi-cocycles. Let .S; X/ be a generating
pair of G satisfying Proposition 4.2. Let � be a finite covering of S by positive
contracting elements of zG, and let ı1 be a Lebesgue’s number of the covering � .

Let D be an upper bound on values of � on elements of S , and let � D D C �.
Recall that �.g/ > 2� for all g 2 S . Then for every product : : : g2g1 of elements of
S we have

� < �.gn � � �g1/ � �.gn�1 � � �g1/ < �:
Denote for x 2 X and n � 0

L.x; n/ D ¹g 2 TxW n�� < �.g/ � nº;
and

u.x; n/ D
X

g2L.x;n/
e .g/:

Lemma 4.3. For every k > 0 there exist positive constants c1; c2 such that

c1u.x; n/ � u.x; nC k/ � c2u.x; n/

for all x 2 X and n > 0.

Proof. For every element g D gt � � �g1 2 L.x; n C k/, where gi 2 S , there exists
an index j < t such that h D gj � � �g1 2 L.x; n/. Choose one such h for every
g 2 L.x; n C k/ and denote it '1.g/. There is a uniform upper bound (depending
on k but not on x or n) on the distance from g to '1.g/ in the Cayley graph, hence
there is a uniform upper bound q on j'�1

1 .h/j, and a uniform upper bound c0 on
j .g/ �  .'1.g//j. It follows that

u.x; nC k/ D
X

g2L.x;nCk/
e .g/

� ec0

X
g2L.x;nCk/

e .'1.g//

� qec0

X
h2L.x;n/

e .h/

D qec0u.x; n/:
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On the other hand for every element h D gl � � �g1 2 L.x; n/ there exists '2.h/ 2
L.x; nC k/ of the form gr � � �glC1gl � � �g1 where r � l . Again, there is a uniform
upper bound on the distance between h and '2.h/. Hence, there are uniform upper
bounds on j .g/ �  .'2.h//j and on j'�1

2 .h/j, which implies an inequality of the
form u.x; n/ � c�1

1 u.x; nC k/.

Lemma 4.4. There exists a constant c � 1 such that for any two points x; y 2 X we
have

c�1u.y; n/ � u.x; n/ � cu.y; n/

for all n � 0.

Proof. The sets of values of the transformations Rhg in general do not belong toGjX ,
since the ranges of the elements F 2 � do not belong to X . However, the ranges
of F 2 � belong to a compact set X 0 containing X , and since X is a topological
transversal, there exists a compact setQ � G such that for every f 2 Rhg there exists
qf 2 Q such that qf f 2 GjX . Choose such qf for every f 2 Tg , and define

zRhg.f / D qf f: (8)

Note that both transformations Rhg and zRhg have the same continuous extension
onto Tg .

Lemma 4.5. There is a constantN > 0 such that for every pair x; y 2 X there exists
g 2 Tx such that Rgy is defined, �.g/ < N , and zRgy .Ty/ � Tx .

Proof. Let ı0 be as in Lemma 2.5 Consider a finite covering ¹Wiºi2I of the setX by
open subsets of diameter less than ı0.

Let a point �x 2 Tx and a number r0 satisfy the conditions of Proposition 4.2.
Then the r0-neighborhood of �x D � � �h2h1 in GXx is contained in xTx . By minimality
of G, for every i 2 I the set of elements g 2 GXx such that t.g/ 2 Wi is an „-net
(with respect to the usual combinatorial metric on the Cayley graph) in G.x; S/ for
some fixed „ > 0 (not depending on x and i ).

If q 2 GjX is an element of length at most „ such that o.q/ D t.hl � � �h1/, and
D is an upper bound on the values of j�j on elements of S , then the value of � on
a geodesic path connecting hl � � �h1 with qhl � � �h1 in the Cayley graph G.x; S/ is
bounded below by �.hl � � �h1/� .D C �/„ > l�� .D C �/„. It follows that there
exists l0 not depending on x such that for every l � l0 the (combinatorial) „-neigh-
borhood of hl � � �h1 in the Cayley graph G.x; S/ is contained in the (hyperbolic)
r0=2-neighborhood of �x .

If l is big enough, g belongs to the combinatorial „-neighborhood of hl � � �h1,
and T gy is defined, then by (6), the hyperbolic diameter of the set of values of zT gy is
less than r0=2.
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It follows that there exists a constant N such that for every i 2 I there exists
gi 2 Tx such that t.g/ 2 Wi , �.g/ < N , the set of values of zT gy for every y 2 Wi is
contained in the r0-neighborhood of �x , hence is contained in Tx .

The set of elements g satisfying the conditions of Lemma 4.5 is contained in a
compact set of the form

Sn
kD0 Sk for some n not depending on x and y. It follows, by

dualizability of� and , that the differences j�. zRgy .h//��.h/j and j . zRgy .h//� .h/j
are uniformly bounded.

The map Rgy is injective by Lemma 2.5. Consequently, the cardinalities of the
sets . zRgy /�1.h/ are uniformly bounded.

Consequently, using Lemma 4.3 we have an estimate of the form u.y; n/ �
c � u.x; n/.

Proposition 4.6. There exists a constant c2 such that for every x 2 X0 and any
positive numbers n1; n2 we have

c�1
2 u.x; n1/u.x; n2/ � u.x; n1 C n2/ � c2u.x; n1/v.x; n2/:

Proof. There exists a constant q1 such that every element g 2 L.x; n1 C n2/ can
be decomposed into a product g D g1g2 such that �.g1/ and �.g2/ belong to the
intervals Œn1 ��; n1 C�
 and Œn2 ��; n2 C�
 respectively, at least in one and at
most in q1 ways.

It follows (using Lemmas 4.4 and 4.3) that u.x; n1Cn2/ � k1 �u.x; n1/u.x; n2/
for some constant k1.

On the other hand, for any pair g1 2 L.x; n1/ and g2 2 L.t.g1/; n2/ we have
n1 C n2 � 2� � � < �.g2g1/ < n1 C n2 C �. There exists a constant q2 > 1

such that there exist at most q2 pairs h1 2 L.x; n1/ and h2 2 L.t.h1/; n2/ such that
h2h1 D g2g1. Hence (again using Lemmas 4.4 and 4.3) we have u.x; n1 C n2/ �
c�1
2 u.x; n1/u.x; n2/ for some c2 > 1.

The following lemma is Exercise 99 in [24] (next after a more famous problem
on sub-additive sequences).

Lemma 4.7. Let an, n � 1, be a sequence of real numbers such that an1
Can2

�1 �
an1Cn2

� an1
C an2

C 1 for all n1 and n2. Then the limit  D limn!1 an=n exists
and n � 1 � an � n C 1 for all n.

Let now c2 be as in Proposition 4.6. Define the sequence

˛n D ln.u.x; n//= ln c2:

Then Proposition 4.6 implies that for any n1; n2, we have

˛n1
C ˛n2

� 1 � an1Cn2
� ˛n1

C ˛n2
C 1;
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and by Lemma 4.7 it follows that the limit limn!1 ˛n=n D  exists and n � 1 �
˛n � n C 1 for all n.

Consequently there exist constants ˇ and k > 1 such that

k�1enˇ � u.x; n/ � kenˇ (9)

for all n > 0 and x 2 X .
Let now C be any compact neighborhood in GXx of a point of @Gx . Then by

compactness, C can be covered by a finite number of sets of the form xTg , which
gives us an upper bound of the form k2e

nˇ for
P
g2C\Gx ;n����.g/�n e .g/. On the

other hand, since the collection xTg for g 2 Gx is a basis of neighborhoods of points
of @Gx , there exists a subset of C of the form xTg , which gives us a lower bound
finishing the proof of the theorem.

The following proposition is a direct corollary of Theorem 4.1.

Proposition 4.8. Let � and  be a Busemann and a dualizable quasi-cocycles on
G, respectively. Let f be a continuous function of compact support on GXx not
identically equal to zero on @Gx . Consider the series

Pf;�; .s/ D
X
g2GX

x

f .g/e�s�.g/C .g/:

If ˇ is pressure of  relative to �, then the series Pf;�; .s/ diverges for s � ˇ and
converges for s > ˇ.

4.2. Entropy of hyperbolic groupoids and Smale quasi-flows

Definition 4.3. Pressure of the zero cocycle  .g/ D 0 relative to the Busemann
cocycle � is called the entropy of the graded groupoid .G; �/ and is denoted h.G; �/,
or just h.�/.

Proposition 4.9. Entropy of a hyperbolic groupoid is positive and

h.�/ D lim
n!1

ln j¹g 2 TxW �.g/ � nºj
n

:

for every x 2 X .

Proof. It is enough to prove that entropy is positive, i.e., that sequence u.x; n/ from
the proof of Theorem 4.1 is unbounded.

Suppose, by contradiction that u.x; n/ < m for every n. Since every path
g1; g2g1; g3g2g1; : : : connecting x to a point � 2 Tx (where gi 2 S ) intersects
each of the sets L.x; n/, and any two such paths which have infinite intersection
converge to the same point of Tx , we get that jTxj < m, in particular, that G.0/ has
isolated points. Then we can find a singleton that is a G-transversal (by minimality
of G). But groupoid of germs of a pseudogroup acting on a single point can not
satisfy the conditions of Definition 2.5.
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Let .S; X/ be a generating pair of G satisfying Definition 2.5. For a finite subset
N � X denote by v.N; n/ cardinality of the set of elements g 2 G such that g is a
product of elements of S , �.g/ � n, and o.g/ 2 N .

Lemma 4.10. Supremum of the number

ˇN D lim
n!1

ln v.N; n/

n

over finite subsets N � X is attained and is equal to the entropy h.�/.

Proof. Since S can be embedded into a generating set satisfying Proposition 2.2, ˇN
is not greater than the entropy. It is also obvious that ˇN does not decrease when we
increase the set N . Consequently, it is enough to show that there exists N such that
ˇN is equal to the entropy.

Let � 2 @Gx , and let C be a compact neighborhood of � in GXx . Then there
exists a finite set A � GXx such that C is included in the set of products : : : g2g1g
for gi 2 S and g 2 A. It follows then that ˇN for N D t.A/ is not less than the
entropy.

Theorem 4.11. Entropies of .G; �/ and .G; �/> are equal.

Proof. Let .S; X/ be a generating pair of @G Ì G satisfying the conditions of [21],
Definition 4.1.1, and let � be a covering of S by rectangles.

Choosing the elements of the covering � small enough, we may assume that there
exists c > 0 such that for every non-empty product U1 � � �Un of elements of � the
values of

Q�.g/; Q�.h/; �.PC.g//; �>.P�.g//
differ from each other not more than by c for all g; h 2 U1 � � �Un (see Corollary 3.5).

Let � be a Lebesgue’s number of the covering � , and let R be a covering ofX by
a finite number of open rectangles of diameter less than �.

Since the Smale quasi-flow @GÌG is locally diagonal (see [21], Proposition 4.7.8),
we may assume that for any two rectanglesR1 ; R2 2 R and elementsg1; g2 2 H such
that o.gi / 2 R1 and t.gi / 2 R2 equalities PC.g1/ D PC.g2/ or P�.g1/ D P�.g2/
imply g1 D g2. Consider localization H of @G Ì G onto R.

LetNC � PC.H.0// andN� � P�.H.0// be finite subsets such that ˇNC
and ˇN�

are equal to the entropies of PC.H/ and P�.H/. We may assume that NC and N�
have non-empty intersections with PC.R/ and P�.R/, respectively, for everyR 2 R.

Let V.Ni ; n/, for i 2 ¹C;�º, be the set of elements hi 2 Pi .H/ such that hi
is a product of elements of Pi .S/, �.hi / � n, and o.hi / 2 Ni . Then ˇNi

D
limn!1 ln jV.Ni ; n/j= ln n. We will denote V.Ni / D S

n�1 V.Ni ; n/.
We will say that gC 2 V.NC/ and g� 2 V.N�/ are related if there exists h 2 H

such that h is a product of elements of S (more precisely of their copies in the
localization), PC.h/ D gC, and P�.h/ D g�.
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Suppose that gC 2 V.NC; n/ is equal to a product PC.s1/ � � � PC.sk/ of elements
of PC.S/. Let R1; R2 2 R be such that o.sk/ 2 R1 and t.s1/ 2 R2. Let Ui 2 �

be such that si is �-contained in Ui . Then PC.o.U1 � � �Un/ \ R1/ D PC.R1/, and
P�.t.U1 � � �Un/ \ R2/ D P�.R2/. For any x� 2 N� such that x� 2 P�.R2/
we can find germs r1; : : : ; rk of U1; � � � ; Uk such that PC.s1/ D PC.r1/, the product
r1 � � � rk is defined, and P�.t.r1// D x2. Consequently, every elementgC 2 V.N1; n/
is related to an element g� 2 V.N�; nC c/. By the same argument, every element
g� 2 V.N�; n/ is related to an element gC 2 V.NC; nC c/.

Note that by local diagonality, an element of V.NC/ can not be related to more
than jN�j elements of V.N�/, and similarly, an element of V.N�/ can not be related
to more than jNCj elements of V.NC/.

Consequently, jV.NC; n/j � jNCj � jV.N�; n C 2c/j, and jV.N�; n/j � jN�j �
jV.NC; nC 2c/j, which implies that ˇNC

D ˇN�
.

One can prove in a similar way that pressure of a cocycle  relative to � is equal
to pressure of  > relative to �>.

5. Quasi-conformal measures

5.1. Definition and basic properties. Let zGbe a pseudogroup acting on a spaceG.0/.
A Radon measure�onG.0/ is quasi-invariant if for everyF 2 zG and everyA � o.F /
such that �.A/ D 0 we have �.F.A// D 0.

If � is quasi-invariant with respect to zG, then for every F 2 zG we have the
corresponding Radon–Nicodim derivative

�.F; x/ D dF ��
d�

.x/;

where x 2 o.F / and F �� is the pull-back of � by F . Note that �.F; x/ depends
only on the germ .F; x/ 2 G.

Integrating the counting measure on Gx by � we get a measure �o on G given by
the formula Z

f .g/ d�o.g/ D
Z X

g2Gx

f .g/ d�.o.g//;

where f WG ! R is a compactly supported continuous function. Similarly, we have
a measure �t on G given byZ

f .g/ d�t.g/ D
Z X

g2Gx

f .g/ d�.t.g//:

Quasi-invariance of� is equivalent to absolute continuity of�o and�t with respect to
each other. In particular, if� is quasi-invariant, then we have a well defined notion of
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null sets in G with respect to � (i.e., with respect to �o or �t). The Radon–Nicodim
derivative �.g/ is equal to the Radon–Nicodim derivative d�t

d�o
.g/.

It is easy to see that the map �WG ! R>0 satisfies the multiplicative cocycle
condition

�.g1g2/ D �.g1/�.g2/

for �-almost all composable pairs.

Definition 5.1. Let .G; �/ be a graded hyperbolic groupoid. A Radon measure mea-
sure � on G.0/ is said to be (G)-quasi-conformal if it is G-quasi-invariant, and there
exists ˇ > 0 such that

�.g/ � e�ˇ ��.g/

for all g 2 G. The number ˇ is called the exponent of the quasi-conformal measure.

Note that quasi-conformality of the measure does not depend on the choice of the
quasi-cocycle (i.e., if a measure is quasi-conformal with respect to one quasi-cocycle,
then it is quasi-conformal with respect to any strongly equivalent quasi-cocycle).

Proposition 5.1. Let .G; �/ be a minimal graded hyperbolic groupoid, where the map
�WG ! R is everywhere defined. Let X0 � G.0/ be an open subset, and suppose
that there exists a GjX0

-quasi-conformal measure �0 on GjX0
. Then there exists a

G-quasi-conformal measure � on G.0/ of the same exponent as �0.

Proof. Since every open subset of G.0/ is a G-transversal, for every x 2 G.0/ there
exists g 2 G such that t.g/ D x and o.g/ 2 X0. Hence, there exists a set U � zG
such that ¹t.U /WU 2 Uº is a covering of G.0/, and o.U / � X0 for all U 2 U.

Let ¹'U ºU2U be a partition of unity, where 'U WG.0/ ! Œ0; 1
 is a continuous
non-negative (possibly zero) function with compact support contained in t.U /.

Define then a measure � on G.0/ by the formulaZ
f .x/ d�.x/ D

X
U2U

Z
f .U.y//'U .U.y//e

�ˇ�.U;y/ d�0.y/;

where ˇ is the exponent of �0, and f WG.0/ ! R is a continuous function of compact
support.

Let h 2 G be such that o.h/ 2 X0, and let x D t.h/. We have

dh��
d�0

.x/ D
X
U2U

'U .x/e
�ˇ�.U;U�1.x// d.U

�1 B h/�.�0/
d�0

.o.h//

�
X
U2U

'U .x/e
�ˇ�.U;U�1.x//e�ˇ�.U�1h/

�
X
U2U

'U .x/e
�ˇ�.h/ D e�ˇ�.h�1/:
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It follows that for every g 2 G we have dg�.�/
d�

� e�ˇ�.g/, i.e., that � is quasi-
conformal.

Corollary 5.2. Let .G; �/ be a minimal graded hyperbolic groupoid. If there exists
a quasi-conformal measure on a graded groupoid equivalent to .G; �/, then it exists
on .G; �/.

Proposition 5.3. The exponent of a quasi-conformal measure is equal to the entropy
of the groupoid G.

Proof. We will prove this proposition for the dual groupoid G>. Let .S; X/ be a
generating pair of G satisfying the conditions of Proposition 2.2. We will realize G>
as the groupoid dGx acting on the boundary @Gx of a Cayley graph G.x; S/. Let �
be a G>-quasi-invariant measure on @Gx .

It follows from Lemma 4.5 that there exists a compact set Q such that for every
g; h 2 GXx there exists q 2 Q such that qh 2 Th,Rqhg is defined, and zRqhg .Tg/ � Th.

Then Rqhg .Tg/ � Th. The values of �> on the germs of Rqhg are equal (up to
a uniformly bounded additive constant) to �.h/ � �.g/ (see Proposition 2.6). It
follows that there exists a constant c > 1 such that �.Th/ � �.R

qh
g .Tg// �

c�1e�ˇ.�.h/��.g//�.Tg/, i.e., such that eˇ�.h/�.Th/ � c�1eˇ�.g/�.Tg/. It follows
that

�.Tg/ � e�ˇ�.g/ (10)

for all g.
Let u.x; n/ be as in the proof of Theorem 4.1 (for  D 0). Then for every n we

get a covering of Tx by at most u.x; n/ sets Th such that �.Th/ � e�ˇn, and there is
a constant k > 1 such that we can find at least k�1 � u.x; n/ disjoint subsets Th such
that �.Th/ � e�ˇn. It follows that there exist a constant c0 > 1 such that

c�1
0 u.x; n/e�ˇ�.h/ � �.Tx/ � c0u.x; n/e

�ˇ�.h/:

But �.Tx/ is a constant, and u.x; n/ � eˇ0n, where ˇ0 is entropy of .G; �/. Conse-
quently, ˇ D ˇ0. Theorem 4.11 now finishes the proof.

Proposition 5.4. Let � be a quasi-conformal measure on an open transversal X0 of
a graded minimal hyperbolic groupoid .G; �/. Let j � j be a hyperbolic metric on X0
of exponent ˛. Let ˇ D h.�/. Let X1 � X0 be a compact topological transversal.
Then for all r > 0 small enough and all x 2 X1 we have

�.B.x; r// � rˇ=˛:

Proof. It is enough to prove the proposition for any equivalent groupoid. Conse-
quently, we can use duality, and prove the proposition for the groupoid G> D dGx
instead of G.
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Every ball B.�; r/ � @Gx is contained in the set of points � 2 @Gx such that
`.x; y/ > ln r=˛ � c for some constant c > 0. Recall that `.x; y/ is the minimal
value of � along a geodesic path in a Cayley graph of G connecting � to �. It follows
that the ball B.�; r/ can be covered by a bounded number (not depending on � and r)
of sets of the form Th, such that �.h/

:D � ln r=˛.

On the other hand, moving h along the geodesic converging to � we can find a set
Th � B.�; r/ such that �.h/

:D � ln r=˛.

By (10), �.Th/ � e�ˇ�.h/. We get then the necessary estimates from both sides
to show that �.B.�; r// � eˇ ln r=˛ D rˇ=˛.

Corollary 5.5. Every quasi-conformal measure onG.0/ is equivalent to the Hausdorff
measure of the hyperbolic metric of dimension ˇ=˛, where ˇ D h.�/, and ˛ is the
exponent of the hyperbolic metric. In particular, any two quasi-conformal measures
are equivalent.

5.2. Existence of quasi-conformal measures. We will apply here the standard con-
struction of the Patterson–Sullivan measure on boundaries of hyperbolic graphs (see
for example [4]) to show existence of quasi-conformal measures.

Let .G; �/ be a graded hyperbolic groupoid, and let G.x; S/ be its Cayley graph.
Denote by ˇ D h.�/.

Lemma 5.6. Letf WGXx ! C be a continuous function of compact support. Consider
the series

P .s/ D
X
g2GX

x

f .g/e�s�.g/:

There exists a constant c > 0 such that jP .s/j � c.1 � eˇ�s/�1 for all s > ˇ that
are sufficiently close to ˇ.

Recall, that by Proposition 4.8, the series P .s/ converges for all s > ˇ.

Proof. Let C be the support of f . By Theorem 4.1, there exist positive integers �,
k, and n0 such that

j¹g 2 C \ GxW n �� � �.g/ � nºj � keˇn

for all n � n0. DenoteL.n/ D ¹g 2 C \GxW n�� � �.g/ � nº. Let c1 D sup jf j.
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We have

jP .s/j �
X

g2C\Gx

ce�s�.g/

� c1
X
n<n0

jL.n/je�s.n��/ C c1
X
n�n0

jL.n/je�s.n��/

� c1
X
n<n0

jL.n/je�s.n��/ C c1ke
s�

X
n�0

e.ˇ�s/n

D c1
X
n<n0

jL.n/je�s.n��/ C c1ke
s�.1� eˇ�s/�1:

There exists only a finite number of elements ofC such that �.g/ < n0, consequently
the first summand is continuous for all s, and hence its product with .1� eˇ�s/ goes
to zero as s ! ˇ.

Let measure �s on GXx for s > ˇ be given byZ
f d�s D .1 � eˇ�s/

X
f .g/e�s�.g/: (11)

for all continuous functions f on GXx of compact support.

Proposition 5.7. There exists a sequence sk ! ˇC such that�sk is weakly converg-
ing to a measure�. The limit measure� is supported on @Gx and is quasi-conformal
with respect to .G>; �>/.

Proof. By Uniform Boundedness Principle, the set ¹�sW s > ˇº is bounded in the
space dual to the space of continuous compactly supported functions on GXx . Hence,
by Banach-Alaoglu Theorem, there exists a sequence sk such that sk ! ˇC and �sk
is weakly converging to a measure on GXx .

Since for every g 2 GXx (i.e., for any point g 2 GXx n @Gx) we have

.1 � eˇ�s/e�s�.g/ �! 0

as s ! ˇ, the support of � is contained in @Gx . Suppose that f WGXx ! R is a
continuous non-negative compactly supported function, and let f .�/ > 0 for a point
� 2 @Gx . Then for any positive number p less than f .�/ there exists a compact
neighborhood C0 of � in GXx such that f .x/ > p for all x 2 C0. Let � be as in
Theorem 4.1. Denote byL.n/ the set of elementsg 2 C0 such thatn�� � �.g/ � n.
Then the size of the set L.n/ is bounded below by k0eˇn for some k0 > 0 and for
all n � n1 for some k1. Every point of C0 belongs to at most � C 1 sets L.n/.
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Consequently,Z
f �sz D .1� eˇ�s/

X
f .g/e�s�.g/

� .1� eˇ�s/
X
g2C0

pe�s�.g/

� .1� eˇ�s/k0p.1C�/�1
X
n�n1

enˇe�sn

D .1� eˇ�s/k0p��1e.ˇ�s/n1.1� e.ˇ�s//�1

D k0p�
�1e.ˇ�s/n1 ;

hence
R
f d� > 0, and support of � coincides with @Gx .

Let zRg
h

be partial transformations of GXx defined by (8). The values of �> on

germs of zRg
h

on @Gx differ from �.g/ � �.h/ by a uniformly bounded constant not
depending on g or h see (6).

Taking ı0 in the definition of mapsRg
h

sufficiently small, and using Corollary 3.5,

we get an estimate �. zRg
h
.x//

:D �.g/ � �.h/ for all x 2 Th, whence

e�s�. zRg
h
.x// � e�s�.x/e�s.�.g/��.h// � e�s�.x/e�s�>.�/

for every x 2 Th and for any germ � of Rg
h

on Th. It follows that for every subset
A � Th we have

�s. zRg
h
.A// � e�s�>.�/�s.A/;

where � is any germ of Rg
h

on Th. Consequently, the measure � is .G>; �>/-quasi-
conformal.

6. Continuous cocycles

6.1. General definitions

Definition 6.1. Let G be a topological groupoid. A map �WG ! R is a continuous
cocycle if it is continuous and �.gh/ D �.g/C �.h/ for all .g; h/ 2 G.2/.

An orbispace is an equivalence class of a proper groupoid of germs. A groupoid
G is said to be proper if the map o � tWG ! G.0/ � G.0/ is proper, i.e., if for this
map preimages of compact sets are compact.

Note that if a groupoid of germs G is proper and principal (i.e., if all isotropy
groups Gxx are trivial), then it is equivalent to the trivial groupoid (a groupoid without
non-unit elements) on the space of G-orbits.
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A flow (resp. a Z-action) on an orbispace is an equivalence class (in the sense
of [20]) of a proper groupoid of germs G together with an action Ft of R (resp. of Z)
on G.0/ such that for every g 2 G and every t 2 R (resp. 2 Z) there exists a unique
element gt 2 G such that the germs Ft B g and gt BFt are equal. The corresponding
topological flow is given by the action of R (resp. of Z) on the space of orbits of G.

Proposition 6.1. Every Smale quasi-flow .H; �/with a continuous cocycle � is equiv-
alent to a flow on an orbispace.

Proof. Consider the space H.0/ � R and the action of H on it defined by the rule

.g; t / � h D .gh; t C �.h//:

The obvious action of R on H.0/ � R commutes with the defined action of H. We get
then commuting actions onH.0�R ofH and of the groupoid yH generated by the action
of H and R. It follows from [21], Theorem 4.3.1, and condition (5) of Definition 4.1.1
in [21] that these actions are proper. They are also obviously free. It follows that they
define equivalence between H and bH in the sense of [20].

It also follows from properness of the action of H on H.0/ � R that the groupoid
of this action together with the natural action of R define an orbispace flow.

Definition 6.2. Two continuous cocycles �1 and �2 on G are co-homologous if there
exists a continuous function �WG.0/ ! R such that

�1.g/ � �2.g/ D �.t.g//� �.o.g//

for all g 2 G.

Let �WG ! R be a continuous cocycle, let f WY ! G.0/ be an étale map, and
let Gjf be the corresponding localization. Then the lift �f of � to Gjf is given
by �f .x; g; y/ D �.g/, where .x; g; y/ is a lift of g. It is easy to see that �f is a
continuous and well defined cocycle.

Recall that two groupoids are equivalent if and only if they have isomorphic
localization (see a remark just after Definition 2.1).

Definition 6.3. We say that two continuous cocycles �1WG1 ! R and �2WG2 ! R
defined on equivalent groupoids are continuously equivalent if there exists a common
localization of G1 and G2 such that the lifts of �1 and �2 to it are cohomologous.

It is not hard to see that two continuously equivalent graded groupoids define
topologically conjugate flows. Choice of a particular graded groupoid in a continuous
equivalence class correspond in some sense to the choice of a “generalized transversal”
of the flow.
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6.2. Hölder continuous cocycles

Definition 6.4. Let G be a groupoid of germs preserving Lipschitz class of a metric
j � j on G.0/. We say that a cocycle �WG ! R is Hölder continuous if there exists
p > 0 such that for every g 2 G there exists a neighborhood U 2 zG of g such that
�.U; x/ is p-Hölder continuous with respect to j � j as a function of x.

Proposition 6.2. LetH be a Smale quasi-flow and let WH ! R be a Hölder continu-
ous cocycle (with respect to a metric satisfying the conditions of Definition 2.10). Then
there exists an equivalent groupoid H0 and a Hölder continuous cocycle  0WH0 ! R
continuously equivalent to  , and a unique, up to cohomology, Hölder continuous
cocycle  CW PC.H/ ! R such that  C.PC.g// D  0.g/ for all g 2 H0.

Proof. Possibly passing to a localization, we assume that there exist sets X;X1; S; �
satisfying the conditions of Proposition 2.4. We will prove our proposition for re-
striction of the groupoid onto X .

Choose a pointxB 2 BB for every rectangleA�B . For a pointy 2 AB�BB choose
a sequence F1; F2; : : : of elements of ��1 such that P�.t.Fn// � P�.o.FnC1// and
y 2 o.Fn � � �F1/ for all n. Let y0 D Œy; xB 
. Then ¹y; y0º � o.Fn � � �F1/ for all n
and jFn � � �F1.y/ � Fn � � �F1.y0/j � �njy � y0j for some � 2 .0; 1/. Define then

�.y/ D lim
n!1 .Fn � � �F1; y/ �  .Fn � � �F1; y0/

D
1X
nD1

. .Fn; Fn�1 � � �F1.y// �  .Fn; Fn�1 � � �F1.y0///:

Note that j .Fn; Fn�1 � � �F1.y// �  .Fn; Fn�1 � � �F1.y0//j � c�pnjy � y0jp for
some c; p > 0, by the Hölder continuity of  . It follows that the limit exists.

Let y1; y2 2 AB � BB such that PC.y1/ D PC.y2/. Then

�.y1/ � �.y2/ D
1X
nD1

. .Fn; Fn�1 � � �F1.y1// �  .Fn; Fn�1 � � �F1.y2///I

and since j .Fn; Fn�1 � � �F1.y1//� .Fn; Fn�1 � � �F1.y2//j � c�pnjy � y0jp , the
function � is p-Hölder continuous on each slice P�1C .x/.

Let us show that � does not depend on the choice of the sequence Fi . Let F 0
i 2 �

be another sequence. Then there exist strictly increasing sequences ni andmi , a finite
set A of relatively compact elements of zH, and a sequence Ui 2 A such that

.UiFni
� � �F1; y/ D .F 0

mi
� � �F 0

1; y/;

and

.UiFni
� � �F1; y0/ D .F 0

mi
� � �F 0

1; y
0/

for all i .
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Then

 .F 0
mi

� � �F 0
1; y/ �  .F 0

mi
� � �F 0

1; y
0/

D  .UiFni
� � �F1; y/ �  .UiFni

� � �F1; y0/

D  .Ui ; Fni
� � �F1.y// �  .Ui ; Fni

� � �F1.y0//
C  .Fni

� � �F1; y/ �  .Fni
� � �F1; y0/

Since
jFni

� � �F1.y/ � Fni
� � �F1.y0/j � �ni jy � y0j;

the difference  .UiFni
� � �F1; y/� .UiFni

� � �F1; y0/ goes to zero by Hölder con-
tinuity of  . Consequently, the limit �.y/ defined in terms of Fi is the same as the
one defined in terms of F 0

i .

Lemma 6.3. Define 0.g/ D  .g/��.o.g//C�.t.g//. Then for any twog1; g2 2 H
such that PC.g1/ D PC.g2/ we have  0.g1/ D  0.g2/.

Proof. Consider two sequencesF1; F2; : : : andG1; G2; : : : of elements of � such that
P�.t.Fn// � P�.o.FnC1//, P�.t.Gn// � P�.o.GnC1//; and o.g1/; o.g2/ 2 o.F1/,
t.g1/; t.g2/ 2 o.G1/. Let A be as above. Then there exist increasing sequences
ni and mi , a sequence Ui 2 A and � > 0 such that Gni

� � �G1g1.Fmi
� � �F1/�1 is

�-contained in Ui . It follows that for all i big enough we have

Fmi
� � �F1.o.g2// 2 o.Ui /:

Then PC.Ui ; Fmi
� � �F1.o.g2/// D PC.Gni

� � �G1g1.Fmi
� � �F1/�1/, asUi is a rect-

angle. But PC.Gni
� � �G1g2.Fmi

� � �F1/�1/ D PC.Gni
� � �G1g2.Fmi

� � �F1/�1/.
By local diagonality of H, if two elements of H have the same source and equal
projections, then they are equal (we assume that the rectangles AB � BB are small
enough). Consequently, Gni

� � �G1g2.Fmi
� � �F1/�1 2 Ui . It follows then that

 .Gni
� � �G1g1.Fmi

� � �F1/�1/ �  .Gni
� � �G1g2.Fmi

� � �F1/�1/ ! 0 as i ! 1.
We have

 0.g1/ �  0.g2/

D  .g1/ �  .g2/ � �.o.g1//C �.o.g2//C �.t.g1// � �.t.g2//

D  .g1/ �  .g2/C lim
i!1 .Fmi

� � �F1; o.g2// �  .Fmi
� � �F1; o.g1//

C lim
i!1 .Gni

� � �G1; t.g1// �  .Gni
� � �G1; t.g2//

D lim
i!1 .Gni

� � �G1g1.Fmi
� � �F1/�1/ �  .Gni

� � �G1g2.Fmi
� � �F1/�1/

D 0:
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Let us show that � is Hölder continuous, which will imply Hölder continuity
of  0. Let � be a Lebesgue’s number of the covering � of S . Suppose that F is
ƒ-Lipschitz for every F 2 � . If jy1 � y2j < �ƒ�k , then there exists a sequence
F1; F2; : : : ; Fk 2 ��1 such that P�.t.Fn// � P�.o.FnC1// for all 1 � n � k � 1,
and y1; y2 2 o.Fk � � �F1/.

Continuing the sequence F1; : : : ; Fk to two sequences Fi and F 0
i for y1 and y2,

respectively, and repeating the estimates in the proof of uniqueness of �, we get an
estimate j�.y1/ � �.y2/j < C�k , which implies that � is Hölder continuous.

It remains to show that 0 can be projected onto the groupoid PC .H/, i.e., that there
exists a Hölder continuous cocycle  CW PC.H/ ! R such that  C.PC.g// D  0.g/
for every g 2 H.

Every element of PC.H/ is equal to a product PC.s1/ � � � PC.sn/ where si 2
� [ ��1. Let us define

 C.PC.s1/ � � � PC.sn// D  0.s1/C � � � C  0.sn/:

We have to show that C is well defined. It is enough to show that if PC.s1/ � � � PC.sn/
is a unit, then  0.s1/C � � � C  0.sn/ D 0.

By [21], Lemma 4.4.2, there exist sequences gi ; hi ; ri ; r 0
i 2 H such that si D

g�1
i�1rigi , PC.ri / D PC.r 0

i /, and r 0
1 � � � r 0

ngn is composable. Then

PC.s1/ � � � PC.sn/ D PC.g�1
0 /PC.r 0

1 � � � r 0
ngn/;

and since this product is a unit, we have PC.g0/ D PC.r 0
1 � � � r 0

ngn/, hence  0.g0/ D
 0.r 0

1 � � � r 0
ngn/.

But then
P
 0.si / D P

 0.g�1
i�1rigi / D  0.g�1

0 / C  0.gn/ C P
 0.ri/ D

 0.g�1
0 /C  0.gn/C P

 0.r 0
i / D  0.g�1

0 /C  0.r 0
1 � � � r 0

ngn/ D 0.
Hölder continuity of  C follows from Hölder continuity of  0 and the fact that

every element of PC.H/ is a product PC.g/PC.h/ for g; h 2 H. Uniqueness of  C
is straightforward.

If  CW PC.H/ ! R satisfies the conditions of the last proposition for a cocycle
 WH ! R, then we say that  C is a projection of  .

Note that if  WG ! R is an arbitrary Hölder continuous cocycle on a hyperbolic
groupoid, then its lift Q .�; g/ D  .g/ to the geodesic flow @GÌG is Hölder continu-
ous and D Q C is projection of Q . According to Proposition 6.2 there is a projection
 >WG> ! R of � Q onto P�.@GÌ G/. We call  > D PC.� Q / D P�. Q / the dual
cocycle for the cocycle  . The dual cocycle is Hölder continuous and is uniquely
defined up to continuous equivalence.

In particular, we have the following corollary of Proposition 6.2.

Corollary 6.4. Every Hölder continuous cocycle on a hyperbolic groupoid is dual-
izable.

We have the following explicit description of the dual cocycle  >W dGx ! R.
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Proposition 6.5. Let G be a minimal hyperbolic groupoid, and let  WG ! R be a
Hölder continuous cocycle.

Define a map WTg ! R by

.f / D  .Rhg.f // �  .f /:
Then .f / converges uniformly to  >.Rhg ; �/ as f ! �.

Proof. Let � 2 @Gx be equal to : : : g2g1 �g for gi 2 S . Let Ui 2 � be such that gi is
�-contained in Ui . It follows from the proof of Proposition 6.2 that cocycle is given
by

 >.Rhg ; �/ D lim
n!1 .Un � � �U1h/ �  .Un � � �U1g/:

Note that Rhg.Un � � �U1g/ D Un � � �U1h, so we have

 >.Rhg ; �/ D lim
n!1 .Rhg.Un � � �U1g/ �  .Un � � �U1g//:

Let A � GjX be as in Proposition 2.3. Then for every n there exists a 2 A such
that xTagn ���g1g is a neighborhood of �. Since � is an internal point of Tg , for all n big
enough we have xTagn���g1g � xTg . Let A be a finite covering of A by bi-Lipschitz
elements of zG. Let � D : : : h2h1agn � � �g1g 2 xTagn ���g1g (where the sequence hi is
finite or infinite), and suppose that U 2 A and Vi 2 � are such that a and hi are
�-contained in U and Vi . Then, by Lemma 2.5, we have

Rhg.�/ D : : : V2V1UUn � � �U1h:
Since  is Hölder, we may assume that � is such that there exist constants c1

and p such that j .Vi ; x/� .Vi ; y/j � c1jx�yjp for all Vi 2 � , and x; y 2 o.Vi /.
Since Vi and Ui are contracting, and the elements of A are bi-Lipschitz, there

exist c > 1 and � 2 .0; 1/ such thatˇ̌
 .Un � � �U1h/ �  .Un � � �U1g/

� . .Vm � � �V1UUn � � �U1h/ �  .Vm � � �V1UUn � � �U1g//
ˇ̌

D j .Vm � � �V1U; t.Un � � �U1h// �  .Vm � � �V1U; t.Un � � �U1g//j

�
mX
iD1

j .Vi ; t.Vi�1 � � �V1UUn � � �U1h// �  .Vi ; t.Vi�1 � � �V1UUn � � �U1g//j

�
mX
iD1

c�nCi jt.h/ � t.g/j

� cjt.h/� t.g/j
1� � �n:

It follows that  .Rhg.f //� .f / uniformly converges to  >.Rhg ; �/ when f ! �.
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Example 6.1. Dual cocycle to the cocycle �.F; z/ D � ln jF 0.z/j, where F belongs
to the pseudogroup generated by a complex rational function, was studied in [14],
Section 3.4.

6.3. Conformal measures. We say that a Busemann cocycle � on a hyperbolic
groupoid G is Hölder continuous if it is Hölder continuous with respect to a hyper-
bolic metric on G.0/ defined by �. Note that this definition does not depend on a
particular choice of the metric, since all hyperbolic metrics associated with � are
Hölder equivalent to each other.

Definition 6.5. Let �WG ! R be a Hölder continuous Busemann cocycle on a
hyperbolic groupoid. A Radon measure � on G.0/ is �-conformal if

�.g/ D e�ˇ�.g/

for every g 2 G, where ˇ D h.�/.

Proposition 6.6. Suppose that �1WG1 ! R and �2WG2 ! R are continuously
equivalent continuous cocycles. If there exists a �1-conformal measure on G

.0/
1 , then

there exists a �2-conformal measure on G
.0/
2 .

Proof. Suppose that the Radon–Nicodim derivative of � is e�ˇ� and let �1 be coho-
mologous to �. If ' is the corresponding function such that

�1.g/ D �.g/C '.t.g//� '.o.g//;

then the measure �1 given by e'.x/ d�.x/ satisfies �1
.g/ D e�ˇ�1.g/.

It remains to prove that a �-conformal measure on a hyperbolic groupoid .G; �/
exists if and only if it exists for its localization.

Let X0 � G.0/ be an open subset, and let �0 be a �-conformal measure on X0.
Repeating the proof of Proposition 5.1 for the case of a conformal measure, we note
that we get strict equalities everywhere instead of estimates. Consequently, conformal
measures on open subsets are uniquely extended to conformal measures on the whole
unit space. In the other direction, a conformal measure on G.0/ restricted to an open
subset X0 is conformal with respect to the restriction of the groupoid. This implies
immediately that a localization of G has a conformal measure if and only if G has a
conformal measure.

Theorem 6.7. Let .G; �/ be a minimal hyperbolic groupoid graded by a Hölder
continuous Busemann cocycle. Then there exists a unique, up to a multiplicative
constant, �-conformal measure on G.0/.
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Proof. As usual, we will prove the theorem for the groupoid .G>; �>/, and then use
duality. Let X � G.0/ be a compact topological transversal, and let �WG.0/ ! R be
a non-negative continuous function with non-empty compact support that is a subset
of X . Let ˇ D h.G; �/. Define for s > ˇ a measure �s on Gx by the equalityZ

f d�s D .1 � eˇ�s/
X
g2Gx

f .g/�.t.g//e�s�.g/: (12)

Note that support of �s is a subset of GXx , since �.t.g// D 0 for g … GXx .
The same arguments as in Proposition 5.7 show that there exists a sequence

sk ! ˇC such that �sk weakly converge to a measure � supported on @Gx .
Let us show that � is �>-conformal. Let S and � satisfy the conditions of

Proposition 2.2. Consider a germ .R
g

h
; �/ of the transformationRg

h
W xTh ! Gx[@Gx ,

where � is an internal point of Th, and g; h 2 Gx are such that t.g/ and t.h/ are
sufficiently close to each other.

Recall that � is uniformly continuous on G.0/, f is continuous on GXx , and there
exist c > 0 and � 2 .0; 1/ such that jt.Rg

h
.r// � t.r/j < c��.r/ for all r 2 Th. Let

C � GXx be a compact neighborhood of �, and denote C0 D C \ Gx . We haveZ
R

g
h
.C/

f .r/ d�s.r/Z
C

f .R
g

h
.r// d�s.r/

D

X
s2C0

f .R
g

h
.r//�.t.Rg

h
.r///e�s�.Rg

h
.r//

X
s2C0

f .R
g

h
.r//�.t.r//e�s�.r/ :

As we make the neighborhood C converge to �, the difference j�.t.Rg
h
.r//��.t.r//j

uniformly converges to 0, while the difference �.Rg
h
.r// � �.r/ uniformly con-

verges to �>.Rg
h
; �/, by Proposition 6.5. The functions � and f are bounded, the

series
P
r2C e�s�.r/ converges and has an upper bound not depending on C (see

Lemma 5.6). Consequently,Z
R

g
h
.C/

f .r/ d�s.r/Z
C

f .R
g

h
.r// d�s.r/

�! e�s�>.R
g
h
;�/

as C converges to �. It follows that � is �>-conformal.
It remains to prove uniqueness of a conformal measure. It is enough to prove

uniqueness of a conformal measure on @Gx for some x 2 G.0/. Assume that S
satisfies the conditions of Proposition 4.2. Let j���j be a metric on @Gx of exponent
˛ associated with the cocycle �. We will denote by B.�; r/ the ball of radius r with
center in � in @Gx .

Fix a number ı0 that is small enough to satisfy the conditions of Lemma 2.5.
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By Lemma 4.5, there exists a constantN > 0 such that for everyh1 ; h2 2 Gx there
is a transformation of the formR

gh2

h1
such thatRgh2

h1
.Th1

/ � Th2
, 0 < �.g/ < N , and

jt.gh2/ � t.h1/j < ı0. For every �1 2 @Gx there exists g1 such that B.�1; 1/ � Tg1
.

(The proof is similar to the proof of [21], Proposition 3.4.4; see also Proposition 2.3
of our paper.)

It follows now from Propositions 4.2 that for all r1; r2 > 0 and �1; �2 2 @Gx there
exists a map of the form R

g2
g1

such that Rg2
g1
.B.�1; r1// � B.�2; r2/, �.g2/ � �.g1/

differs from � ln r2�ln r1
˛

by a uniformly bounded constant, and jt.g1/ � t.g2/j < ı0.
Fix r1 2 .0; 1/, �1 2 @Gx , and choose for every r2 2 .0; 1/ and �2 2 @Gx a

transformation Rg2
g1

, and denote V�2;r2 D ¹�2º [ R
g2
g1
.B.�1; r1//. Let V�1;r1 be the

set of all sets of the form V�;r for � 2 @Gx and r 2 .0; 1/. Then V�1;r1 is a covering
of @Gx by closed sets.

It follows from Proposition 6.5 and the fact that elements of � are �-contractions
for some fixed �, that there exists a constant L depending only on � such that for any
germ .R

g2
g1
; �/ we have

j�>.Rg2
g1
; �/ � .�.g2/ � �.g1//j < Ljt.g1/ � t.g2/j � Lı0:

By conformality of �1 and �2 we get

�1.V�;r/

�2.V�;r/
D

Z
V�;r

e�ˇ�>.R
g2
g1
;�/ d�1.�/Z

V�;r

e�ˇ�>.R
g2
g1
;�/ d�2.�/

� e�ˇ.�.g2/��.g1//eLˇı0 � �1.B.�1; r1//
e�ˇ.�.g2/��.g1//e�Lˇı0 � �2.B.�1; r1//

D e2Lˇı0
�1.B.�1; r1//

�2.B.�1; r1//
:

We also conclude that there exist positive constants c1; c2 such that

c1e
�ˇ.�.g2/��.g1// � �i .R

g2
g1
.Tg1

// � c2e
�ˇ.�.g2/��.g1//;

for all transformations Rg2
g1

and for all i D 1; 2. It follows, by Proposition 5.4, that
there exist constants c3; c4 such that

c3e
ˇ ln r=˛ D c3r

ˇ=˛ � �i .V�;r/ � c4e
ˇ ln r=˛ D c4r

ˇ=˛:

We will use a version of Vitali’s covering theorem given in [6], Theorem 2.8.7.
Fix a constant � > 1 and denote for a set V�;r 2 V�1;r1 by bV �;r the union of all the
set of the form V�;s 2 V�1;r1 such that V�;s \ V�;r is non-empty, and s � � r . Then
yV�;r � B.�; rC 2� r/, since diameter of V�;s is not greater than 2s � 2� r . It follows
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then from Proposition 5.4 that there exists a constant c5 > 0 such that

�i . yV�;r/ < c5.1C 2�/ˇ=˛rˇ=˛ � c5.1C 2�/ˇ=˛

c3
�i .V�;r/:

Consequently, the conditions of [6], Theorem 2.8.7, are satisfied for the covering
V�1;r1 of @Gx . Consequently, for any open subset W � @Gx there exists a set W of
pairwise disjoint elements of V�1;r1 such that

S
W � W and �i .W n S

W/ D 0.
It follows from Proposition 5.4 that �i are doubling measures (see [12], Sec-

tion 1.4), hence they satisfy Lebesgue’s differentiation theorem [12], Theorem 1.8:

lim
r!0

1

�i .B.�; r//

Z
B.�;r/

f d�i D f .�/ (13)

for almost all � and for all locally integrable functions f .
The measures �1; �2 are mutually absolutely continuous by Corollary 5.5. The

Radon–Nicodim derivative d�1=d�2 is constant on @G>-orbits, by conformality.
Suppose that d�1=d�2 is not constant on @Gx . Then there exist m1 < m2 and sets
of non-zero measure A1; A2 � @Gx such that d�1=d�2 is less than m1 on A1 and
bigger than m2 on A2. There exists �1 2 A1 such that

lim
r!0

�1.B.�1; r//

�2.B.�1; r//
D lim
r!0

1

�2.B.�1; r//

Z
B.�1;r/

d�1

d�2
d�2

D d�1

d�2
.�1/

< m1:

It follows for every � > 0 there exists r1 such that �1.B.�1;r//
�2.B.�1;r//

is less than m1 C �

for all r � r1. Consider then the covering V�1;r1 . For every V 2 V�1;r1 we have
�1.V /
�2.V /

< e2Lı0.m1 C �/. Since every open subset of @Gx can be represented as
a countable union of disjoint elements of V�1;r1 and a zero-set, for every open set

W � @Gx we have �1.W /
�2.W /

� e2Lı0.m1 C �/. But � and ı0 can be made arbitrarily

small. Consequently, �1.W /
�2.W /

� m1 for all open setsW , which is a contradiction with

the inequalities limr!0
�1.B.�2;r//
�2.B.�2;r//

> m2 > m1.

Example 6.2. Consider the map f W R=Z ! R=Z given by f .x/ D 2x .mod 1/.
It is expanding, hence the groupoid F generated by germs of f is hyperbolic. Its
Cayley graphs are regular trees of degree 3 (see Example 2.3). The usual Busemann
cocycle � on the tree is defined by the condition �.f; x/ D �1 for every x 2 R=Z.
The Lebesgue measure on R=Z is conformal, since �.f; x/ D 2 D e��.f;x/ ln 2, so
that �.g/ D e��.g/ ln 2 for every g 2 F.
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Example 6.3. Let f .z/ 2 C.z/ be a hyperbolic rational function, i.e., a complex
rational function expanding on a neighborhood of its Julia set Jf . Then f W Jf ! Jf
is a local homeomorphism, and the pseudogroup QF generated by it is hyperbolic. We
have seen (in Section 3) that a Busemann cocycle �WF ! Z is given by the formula

�..f n; x/�1 � .f m; y// D n �m:

Note that � is locally constant, hence Hölder continuous.
The conformal measure associated with � is the weak limit of uniform distributions

�n on the sets f �n.z0/ for any fixed z0 2 Jf . It is also the measure of maximal
entropy of the dynamical system .f; Jf /, and is known (in the general setting of not
necessarily hyperbolic functions) as Brolin–Lyubich measure [15].

The inverse limit � of the constant sequence of maps f W Jf ! Jf together with
the homeomorphism on it induced by f is a Smale space called the natural extension
of f . The groupoid F is projection of this Smale space onto the unstable direction of
the natural local product structure. The properties of the natural extensions (also in
general, not only in the hyperbolic case), including their measure theory were studied
in [16] and [14].

The cocycle

�1.F; z/ D � ln jF 0.z/j
is another natural Busemann cocycle on F. Restriction onto Jf of the usual metric on
C is a hyperbolic metric of exponent 1 associated with �1, by Proposition 3.7. Note
that �1 is smooth, hence Hölder continuous. Measures conformal with respect to the
cocycle �1 were defined for any complex rational function by D. Sullivan in [29].
It would be interesting to extend theory of hyperbolic groupoids to a more general
setting, so that it will include all rational functions acting on the Julia set and all
Kleinian groups acting on the limit set, see [27] (and not only geometrically finite
groups without parabolic elements, as it is now).

The �1-conformal measure is, by Corollary 5.5, equivalent to the Hausdorff mea-
sure on the Julia set. In particular, the Hausdorff dimension of the Julia set is equal
to the critical exponent of the series

X
n�0

X
z2f �n.z0/

e�s ln j.f Bn/0.z/j D
X
n�0

X
z2f �n.z0/

j.f Bn/0.z/j�s :

These results (existence of the conformal measure and the formula for the Hausdorff
dimension) are partial cases of [18], Theorem 1.2, due to C. McMullen.

6.4. Invariant measure on the flow. Let .G; �/ be a hyperbolic groupoid with
a Hölder continuous Busemann cocycle. Suppose that G.0/ is a disjoint union of
rectangles.
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Let �i for i D C;� be cocycles cohomologous to � such that Pi .�i / are well
defined on Pi .G/. Let �i WG.0/ ! R be such that

�.g/ � �i .g/ D �i .t.g//� �i .o.g//
and

�i .g/ D �.g/ � �i .t.g//C �i .o.g//:

Consider then on each rectangle the direct product �C � �� of the conformal
measures defined by projections of �i and ��i onto the corresponding directions.
We have

�C���
.g/

D exp.�ˇ�C.g/C ˇ��.g//

D exp.�ˇ.�.g/ � �C.t.g//C �C.o.g// � �.g/C ��.t.g// � ��.o.g////

D exp.�ˇ..��.t.g//� �C.t.g/// � .��.o.g// � �C.t.g/////:

It follows that the measure � on G.0/ given byZ
f .x/ d�.x/ D

Z
f .x/e�ˇ.	�.x/�	C.x// d�C � ��.x/

is invariant with respect to G.
We can extend this invariant measure to any groupoid equivalent to G, using the

same methods as in Propositions 5.1 and 6.6.

Example 6.4. In the case when the cocycle �WG ! R has values in Z, the Smale
quasi-flow G is equivalent to a Smale (orbi)space. The corresponding invariant
measure is the classical Bowen measure, see [1] and [26], which is usually constructed
using Markov partitions.

Example 6.5. In general, for a continuous cocycle �WG ! R on a Smale quasi-flow,
the groupoid G is equivalent to a Smale flow on an orbispace (see Proposition 6.1) and
the constructed measure is a direct generalization of the Bowen–Margulis measure for
Anosov flows, constructed in [17] and [2]. This follows from the scaling properties
of the corresponding measures on the stable and unstable foliations, invariance under
holonomies (i.e., definition of a �-conformal measure), and the uniqueness statement
of Theorem 6.7. See also [3].

Example 6.6. Note that the geodesic flow on a negatively curved compact manifold
M is equivalent (as a topological groupoid) to the action of the fundamental group
�1.M/ on the square @ zM � @ zM of the ideal boundary of the universal covering of
M , minus the diagonal. It follows that the groupoid generated by the geodesic flow is
equivalent to the geodesic flow @GÌG of the hyperbolic groupoid G of the action of



930 V. Nekrashevych

the fundamental group �1.M/ on its Gromov boundary (equivalently, on @ zM). We
obtain in this way the well known fact that the Bowen–Margulis measure associated
with a geodesic flow on a negatively curved compact manifold M can be obtained
from the Patterson–Sullivan measure on @ zM . See the paper of D. Sullivan [28], for the
constant curvature case, and the paper of V. Kaimanovich [13] for the general case.
Note that it is also shown in the latter paper that the Patterson–Sullivan measures
are Hausdorff measures of naturally defined metrics. The paper [13] also considers
measures and metrics arising from different choices of the cocycle.

For more on relations between hyperbolic geometry, Busemann cocycles, and
conformal measures, see the monograph [14]. In particular, it studies conformal
measures on the groupoid F generated by a complex rational function and on its
dual F>.
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