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Abstract. For a finitely generated group G the Nielsen graph Nn.G/, n � rank.G/, describes
the action of the group Aut Fn of automorphisms of the free group Fn on generating n-tuples
of G by elementary Nielsen moves. The question of (non)amenability of Nielsen graphs is of
particular interest in relation with the open question about Property .T / for Aut Fn, n � 4.
We prove nonamenability of Nielsen graphs Nn.G/ for all n � max¹2; rank.G/º when G

is indicable, and for n big enough when G is elementary amenable. We give an explicit
description of Nd .G/ for relatively free (in some variety) groups of rank d and discuss their
connectedness and nonamenability. Examples considered include free polynilpotent groups
and free Burnside groups.
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1. Introduction

Let G be a finitely generated group. The following transformations of the set Gn,
n � 1, were introduced by J. Nielsen in [33] and are known as elementary Nielsen
moves:

Ri̇j .g1; : : : ; gi ; : : : ; gj ; : : : ; gn/ D .g1; : : : ; gig
˙1
j ; : : : ; gj ; : : : ; gn/;

Li̇j .g1; : : : ; gi ; : : : ; gj ; : : : ; gn/ D .g1; : : : ; g˙1
j gi ; : : : ; gj ; : : : ; gn/;

Ij .g1; : : : ; gj ; : : : ; gn/ D .g1; : : : ; g�1
j ; : : : ; gn/;

1This research was partly funded by the Swiss National Science Foundation, grant 200021_144323.
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where 1 � i; j � n, i ¤ j . These transformations can be seen as elements of Aut Fn,
hence they transform generating sets of G into generating sets. Moreover Nielsen
proved that they generate Aut Fn (see e.g. [25], Chapter I, Proposition 4.1). Two
generating sets U and V are called Nielsen equivalent (U � V ) if one is obtained
from the other by a finite chain of elementary Nielsen moves.

The rank rank.G/ of a group G is the minimal number of generators of G. We de-
fine the Nielsen graph (also called the extended product replacement graph) Nn.G/,
n � rank.G/, as follows:

� the set of vertices consists of generating n-tuples in G,

V.Nn.G// D ¹.g1; : : : ; gn/ 2 Gn j hg1; : : : ; gni D GºI
� for every generating n-tuple .g1; : : : ; gn/ and for every .i; j /, 1 � i; j � n,

i ¤ j , there is an edge corresponding to each of the elementary Nielsen moves
Ri̇j .g1; : : : ; gn/, Li̇j .g1; : : : ; gn/, Ij .g1; : : : ; gn/.

The set Gn of n-tuples in G can be identified with the set of homomorphisms from
the free group Fn to G, and the set of generating n-tuples is then identified with the set
of epimorphisms Epi.Fn; G/. Hence there are natural actions of the automorphism
group Aut Fn on both Gn and Epi.Fn; G/, by precomposition. Observe that the graph
Nn.G/ is connected if and only if the action of Aut Fn on Epi.Fn; G/ is transitive.

Recall that, for a given group G generated by a finite set S , and a set M with a
transitive action of G on M , one can define the Schreier graph Sch.G; M; S/: the
vertex set of the graph is M , and there is an edge connecting m1 to m2 for each
s 2 S [ S�1 that maps m1 to m2. Hence, if the action of Aut Fn on Epi.Fn; G/ is
transitive, then Nn.G/ is precisely the Schreier graph of Aut Fn acting on Epi.Fn; G/

with respect to the elementary Nielsen moves. The set Epi.Fn; G/ can also be un-
derstood as the set of left cosets of the subgroup StAut Fn

.g1; : : : ; gn/ for some (any)
generating n-tuple .g1; : : : ; gn/ 2 Gn, and Nn.G/ is thus the Schreier graph with
respect to this subgroup in Aut Fn. More generally, if the action is not necessarily
transitive, every connected component of Nn.G/ is the Schreier graph of Aut Fn with
respect to the corresponding subgroup StAut Fn

.g1; : : : ; gn/, where the generating n-
tuple .g1; : : : ; gn/ belongs to the considered connected component. As any Schreier
graph, Nn.G/ comes with an orientation and a labeling of edges by elements of the
generating set. The set of elementary Nielsen moves being symmetric, orientation
can be disregarded in this case.

The question of (non)amenability of infinite Nielsen graphs is of particular interest
in relation with the open problem about Property .T / for Aut Fn, n � 4; see [23] (the
answer is negative for n � 3; see [20]). Namely, if a group G has Property .T / then G

does not admit any faithful amenable transitive action on an infinite countable set X ,
in other words, every infinite Schreier graph of G is nonamenable. This follows from
the well known amenability criterion in terms of existence of almost invariant vectors
for the action of G on l2.X/; see Chapter G in [7] for a proof in the case X D G.
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Connectedness of Nielsen graphs has been studied in different contexts, for finite
and infinite groups, see [14], [22], [30], [35], and references therein. Even such basic
questions about structure and geometry of Nielsen graphs as the number of connected
components of Nn.G/, whether these connected components are all isomorphic,
whether they are all infinite, and so on, remain widely open.

A locally finite connected graph X of uniformly bounded degree is amenable if
either X is finite or

h.X/ WD inf
S�V.X/

j@X .S/j
jS j D 0;

where the infimum is taken over all finite nonempty subsets S of the set of vertices
V.X/ and @X.S/ is the set of all edges connecting S to its complement. The number
h.X/ � 0 is called the isoperimetric constant (or the Cheeger constant) of X . A graph
with several connected components is amenable if at least one of the connected
components is amenable.

We will also the following characterisation of amenable graphs (see [40], §10.3,
for a proof of this extension of Kesten’s amenability criterion for finitely generated
groups to all connected regular graphs). A connected m-regular graph X is amenable
if and only if �.X/ D 1, where �.X/ D 1=m lim supk!1 a

1=k

k
� 1 is the spectral

radius of X , with ak.x/ denoting the number of closed paths of length k in X , based
at some (any) vertex of X .

In this paper, we study connectedness and nonamenability of Nielsen graphs for
certain families of groups. In Section 2 we discuss in detail the structure of Nielsen
graphs Nn.Z/, n � 1, which allows us to deduce nonamenability of all Nielsen
graphs Nn.G/, n � max¹2; rank.G/º, for finitely generated groups G that admit an
epimorphism onto Z (such groups are called indicable).

Theorem 1.1. Let G be a finitely generated indicable group. Then all Nielsen graphs
Nn.G/, n � max¹2; rank.G/º, are nonamenable.

In Section 3 we discuss nonamenability of Nielsen graphs for infinite finitely
generated elementary amenable groups. In particular we describe in detail the struc-
ture of all Nielsen graphs of the infinite dihedral group. We also show the following
theorem.

Theorem 1.2. Let G be an infinite finitely generated elementary amenable group.
Then G admits an epimorphism onto a group H that contains a normal subgroup
isomorphic to Zd , d � 1, of finite index i � 1. All Nielsen graphs Nn.G/ are
nonamenable for n � rank.G/ C log2 i C 1.

Related results in this direction appear also in a recent preprint [27] by Malyshev.

In Section 4 we consider Nielsen graphs of relatively free groups. A group is
called relatively free if it is free in a variety of groups (see Section 4 for a more
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detailed definition). For a relatively free group G of rank d we describe explicitly the
Nielsen graph Nd .G/ (Theorem 4.2). In particular, we show that every connected
component of that Nielsen graph is isomorphic to the Cayley graph of the subgroup
T .G/ � Aut G of tame automorphisms of G. (An automorphism of a relatively
free group G of rank d is tame if it lies in the image of the natural homomorphism
Aut Fd ! Aut G – see Section 4 for for more details.) This implies in particular
that all connected components of the Nielsen graph Nd .G/ are isomorphic. Their
number is equal to the index of the subgroup T .G/ in Aut G. We deduce the following
criteria.

Corollary 1.3. Let G be a relatively free group of rank d . Then

(1) the Nielsen graph Nd .G/ is connected if and only if all automorphisms of G are
tame;

(2) Nd .G/ is nonamenable if and only if the group T .G/ of tame automorphisms of
G is nonamenable.

We then use these criteria to examine Nielsen graphs of various classes of relatively
free groups, in Section 5. We first consider free polynilpotent groups. All such
groups are indicable, so their Nielsen graphs are nonamenable by Theorem 1.1. The
question about connectedness of Nielsen graphs is more complicated in this class and
we examine it case by case.

We then turn our attention to free Burnside groups. Recall that the free Burnside
group B.d; m/ of rank d and exponent m is the group on d generators satisfying the
law xm D 1. These groups are torsion and thus cannot be indicable. By a famous
result of Novikov and Adyan [34] we know that for any d � 2 and m odd and
large enough these groups are infinite. Adyan further showed in [1] that B.d; m/ are
nonamenable for any d � 2 and odd m � 665. Hence, our Theorems 1.1 and 1.2 are
not applicable in this case. Nonamenability of Nn.B.d; m// for all n � d � 3 and m

odd and large enough is proven by Malyshev [27] using uniform nonamenability of
B.d; m/. Using the work of Coulon [12] on automorphisms of free Burnside groups,
as well as some results of Moriah and Shpilrain [29] we deduce from Corollary 1.3
the following result.

Corollary 1.4. Let B.d; m/ denote the free Burnside group on d generators of expo-
nent m. If d � 2 and m > 2d then the Nielsen graph Nd .B.d; m// is not connected.
For d � 3 and m odd and large enough all connected components of Nd .B.d; m//

are isomorphic and nonamenable.

Acknowledgements. The authors would like to thank Pierre de la Harpe and Ros-
tislav Grigorchuk for valuable remarks on the first version of the paper, Christian
Hagendorf for the Mathematica implementation of the graph generating code, Anton
Malyshev for pointing out a missing case in Theorem 3.4 in the first version of the
paper, and the anonymous referee for the careful reading of the paper.
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2. Nonamenability of Nielsen graphs of finitely generated indicable groups

The proofs of Theorem 1.1 and Theorem 1.2 are based on an analysis of Nielsen
graphs Nn.Z/, n � 1 (see Proposition 2.4). A description of the graph N2.Z/

appears as Example 1.3 in [28]. We begin with a few lemmas about nonamenability
of subgraphs and graph coverings that will be used to deduce Theorems 1.1 and 1.2.

Lemma 2.1. Let X be an infinite connected graph with uniformly bounded degree.
Let X 0 be a subgraph of X and suppose that there exists D � 0 such that for any
vertex x 2 V.X/ there exists a vertex x0 2 V.X 0/ at distance at most D. If X 0 is
nonamenable, then X is nonamenable.

Proof. Let S � V.X/ be a finite subset of the vertex set of X . Denote by BD.S/ D
¹x 2 V.X/ j dX .x; S/ � Dº the D-neighborhood of the set S in X .

By assumption on the graph X 0, for every vertex s 2 S there is at least one
vertex v 2 BD.S/ \ V.X 0/. Set N WD maxv2BD .S/\V.X 0/ jS \ BD.v/j: Then
jBD.S/ \ V.X 0/j � jS j=N .

Let d be the uniform bound on the vertex degree of the graph X , then for each
v 2 BD.S/ \ V.X 0/ we can roughly estimate

N � d C d.d � 1/ C � � � C d � .d � 1/D�1 � d DC1

since there are at most d vertices at distance 1 from v, d.d � 1/ vertices at distance 2

from v, …, d � .d �1/D�1 vertices at distance D from v. We conclude that jBD.S/\
V.X 0/j � jS j=d DC1.

Now we can estimate

jBDC1.S/j � jBD.S/j C j@X 0.BD.S/ \ V.X 0//j
� jBD.S/j C h.X 0/jBD.S/ \ V.X 0/j
� jS j C h.X 0/jS j=d DC1:

By the same rough count as above, we have

j@S j � jB1.S/ n S j � jBDC1.S/ n S j=d DC1:

Putting all the estimates together we get

j@S j
jS j � jBDC1.S/ n S j

d DC1jS j � h.X 0/=d 2DC2

for any finite subset S � V.X/. Hence X is nonamenable.

Recall that a graph X covers a graph X 0 if there is a surjective graph morphism
'W X ! X 0 that is an isomorphism when restricted to the star (a small open neigh-
borhood) of any vertex of X . In this case the map ' is called a covering map.
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Lemma 2.2. If a graph covers a nonamenable graph then it is itself nonamenable.

Proof. Let 'W X ! X 0 be a graph covering. Then ' maps closed paths in X onto
closed paths in XâŁ™. Since ' is a covering, closed paths in X are mapped onto
closed paths in X 0. We deduce therefore that aX 0

k
.'.x// � aX

k
.x/ for any x 2 V.X/,

where aX
k

.x/ is the number of closed paths of length k starting from a point x in X ;
and consequently �.X/ � �.X 0/. In particular if �.X 0/ < 1 then �.X/ < 1.

Lemma 2.3. Let � W G ! H be an epimorphism between finitely generated groups
and n � rank.G/. If Nn.H/ is connected then Nn.G/ covers Nn.H/.

Proof. Let us consider the map

'W Nn.G/ �! Nn.H/;

'..g1; : : : ; gn// D .�.g1/; : : : ; �.gn//;

and prove that it is a covering map.
First, observe that ' maps the star of a vertex .g1; : : : ; gn/ of Nn.G/ bijectively

onto the star of '..g1; : : : ; gn// in Nn.H/ because the map ' commutes with the
action of Aut Fn.

Second, the map ' is surjective. To see this we consider a generating n-tuple
.h1; : : : ; hn/ of H and show that there exists a generating n-tuple of G which is
mapped by ' onto .h1; : : : ; hn/. By assumption Nn.H/ is connected, therefore for
any .s1; : : : ; sn/ 2 V.Nn.G// its image '.s1; : : : ; sn/ is connected with .h1; : : : ; hn/

by a sequence of elementary Nielsen moves. As ' commutes with the elementary
Nielsen moves we conclude that .h1; : : : ; hn/ is the image under ' of some n-tuple
in Gn that belongs to the orbit of .s1; : : : ; sn/ under automorphisms of Fn, thus is
generating.

Remark. Observe that if we drop the condition that Nn.H/ is connected, in Lem-
ma 2.3, we are still able to conclude that each connected component of Nn.G/ covers
some connected component of Nn.H/.

Proposition 2.4. The Nielsen graph Nn.Z/ is finite if n D 1 and nonamenable if
n � 2. In addition, Nn.Z/ is connected for n � 1.

Remark. For a finitely generated infinite group G, the graph Nn.G/, n � rank.G/,
is finite if and only if G Š Z and n D 1.

Indeed, suppose that rank.G/ � 2. Take n � rank.G/. If Nn.G/ is finite then
in particular the group of automorphisms Aut G is finite which is equivalent to G

being a finite and central extension of Z; see [2]. Since any such group has infinite
abelianization, it admits an epimorphism onto Z. Then Nn.G/ covers the infinite
graph Nn.Z/, which is in contradiction with our assumption rank.G/ � 2. Thus
G Š Z and n D 1.



On transitivity and (non)amenability of Aut Fn actions on group presentations 843

Proof. Note that the set of vertices V.N1.Z// D ¹1; �1º and I1.1/ D �1, and
therefore N1.Z/ is finite and connected.

From now on suppose n � 2. The set of vertices of the Nielsen graph Nn.Z/ is

V.Nn.Z// D ¹.x1; : : : ; xn/ j hx1; : : : ; xni D Zº
D ¹.x1; : : : ; xn/ j gcd.x1; : : : ; xn/ D 1º:

By the Euclid’s algorithm Nn.Z/ is connected.
To prove nonamenability of Nn.Z/, n � 2, we will exhibit a rooted subforest �

in Nn.Z/ of vertex degree at least 3 everywhere except in the roots of its components.
This subforest spans all but 2n vertices of Nn.Z/. Nonamenability of Nn.Z/ will
then follow from nonamenability of the subforest by Lemma 2.1.

The subforest � is described by its components: � D [A;B�A;B where A and B

are disjoint subsets of ¹1; : : : ; nº (including the empty set) and jBj � n � 2 .
Let us first describe the component �;;; of � . The vertex set of �;;; is

V.�;;;/ D ¹.x1; : : : ; xn/ 2 Zn j hx1; : : : ; xni D Z; xi > 0; 1 � i � nº:
At every vertex .x1; : : : ; xn/ 2 V.�;;;/, consider all the edges

¹eij .x1; : : : ; xn/º1�i;j �n

that correspond to RC
ij .x1; : : : ; xn/. Some of them will have to be deleted so that the

graph �;;; has no cycles, loops or multiple edges.
Here is one way to define the set of edges to be deleted.

˘ if RC
12.x1; : : : ; xn/ D RC

ij .x1; : : : ; xn/, .i; j / ¤ .1; 2/, delete eij .x1; : : : ; xn/;

˘ if RC
21.x1; : : : ; xn/ D RC

ij .x1; : : : ; xn/, .j; i/ ¤ .2; 1/, delete eij .x1; : : : ; xn/.

Note that RC
12.x1; : : : ; xn/ ¤ RC

21.x1; : : : ; xn/. Indeed, if they were equal, then
x1 C x2 D x1 and x2 C x1 D x2, therefore x1 D x2 D 0.

˘ If RC
12.x1; : : : ; xn/ D RC

ij .y1; : : : ; yn/, .i; j / ¤ .1; 2/, delete eij .y1; : : : ; yn/;

˘ if RC
21.x1; : : : ; xn/ D RC

ij .y1; : : : ; yn/, .i; j / ¤ .2; 1/, delete eij .y1; : : : ; yn/.

Note that RC
12.x1; : : : ; xn/ ¤ RC

21.y1; : : : ; yn/. Indeed, if they were equal then
x1 Cx2 D y1 and y2 Cy1 D x2, therefore x1 Cy2 D 0 and we obtain a contradiction
with xi ; yi > 0.

˘ Otherwise, if there exist .i1; j1/, …, .ik ; jk/ with k � 2 such that

RC
il jl

.x1; : : : ; xn/ D RC
imjm

.x1; : : : ; xn/; 1 � l; m � k; l ¤ m;

and neither of indices .il ; jl/ or .im; jm/ is equal to .1; 2/ or .2; 1/ then keep in
the graph only the edge with the largest in the lexicographical order index and
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keep it in the graph. The same rule applies when there exist .i1; j1/, …, .ik ; jk/

for k � 2 such that RC
iljl

.x1; : : : ; xn/ D RC
imjm

.y1; : : : ; yn/ for 1 � l; m � k,
l ¤ m and neither of indices .il ; jl/ or .im; jm/ is equal to .1; 2/ or .2; 1/:
only the edge with the index largest in the lexicographical order remains in the
graph �;;;.

We conclude that the graph �;;; with the given structure of edges does not have
cycles, loops or multiple edges. Let the vertex .1; : : : ; 1/ 2 V.�;;;/ be the root of
this graph. There are at least two edges, e12.1; : : : ; 1/ and e21.1; : : : ; 1/, coming out
of .1; : : : ; 1/, therefore it is of degree at least 2. Any other vertex .x1; : : : ; xn/ in �;;;
is of degree at least 3:

� if x1 > x2 then .x1�x2; x2; : : : ; xn/ is connected to .x1; : : : ; xn/ by e12.x1�x2;

x2; : : : ; xn/, moreover there are at least two edges coming out of .x1; : : : ; xn/:
e12.x1; : : : ; xn/ and e21.x1; : : : ; xn/.

� if x2 > x1 then .x1; x2 � x1; : : : ; xn/ is connected to .x1; : : : ; xn/ by e21.x1;

x2 � x1; : : : ; xn/, and there are at least two edges coming out of .x1; : : : ; xn/:
e12.x1; : : : ; xn/ and e21.x1; : : : ; xn/.

� if x1 D x2, then since .x1; : : : ; xn/ ¤ .1; : : : ; 1/ there exists xi ¤ 0, 1 � i � n,
such that xi ¤ x1. If x1 > xi then .x1 �xi ; : : : ; xi ; : : : ; xn/ has to be connected
to .x1; : : : ; xn/ by e1i .x1 � xi ; : : : ; xi ; : : : ; xn/ unless e1i .x1 � xi ; : : : ; xi ; : : : ;

xn/ is in F;;;, which means that there is another edge coming in .x1; : : : ; xn/.
We deduce that there is at least one edge coming in .x1; : : : ; xn/ when x1 > xi .
Assume now that xi > x1 then .x1; : : : ; xi � x1; : : : ; xn/ is connected to
.x1; : : : ; xn/ by ei1.x1; : : : ; xi �x1; : : : ; xn/ unless ei1.x1; : : : ; xi �x1; : : : ; xn/

was deleted, which means that there is another edge coming in .x1; : : : ; xn/.
We deduce that there is at least one edge coming in .x1; : : : ; xn/ when xi > x1.
Moreover, there are always at least two edges coming out of .x1; : : : ; xn/:
e12.x1; : : : ; xn/ and e21.x1; : : : ; xn/.

Consider any point .x1; : : : ; xn/ 2 V.�;;;/. By construction of �;;; there exists
a path from .x1; : : : ; xn/:

.x1; : : : ; xn/ �! .x
.1/
1 ; : : : ; x.1/

n / �! .x
.i/
1 ; : : : ; x.i/

n / �! : : :

such that x
.iC1/
1 C � � � C x

.iC1/
n < x

.i/
1 C � � � C x

.i/
n . This sequence terminates at

.1; : : : ; 1/ since xi > 0, 1 � i � n, and we conclude that any point in �;;; is
connected to .1; : : : ; 1/. Therefore �;;; is a connected graph without cycles, i.e., a
tree, every vertex of which, except for the root, is of degree at least 3.

More generally, for any A � ¹1; : : : ; nº we define the subgraph �A;; of Nn.Z/

with the set of vertices

V.�A;;/ D ¹.x1; : : : ; xn/ 2 Zn j hx1; : : : ; xni D Z; xi < 0 if i 2 A and
xi > 0 otherwiseº
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and the set of edges E.�A;;/ defined symmetrically to E.�;;;/. The same arguments
show that �A;; is a tree every vertex of which, except for the root, is of degree at
least 3.

Next, we “lower the dimension” and define, for all disjoint subsets A and B of
¹1; : : : ; nº (including the empty set), jBj � n � 2, subgraphs �A;B of Nn.Z/ with

V.�A;B/ D ¹.x1; : : : ; xn/ j hx1; : : : ; xni D Z; xi < 0 if i 2 A;

xi D 0 if i 2 B; and
xi > 0 otherwiseº:

At every vertex .x1; : : : ; xn/ 2 V.�A;B/, consider all the edges

¹eij .x1; : : : ; xn/º1�i;j �n

corresponding to RC
ij .x1; : : : ; xn/ and then delete a subset of them so the graph �A;B

has no cycles, loops or multiple edges.
For A D ; the set of edges to be deleted can be defined in the similar way

as for �;;;, but instead of using RC
12 and RC

21, we use RC
i1j1

and RC
j1i1

such that
i1; j1 … B . And for A ¤ ; we define the edges of �A;B symmetrically to the edges
of �;;B .

Let the vertex .�1; : : : ; �n/ 2 V.�A;B/ be the root of �A;B for �i D �1 if i 2 A,
�i D 0 if i 2 B , and �i D 1 otherwise. As before, the graph �A;B is a tree, and every
vertex, except for the root, is of degree at least 3. This completes the description of � .

Observe that

V.Nn.Z// D V.�/ [ .˙1; 0; : : : ; 0/ [ � � � [ .0; : : : ; 0; ˙1/:

Nonamenability of Nn.Z/ follows from Lemma 2.1.

Figure 1 represents a finite fragment of the (infinite) Nielsen graph N2.Z/ con-
structed using Mathematica 9.

Figure 1. A finite fragment of N2.Z/.
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Remark. The proof of Proposition gives us moreover an explicit estimate of the
Cheeger constant of Nn.Z/. Let S be a finite subset of vertices of Nn.Z/. If S �
¹.˙1; 0; : : : ; 0/[� � �[.0; : : : ; 0; ˙1/º then j@Nn.Z/.S/j � .n�1/jS j. Otherwise, let
A D S \ ¹.˙1; 0; : : : ; 0/ [ � � � [ .0; : : : ; 0; ˙1/º. Then j@Nn.Z/.S/j � j@�.S n A/j
and

j@Nn.Z/.S/j
jS j � j@�.S n A/j

jS n Aj
jS n Aj

jS j � j@�.S n A/j
jS n Aj

1

2n C 1
:

Therefore,

h.Nn.Z// � min¹.n � 1/;
1

2n C 1
h.�/º � 1

2n C 1
:

Remark. Note that nonamenability of Nn.Z/ for n � 3 also follows from the fact that
GLn.Z/, n � 3, has property (T). Indeed, suppose that A is a finitely generated abelian
group, and n � rank.A/. Then A is a quotient of the free abelian group Zn. Consider
the natural projection � W Fn ! Fn=ŒFn; Fn� which induces a homomorphism

�W Aut Fn �! Aut Fn=ŒFn; Fn� D GLn.Z/:

Every Nielsen move defines an automorphism of Zn which belongs to �.Aut Fn/.
Therefore every connected component of the Nielsen graph Nn.A/ is the Schreier
graph

Sch.�.Aut Fn/; St�.Aut Fn/.a1; : : : ; an/; ¹Nielsen movesº/ (1)

with respect to the generating n-tuple .a1; : : : ; an/ which belongs to the connected
component. Moreover observe that � is an epimorphism (see [26], §3.5.1). We con-
clude that

.1/ D Sch.GLn.Z/; StGLn Z.a1; : : : ; an/; ¹Nielsen movesº/:
Apply this to A D Z to conclude

Nn.Z/ D Sch.GLn.Z/; StGLn Z.x1; : : : ; xn/; ¹Nielsen movesº/
for some generating n-tuple .x1; : : : ; xn/ of Z. As mentioned in Introduction, every
connected infinite Schreier graph of a Property (T)-group is nonamenable. The graph
Nn.Z/ is connected and infinite and therefore nonamenable.

This argument does not apply to the case n D 2.

Proposition 2.4 allows us to conclude that all Nielsen graphs Nn.G/ of a finitely
generated indicable group G, n � max¹2; rank.G/º, are nonamenable.

Proof of Theorem 1.1. Consider an epimorphism � W G ! Z. The corresponding
graph morphism Nn.G/ ! Nn.Z/, n � max¹2; rank.G/º, is a covering map by
Lemma 2.3. We conclude by Lemma 2.2 and Proposition 2.4.
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3. Nonamenability of Nielsen graphs
of infinite finitely generated elementary amenable groups

We begin by describing the Nielsen graphs of the infinite dihedral group

D1 D hr; s j s2; srs D r�1i D hx; y j x2; y2i:

Corollary 3.1. The Nielsen graph Nn.D1/ is infinite connected for n � 2 and is
nonamenable for n � 3.

Proof. Recall that D1 Š Z Ì Z=2Z and D1=Z Š Z=2Z. For any .x1; : : : ; xn/ 2
Nn.D1/ consider its image .x1; : : : ; xn/ in Nn.D1=Z/. Obviously .x1; : : : ; xn/

is at bounded distance from .1; 0; : : : ; 0/ in Nn.D1=Z/. The same Nielsen moves
which carry .x1; : : : ; xn/ to .1; 0; : : : ; 0/ will carry .x1; : : : ; xn/ to .x; y1; : : : ; yn�1/

in Nn.D1/ for some x 2 D1 and yi 2 Z, 1 � i � n � 1, such that at least one
of yi is not equal to 0 in Z (because D1 is of rank 2).

For each x 2 D1 and y1; : : : ; yn�1 2 Z such that hx; y1; : : : ; yn�1i D D1,
denote by �x the map from Nn�1.Z/ to Nn.D1/ induced by the map on the vertices
that sends .y1; : : : ; yn/ to .x; y1; : : : ; yn/.

Let X 0 be the subgraph tx�x.Nn�1.Z// of Nn.D1/. Every vertex in Nn.D1/ is
at uniformly bounded distance from some vertex in X 0 by the remark above. It follows
from Proposition 2.4 that X 0 is nonamenable for n � 3. By Lemma 2.1 we conclude
that Nn.D1/, n � 3, is nonamenable.

To show connectedness of Nn.D1/ for n � 2 we recall that D1 Š Z=2Z	Z=2Z
and evoke the Grushko–Neumann theorem (see [19] and [31]) about Nielsen graphs
of free products.

The picture below represents a finite fragment of the (infinite) Nielsen graph
N2.D1/ constructed using Mathematica 9.

Figure 2. A finite fragment of N2.D1/.
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Proposition 3.2. The Nielsen graph N2.D1/ is quasi-isometric to a line. In partic-
ular, it is amenable.

Proof. Let
D1 D ha; b j a2; aba D b�1i:

We consider the subgraph � of N2.D1/ whose vertex set coincides with the vertex
set of N2.D1/, keeping only the edges labeled by Rij .D RC

ij / and Ij , i ¤ j; 1 �
i; j � 2. � is a directed graph of vertex degree 8 with loops. Since

Aut F2 D h¹Rij ; Ij ; i ¤ j; 1 � i; j � 2ºi;
then

� D Sch.Aut F2; Epi.F2; D1/; ¹Rij ; Ij ; i ¤ j; 1 � i; j � 2º/:
It follows that � is quasi-isometric to N2.D1/.

Observe that the infinite strip on Figure 3 is a subgraph of � .

Figure 3

Note that all vertices on this strip are of the form .abn; b˙1/, n 2 Z, and each
vertex has a loop labeled I1. Indeed,

.ab/2 D abab D b�1b D 1

and by induction

.abn/2 D abn�1aababn D abn�1abn�1 D .abn�1/2:
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Observe that also the infinite strip on Figure 4 is a subgraph of � .

Figure 4

Note that all vertices on this strip are of the form .b˙1; abn/, n 2 Z, and each
vertex has a loop labeled I2.

For any n 2 Z, n � 0, the following equalities hold:

R12R21Rn
12.a; b/ D R21I1Rn

21.b; a/;

R21R12R21I1Rn
21.b; a/ D Rn

12.a; b/;

R12I2Rn
12.a; b/ D R21R12Rn

21.b; a/;

Rn
21.b; a/ D R12R21R12I1Rn

12.a; b/;

R12R21.I2R12I2/n.a; b/ D R21I1.I1R21I1/n.b; a/;

R21R12R21I1.I1R21I1/n.b; a/ D .I2R12I2/n.a; b/;

R12I2.I2R12I2/n.a; b/ D R21R12.I1R21I1/n.b; a/;

.I1R21I1/n.b; a/ D I1R12R21.I2R12I2/n�1.a; b/:
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We are now able to see how these two strips are connected in �; see Figure 5.

Figure 5
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Observe that for any n 2 Z, n � 0, the vertices R21Rn
12.a; b/, R12Rn

21.b; a/,
R21.I2R12I2/n.a; b/ and R12.I1R21I1/n.b; a/ have loops labeled I1; I2. The calcu-
lations above show that the graph spanned by the vertices .ab˙n; b˙1/, .b˙1; ab˙n/,
R21Rn

12.a; b/, R12Rn
21.b; a/, R21.I2R12I2/n.a; b/ and R12.I1R21I1/n.b; a/ for

n 2 N [ ¹0º, is regular of degree 8. Since it is a subgraph of � of full degree
and � is connected we conclude that it coincides with � .

Note that the vertices R21Rn
12.a; b/, R12Rn

21.b; a/, R21.I2R12I2/n.a; b/ and
R12.I1R21I1/n.b; a/ are at distance 1 from either .ab˙n; b˙1/ or .b˙1; ab˙n/. Thus
we deduce that the graph � is quasi-isometric to the line.

The following Proposition will be used in the proof of Theorem 1.2.

Proposition 3.3. Let H be a group that contains a normal subgroup isomorphic to
Zd , d � 1, of finite index i > 1. Then all Nielsen graphs Nn.H/ are nonamenable
for n � rank.H/ C log2 i C 1.

Proof. Denote by Q a normal subgroup of H isomorphic to Zd , d � 1, and denote by
F D H=Q the finite quotient of H . Denote also r D rank.F / � rank.H/. For any
.x1; : : : ; xn/ 2 Nn.H/ consider its image .x1; : : : ; xn/ in Nn.F /. The Nielsen graph
Nn.F / is obviously finite, and it is connected (see [35], Proposition 2.2.2) for n �
r C log2 i . Hence .x1; : : : ; xn/ is at bounded distance from .a1; a2; : : : ; ar ; 1; : : : ; 1/

in Nn.F / for a1; : : : ; ar 2 H , such that ha1; a2; : : : ; ari D F . The Nielsen moves
that carry .x1; : : : ; xn/ to .a1; a2; : : : ; ar ; 1; : : : ; 1/ in Nn.F / will carry .x1; : : : ; xn/

to .a1y1; a2y2; : : : ; aryr ; yrC1; : : : ; yn/ in Nn.H/ for some .y1; : : : ; yn/ 2 Qn.
If ym D 1 for all r C 1 � m � n then ha1y1; a2y2; : : : ; aryri D H . A sequence

of elementary Nielsen moves RrC1;1; : : : ; RrC1;r applied to .a1y1; a2y2; : : : ; aryr ;

1; : : : ; 1/ corresponds to a path in the Cayley graph of H with generators ¹a1y1;

a2y2; : : : ; aryrº. Since Q is of index i in H , the ball of radius i around any vertex in
this Cayley graph contains at least one vertex representing an element of Q. We can
therefore conclude that .a1y1; a2y2; : : : ; aryr ; 1; : : : ; 1/ is within at most i steps from
.a1y1; a2y2; : : : ; aryr ; z; 1; : : : ; 1/ in Nn.H/, with z 2 Q and z ¤ 1.

For each Oh D .h1; : : : ; hr/ 2 H r such that hh1; : : : ; hr ; yrC1; : : : ; yni D H and
ym ¤ 1 for some r C 1 � m � n, denote by � Oh the morphism from the graph
Nn�r .hyrC1; : : : ; yni/ to the graph Nn.H/ induced by the map on the vertices that
sends .zrC1; : : : ; zn/ to .h1; : : : ; hr ; zrC1; : : : ; zn/.

As a nontrivial subgroup of Q, hyrC1; : : : ; yni is isomorphic to Zs for some s � 1.
Note that n � r � 2 and clearly n � r � rank.hyrC1; : : : ; yni/. We use Lemma 2.3
and Proposition 2.4 to deduce that Nn�r.hyrC1; : : : ; yni/ is nonamenable.

Denote by X 0 the subgraph t Oh� Oh.Nn�r .hyrC1; : : : ; yri// of Nn.H/. Every ver-
tex in Nn.H/ is at uniformly bounded distance from some vertex in X 0 by the first
paragraph of the proof. Moreover, since each � Oh.Nn�r .hyrC1; : : : ; yri// is nona-
menable, X 0 is nonamenable too. By Lemma 2.1 we conclude that Nn.H/ is nona-
menable for n � rank.H/ C log2 i C 1.
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Denote by EG the class of elementary amenable groups, i.e., the smallest class
of groups containing finite groups and abelian groups, which is closed with respect
to taking subgroups, quotients, extensions and direct limits.

For each ordinal ˛ define inductively a subclass EG˛ of EG in the following
way. EG0 consists of finite groups and abelian groups. If ˛ is a limit ordinal then

EG˛ D
[

ˇ<˛

EGˇ :

Further, EG˛C1 is defined as the class of groups which are extensions of groups
from the set EG˛ by groups from the same set. Each of the classes EG˛ is closed
with respect to taking subgroups and taking quotients (see [11]). The elementary
complexity of a group G 2 EG is the smallest ˛ such that G 2 EG˛ .

Recall that a group is just-infinite if it is infinite and all its non-trivial normal
subgroups are of finite index. A just-infinite group G is hereditary just-infinite if it
is residually finite and every subgroup M < G of finite index is just-infinite. The
proof of Theorem 1.2 is based on the following trichotomy for finitely generated
just-infinite groups.

Theorem 3.4 ([16]). Any finitely generated just-infinite group is either branch, or
contains a normal subgroup of finite index which is isomorphic to the direct product
of a finite number of copies of a group L, where L is either simple or hereditarily
just infinite.

Branch groups are the groups that have a faithful level transitive action on an
infinite spherically homogeneous rooted tree T xm defined by a sequence ¹mnº1

nD1 of
natural numbers mn � 2 (determining the branching number of vertices of level n)
with the property that the rigid stabilizer ristG.n/ has finite index in G for each n � 1.
Here ristG.n/ denotes the product

Q
v2Vn

ristG.v/ of rigid stabilizers ristG.v/ of all
vertices on the n-th level of the tree, where ristG.v/ < G is the subgroup of elements
fixing the vertex v and acting trivially outside the full subtree rooted at v. For more
on branch groups see [15]. The statement of the next Proposition appeared already
in [17] but there is no proof of it in the literature, that is why we include a proof here.

Proposition 3.5 (R. I. Grigorchuk). Let G be a finitely generated branch just-infinite
group. Then it does not belong to the class EG of elementary amenable groups.

Proof. Suppose G is an elementary amenable group of elementary complexity ˛ > 0.
Then G is an extension of a subgroup N C G, N 2 EG˛�1 (G cannot be presented
as a direct limit of subgroups of smaller elementary complexity since G is finitely
generated). As G is just-infinite, N has finite index. It turns out that N is not
necessarily a branch group. However it can be shown that N satisfies the definition
of a branch group with a single relaxation, namely, that the number of orbits of the
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action on the levels is uniformly bounded (instead of being equal to 1 as in the original
definition). Proposition 3.5 will be proven by induction on ˛ for any group satisfying
the relaxed branch condition.

It is proven in Theorem 4 in [15], that for each nontrivial normal subgroup K of a
branch group G there is n such that K contains the commutator subgroup .ristG.n//0.
The same proof essentially works for groups satisfying this relaxed branch condition,
one just needs to “decompose” the tree T xm on which the group acts into finitely many
invariant subtrees on each of which the action is level transitive and so the restriction
of the action to each component is a branch group. As each class EGˇ is closed
with respect to taking subgroups or quotients, the group .ristG.n//0 belongs to the
class EG˛�1.

Consider the decomposition

ristN .n/ D
Y

v2Vn

ristN .v/:

For each v 2 Vn the corresponding group Mv D ristN .v/ satisfies the relaxed
branch condition for the action on the rooted subtree Tv of T xm. Indeed, for each
level k of Tv the number of orbits for the action of ristN .v/ is uniformly bounded
by the same constant which bounds the number of orbits of the action of N on T xm.
Rigid stabilizer ristMv

.k/ is a subgroup of finite index in Mv as it contains the prod-
uct

Q
u2Vk.Tv/ ristN .u/ where Vk.Tv/ denotes the set of vertices of level k in the

subtree Tv.
Moreover, each Mv is just-infinite. Indeed, let us suppose that Pv C Mv is a

normal subgroup of infinite index. The group Q WD Q
w2Vn

P
gw
v where elements

gw 2 G are chosen in such a way that P
gw
v is a subgroup of ristG.w/, is normal not

only in N but also in G and has infinite index. Contradiction.
Therefore Mv is a finitely generated (as a quotient of the finitely generated group

ristN .n/) just-infinite group from the class EG˛�1 that satisfies the relaxed branch
condition, which gives us the final contradiction.

Proof of Theorem 1.2. Let G be an infinite finitely generated elementary amenable
group. As any infinite finitely generated group, it can be epimorphically mapped onto
a finitely generated just-infinite group xG. The property of being elementary amenable
is preserved in homomorphic images, so xG is also elementary amenable.

We now use the classification of Theorem 3.4. A finitely generated just-infinite
branch group cannot be elementary amenable by Proposition 3.5. An infinite finitely
generated simple group cannot be elementary amenable (see [11]), therefore G cannot
contain a normal subgroup of finite index which is isomorphic to the direct product
of a finite number of copies of a simple group.

A finitely generated elementary amenable hereditary just-infinite group is iso-
morphic to either Z or to D1. See Theorem 5.5 in [18] for a proof of this fact by
Y. de Cornulier. Hence, any infinite finitely generated elementary amenable group is
mapped onto a just-infinite group H that contains a normal subgroup of finite index
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isomorphic either to Zd or to Dd1, d � 1. Moreover D1 contains Z as a subgroup
of index 2, so the second case is reduced to the first. The proof is concluded via
Lemma 2.2, Lemma 2.3, and Proposition 3.3.

4. Nielsen graphs of relatively-free groups

A variety of groups B is a class of groups that satisfy a fixed system of relations

¹v D 1ºv2V

where v runs through a set V of finite length freely reduced words in some alphabet X,
called the laws of the variety. In other words, a group G is in B if and only if all laws
¹v D 1ºv2V hold in G when elements of G are substituted for the letters.

Examples of varieties of groups include the variety of all groups defined by the
empty set of laws, the variety of abelian groups defined by the commutative law
xy D yx, nilpotent groups of a given nilpotency class, solvable groups of a given
derived length and so on. Another example is the “Burnside” variety of groups of
exponent p defined by the law xp D 1. By a theorem of Birkhoff [8], a class of
groups is a variety if and only if it is closed under taking subgroups, homomorphic
images and unrestricted direct products.

Let B be a variety of groups with the set of laws ¹v D 1ºv2V . For an arbitrary
group G denote by V.G/ the subgroup of G generated by all values of words v 2 V

when elements of G are substituted for letters. The subgroup V.G/ is called the verbal
subgroup of G defined by V . It is easy to see that G 2 B if and only if V.G/ D ¹1º.
Verbal subgroups are fully invariant (i.e., invariant by all endomorphisms of the
group), and in particular characteristic.

Every variety B of groups with the set of laws V contains, for all d � 1, the
“relatively free group” of rank d , which is the factor of the free group Fd by its
verbal subgroup V.Fd /. Examples of relatively free groups include free groups, free
abelian groups, free nilpotent groups Fd;c of rank d and nilpotency class c, free
solvable groups Fd;l of rank d and derived length l , free Burnside groups B.d; m/

of rank d and exponent m and so on.
Let V be a verbal subgroup of Fd , d � 2. Denote by G the corresponding

relatively free group Fd =V . As V is characteristic, the natural mapping � W Fd ! G

induces a homomorphism
�W Aut Fd �! Aut G: (2)

Elements of the image of � are called tame automorphisms of G. We denote by T .G/

the subgroup of tame automorphisms in Aut G. Note that T .G/ Š Aut Fd = Ker �.
Note also that the set

S D ¹�.Ri̇j /; �.Li̇j /; �.Ij /; 1 � i; j � d; i ¤ j º
of images of elementary Nielsen moves is a generating set of T .G/.
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Lemma 4.1. For a relatively free group G there is a bijection between Aut G and
Epi.Fd ; G/.

Proof. Note that for any d -generated group G D hx1; : : : ; xd i there is a natural
action of Aut G on Epi.Fd ; G/ by composition, and this action is free. So by fixing a
generating d -tuple .x1; : : : ; xd / in G we can map Aut G bijectively on the Aut G-orbit
of .x1; : : : ; xd /.

We will now show that if G is relatively free, then any element of Epi.Fd ; G/

belongs to this orbit. First, observe that since V is a verbal subgroup of Fd , G

has the same presentation G D hg1; : : : ; gd j v 2 Vi for any generating d -tuple
.g1; : : : ; gd /. Second, recall that two groups having the same presentation are iso-
morphic (see [26], Theorem 1.1). From this we deduce that any generating d -tuple
.g1; : : : ; gn/ is the image of .x1; : : : ; xd / by an automorphism of G.

We now have the following description of the graph Nd .G/.

Theorem 4.2. Let G be a relatively free group of rank d . Denote by i 2 N[¹1º the
index of the subgroup T .G/ of tame automorphisms in the full group of automorphisms
Aut G. Then the Nielsen graph Nd .G/ consists of i connected components, each of
them isomorphic to the Cayley graph Cay.T .G/; S/ of T .G/ with respect to the set S

determined by the elementary Nielsen moves.

Proof. Let .g1; : : : ; gd / be a generating d -tuple of G. Think about it as �.x1/ D
g1; : : : ; �.xd / D gd for a free basis x1; : : : ; xd of Fd and the projection � W Fd ! G.
Then for any � 2 Aut Fd the action of �.�/ is given by �.�/.gk/ D �.�.xk// for
1 � k � d , with � defined by (2).

We consider the action of Aut Fd on Epi.Fd ; G/ and prove that every connected
component of the Nielsen graph Nd .G/ is Cay.T .G/; S/. For this we show that
StAut Fd

.g1; : : : ; gd / D Ker �. Assume that � 2 StAut Fd
.g1; : : : ; gd /. It then defines

a trivial map on the generators and therefore a trivial automorphism of G. Hence
� 2 Ker �. Conversely, if � 2 Ker � then

�.�/.g1; : : : ; gd / D .�.�.x1/; : : : ; �.�.xd // D .�.x1/; : : : ; �.xd //

and by definition of the action of � 2 Aut Fd on Epi.Fd ; G/, as explained in
Introduction, � 2 StAut Fd

.g1; : : : ; gd /. Since the subgroup Ker � is normal in
Aut Fd , we conclude that every connected component of Nd .G/ is the Cayley graph
Cay.T .G/; S/.

Assume that two generating d -tuples U1 and U2 lie in different connected com-
ponents of Nd .G/, i.e. for all � 2 Aut Fd we have U �

1 ¤ U2. By Lemma 4.1
the tuples U1 and U2 define automorphisms of G, namely, U1 D '1.g1; : : : ; gd /,
U2 D '2.g1; : : : ; gd / for some '1; '2 2 Aut G. Since U1 and U2 are not Nielsen
equivalent we have �.�/'1.g1; : : : ; gd / ¤ '2.g1; : : : ; gd / for all � 2 Aut Fd .
Therefore two automorphisms define two different connected components if and only
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if they lie in different right cosets of the subgroup T .G/ in Aut G. We conclude that
the number of connected components is equal to the index ŒAut GW T .G/�.

We deduce Corollary 1.3 from Theorem 4.2. Namely, for a relatively free group G

of rank d , the Nielsen graph Nd .G/ is connected if and only if all automorphisms
of G are tame; in addition, Nd .G/ is nonamenable if and only if the group T .G/ is
nonamenable.

Let now H be a quotient of a relatively free group G of rank d . Then every
connected component of the Nielsen graph Nd .H/ is the Schreier graph

Sch.�.Aut Fd /; St�.Aut Fd /.h1; : : : ; hd /; ¹Nielsen movesº/
for some generating d -tuple that belongs to the connected component. (This has been
observed in [23], Proposition 1.10, for finite groups.) For infinite Nielsen graphs we
get the following sufficient condition of nonamenability that replaces the criterion (2)
in Corollary 1.3 for quotients of relatively free groups – recall the discussion from
Introduction about the link between Property (T) of a group and nonamenability of
its infinite Schreier graphs.

Corollary 4.3. Let H be a finitely generated group in some variety of groups B. For
d � rank.H/ denote by G the relatively free group in B of rank d . If the subgroup
T .G/ < Aut G of tame automorphisms of G has Property (T ), then every infinite
component of the Nielsen graph Nd .H/ is nonamenable.

Moreover, Lemma 2.2 and Lemma 2.3 imply the following corollary (generalizing
Theorem 1.1 for n � 3).

Corollary 4.4. Let K be a finitely generated group that admits an epimorphism onto
a group H belonging to some variety of groups B. Let d � rank.K/ and denote by
G the relatively free group of rank d in B. If T .G/ has Property (T ), and if Nd .H/ is
infinite and connected, then every connected component of Nd .K/ is nonamenable.

5. Examples

Let us first look at the basic example of relatively free groups: free groups Fd of
rank d � 2. Note that they are indicable and hence by Theorem 1.1 their Nielsen
graphs are nonamenable. Also Nielsen graphs Nn.Fd / of free groups are connected
for all n � d � 1. Indeed, for d D 1 see Proposition 2:1 above. For d D 2, by the
Grushko–Neumann theorem (see [19] and [31], any generating n-tuple of the free
product of two groups G1 and G2 can be obtained from a set of generators, a part
of which lies in G1 and the rest lies in G2, by a chain of elementary Nielsen moves
(see [26], Section 4.1). If we let G1 D G2 D Z then this implies that the Nielsen
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graph Nn.F2/ of the free group F2 is connected for n � 2. Similarly Nn.Fd / is
connected for n � d .

Recall that a group G is called polynilpotent (see [38]) if it admits a finite normal
series G � Gm1

� Gm1;m2
� � � � � 1 where Gm1

is the m1-th member of its
lower central series, Gm1;m2

is the m2-th member of the lower central series of the
group Gm1

and so on. A free polynilpotent group G D Fd =.Fd /m1;:::;mk
is indicable

and hence by Theorem 1.1 all its Nielsen graphs are nonamenable.
We consider separately the cases of free abelian, free nilpotent, free (nilpotent of

class 2)-by-abelian, free metabelian and free centre-by-metabelian groups to describe
what is known about connectedness of Nielsen graphs of free polynilpotent groups.

It is well known that the map Aut Fd ! GLd .Z/ is onto, so that all automor-
phisms of the free abelian groups are tame. Moreover, not only Nd .Zd / but all Nielsen
graphs of free abelian groups are connected. Indeed, view Zd as a Z-module. Then
for any generating n-tuple .v1; : : : ; vn/, the vectors v1; : : : ; vn are linearly dependent.
Without loss of generality let v1; : : : ; vd be a linearly independent set of vectors that
generates Zd and deduce that .v1; : : : ; vn/ � .e1; : : : ; ed ; 1; : : : ; 1/ where e1; : : : ; ed

is the standard basis for Zd .
For free nilpotent groups Fd;c of rank d and nilpotency class c, all automorphisms

are tame when c D 1 and c D 2 (see [3]). In particular, if c D 1 then Fd;1 D
Zd and if c D 2 and d D 2 then F2;2 is the Heisenberg group H1 D hx; y j
Œx; Œx; y��; Œy; Œx; y��i (see [30] for connectedness of Nielsen graphs of Heisenberg
groups). It has been shown however that when c � 3, the group Aut Fd;c contains
non-tame automorphisms; see [3] and [4]. In particular it can be shown that N2.F2;3/

contains infinitely many connected components (see [30]). On the other hand, Evans
proved (see [13]) that if G is a nilpotent group of rank d then the Nielsen graph Nn.G/

is connected for all n � d C 1.
For free (nilpotent of class 2)-by-abelian groups Gd D Fd =ŒF 0

d
; F 0

d
; F 0

d
�, Gupta

and Levin [21] proved that the group Aut G4 contains countably many non-tame
automorphisms. Papistas [36] extended their result to d � 4 and also showed that
in the case d D 2 and d D 3 the group Aut Gd is not finitely generated. Therefore
N2.G2/ and N3.G3/ have infinitely many connected components by Corollary 1.3.

For free metabelian groups Md D Fd =Œ	2.Fd /; 	2.Fd /�, where 	2.Fd / is the
second derived subgroup, Bachmuth and Mochizuki (see [5] and [6]) proved that
M2 and Md , d � 4, have only tame automorphisms. However Chein (see [10])
showed that M3 has non-tame automorphisms, and moreover Aut M3 is not finitely
generated (see [5]). Corollary 1.3 then implies that there are infinitely many connected
components in N3.M3/. Another related work is the paper [37] by Papistas who
constructed non-tame automorphisms of the relatively free group of rank 3 in the
variety Bp , p prime, of groups satisfying the laws ŒŒf1; f2�; Œf3; f4�� and Œf1; f2�p .

For free centre-by-metabelian groups Gd D Fd =Œ	2.Fd /; Fd �, Stöhr (see [39])
proved that Aut Gd is not finitely generated for d D 2 and d D 3, so we can again
conclude by Corollary 1.3 that there are infinitely many connected components of
Nd .Gd / for d D 2 or d D 3. For d � 4, the group Aut Gd is generated by tame
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automorphisms and at most one additional automorphism (see [39]), but the question
whether all automorphisms are tame remains open.

Let us now consider free Burnside groups B.d; m/ D Fd =F m
d

where F m
d

is the
verbal subgroup of Fd generated by the law xm D 1, m � 2, d � 2.

In [12], Coulon proves the following theorem.

Theorem 5.1 ([12]). Let d � 3. There exists an integer m0 such that for all odd m

larger than m0, the group Out B.d; m/ of outer automorphisms of B.d; m/ contains
a subgroup isomorphic to F2.

It follows from Coulon’s proof that the free subgroup that he finds in Out B.d; m/

is in fact a subgroup of induced tame automorphisms. Indeed, the injective homo-
morphism F2 ,! Out Fd =F m

d
that he constructs is induced by a homomorphism

F2 ! Out Fd . In particular we can conclude that T .B.d; m// is nonamenable.
On the other hand one can show that Burnside groups also possess non-tame

automorphisms. Let us first consider the case of d D 2 and suppose m � 5. Take,
for example, an integer q such that q and m are coprime, and 1 < q2 < m � 1. Let
.x1; x2/ be a generating set of B.2; m/. The map x1 ! x

q
1 , x2 ! x

q
2 can be extended

to an automorphism of B.2; m/ which is not tame (see [29], Remark 0.2, for details).
Similarly for each d � 2 and for odd m > 2d there are non-tame automorphisms of
B.d; m/.

The two parts of Corollary 1.3 now imply Corollary 1.4. Namely, if d � 2 and
m > 2d the Nielsen graph Nd .B.d; m// is not connected. And for d � 3 and m

odd and large enough all connected components of Nd .B.d; m// are isomorphic and
nonamenable.
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