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0. Introduction

The study of the commutant modulo the Hilbert–Schmidt class of a normal operator
with rich spectrum ([13] and [2]) has shown that this Banach algebra together with
its ideal of compact operators resembles in many ways the pair consisting of the
algebra B.H / of all operators on a Hilbert space H and the ideal K.H / of compact
operators and that the analog of the Calkin algebra is also a C �-algebra. The purpose
of this paper is to further develop this analogy. On one hand, we go beyond the case
of a normal operator [13] or of a commuting n-tuple of Hermitian operators [2] and
deal with a general non-commuting n-tuple of operators and its commutant modulo a
normed ideal which satisfies a certain quasicentral approximate unit condition relative
to the n-tuple. The main result we obtain in this general setting is that countable
degree-1 saturation, in the model theory sense of [6], holds for our analog of the
Calkin algebra, which is still a C �-algebra in this general case. In what follows
most of the time we will refer to countable degree-1 saturation simply as “degree-1

1Research supported in part by NSF Grant DMS 1301727.
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saturation”, for the sake of brevity. This adds to the list of nice properties of these
analogs of the Calkin algebra and also adds to the list of C �-algebras satisfying
degree-1 saturation ([6]). We also obtain a few other results, like for instance the
existence of quasicentral approximate units for the ideal of compact operators in the
Banach algebra we consider, as well as generalizations of some of the multiplier and
duality results in [13].

Perhaps, the results on the analogues of the Calkin algebra which we obtain,
give hope that these algebras may be a good place to apply extensions of bi-variant
K-theory beyond C �-algebras ([5]) and cyclic cohomology ([4]).

Besides the introduction this paper has five sections.
Section 1 deals with preliminaries. Especially, in preparation for the later sections,

we recall certain basic facts about normed ideals of compact operators ([9] and [12])
and about the invariant k�.�/ where � is a normed ideal and � an n-tuple of operators,
which we used in our work on normed ideal perturbations of Hilbert space operators
([15], [14], and [17]). We also recall the definition of countable degree-1 saturation
([6] and [3]).

The main result of Section 2 is the existence of quasicentral approximate units for
the compact ideal of the Banach algebras we study. The construction we use has some
of the flavor of the tridiagonal construction we used in our original proof of the non-
commutative Weyl–von Neumann theorem [16], before the concept of quasicentral
approximate units was abstracted ([1] and [11]). The fact that the analogue of the
Calkin algebra is a C �-algebra is also in this section.

Section 3 gives the countable degree-1 saturation for the analogue of the Calkin
algebra. The proof is along similar lines to those of the proof for coronas of C �-alge-
bras of Farah and Hart ([6]) with the added technical difficulties arising from Banach
algebra norms which don’t allow continuous functional calculus. On the other hand,
we were helped by the fact that in the case of the Calkin algebra the main technical
lemma and the glueing construction simplify and becomes reminiscent of the tridiag-
onal construction and the kind of approximately commuting partition of unity used
to glue parts of operators in [16].

Section 4 deals with generalizations of multiplier and duality results from [13] to
the general setting. Here once appropriate assumptions are found, the proofs in [13]
generalize immediately.

Section 5 is a section of concluding remarks.
The author gratefully acknowledges the opportunity to learn about degree-1 sat-

uration from attending the C �-algebra meeting at Oberwolfach in August 2013 and
the lecture of Farah Ilijas at the meeting and subsequent discussions with him.

1. Preliminaries

Throughout this paper the term normed ideal will be used as an abbreviation for
symmetrically normed ideal ([9] and [12]) of compact operators on a separable infinite
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dimensional complex Hilbert space H . This is an ideal 0 ¤ � � B.H / of the algebra
of all bounded operators on H which is contained in K.H / the ideal of compact
operators and which is endowed with a certain norm j j� with respect to which it is
a Banach space. The norm is given by jT j� D jT jˆ D ˆ.s1.T /; s2.T /; : : : / where
ˆ is a norming function (see §3 in [9]) and s1.T / � s2.T / � : : : are the s-numbers
of T , that is, the eigenvalues of .T �T /1=2. Given a norming function ˆ we will use
the notation in [9] and denote by .Sˆ; j jˆ/ and .S

.0/
ˆ ; j jˆ/ the normed ideals which

are the set of all compact operators T so that jT jˆ < 1 and, respectively, the closure
in Sˆ of R.H / the ideal of finite rank operators. We will always leave out K.H /

as a normed ideal in our considerations. If .� ; j j�/ is a normed ideal we shall also
use the notation � .0/ for the closure of R.H / in � . Remark that since j j� D j jˆ
for some norming function ˆ, � .0/ D S

.0/
ˆ . Also if j j� D j jˆ we clearly have

S
.0/
ˆ � � � Sˆ and if S.0/

ˆ D Sˆ the function ˆ is called “mononorming” [9].
If � D .Tj /1�j �n is an n-tuple of operators the definition of the number

k�.�/ D lim inf
A2R

C

1
.H/

jŒA; ��j�

from [15], see also [14] and [17], where .� ; j j�/ is a normed ideal and RC
1 .H / D

¹A 2 R.H / j 0 � A � I º the lim inf being with respect to the natural order on
RC

1 .H / and where we use the notation ŒA; �� D .ŒA; Tj �/1�j �n and j.Xj /1�j �nj� D
max1�j �n jXj j�. If j j� D j jˆ we also write kˆ.�/ for k�.�/.

We will be mainly interested here in the condition k�.�/ D 0. Results concerning
this are summarized in [17]. For instance, if � is an n-tuple of commuting Hermitian
operators and � D Cn the Schatten von Neumann class, then we have kCn

.�/ D 0

if n � 2. This implies the fact that kC2
.N / D 0 if N is a normal operator which

underlies the results in [13].
We should recall (see [15] or [14]) that k�.�/ D 0 is equivalent to k�.�

`
��/ D 0

where �� D .T �
j /1�j �n or to k�.Re �

`
Im �/ D 0 where Re � D .Re Tj /1�j �n and

Im � D .Im Tj /1�j �n. The condition k�.�/ D 0 is also equivalent to the existence

of a sequence An 2 RC
1 .H / such that An

w�! I and jŒAn; � �j� ! 0 as n ! 1
or also to the existence of a sequence An " I , An 2 RC

1 .H / satisfying additional
conditions like m > n ) AmAn D An and AnBn D Bn where Bn 2 R.H / are
given and so that jŒAn; � �j� ! 0 as n ! 1.

Next we recall a few things about countable degree-1 saturation ([6] and [3]),
starting with its definition.

Definition. Given a C �-algebra M and a sequence of non-commuting indeterminates
and their adjoints Xm, X�

m, m 2 N, a degree-1 �-polynomial is a linear combination
of terms of the form a, aXmb and aX�

mb with m 2 N, a; b 2 M . A C �-algebra M

is said to be countably degree-1 saturated if for every countable family of degree-1
�-polynomials Pn.X/, n 2 N with coefficients in M and indeterminates in the
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sequence X D .X1; X2; : : : / and their adjoints, and every sequence of compact sets
Kn � R, n 2 N, the following are equivalent:

(i) there are bm 2 M , m 2 N such that kbmk � 1 and kPn.b/k 2 Kn for all n 2 N,
where b D .b1; b2; : : : /;

(ii) for every N 2 N, there are bm 2 M , kbmk � 1, m 2 N, such that

dist.kPn.b/k; Kn/ � 1=N

for all n � N .

There are many technical variations (see [6]) which give equivalent definitions of
countable degree-1 saturation. In particular, the compact sets Kn may be assumed to
be singletons Kn D ¹rnº, rn 2 R and in condition (ii) one may require that kbmk < 1,
m 2 N. These modifications, together with other easy to imagine modifications, like
adding extra variables or repeating certain polynomials will be used in the equivalent
version of degree-1 saturation which we found convenient to use in the statement of
Theorem 3.3 in order to streamline its proof.

For further information about degree-1 saturation and its applications, we refer
the reader to the papers [6] and [3].

2. Approximate units

Let � D .Tj /1�j �n, Tj D T �
j , 1 � j � n be an n-tuple of Hermitian operators in

B.H / and let .� ; j j�/ be a normed ideal we define

E.� I � / D ¹X 2 B.H / j ŒX; Tj � 2 � ; 1 � j � nº
and

K.� I � / D E.� I � / \ K.H /:

Then E.� I � / is a Banach algebra with the norm kjXkj D kXk C jŒX; ��j� with
an isometric involution kjX�kj D kjXkj and K.� I � / is a closed two-sided ideal,
which is also closed under the involution. We shall denote by P .H / the finite-rank
Hermitian projections. Clearly P .H / � R.H / � K.� I � /.

2.1. Proposition. Assume k�.�/ D 0.

a) If P 2 P .H / and " > 0, then there is A 2 RC
1 .H / so that P � A and

kjAkj < 1 C ".

b) If R.H / is dense in � and P 2 P .H /, Kr 2 K.� I � /, 1 � r � m and " > 0,
then there is A 2 RC

1 .H / so that P � A, kj.I � A/Krkj < ", 1 � r � m and
kjAkj < 1 C ".
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Proof. a) Since k�.�/ D 0 there is A 2 RC
1 .H /, P � A so that jŒA; ��j� < ", which

in view of the fact that kAk � 1 gives kjAkj < 1 C ".

b) Since ŒKr ; Tj � 2 � , 1 � r � m, 1 � j � n and R.H / is dense in � , there is a
projection Q 2 P .H / so that j.I � Q/ŒKr ; Tj �j� < "=4 and k.I � Q/Krk < "=4,
1 � r � m, 1 � j � n. Clearly, we may assume without loss of generality that
P � Q and kjKrkj � 1, 1 � r � m. Using a), there is A 2 RC

1 .H / so that
Q � P � A and jŒA; ��j� < "=4. We have

k.I � A/Krk � k.I � Q/Krk < "=4

and
jŒ.I � A/Kr ; � �j� � jŒA; ��j�kKrk C max

1�j �n
j.I � A/ŒKr ; Tj �j�

< "=4 C "=4 D "=2:

It follows that kj.I � A/Krkj < ".

2.2. Corollary. If k�.�/ D 0 and R.H / is dense in � , then R.H / is dense in
K.� I � /.

2.3. Proposition. Assume k�.�/ D 0 and � .0/ D � , that is R.H / is dense in � .
Let X1; : : : ; Xm 2 E.� I � /, K1; : : : ; Kr 2 K.� I � /, P 2 P .H / and " > 0 be given.
Then there is B 2 RC

1 .H / so that P � B , kjBkj < 1 C "

kj.I � B/Kj kj < "; kjŒXp ; B�kj < "

for 1 � j � r , 1 � p � m.

Proof. Without loss of generality we will assume that Xp D X�
p , 1 � p � m. Since

� D � .0/ there is P0 2 P .H / so that P � P0 and

j.I � P0/ŒXp; � �j� C jŒXp ; � �.I � P0/j� < "=2:

Applying repeatedly Proposition 2.1 we can find Ps 2 P .H /, As 2 RC
1 .H /,

P0 � P1 � P2 � : : : ;

A0 � A1 � A2 � : : :

so that Ps " I as s ! 1 and Ps � As � PsC1, .I � PsC1/TlAs D 0, .I �
PsC1/XpAs D 0 (that is PsC1H � XpAsH C TlAsH ), kjAskj < 1 C "2�s�1 and
kj.I � As/Kj kj < " for 1 � p � m, 1 � l � n, 1 � j � r and all s � 0. Let
B D N �1.A1 C � � � C AN /. We will show that choosing N sufficiently large, B will
have all the desired properties. Clearly, since As � P , 1 � s � N we will also have
the same inequality for their mean, that is B � P . Similarly, .I � B/Kj is the mean
of the .I � As/Kj , 1 � s � N and this gives kj.I � B/Kj kj < ". Also, the same
kind of argument gives kjBkj < 1 C N �1".
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To prove that kjŒXp; B�kj < " if N is large enough we will show that we have
kŒXp; B�k ! 0 and jŒXp; B�; � �j� ! 0 as N ! 1. Remark that the conditions on
Ps , As , Xp , Tl imply that in the orthogonal sum decomposition

H D P0H ˚ .P1 � P0/H ˚ .P2 � P1/H ˚ : : :

we have that As is block-diagonal, while the Xp and Tl , being Hermitian, are block-
tridiagonal. With the notation Q0 D P0, Qs D Ps � Ps�1, s � 1, we have
As�1 D Q0 C � � � C Qs�1 C QsAs�1Qs if s � 1. It follows that

���B �
�
Q0 C

X
1�s�N

�
1 � s � 1

N

�
Qs

���� D
���N �1

X
1�s�N

QsC1AsQsC1

��� � N �1:

Hence the tridiagonality gives

kŒB; Xp�k � 2N �1kXpk C
���
h
Q0 C

X
1�s�N

�
1 � s � 1

N

�
Qs; Xp

i���

� 2N �1 C N �1
���� X

1�s�N

QsC1XpQs

��� C
��� X

1�s�N

QsXpQsC1

���
�

� 4N �1kXpk
and hence kŒB; Xp�k ! 0 as N ! 1.

Since we may choose P0 ¤ 0, we have kBk D 1 and hence kjBkj < 1 C N �1"

gives jŒB; ��j� < "N �1. It follows that

jŒŒB; Xp�; � �j� � 2jŒB; ��j�kXpk C jŒB; ŒXp; � ��j�
� 2N �1"kXpk C j.I � B/ŒXp; � �j� C jŒXp ; � �.I � B/j�:

Since B � P0, it follows that

j.I � B/ŒXp; � �j� C jŒXp ; � �.I � B/j� < "=2:

Hence jŒB; Xp�; � j� < " for N large enough.

Remark that since the assumptions � .0/ D � , k�.�/ D 0 imply that R.H / is
dense in K.� I � / is a separable Banach space and applying repeatedly Proposition 2.3
we immediately can give it a somewhat stronger form, which we state as the next
corollary.

2.4. Corollary. Assume k�.�/ D 0 and � .0/ D � . Let X1; : : : ; Xm 2 E.� I � / and
a sequence Ys 2 R.H /, s 2 N be given. Then there is a sequence As 2 RC

1 .H / so
that AsYs D Ys and AsAt D At , AsXpAt D XpAt if s > t and moreover

As " I; kjAskj �! 1; kj.I � As/Kkj �! 0; kjŒXp; As�kj �! 0

as s ! 1 for all K 2 K.� I � / and 1 � p � m.
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We pass now to the quotient Banach algebra with involution E.� I � /=K.� I � /

which we shall denote by E=K.� I � /. If

p W B.H / �! B.H /=K.H / D B=K.H /

is the canonical homomorphism to the Calkin algebra, which we shall denote by
B=K.H /, then there is a canonical isomorphism of E=K.� I � / and the sub algebra
p.E.� I � // of B=K.� I � /. In view of this we shall often also denote by p the
homomorphism E.� I � / ! E=K.� I � /, an admissible abuse of notation.

2.5. Proposition. We assume k�.�/ D 0 and � .0/ D � . Given X 2 E.� I � / and
" > 0 there is A 2 RC

1 .H / so that kAk D 1, kjAkj < 1 C " and kj.I � A/Xkj <

kp.X/k C " where the norm of p.X/ is the B=K.H / norm. In particular, the
norm of X D K.� I � / in E=K.� I � / equals the norm of p.X/ in B=K.H /. Thus
the algebraic embedding of E=K.� I � / into B=K.H / is isometric and E=K.� I � /

identifies with a C �-subalgebra of B=K.H /.

Proof. We have stated this fact which is an immediate generalization of results in [13]
and [3], with a lot of detail, since it will be often used in the rest of this paper.

In view of our assumption, that k�.�/ D 0, there are An " I , An 2 RC
1 .H / so

that jŒAn; � �j� ! 0 as n ! 1. Then also k.I � An/Xk ! kp.X/k as n ! 1. We
also have

jŒ.I � An/X; ��j� � jŒAn; � �j�kXk C j.I � An/ŒX; ��j�
and the first term in the right-hand side ! 0 as n ! 1 by the properties of the An,
while the second also ! 0 since � .0/ D � and .I � An/ŒX; �� converges weakly to 0

as n ! 1.
The rest of the statement is well explained in the statement of the proposition

itself.

3. Countable degree-1 saturation

In this section we prove what amounts to countable degree-1 saturation of E=K.� I � /

under the assumption that k�.�/ D 0, in the model-theory terminology of [3] and [6].
The result is given in Theorem 3.3, which is formulated in operator-algebra terms,
using one of the equivalent definitions of countable degree-1 saturation which can
be found in [6]. For the reader’s convenience, we have also stated the definition
of degree-1 saturation at the end of Section 1 accompanied by some comments on
equivalent definitions.

We also remind the reader that the adjective “countable” will be omitted most of
the time.

We begin with a rather standard technical fact, which we record as the next lemma.
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3.1. Lemma. Let G D G� 2 E.� I � / be such that kjG � 3
2
Ikj � 1. Then G1=2 2

E.� I � / and there is a universal constant C so that kjŒG1=2; X�kj � C kjŒG; X�kj if
X 2 E.� I � / and jŒG1=2; � �j� � C jŒG; ��j�.

Proof. The Lemma is an easy consequence of the functional calculus formula

G1=2 D .2�i/�1

Z
�

.zI � G/�1z1=2dz;

where � is the circle jz � 3=2j D 5=4, and of the fact that for z 2 � we have

kj.zI � G/�1kj D 4=5kj.4=5.z � 3=2/I � 4=5.G � 3=2I //�1kj
� .1 � 4=5/�1 D 5

and
Œ.zI � G/�1; X� D .zI � G/�1ŒG; X�.zI � G/�1:

3.2. Lemma. Assume k�.�/ D 0 and � D � .0/. Let Mn 2 E.� I � /, n 2 N, "m # 0

as m ! 1, Pk 2 P .H /, Pk " I as k ! 1 and an increasing function ' W N ! N
be given. Then there are Rm 2 RC

1 .H /, m 2 N so that

1o:
X
m�1

R2
m D I ,

2o: the Rm’s commute,

3o: kRmk D 1 and jŒRm; � �j� < "m if m � 2,

4o: RmPn D 0 if m � n C 2, n � 1,

5o: kjŒRm; Mk�kj < "m if k � '.m/, m � 2,

6o: RnMkRm D 0, RnRm D 0,

if k � '.m/, k � '.n/, jn � mj � 2, m � 2, n � 2.

Proof. There will be no loss of generality to assume that M1 D I and Mk D M �
k

,
k 2 N. Given ım < 1=10, ım # 0 as m ! 1, we can use Proposition 2.1 repeatedly,
to find a sequence of projections Ek 2 P .H /, Ek " I as k ! 1 and a sequence of
Ak 2 RC

1 .H /, Ak " I as k ! 1, A1 D 0 satisfying the conditions

Ek � Pk; Ek � Ak; .I � Ek/MpAk D 0 if p � '.k C 2/

and also

AkC1 � Ek ;

kAkC1 � Ekk D 1;

kjAkC1kj < 1 C ıkC1;
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and

kjŒAkC1; Mp�kj < ıkC1 if p � '.k C 2/:

Note that since the Ek’s are projections, 0 D A1 � E1 � A2 � E2 � � � � � Ek �
AkC1 � EkC1 � � � � � I implies that ¹Ak j k � 1º [ ¹Ek j k � 1º is a set of
commuting operators.

With these preparations one would be tempted to define Rn to be .An �An�1/1=2,
however this would lead to difficulties with commutators and kj�kj-norms because the
square-root function is not differentiable at 0. The remedy is to replace the An’s with
another sequence Bn, n � 1, with roughly the same properties and which additionally
is so designed that the problems with the square-roots are circumvented. We define

Bn D I � .I � A2
n/2 D A2

n.2I � A2
n/:

Then En � AnC1 � EnC1 easily gives En � BnC1 � EnC1 and A1 D 0 gives
B1 D 0. It is also easily seen that defining

Rn D .Bn � Bn�1/1=2; n � 2;

R1 D 0;

we have
B1=2

n D An.2I � A2
n/1=2;

.I � Bn/1=2 D I � A2
n;

Rn D .Bn.I � Bn�1//1=2

D B1=2
n .I � Bn�1/1=2

D An.2I � A2
n/1=2.I � A2

n�1/:

Then for n � 2 we have

kj.2I � A2
n/ � 3=2Ikj D kjA2

n � 1=2Ikj
D kA2 � 1=2Ik C jŒA2

n; � �j�
� 1=2 C 2kAnkjŒAn; � �j�
� 1=2 C 2ın � 1:

We can then apply Lemma 3.1 to G D 2I � A2
n and X 2 E.� I � / and get that

jŒ.2I � A2
n/1=2; � �j� � C jŒA2

n; � �j� � 2C jŒAn; � �j� � 2Cın

and

kjŒ.2I � A2
n/1=2; X�kj � C kjŒA2

n; X�kj
� 2C kjŒAn; X�kj.1 C ın/ � 3C kjŒAn; X�kj:
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Remark that since Pm " I we have Em " I and hence Bm " I as m ! 1.
In view of B1 D 0 we get that condition 1o is satisfied by the Rm. Also, since the
Bm commute, it follows that the Rm commute and that condition 2o holds. Further,
since kAkC1 � Ekk D 1, we have that AkC1 has an eigenvector for the eigenvalue 1

in .EkC1 � Ek/H , which is then also an eigenvector for the eigenvalue 1 of BkC1

and an eigenvector for the eigenvalue 0 of Bk , so that it is an eigenvector for the
eigenvalue 1 for .BkC1 � Bk/1=2 D RkC1. Thus we have kRmk D 1 if m � 2,
which is the first part of condition 2o. Further RmEm�2 D 0 gives RmPm�2 D 0,
so that 4o is satisfied. Also, since M1 D I and Mk D M �

k
, to check that 6o holds, it

suffices to check that RnMkRm D 0 if n � m C 2, 1 � k � '.m/. Indeed, we have
RnMkRm D B

1=2
n .I �Bn�1/1=2MkB

1=2
m .I �Bm�1/1=2 and thus it suffices to show

that .I � Bn�1/MkBm D 0 if 1 � k � '.m/, n � m C 2, which in turn will follow
if we show that .I � An�1/MkAm D 0 if 1 � k � '.m/, n � m C 2. Note further
that if n � m C 2 we have An�1 � En�2 � Em and it suffices if .I � Em/MkAm

for k � '.m/ for m � 2, which is satisfied in view of the construction of the Em

and Am.
We are thus left with having to deal with the second part of 3o and 5o. We have

jŒRm; � �j� D jŒAm.2I � A2
m/1=2.I � A2

m�1/; � �j�
� 2jŒAm; � �j� C jŒ.2I � A2

m/1=2; � �j� C 2jŒA2
m�1; � �j�

� 2ım C 2Cım C 4ım�1:

Hence, choosing the ım’s so that 2.C C 1/ım C 4ım�1 < "m will insure that the
second part of 3o holds.

Turning to condition 5o, we have

kjŒRm; Mk�kj D kjŒAm.2I � A2
m/1=2.I � A2

m�1/; Mk�kj
� kjŒAm; Mk �kj kj.2I � A2

m/1=2kj kjI � A2
m�1kj

C kjŒ.2I � A2
m/1=2; Mk�kj kjAmkj kjI � A2

m�1kj
C 2kjŒAm�1; Mk�kj kjAm�1kj kjAmkj kj.2I � A2

m/1=2kj
� ım.2 C jŒ.2I � A2

m/1=2; � �j�/.2 C ım�1/2

C 3C kjŒAm; Mk�kj.1 C ım/.2 C ım�1/2

C 2ım�1.1 C ım�1/.1 C ım/.2 C jŒ.2I � A2
m/1=2; � �j�/

� ım.2 C 2Cım/.2 C ım�1/2

C 3Cım.1 C ım/.2 C ım�1/2

C 2ım�1.1 C ım�1/.1 C ım/.2 C 2Cım/;

if m � 2 and k � '.m/. Clearly, the ım’s can be chosen so that kjŒRm; Mk�kj < "m.
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By Proposition 2.5, under the assumptions that k�.�/ D 0 and � D � .0/,
E=K.� I � / is a C �-algebra, actually a C �-subalgebra of the Calkin algebra. Re-
call also that p will denote both the homomorphism B.H / ! B=K.H / as well as
the homomorphism E.� I � / ! E=K.� I � /, which can be viewed as its restriction
to E.� I � / (see the discussion preceding Proposition 2.3 and Proposition 2.5).

Let Xj , X�
j , j 2 N be non-commuting indeterminates and let

fn.X1; : : : ; Xn/ D en C
nX

j D1

.ajnXj bjn C cjnX�
j djn/

where

en; a1n; : : : ; ann; : : : ; b1n; : : : ; bnn; c1n; : : : ; cnn; d1n; : : : ; dnn

are in E=K.� I � / so that the fn are non-commutative polynomials with coefficients
not commuting with the variables. We shall denote the ring of such polynomials
by E=K.� I � /hXj ; X�

j j j 2 Ni, the fn’s being polynomials of degree � 1 in the
indeterminates.

3.3. Theorem. Assume k�.�/ D 0 and � D � .0/. Let en; ajn; bjn; cjn; djn 2
E=K.� I � /, 1 � j � n, n 2 N, be such that there are yjn 2 E=K.� I � /, 1 � j � n,
n 2 N, so that kyjnk < 1 and jken C P

1�j �n.ajnyjmbjn C cjny�
jmdjn/k � rnj <

1=m if 1 � n � m, where rn 2 R. Then there are yj 2 E=K.� I � /, j 2 N, so that
kyj k � 1, for j 2 N and

���en C
X

1�j �n

.ajnyj bjn C cjny�
j djn/

��� D rn

for all n 2 N.

Proof. Let En; Ajn; Bjn; Cjn; Djn; Yjn 2 E.� I � / for 1 � j � n, n 2 N, be so
that p.En/ D en, p.Ajn/ D ajn, p.Bjn/ D bjn, p.Cjn/ D cjn, p.Djn/ D djn,
p.Yjn/ D yjn, kjYjnkj < 1 and jŒYjn; � �j� < "n for some given sequence "n # 0. It
will be convenient to also introduce fn.X1; : : : ; Xn/ 2 E=K.� I � /hXj ; X�

j j j 2 Ni
and Fn.X1; : : : ; Xn/ 2 E.� I � /hXj ; X�

j j j 2 Ni the non-commutative polynomials

fn.X1; : : : ; Xn/ D en C
X

1�j �n

.ajnXj bjn C cjnX�
j djn/

and

Fn.X1; : : : ; Xn/ D En C
X

1�j �n

.AjnXj Bjn C CjnX�
j Djn/:
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We shall apply Lemma 3.2 with a sequence Mk 2 E.� I � /, k 2 N and an increasing
function ' W N ! N such that the set ¹Mk j 1 � k � '.m/º contains the fol-
lowing operators Em, Ajm, Bjm, Cjm, Djm, Yjm, Y �

jm where 1 � j � m and also
Fn.Y1m; : : : ; Ynm/ and

.Fp.Y1m; : : : ; Ypm//�Fq.Y1m; : : : ; Yqm/

with 1 � n � m, 1 � p � m, 1 � q � m. Note that the listed operators won’t
exhaust ¹Mk j 1 � k � '.m/º, since ' being increasing we will have that if
1 � m0 < m then ¹Mk j 1 � k � '.m0/º � ¹Mk j 1 � k � '.m/º.

Since p.Fn.Y1m; : : : ; Ynm// D fn.y1m; : : : ; ynm/ if 1 � n � m, we can find
Pk 2 P .H /, Pk " I so that

jkFn.Y1m; : : : ; Ynm/.I � Pm/k � rnj < 1=m

if 1 � n � m. Remark that if 1 � n � m and N � m then
ˇ̌
ˇ
���Fn.Y1m; : : : ; Ynm/

X
k�N C2

R2
k

��� � rn

ˇ̌
ˇ < 1=m

because
P

k�N C2 R2
k

� I � Pm and I � P
k�N C2 R2

k
2 R.H / � K.H / so that

kFn.Y1m; : : : ; Ynm/.I � Pm/k �
���Fn.Y1m; : : : ; Ynm/

X
k�N C2

R2
k

���

� kfn.y1m; : : : ; ynm/k:

We can therefore find a sequence 1 < N1 < N2 < : : : so that Nm � m C 2,
NpC1 � Np � 8 for all m; p 2 N and

ˇ̌
ˇ
���Fn.Y1m; : : : ; Ynm/

X
Nm�k<NmC1

R2
k

��� � rn

ˇ̌
ˇ < 1=m

if 1 � n � m and also
ˇ̌
ˇ
���Fn.Y1m; : : : ; Ynm/

X
NmC3�k<NmC1�3

R2
k

��� � rn

ˇ̌
ˇ < 1=m:

We will show that if the "m are chosen so that
P

m�1 "m < 1, then the operators

Yj D
X
m�j

� X
Nm�k<NmC1

RkYjmRk

�

will satisfy Yj 2 E.� I � /, kYj k � 1 and p.Yj / D yj will satisfy kfn.y1; : : : ; yn/k D
rn for all n 2 N.
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We will not need to put conditions on the "m in order that kYj k � 1. Indeed, this
can be seen as follows. Let Z W H ! H ˝ l2.N/ be the operator

Zh D
X
m�j

X
Nm�k<NmC1

Rk h ˝ ek

and let Sj 2 B.H ˝ l2.N// be the operator

Sj

X
k�1

hk ˝ ek D
X
m�j

X
Nm�k<NmC1

Yjm hk ˝ ek :

Since kYjmk < 1, we have kSj k � 1 and we also have kZk � 1 since

Z�Z D
X
m�j

X
Nm�k<NmC1

R2
k �

X
k�1

R2
k D I:

Hence kYj k � 1 since Yj D Z�Sj Z.
Our next task will be to show that if

P
m�1 "m < 1, we will have jŒYj ; � �j� < 1,

which together with the boundedness of Yj we just showed, will give Yj 2 E.� I � /.
Since the sum defining Yj is weakly convergent to Yj , it will be sufficient to show

that assuming
P

m�1 "m < 1 we can insure that

X
m�j

ˇ̌
ˇ
h X

Nm�k<NmC1

RkYjmRk; �
iˇ̌
ˇ
�

< 1:

Since the Yjm with 1 � j � m are among the Mp with 1 � p � '.m/ we infer from
condition 5o in Lemma 3.2 that jkŒRk; Yjm�kj < "k if Nm � k and 1 � j � m. Also
by condition 3o of Lemma 3.2, jkRkkj < 1 C "k . This gives

ˇ̌
ˇ
ˇ̌
ˇ
h X

Nm�k<NmC1

RkYjmRk ; �
iˇ̌
ˇ
�

�
ˇ̌
ˇ
h X

Nm�k<NmC1

YjmR2
k; �

iˇ̌
ˇ
�

ˇ̌
ˇ

�
ˇ̌
ˇ
��� X

Nm�k<NmC1

ŒRk; Yjm�Rk

���
ˇ̌
ˇ

�
X

Nm�k<NmC1

jkŒRk; Yjm�kj jkRkkj

�
X

Nm�k<NmC1

"k.1 C "k/:

Hence in order that Yj 2 E.� I � / it will suffice that
P

k�1 "k < 1 and

X
m�j

ˇ̌
ˇ
h X

Nm�k<NmC1

YjmR2
k; �

iˇ̌
ˇ
�

< 1:
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Since jŒRk ; � �j� < "k if k � 2 by 3o of Lemma 3.2 and kYjmk < 1, we haveX
m�j

ˇ̌
ˇ
h X

Nm�k<NmC1

YjmR2
k; �

iˇ̌
ˇ
�

�
X
m�j

jŒYjm; � �j� �
��� X

Nm�k<NmC1

R2
k

���

C
X
k�2

jŒR2
k; � �j�

�
X
m�j

"m C
X
k�2

2"k

< 1
under the assumption that

P
k�1 "k < 1. Hence under this condition on the "m we

have Yj 2 E.� I � /.
Finally, we turn to showing that assuming

P
m�1 "m < 1, we will have

kfn.y1; : : : ; yn/k D rn

for all n 2 N, where yj D p.Yj /. Clearly fn.y1; : : : ; yn/ D p.Fn.Y1; : : : ; Yn//.
Note also that the relations we’re aiming at being about norms in the Calkin algebra,
we will no longer have to deal with jk � kj-norms and the ideal � for this matter.

We begin by showing that we can arrange that the difference

Fn.Y1; : : : ; Yn/ �
X
m�n

X
Nm�k<NmC1

RkFn.Y1m; : : : ; Ynm/Rk

is a compact operator. Since

Fn.Y1; : : : ; Yn/ D En C
X

1�j �n

.AjnYj Bjn C CjnY �
j Djn/

it will suffice to prove the assertion in 3 cases, when Fn.Y1; : : : ; Yn/ equals En,
AjnYj Bjn, CjnY �

j Djn where 1 � j � n.
In the first case we haveX

k�Nn

RkEnRk � En D �
X

1�k<Nn

RkEnRk C
X
k�1

.RkEnRk � EnR2
k/:

The first sum being finite rank, we need that the second sum be compact. If k � n,
kŒRk; En�k < "k since En is among the Mp with p � '.n/ � '.k/ and condition 5o

of Lemma 3.2 holds. Thus, kRkEnRk � EnR2
k
k < "k implies that the difference we

consider will be compact if
P

k�1 "k < 1.
In case Fn is AjnYj Bjn, where 1 � j � n, we must insure compactness ofX
m�n

X
Nm�k<NmC1

RkAjnYjmBjnRk �
X
m�n

Ajn

� X
Nm�k<NmC1

RkYjmRk

�
Bjn

D
X
m�n

X
Nm�k<NmC1

.ŒRk; Ajn�YjmBjnRk C AjnRkYjmŒBjn; Rk�/:
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The last sum being a sum of finite rank operators it will suffice to have convergence of
the sum of their norms. Since the Ajn and Bjn are among the Mp with p � '.n/ �
'.k/ we have that the norms of the commutators are majorized by "k in view of 5o

in Lemma 3.2 and hence the sum of norms is majorized by

K
X
k�1

"k

where K is a bound for kAjnk and kBjnk. Thus again it will suffice that
P

k�1 "k <1.
The third situation when we consider CjnY �

j Djm is entirely analogous to that of
AjnYj Bj , since we treated Yjn and Y �

jn symmetrically in our assumptions about '.
Again, summability of the "m will suffice.

We need then to show that if
P

m�1 "m < 1, we will also have that the essential
norm of

�n D
X
m�n

X
Nm�k<NmC1

RkFn.Y1m; : : : ; Ynm/Rk

will be rn.
Using again the operator

Z W H ! H ˝ l2.N/; Zh D
X

k�Nn

Rkh ˝ ek

we have kZk � 1 and Z��nt Z � �n 2 R.H /, where for t � n we define on
H ˝ l2.N/ operators �nt by

�nt

X
k�1

hk ˝ ek D
X
m�t

X
Nm�k<NmC1

Fn.Y1m; : : : ; Ynm/.I � Pm/hk ˝ ek :

Since k�nt k D supm�t kFn.Y1m; : : : ; Ynm/.I � Pm/k we have jk�nt k � rnj < t�1

and hence lim t!C1 k�nt k D rn. This gives kp.�n/k � lim t!C1 k�nt k D rn and
hence we are left with the opposite inequality kp.�n/k � rn.

We will again use a compact perturbation and pass from �n to another operator

„n D
X
m�n

Fn.Y1m; : : : ; Ynm/
X

Nm�k<NmC1

R2
k:

Indeed we have

„n � �n D
X
m�n

X
Nm�k<NmC1

ŒFn.Y1m; : : : ; Ynm/; Rk�Rk

and
kŒFn.Y1m; : : : ; Ynm/; Rk�Rkk < "k:

Again compactness will follow if
P

k�1 "k < 1.
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Recall now that we had chosen the Nm so that
ˇ̌
ˇ
���Fn.Y1m; : : : ; Ynm/

X
Nm�k<NmC1

R2
k

��� � rn

ˇ̌
ˇ < 1=m

and also
ˇ̌
ˇ
���Fn.Y1m; : : : ; Ynm/

X
NmC3�k<NmC1�3

R2
k

��� � rn

ˇ̌
ˇ < 1=m:

Since by Lemma 3.2 we have that the Rk are finite rank positive contractions, which
commute and satisfy jk � l j � 2 ) RkRl D 0 it is easily seen that if �m is the
projection onto the range of

P
NmC3�k<NmC1�3 R2

k
we will have Rs�m D 0 if

s < Nm or s � NmC1 and hence

�p�q D 0 if p ¤ q

and if n � m we have
���Fn.Y1m; : : : ; Ynm/

X
NmC3�k<NmC1�3

R2
k

��� � k„n�m�k

�
���Fn.Y1m; : : : ; Ynm/

X
Nm�k<NmC1

R2
k

���

so that

jk„n�mk � rnj < 1=m:

This implies

kp.„n/k � lim sup
m!C1

k„n�mk D rn:

4. Multipliers and duality

In this section we will sometimes also deal with normed ideals in which the finite
rank operators are not dense, which occurs when the norming function ˆ is not
mononorming (see the preliminaries and [9] or [12]). We begin with a basic lemma.

4.1. Lemma. Let ˆ be a norming function and let .� ; j j�/ D .Sˆ; j jˆ/ so that
.� .0/; j j�/ D .S

.0/
ˆ ; j jˆ/ is the closure of R.H / in � . Assume k�.�/ D 0. Then

K.� I � .0// is a closed two-sided ideal in E.� I � / and the norm in E.� I � / extends the
norm in K.� I � .0//. Moreover, the unit ball of .E.� I � /; jk � kj/ is weakly compact.
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Proof. It is clear that the norm of E.� I � / extends the norm of K.� I � .0// and that
K.� I � .0// is a closed subalgebra of E.� I � /. By Corollary 2.2 R.H / is dense in
K.� I � .0// and hence K.� I � .0// is the closure in E.� I � / of the two-sided ideal
R.H /, which implies that also K.� I � .0// is a two-sided ideal in E.� I � /. If X

is the weak limit of the net .X˛/˛2I in the unit ball of E.� I � / then by the weak
compactness of the unit balls of B.H / and of Sˆ (see [9]) we have kXk � 1 and
jŒX; ��jˆ � 1 so that X 2 E.� I � /. Since H is separable we may replace .X˛/˛2I

by a subsequence and use the semicontinuity properties of k k and j jˆ under weak
convergence to get that jkXkj � 1. Thus the unit ball of E.� I � / is a closed subset
of the unit ball of B.H / and hence weakly compact.

We pass now to bounded multipliers M.K.� I � .0///, that is double centralizer
pairs .T 0; T 00/ of bounded linear maps K.� I � .0// ! K.� I � .0// so that T 0.x/y D
xT 00.y/; see ([10]).

4.2. Proposition. Assume k�.�/ D 0, where � D Sˆ and � .0/ D S
.0/
ˆ . We have

M.K.� I � .0/// D E.� I � /, that is, if .T 0; T 00/ 2 M.K.� I � .0/// then there is a
unique T 2 E.� I � / so that T 0.x/ D xT and T 00.x/ D T x.

Proof. By Corollary 2.4 there is a sequence As 2 RC
1 .H / so that kAsk D 1, s > t

) AsAt D At and As " I , jkAskj ! 1, jk.I � As/Kkj ! 0 if s ! 1 and
K 2 K.� I � .0//.

Assume .T 0; T 00/ 2 M.K.� I � .0/// and let Ks D T 0.As/As D AsT
00.As/.

Clearly sups2N jkKskj < 1 the multiplier being bounded. Remark also that s > t )
AtKsAt D AtT

0.As/AsAt D At T
0.As/At D AtAsT

00.At / D AtT
00.At / D Kt .

Hence if T is the weak limit of a subsequence of the Ks , we have At TAt D Kt for
all t and hence T does not depend on the subsequence, that is T D w � lims!1 Ks

and also T 2 E.� I � / since the unit ball of E.� I � / is weakly closed.
On the other hand if K 2 K.� I � .0// then jkAsK � Kkj ! 0 as s ! 1 and also

jkKAs � Kkj ! 0 as s ! 1 (replace K by K�). We have

T 0.K/At D lim
s!1 T 0.KAs/At

D lim
s!1 KAsT

00.At /

D lim
s!1 KT 0.As/At

D lim
s!1 KT 0.As/AsAt D KTAt

and since this holds for all t 2 N we have T 0.K/ D KT . This then gives T 0.At /K D
AtTK D AtT

00.K/ and hence T 00.K/ D TK.
Uniqueness of T follows from K.� I � .0// � R.H /. The converse, that T 2

E.� I � / gives rise to a multiplier, is a consequence of Lemma 4.1.
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We pass now to duality. Recall from the theory of normed ideals ([9] and [12]) that
given norming function ˆ there is a conjugate norming function ˆ� so that the dual
of the Banach space .S.0/

ˆ ; j jˆ/ is .Sˆ� ; j jˆ�/ under the duality .X; Y / ! Tr.XY /

for .X; Y / 2 S
.0/
ˆ 	 Sˆ� (we leave out of the discussion the case of S.0/

ˆ D C1,
where the dual is B.H /).

4.3. Proposition. Let ˆ be a norming function so that kˆ.�/ D 0, let ˆ� be its
conjugate and assume S

.0/
ˆ ¤ C1. Then the dual of K.� IS.0/

ˆ / can be identified
isometrically with .C1 	 .Sˆ�/n/=N where

N D
°� X

1�j �n

ŒTj ; yj �; .yj /1�j �n

�
2 C1 	 .Sˆ�/n j

.yj /1�j �n 2 .Sˆ�/n with
X

1�j �n

ŒTj ; yj � 2 C1

±

and the duality map

K.� IS.0/
ˆ / 	 .C1 	 .Sˆ�/n/ �! C

is
.K; .x; .yj /1�j �n// �! Tr.Kx C

X
1�j �n

ŒTj ; K�yj /

and the norm on .C1 	 .Sˆ�/n/ is

k.x; .yj /1�j �n/k D max
�
jxj1;

X
1�j �n

jyj jˆ�

�
:

Proof. Since K ! K ˚ Œ�; K� identifies K.� IS.0/
ˆ / isometrically with a closed

subspace of K.H / ˚ .S
.0/
ˆ /n with the norm

kK ˚ .Hj /1�j �nk D kKk C max
1�j �n

jHj jˆ;

the dual of which is C1 	 .Sˆ�/n, the proof boils down to showing that N is the
annihilator of

¹K ˚ Œ�; K� 2 K.H / ˚ .S
.0/
ˆ /n j K 2 K.� IS.0/

ˆ /º:

Since R.H / is dense in K.� IS.0/
ˆ / by Corollary 2.2, it will suffice to show that N

is the annihilator of

¹R ˚ Œ�; R� 2 K.H / ˚ .S
.0/
ˆ /n j R 2 R.H /º:
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If R 2 R.H / and .x; .yj /1�j �n/ 2 N we have

Tr
�
Rx C

X
1�j �n

ŒTj ; R�yj

�
D Tr

�
R

X
1�j �n

ŒTj ; yj � C
X

1�j �n

ŒTj ; R�yj

�

D Tr
� X

1�j �n

ŒTj ; Ryj �
�

D 0:

Conversely, if .x; .yj /1�j �n/ 2 C1 	 .Sˆ�/n is such that

Tr
�
Rx C

X
1�j �n

ŒTj ; R�yj

�
D 0 for all R 2 R.H /

then

Tr
�
R

�
x �

X
1�j �n

ŒTj ; yj �
��

D 0 for all R 2 R.H /

and hence x D P
1�j �nŒTj ; yj � that is .x; .yj /1�j �n/ 2 N .

4.4. Lemma. Under the assumptions of Proposition 4.3 and the additional assump-
tion that ˆ� is mononorming

°� X
1�j �n

ŒTj ; Rj �; .Rj /1�j �n

�
2 C1 	 .Sˆ�/n j .Rj /1�j �n 2 .R.H //n

±

is dense in N .

Proof. Let .x; .yj /1�j �n/ 2 N , that is .yj /1�j �n 2 .Sˆ�/n is such that x DP
1�j �nŒTj ; yj � 2 C1. Let As 2 RC

1 .H /, s 2 N be such that As " I and

jŒ�; As�jˆ ! 0 as s ! 1. Since Sˆ� D S
.0/
ˆ� , ˆ� being mononorming, we

have jyj As � yj jˆ� ! 0 as s ! 1, 1 � j � n. Moreover, we have

ˇ̌
ˇ X

1�j �n

ŒTj ; yj As� �
X

1�j �n

ŒTj ; yj �
ˇ̌
ˇ
1

D
ˇ̌
ˇ
� X

1�j �n

ŒTj ; yj �
�
As C

X
1�j �n

yj ŒTj ; As� �
X

1�j �n

ŒTj ; yj �
ˇ̌
ˇ
1

�
ˇ̌
ˇ
� X

1�j �n

ŒTj ; yj �
�
.I � As/

ˇ̌
ˇ
1

C
X

1�j �n

jyj jˆ� jŒTj ; As�jˆ �! 0

as s ! 1.
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4.5. Proposition. Assume kˆ.�/ D 0 and that both norming functions ˆ and ˆ� are
mononorming. With the notation of Proposition 4.3, the dual of .C1 	 .Sˆ�/n/=N

identifies with E.� ISˆ/ via the duality map

�
X; .x; .yj /1�j �n/

�
�! Tr

�
Xx C

X
1�j �n

ŒTj ; X�yj

�
:

In particular, E.� ISˆ/ identifies with the bidual of K.� ISˆ/ (note that under our
assumptions S.0/

ˆ D Sˆ).

Proof. The dual of .C1 	 .Sˆ�/n/=N is the orthogonal of N in the dual of C1 	
.Sˆ�/n. The mononorming assumption on ˆ and ˆ� implies Sˆ and Sˆ� are
each others dual and are reflexive and separable (see Theorem 12.2 in Chapter III
of [9]). The dual of .C1 	 .Sˆ�/n/ is B.H / ˚ .Sˆ/n (the usual duality based on
the trace). Since Lemma 4.4 provides a dense subset of N , it suffices to show that
¹X ˚ Œ�; X� 2 B.H /˚.Sˆ/n j X 2 E.� ISˆ/º is the orthogonal in B.H /˚.Sˆ/n

of the set
°� X

1�j �n

ŒTj ; Rj �; .Rj /1�j �n

�
2 C1 	 .Sˆ�/n j .Rj /1�j �n 2 .R.H //n

±
:

Indeed, if X ˚ .Hj /1�j �n 2 B.H / ˚ .Sˆ/n is such that

Tr
�
X

X
1�j �n

ŒTj ; Rj � C
X

1�j �n

Rj Hj

�
D 0

for all .Rj /1�j �n 2 .R.H //n then Tr
� P

1�j �n.ŒX; Tj � C Hj /Rj

�
D 0 for all

.Rj /1�j �n 2 .R.H //n, which implies Hj D ŒTj ; X�, 1 � j � n. Thus we
have proved that ŒTj ; X� 2 Sˆ and hence also X 2 E.� ISˆ/. Clearly, also if
X 2 E.� ISˆ/ and .Rj /1�j �n 2 .R.H //n we have

Tr
�
X

X
1�j �n

ŒTj ; Rj � C
X

1�j �n

ŒTj ; X�Rj

�
D Tr

� X
1�j �n

ŒTj ; XRj �
�

D 0:

5. Concluding remarks

One may wonder what happens with several of the results of this paper if some of the
conditions � D � .0/ and k�.�/ D 0 are relaxed or removed. For instance, it is natural
to ask whether the density of R.H / in K.� I � / when � ¤ � .0/ and k�.�/ D 0 is
possible. Other questions, such as studying E=K.� I � / when k�.�/ ¤ 0 or � ¤ � .0/

may require quite different methods in case E=K.� I � / is no longer a C �-algebra.
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