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0. Introduction

The study of the commutant modulo the Hilbert—Schmidt class of a normal operator
with rich spectrum ([13] and [2]) has shown that this Banach algebra together with
its ideal of compact operators resembles in many ways the pair consisting of the
algebra B (H) of all operators on a Hilbert space # and the ideal K (#) of compact
operators and that the analog of the Calkin algebra is also a C *-algebra. The purpose
of this paper is to further develop this analogy. On one hand, we go beyond the case
of a normal operator [13] or of a commuting n-tuple of Hermitian operators [2] and
deal with a general non-commuting n-tuple of operators and its commutant modulo a
normed ideal which satisfies a certain quasicentral approximate unit condition relative
to the n-tuple. The main result we obtain in this general setting is that countable
degree-1 saturation, in the model theory sense of [6], holds for our analog of the
Calkin algebra, which is still a C*-algebra in this general case. In what follows
most of the time we will refer to countable degree-1 saturation simply as “degree-1
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saturation”, for the sake of brevity. This adds to the list of nice properties of these
analogs of the Calkin algebra and also adds to the list of C*-algebras satisfying
degree-1 saturation ([6]). We also obtain a few other results, like for instance the
existence of quasicentral approximate units for the ideal of compact operators in the
Banach algebra we consider, as well as generalizations of some of the multiplier and
duality results in [13].

Perhaps, the results on the analogues of the Calkin algebra which we obtain,
give hope that these algebras may be a good place to apply extensions of bi-variant
K -theory beyond C *-algebras ([5]) and cyclic cohomology ([4]).

Besides the introduction this paper has five sections.

Section 1 deals with preliminaries. Especially, in preparation for the later sections,
we recall certain basic facts about normed ideals of compact operators ([9] and [12])
and about the invariant k 7(7) where I is a normed ideal and t an n-tuple of operators,
which we used in our work on normed ideal perturbations of Hilbert space operators
([15], [14], and [17]). We also recall the definition of countable degree-1 saturation
([6] and [3]).

The main result of Section 2 is the existence of quasicentral approximate units for
the compact ideal of the Banach algebras we study. The construction we use has some
of the flavor of the tridiagonal construction we used in our original proof of the non-
commutative Weyl-von Neumann theorem [16], before the concept of quasicentral
approximate units was abstracted ([1] and [11]). The fact that the analogue of the
Calkin algebra is a C *-algebra is also in this section.

Section 3 gives the countable degree-1 saturation for the analogue of the Calkin
algebra. The proof is along similar lines to those of the proof for coronas of C *-alge-
bras of Farah and Hart ([6]) with the added technical difficulties arising from Banach
algebra norms which don’t allow continuous functional calculus. On the other hand,
we were helped by the fact that in the case of the Calkin algebra the main technical
lemma and the glueing construction simplify and becomes reminiscent of the tridiag-
onal construction and the kind of approximately commuting partition of unity used
to glue parts of operators in [16].

Section 4 deals with generalizations of multiplier and duality results from [13] to
the general setting. Here once appropriate assumptions are found, the proofs in [13]
generalize immediately.

Section 5 is a section of concluding remarks.

The author gratefully acknowledges the opportunity to learn about degree-1 sat-
uration from attending the C *-algebra meeting at Oberwolfach in August 2013 and
the lecture of Farah Ilijas at the meeting and subsequent discussions with him.

1. Preliminaries

Throughout this paper the term normed ideal will be used as an abbreviation for
symmetrically normed ideal ([9] and [12]) of compact operators on a separable infinite
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dimensional complex Hilbert space #. Thisisanideal 0 # I C B(H) of the algebra
of all bounded operators on J which is contained in K (J¢) the ideal of compact
operators and which is endowed with a certain norm | | with respect to which it is
a Banach space. The norm is given by |T'|; = |T|e = ®(s1(T), s2(T),...) where
® is a norming function (see §3 in [9]) and s1(7") > s2(T) > ... are the s-numbers
of T, that is, the eigenvalues of (T*T)'/2. Given a norming function ® we will use
the notation in [9] and denote by (S, | |¢) and (GEI?), | |¢) the normed ideals which
are the set of all compact operators 7 so that |T'|¢ < oo and, respectively, the closure
in & of R(H) the ideal of finite rank operators. We will always leave out K (H)
as a normed ideal in our considerations. If (Z, | |z) is a normed ideal we shall also
use the notation I for the closure of R(H#) in I. Remark that since | |7 = | |o
for some norming function ®, I = Gg)). Alsoif | |1 = | |¢ we clearly have

Gg)) C I C Gg andif 651?) = Go the function @ is called “mononorming” [9].
If T = (T})1<j<n is an n-tuple of operators the definition of the number

kz(r) = liminf |[A,7]|z
AR} (30)

from [15], see also [14] and [17], where (I, | |z) is a normed ideal and Rf(,}(,’) =
{A e R(FH)|0< A < I} the lim inf being with respect to the natural order on
Rf—(]f) and where we use the notation [4, 7] = ([4. Tj])1<j<n and |(Xj)1<j<n|1r =
maxi<;<x | X;|7. If | |1 = | |@ we also write k¢ (7) for k(7).

We will be mainly interested here in the condition k 7(v) = 0. Results concerning
this are summarized in [17]. For instance, if t is an n-tuple of commuting Hermitian
operators and I = €, the Schatten von Neumann class, then we have ke, (t) = 0
if n > 2. This implies the fact that ke, (N) = 0 if N is a normal operator which
underlies the results in [13].

We should recall (see [15] or [14]) that k 7(7) = Oisequivalenttokz(z [[t*) =0
where t* = (T7")1<j<nortokr(Re 7 [[Im ) = OwhereRe 1 = (Re 7})1<;<» and
Im 7 = (Im 7})1<;<n. The condition kz(7) = 0 is also equivalent to the existence
of a sequence A4, € Rf—(]f) such that 4, 5 I and [[An.T]lz — Oasn — oo
or also to the existence of a sequence A, 1 I, A, € RT(]{ ) satisfying additional
conditions like m > n = A,A, = A, and A, B, = B, where B, € R(H) are
given and so that |[4,, ]|z = 0 asn — oo.

Next we recall a few things about countable degree-1 saturation ([6] and [3]),
starting with its definition.

Definition. Given a C *-algebra M and a sequence of non-commuting indeterminates
and their adjoints X,,, X,,, m € N, a degree-1 *-polynomial is a linear combination
of terms of the form a, a X,,b and a X,;b withm € N, a,b € M. A C*-algebra M
is said to be countably degree-1 saturated if for every countable family of degree-1
x-polynomials P,(X), n € N with coefficients in M and indeterminates in the



988 D.-V. Voiculescu

sequence X = (X1, X2, ...) and their adjoints, and every sequence of compact sets
K, C R, n € N, the following are equivalent:

(i) there are b, € M, m € N suchthat ||b,,|| < 1and || P,(b)|| € K, foralln € N,
where b = (b1, bs,...);

(ii) forevery N € N, there are b,, € M, ||b,,|| < 1, m € N, such that
dist(|| P» (D) ||, Kn) < 1/N
foralln < N.

There are many technical variations (see [6]) which give equivalent definitions of
countable degree-1 saturation. In particular, the compact sets K, may be assumed to
be singletons K, = {r,},r, € Rand in condition (ii) one may require that ||b,,| < 1,
m € N. These modifications, together with other easy to imagine modifications, like
adding extra variables or repeating certain polynomials will be used in the equivalent
version of degree-1 saturation which we found convenient to use in the statement of
Theorem 3.3 in order to streamline its proof.

For further information about degree-1 saturation and its applications, we refer
the reader to the papers [6] and [3].

2. Approximate units

Lett = (T))i<j<n. I} = Tj*, 1 < j < n be an n-tuple of Hermitian operators in
B(H) and let (I, ]| |7) be a normed ideal we define

Em D) ={XeBUH)|[X.Tjlel. 1=j=n}

and

K(r; 1) = E(r; I) N K (H).
Then &(z; I) is a Banach algebra with the norm ||| X ||| = | X|| + |[X, t]|z with
an isometric involution ||| X*||| = ||| X ||| and K (z; I) is a closed two-sided ideal,

which is also closed under the involution. We shall denote by & (#) the finite-rank
Hermitian projections. Clearly P (#) C R(H) C K(z; I).

2.1. Proposition. Assume kz(t) = 0.

a)If P € P(H) and ¢ > 0, then there is A € Rf(e'r’f) so that P < A and
ANl < 1+ e

b) If R(H) is densein I and P € P(H), K, € K(t;I),1 <r <mande >0,
then there is A € R (H) so that P < A, ||(I — AK,|| <& 1 <r < mand
ANl <1+ e
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Proof. a) Since kz(t) = Othereis A € IRT(:}(), P < Asothat|[A4, t]|; < &, which
in view of the fact that ||A|| < 1 gives |||A||| < 1 + &.

b) Since [K,,Tj] € I,1 <r <m,1 < j <nand R(H)is dense in I, there is a
projection Q € P (J) sothat |[(I — Q)[K,.T;]|z <e/4and ||(I — Q)K,| < /4,
1 <r <m,1 =< j < n. Clearly, we may assume without loss of generality that
P > Q and ||K;|| < 1,1 <r < m. Using a), there is 4 € {RT(JF) so that
QO <P <Aand|[A,1]|; < &/4. We have

I = DK, < I(I — Q)Kr|| < /4

and
(I = A)Kr. Tz < |[4, 7]z Kr | + max |(1 — A)[K,, Tj]|z
I=j=n
<el/d+e/d=¢/2.
It follows that |||(1 — A) K, ||| < e. O

2.2. Corollary. If kz(t) = 0 and R(H) is dense in I, then R(H) is dense in
K(t; I).

2.3. Proposition. Assume k1(t) = 0 and IO = I, that is R(H) is dense in I.
Let X1,...,Xm € &(t: 1), Ky,...,K, € K(1; 1), P € P(H)and e > 0 be given.
Then there is B € RT(JF) sothat P < B, |||B||| <1+¢

11 = B)K;|l| <e, [[I[Xp,B]lll <e
forl<j<r,1<p<m

Proof. Without loss of generality we will assume that X, = X, 1 < p < m. Since
I = 1O there is Py € P(H) so that P < Py and

|(I = Po)[Xp. 7]z + |[Xp. T](I — Po)|1 < &/2.
Applying repeatedly Proposition 2.1 we can find Py € P(JH), As € :RfL(J(,’ ),
Po<Pi=Pr=...,
Ay <A1 <A =<...

sothat Py © [ ass — ooand Py < Ay < P41, (I — Psy1)T1As = 0, (I —
Ps11)XpAs = 0 (thatis Py H D XpAsH + TiAgH), ||| As]l] < 1+ 27571 and
I(I —As)Kj|l| <eforl < p<m,1 <l <n,1=<j<randalls > 0. Let
B = N"Y(A; +---+ Ay). We will show that choosing N sufficiently large, B will
have all the desired properties. Clearly, since Ay > P, 1 <s < N we will also have
the same inequality for their mean, thatis B > P. Similarly, (/ — B)K; is the mean
of the (I — A5)K;, 1 < s < N and this gives |||(/ — B)Kj||| < e. Also, the same
kind of argument gives ||| B||| < 1+ N 'e.
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To prove that |||[X,. B]||| < ¢if N is large enough we will show that we have
I[Xp. B]|| = 0 and |[X,, B]. t]|71 — 0as N — oco. Remark that the conditions on
P, Ag, Xp, T; imply that in the orthogonal sum decomposition

H = PoH @ (Pi— Po)H D (Pr—P)HD ...

we have that A; is block-diagonal, while the X}, and 77, being Hermitian, are block-
tridiagonal. With the notation Qg = Py, Qs = Py — Ps—1, s > 1, we have
As1 = Qo+ -+ Qs—1 + OsA5-1Qy if s > 1. It follows that

HB_(Q0+ Z (1_s;71)Qs) :HN_l Z Qs+1Ast+1H§N_1.

1<s<N 1<s<N

Hence the tridiagonality gives

I8 X0 < 2N 1%+ [0+ 3 (1-50) 05 %]
1<s<N
<N (| Y 00+ Y 0x,000])
1<s<N 1<s<N

< 4N X, |

and hence ||[B, X,]| = 0as N — oo.
Since we may choose Py # 0, we have ||B|| = 1 and hence |||B]|| <1+ N~ 'e
gives |[B, t]|r < eN L. It follows that

1B, Xpl. tllr < 2[[B. 7]l 1l Xpll + [[B, [Xp. 7]l 1
< 2N"Ye|| Xpll + (I = B)[Xp. <l + |[Xp. 1 — B)|1.

Since B > Py, it follows that
|(I = B)[Xp, tllz + |[Xp. T](I — B)|1r < &/2.
Hence |[B, X,], 7|1 < € for N large enough. O

Remark that since the assumptions 7@ = I, kz(r) = 0 imply that R(H) is
dense in JC(7; I) is a separable Banach space and applying repeatedly Proposition 2.3
we immediately can give it a somewhat stronger form, which we state as the next
corollary.

2.4. Corollary. Assume ki(t) = 0and I = I. Let X;,..., X,y € &(v; I) and
a sequence Yy € R(H), s € N be given. Then there is a sequence Ag € Rf(e'r’f) YY)
that AgYy = Yy and AgA; = A, AgXp Ay = Xp Ay if s > t and moreover

As ML Al — 1, I = A) K[| — 0, [[[[Xp, As][l| — 0

ass —>ooforall K € X(t;I)and1 < p <m.
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We pass now to the quotient Banach algebra with involution &(t; 1)/ XK (t; 1)
which we shall denote by &/ K (t; I). If

P B(H) — B(IH)/K(H) = B/K(H)

is the canonical homomorphism to the Calkin algebra, which we shall denote by
B/ K (H), then there is a canonical isomorphism of & /K (t; I) and the sub algebra
p(E(t; 1)) of B/K(r;I). In view of this we shall often also denote by p the
homomorphism &(t; I) — & /K (r; I), an admissible abuse of notation.

2.5. Proposition. We assume k() = 0 and I©® = I. Given X € &(z; I) and
g > Othereis A € Ry (H) so that ||[Al| = 1, [||A||| < 1+ ¢eand |||(I — AX]|| <
lp(X)|| + & where the norm of p(X) is the B/K(H) norm. In particular, the
normof X = K(t; 1) in &/ K (t; 1) equals the norm of p(X) in B/ K (JH). Thus
the algebraic embedding of & | K (t; I) into B/ K (H) is isometric and &/ K (t; I)
identifies with a C*-subalgebra of B /K (H).

Proof. We have stated this fact which is an immediate generalization of results in [13]
and [3], with a lot of detail, since it will be often used in the rest of this paper.

In view of our assumption, that kz(7) = 0, there are A, 1 I, A, € RT(]{) SO
that [[A,, ]|z — 0asn — oco. Then also ||(/ — An) X || — ||[p(X)]| asn — co. We
also have

(I = A X, ]|z < |[An. ]l X ]| + [(1 = Ap)[X. 7][1

and the first term in the right-hand side — 0 as n — oo by the properties of the A4,,
while the second also — 0 since 7(® = I and (1 — 4,,)[X, ] converges weakly to 0
asn — oo.

The rest of the statement is well explained in the statement of the proposition
itself. O

3. Countable degree-1 saturation

In this section we prove what amounts to countable degree-1 saturation of & / K (t; I)
under the assumption that k 7(7) = 0, in the model-theory terminology of [3] and [6].
The result is given in Theorem 3.3, which is formulated in operator-algebra terms,
using one of the equivalent definitions of countable degree-1 saturation which can
be found in [6]. For the reader’s convenience, we have also stated the definition
of degree-1 saturation at the end of Section 1 accompanied by some comments on
equivalent definitions.

We also remind the reader that the adjective “countable” will be omitted most of
the time.

We begin with a rather standard technical fact, which we record as the next lemma.
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3.1. Lemma. Let G = G* € &(t; I) be such that |||G — 31||| < 1. Then G'/? €
€(v; I) and there is a universal constant C so that |||[G'/2, X]||| < C|IIG. X]Il| if
X €&(r: I)and |[G'2, ]| < C|[G.7]|1-

Proof. The Lemma is an easy consequence of the functional calculus formula
GY? = 2ni)7! / (zI — G) 1224z,
r

where I is the circle |z — 3/2| = 5/4, and of the fact that for z € " we have
Iz1 = G)7HIl = 4/501(4/5(z = 3/2)1 —4/5(G =3/21)) [
<(1-4/571=5

and
[(zI —G)™ ', X] = (zI —G)YG, X](zI — G)™ . O

3.2. Lemma. Assume ky(v) = 0and I = I©. Let My, € 6(v; I),n € N, &, | 0
asm — 0o, Py € P(H), P 1 I ask — oo and an increasing function ¢ : N — N
be given. Then there are Ry, € {RT(JF), m € N so that

1.y Ry =1,

m>1
2°. the R,,’s commute,
30 ||Rm|l = 1 and |[Rm, Tl < &m if m > 2,
4° RyPp,=0ifm>n+2,n>1,
5% MRm: Mi]lll < &m ifk < p(m), m = 2,
6°. RyMyR,, =0, RyR,, =0,
ifk <@(m), k <¢mn),|ln—ml=2,m=2nz=2

Proof. There will be no loss of generality to assume that My = I and My = M,
k € N. Given é,, < 1/10, 6,, | 0asm — oo, we can use Proposition 2.1 repeatedly,
to find a sequence of projections Ey € P(H), Ex 1 I as k — oo and a sequence of
Ay € chL(J(’), A 1M I ask — o0, A1 = 0 satisfying the conditions

Ex > Py, Ex>Ar, (I—-E)MyAr =0 ifp<opk+2)
and also
Ag41 = Eg,
|Ak+1 — Exll =1,
A1l < 1+ 8xq1.
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and
I1[Ak+1, Mplll| < Sk+1 if p < @k +2).

Note that since the E}’s are projections, 0 = A} < E} < Ay < Ep <+ < Ep <
A1 < Exyq < --- < I implies that {Ax | k > 1} U{Ex | kK > 1} is a set of
commuting operators.

With these preparations one would be tempted to define R,, to be (4, — A ,,_1)1/ 2,
however this would lead to difficulties with commutators and |||- |||-norms because the
square-root function is not differentiable at 0. The remedy is to replace the 4, s with
another sequence B,,n > 1, with roughly the same properties and which additionally
is so designed that the problems with the square-roots are circumvented. We define

B, =1 —(I —A2)?* = A221 — A2).

Then E, < Ap4+1 < E,4 easily gives E, < B4 < E,+1 and A; = 0 gives
B, = 0. Itis also easily seen that defining

R, = (Bn - Bn—l)l/zy n=>2,
R, =0,

we have
B)? = A,(2I — A})'2,

(I —By)'? =1 - 42,
Ry = (Bu(I — By_1))'/?
= B — By
= A, 21 = ANV — A5y,
Then for n > 2 we have
1121 — A7) =3/21 || = |14 — 1/21])]
= 14> = 1/21 || + [[47. 7]z
< 1/2 42| Anlll[An. 7]l
<1/2+26, < 1.
We can then apply Lemma 3.1 to G = 21 — A2 and X € &(t; I) and get that
121 — 42)"2.1]|7 < C|[A2.<]|1 < 2C|[Ay. T]|1 < 2C5,
and

I — 432, X101 < CllI47, X]I|
< 2C|[|[An, X (1 + 8,) = 3C|[[[An, X]III-
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Remark that since P, 1 I we have E,, ? [ and hence B,, 1 I as m — oo.
In view of B; = 0 we get that condition 1° is satisfied by the R,,. Also, since the
B,, commute, it follows that the R,,, commute and that condition 2° holds. Further,
since ||Ax+1 — Ex|| = 1, we have that A has an eigenvector for the eigenvalue 1
in (Ery11 — E)J¢, which is then also an eigenvector for the eigenvalue 1 of By
and an eigenvector for the eigenvalue O of By, so that it is an eigenvector for the
eigenvalue 1 for (Bi4+1 — Bx)'/?> = Ry4y. Thus we have |Ry| = 1if m > 2,
which is the first part of condition 2°. Further R, E,;,—» = 0 gives Ry, Pr—2 = 0,
so that 4° is satisfied. Also, since My = [ and M, = M ,:‘ to check that 6° holds, it
suffices to check that R, My R, = 0ifn > m + 2,1 <k < ¢(m). Indeed, we have
Ry My R = BY*(I — Bu_1)V2 My BY/*(I — B,u_1)"/? and thus it suffices to show
that (I — By—1)My By, = 0if 1 <k < ¢(m), n > m + 2, which in turn will follow
if we show that (I — A, )M Ay, =0if 1 <k < p(m),n > m + 2. Note further
that if n > m + 2 we have A,_; > E,_» > E,, and it suffices if (I — E;,) My Ap,
for k < ¢(m) for m > 2, which is satisfied in view of the construction of the E,,
and A,,.

We are thus left with having to deal with the second part of 3° and 5°. We have

R, Tll1 = |[Am (21 — A2)V2(I — A2,_)), 7]|1
< 2/[Am, T)|z + [T — AZ)V2, <)) 1 + 2][42,_;. 7|z

Hence, choosing the 8,,’s so that 2(C + 1)6,, + 46u—1 < &, will insure that the
second part of 3° holds.
Turning to condition 5°, we have

[Rm. MiJl| = 1[Am 1 — A2)'2(1 — AZ,_,). Mi]|l|

< [Am. M 1T = A2) 21T — A2, I

+l@E — A3 M AR NI — A7, ]

+ 201 [Am—1. M N Am—1 11 Am 1121 — A2)'2]]
<8+ 11 — 43)"?, T D@ + m1)?

+ 3C | |[Am. M 11 4 ) (2 4 8m—1)?

+ 281 (1 + 8D (1 + )2 + |[21 — A2)"?.7]|1)
<82 +2C8m)2 + 8m_1)?

+3C8m(1 + 8)(2 + Sm_1)?

+28m—1(1 + 8m—1)(1 + 8m)(2 + 2C6p),

ifm > 2and k < ¢(m). Clearly, the §,,’s can be chosen so that |||[ Ry, Mi]l|| < &m-
O
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By Proposition 2.5, under the assumptions that kz(r) = 0 and I = I©),
&/ XK (r;I)is a C*-algebra, actually a C *-subalgebra of the Calkin algebra. Re-
call also that p will denote both the homomorphism B(H#) — B/ K (H) as well as
the homomorphism &(t; I) — & /K (t; I), which can be viewed as its restriction
to & (t; I) (see the discussion preceding Proposition 2.3 and Proposition 2.5).

Let X;, X Jf“, Jj € N be non-commuting indeterminates and let

n
Sao(X1. o X)) = en+ Y (ajnXjbjn + cjn X} djn)
j=1

where
ens alns'-'vannv-'-s blnv-'-sbnnv Clnv---scnnv dlns---vdnn

are in & /K (t; I) so that the f,, are non-commutative polynomials with coefficients
not commuting with the variables. We shall denote the ring of such polynomials
by &/ K (t; I){(X;. X]?“ | j € N), the f,,’s being polynomials of degree < 1 in the
indeterminates.

3.3. Theorem. Assume ki(t) = 0 and I = I©. Let ey, ajn,bjn,cjn,din €
E/K(t;I),1 <j <nneN,besuchthatthereareyj, € €/ K(t;I), 1 <j <n,
n € N, sothat ||yjnll < Land |llen + 3 1< <p(@jnYimbjn + Cjny}ydin) | —nl <
I/mifl <n < m, wherer, € R. Then there are y; € €/ K(t; I), j € N, so that
lyill <1, for j € Nand

:rn

én + Z (ajnyibjn +Cjny;djn)

1<j=<n

foralln € N.

Proof. Let Ep, Ajn, Bjn,Cjn,Djn.Y;n € E(r; 1) forl < j < n,n € N, be so
that p(En) = en, p(Ajn) = ajn, p(Bjn) = bjn, p(Cjn) = ¢jn, p(Djn) = djn,
PYjn) = Yin, I1Yjulll < 1and |[Yjn. t]|1 < &, for some given sequence &, | 0. It
will be convenient to also introduce f, (X1, ..., Xn) € /K (v: I)(X;. X7 | j € N)
and F,(X1,...,X,) € S(I;I)(XJ,X].* | j € N) the non-commutative polynomials

SaXt, o Xn) =en+ Y (@jnXjbjn + cjn X} djn)

1<j=<n
and
Fo(X1.....X0) = En+ Y (AjnX;Bjn + Cin X Djn).

1<j=<n
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We shall apply Lemma 3.2 with a sequence My € &(t; I), k € N and an increasing
function ¢ : N — N such that the set {M; | 1 < k < ¢(m)} contains the fol-
lowing operators Ep, Ajm, Bims Cim, Djm, Yim, Y;n where 1 < j < m and also
Fo(Yim, ..., Yym) and

(Fp(Ylm, ceey Ypm))*Fq(Ylm, ey qu)

withl <n <m,1 < p <m,1 <qg < m. Note that the listed operators won’t
exhaust {M; | 1 < k < @(m)}, since ¢ being increasing we will have that if
1 <m' <mthen{My |1 <k <@pm)} C{My |1 <k <q¢(m)}.

Since p(Fu(Yim, .- Yum)) = faVims--.s Yum) if 1 < n < m, we can find
P e P(H), Pr 1 I sothat

W Fe(Yims oo Yom) I — Pl —1n| < 1/m

if 1 <n <m. Remark thatif 1 <n <m and N > m then

because ) ; 4o Ri <I—Ppand! -3 ;. ni» Ri € R(H) C K (H) so that

Faime o Yam) Y. R —r
k>N+2

<1/m

| Fa Vi oo Yam) (I = Pon)]| = |

Faime Yam) Y. R
k>N+2

We can therefore find a sequence 1 < N; < N, < ... so that N, > m + 2,
Npi1— Np > 8forallm, p € N and

[F i Yy S R —ra| < 1/m
Nm<k<Np 41
if 1 <n < m and also
HF,,(Ylm,...,Ynm) 3 R,ﬁH—rn <1/m.

Nm+3<k<Np41-3

We will show that if the ¢,, are chosen so that )", _; &» < 00, then the operators
B=Y( Y )
m>j Npy §k<Nm+l

will satisfy Y; € €(t; I), ||Y;]| < land p(Y;) = y; will satisfy || fo(y1.....yn)ll =
ry foralln € N.
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We will not need to put conditions on the &, in order that || Y;|| < 1. Indeed, this
can be seen as follows. Let Z : # — # ® [?(N) be the operator

Zh:Z Z Rih ® ek

m>j Nm§k<Nm+l

and let S; € B(H# ® [?(N)) be the operator

Sthk®ek=Z Z Yimhi ® e.

k>1 m>j Ny <k<Npi1

Since || Yjm|l < 1, we have ||S;|| < 1 and we also have || Z]| < I since

z*Z=Y Y Ri=Y R =1

m>j Npm<k<Np 41 k>1

Hence ||Y;|| < lsince Y; = Z*S; Z.
Our next task will be to show thatif ), ., &, < oo, we will have [[Y;, t]|7 < oo,
which together with the boundedness of Y; we just showed, will give Y; € &(z; I).
Since the sum defining Y; is weakly convergent to Y, it will be sufficient to show
that assuming ) .., & < 00 We can insure that

ST At <o
m=>j  Np<k<Npi1

Since the Y, with 1 < j < m are among the M, with 1 < p < ¢(m) we infer from
condition 5° in Lemma 3.2 that ||| [Rk, Yjm]||| < ex if Ny <k and1 < j < m. Also
by condition 3° of Lemma 3.2, || Rg||| < 1 + €. This gives

11X Rkl =l 3 vkl

Nm<k<Npm+1 Nm<k<Npm+1
<X vk
Nm<k<Nm+1
< > R Yiml IR
Nm<k<Np+1
< Z e (1 + ep).
Nm<k<Np+1

Hence in order that Y; € &(z; I) it will suffice that ) ;. &x < oo and

X vk <

m=j  Np<k<Npii
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Since |[Rk. t]|1 < ek if k > 2 by 3° of Lemma 3.2 and ||| < 1, we have

YIX vk = X X &Y

mzj  Npm=<k<Np41 m=j N <k<Npm+1

< o0
under the assumption that ) , _, &x < co. Hence under this condition on the &, we
have Y; € &(t; I).
Finally, we turn to showing that assuming Y, ., &, < 0o, we will have
[ /1oyl = 1n

forall n € N, where y; = p(Y;). Clearly fo(y1.....¥n) = p(Fua(Y1,...,Yn)).
Note also that the relations we’re aiming at being about norms in the Calkin algebra,
we will no longer have to deal with ||| - |||-norms and the ideal I for this matter.

We begin by showing that we can arrange that the difference

F(Yi,.. Y=Y Y ReFa(Yimoo o, Yam)Ri
m2n Npy <k<Npy41
is a compact operator. Since
Fu(Yi.....Yn) = En+ > (AjnYjBjn + CjnY; Djn)
1<j=n

it will suffice to prove the assertion in 3 cases, when F,(Y1,...,Y,) equals E,,
AjnYjBjn, CjnY;"Djn where 1 < j <n.
In the first case we have
Y RkEnRk—En=— ) RkEaRi+ ) (RkEaRk— EaR}).
k>N 1<k<N, k>1

The first sum being finite rank, we need that the second sum be compact. If k > n,
|[Rk. Enl]ll < ek since E, is among the M, with p < ¢(n) < ¢(k) and condition 5°
of Lemma 3.2 holds. Thus, | Ry E, R — Ej, R,% | < ex implies that the difference we
consider will be compactif Y ;. &x < 00.

Incase F, is A;,Y; Bj,, where 1 < Jj < n, we must insure compactness of

Z Z RkAj,,ijBjan—ZAjn< Z RijmRk)Bjn

m2n Ny, <k<Np 41 mz=n N <k<Np 41

=Y > (R AjnlYimBjnRi + Ajn RiYjm[Bjn. Re)).

mzn Ny <k<Npyi1
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The last sum being a sum of finite rank operators it will suffice to have convergence of
the sum of their norms. Since the A;, and B}, are among the M, with p < ¢(n) <
(k) we have that the norms of the commutators are majorized by & in view of 5°
in Lemma 3.2 and hence the sum of norms is majorized by

KZSk

where K isabound for || A, || and || Bj,||. Thus againitwill suffice that ), ., ex <oo.
The third situation when we consider Cj,Y;* D, is entirely analogous to that of
AjnYjBj, since we treated Yj, and Y symmetrically in our assumptions about ¢.
Again, summability of the &, will suffice.
We need then to show thatif ), _, em < 0o, we will also have that the essential
norm of

Q= Y RiFa(Vim. Yam)Ri

m2n Ny, <k<Np 41

will be ry,.
Using again the operator

Z:H—>HRPN). Zh= )Y Rh®e
k>Np
we have |[Z]| < 1 and Z*T,;, Z — Q,, € R(JH), where for t > n we define on
H ® I2(N) operators I, by

Toe Y me®er=Y Y F(im . Yam)(I — Po)hi ® ¢

k>1 m2t Ny, <k<Np 41

Since [Tl = supyyss 1 Fn(Yims - - s Yam) (I — Pp)|| we have [[|[Dye || — rn| < !
and hence lim;— 1.o0 || Un¢[| = ry. This gives || p(2n)[| < lim;— 400 [|[Tn[| = 14 and
hence we are left with the opposite inequality || p(R2,)] > rp.

We will again use a compact perturbation and pass from €2, to another operator

En=Y Fallim.....Yum) Y. RE.

m=n Nim<k<Np 41

Indeed we have

En_Qn = Z Z [Fn(Ylm,---,Ynm),Rk]Rk

m2n Ny, <k<Np 41

and
HE:(Yims oo Yam), Re]Re || < k.

Again compactness will follow if ), ex < 0.
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Recall now that we had chosen the N,, so that

& ime o Yam) Y R —ra| <1/m
Nm<k<Np 41
and also
| 2 ime - V) 3 R2| | < 1/m.

Nm+3<k<Np4+1-3

Since by Lemma 3.2 we have that the Ry, are finite rank positive contractions, which
commute and satisfy |k — | > 2 = RpR; = 0 it is easily seen that if A, is the
projection onto the range of ZNm+3§k<Nm+l—3 Ri we will have RyA,, = 0 if
s < Ny ors > N4 and hence

ApAg =0if p #¢q

and if n < m we have

FaVimeeo Yam) Y R <IEaanll
Nm+3<k<Npy4+1-3

< \Fn(Ylm,...,Y,,m) 3 R}g”
Nm=<k<Np4+1
so that
EnAml = ral <1/m.
This implies
[P(En)| = limsup [[EnAp|l = ra. .

m——+o00

4. Multipliers and duality

In this section we will sometimes also deal with normed ideals in which the finite
rank operators are not dense, which occurs when the norming function @ is not
mononorming (see the preliminaries and [9] or [12]). We begin with a basic lemma.

4.1. Lemma. Let ® be a norming function and let (I,]||7) = (Se,| |o) so that
IO 1y = (Gg)), | |®) is the closure of R(H) in I. Assume kg(t) = 0. Then
K (t; I©) is a closed two-sided ideal in & (v; I) and the norm in & (v; I) extends the
norm in X (v; I©). Moreover, the unit ball of (€ (t; 1), || - |||) is weakly compact.
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Proof. Tt is clear that the norm of & (z; I) extends the norm of X (z; I©) and that
K (t: I®) is a closed subalgebra of &(z; I). By Corollary 2.2 R(H#) is dense in
K (r; I®) and hence X (t; I@) is the closure in &(z; I) of the two-sided ideal
R(F), which implies that also K (; I©) is a two-sided ideal in &(z; I). If X
is the weak limit of the net (Xy)qes in the unit ball of &(z; I) then by the weak
compactness of the unit balls of B(H) and of S (see [9]) we have || X || < | and
[[X,7]]le < 1sothat X € &(t; I). Since H is separable we may replace (Xg)aer
by a subsequence and use the semicontinuity properties of || || and | | under weak
convergence to get that ||| X ||| < 1. Thus the unit ball of &(z; I) is a closed subset
of the unit ball of B(#) and hence weakly compact. O

We pass now to bounded multipliers M (K (z; 1(?)), that is double centralizer
pairs (7', T”) of bounded linear maps K (7; I©) — K (r; I©) so that T"(x)y =
xT"(y); see ([10]).

4.2. Proposition. Assume k1(t) = 0, where I = Gg and 1© = Gg)). We have
MK (t; TO)) = &(x: 1), that is, if (T",T") € M(K(v; I®)) then there is a
unique T € &(t; 1) sothat T'(x) = xT and T" (x) = T x.

Proof. By Corollary 2.4 there is a sequence Ay € {RT(JF) sothat |As|| = 1,5 > ¢
= AsA;r = Apand Ag 1 1L (Al — L |I[(F — A9)K|l[ — 0if s — oo and
K e X(r; IO).

Assume (7', T") € M(K(z; I©@)) and let K, = T'(A5)As = A;T"(Ay).
Clearly sup,cp || Ksll| < oo the multiplier being bounded. Remark alsothats > ¢ =
A KAy = A,T/(AS)ASA, = AtT/(As)At = A,AST”(A,) = AtT//(At) = K;.
Hence if T is the weak limit of a subsequence of the K, we have A;TA; = K, for
all # and hence T does not depend on the subsequence, thatis 7 = w — limg_— o K
and also 7" € &(t; I) since the unit ball of & (7; I) is weakly closed.

On the other hand if K € K (7; I©) then ||| A;K — K||| = 0as s — oo and also
[|KAs — K||| — 0 as s — oo (replace K by K*). We have

T'(K)A; = lim T'(KAg)A,
S—>00
= lim KA;T"(A;)
S—>00
= lim KT'(4;)A;
S—>00
= lim KT'(A;)AsA; = KTA,
S—>00

and since this holds forall 1 € N we have 7’(K) = K T. This then gives T'(A4;)K =
A;TK = A;T"(K) and hence T"(K) = TK.

Uniqueness of T follows from K (t; I®) > R(H#). The converse, that T €
&(t; I) gives rise to a multiplier, is a consequence of Lemma 4.1. O
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We pass now to duality. Recall from the theory of normed ideals ([9] and [12]) that
given norming function ® there is a conjugate norming function ®* so that the dual

of the Banach space (GEI?), | ) is (&=, | |¢=) under the duality (X,Y) — Tr(XY)

for (X,Y) € GEI?) X Gg+ (we leave out of the discussion the case of GEI?) = €y,
where the dual is B(H)).

4.3. Proposition. Let ® be a norming function so that ke(t) = 0, let ©* be its

conjugate and assume 651?) # €1. Then the dual of K (z; 651?)) can be identified
isometrically with (€1 X (&G¢*)")/N where

N = {( Z [Tj’yj]v(yj)lstn) €€ x (Go+)" |

1<j=n

)izren € (Soo)" with Y [T}, ] € €1

1<j<n
and the duality map
K(r:69) x (€1 x (Sgn)") — C
is

(K, (x, (3)1<j=n)) — Te(Kx + Y [T}, Kly))

1<j=<n

and the norm on (€1 x (Sg*)") is

1Ge izl = max (x> 1yjler).

1<j=n

Proof. Since K — K @ [r, K] identifies K (t; GEI?)) isometrically with a closed
subspace of K (H#) & (Gg)))” with the norm

IK & (Hj)i<j<nll = K] + max |Hj|e,
l<j<n

the dual of which is €; x (&4+)", the proof boils down to showing that N is the
annihilator of

(K@ [t.K] € K(H)® (GP)" | K € K(1:69)}.

Since R(H) is dense in K (7; Gg,))) by Corollary 2.2, it will suffice to show that N
is the annihilator of

(R [1,R] € K(¥) @ (GD)" | R € R(H)).
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If R e R(H)and (x,(yj)i1<j<n) € N we have

Te(Rx + Y (75, Rly;) =Te(R Y [T.90+ Y. [T Rly;)

1<j=n 1<j=n 1<j=n

=1e( Y 115, Ry))

1<j=<n

=0.
Conversely, if (x, (yj)1<j<n) € €1 X (Go*)" is such that
Tr(Rx + Y [73.R]y;) =0 forall R € R(H)
1<j=n

then
Tr(R(x — Y [Tj.3])) =0 forall R € R(J¥)

1<j=<n

and hence x = ZISJ-S”[Tj,yj] that is (x, (yj)1<j<n) € N.

1003

O

4.4. Lemma. Under the assumptions of Proposition 4.3 and the additional assump-

tion that ®* is mononorming

(X @R (Riisjmn) € €1 x ©0)" | Rpizjzn € (ROO)

1<j<n

is dense in N.

Proof. Let (x,(¥j)1<j<n) € N, thatis (¥j)i<j<n € (Ga*)" is such that x =
Yi<j<nlTj yi] € €. Let A5 € R (H), s € N be such that A; 1 I and

[[t, As]le — 0 as s — oo. Since Ggx = GEI?,Z, ®* being mononorming, we

have |y; As — yjlex — 0ass — oo, 1 < j < n. Moreover, we have

S Al = Y 1T,

1<j=n 1<j=n
=|( X mo)as+ Y winad- Y 1),
1<j=n 1<j=n 1<j=n
<|( X moaN)a -4, + 3 le-llT; Adle — 0
1<j=n 1<j=n

as s — oQ.
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4.5. Proposition. Assume ke (t) = 0 and that both norming functions ® and ®* are
mononorming. With the notation of Proposition 4.3, the dual of (€1 X (S¢*)")/N
identifies with & (t; Sg) via the duality map

(X, (x, ()’j)lsjsn)) — TT(XX + > (7 X]YJ')'

1<j<n

In particular, &(t; Sg) identifies with the bidual of K (t; S¢) (note that under our
assumptions 6(48) = Gop).

Proof. The dual of (€1 x (&¢*)")/N is the orthogonal of N in the dual of €; x
(S¢*)". The mononorming assumption on ® and ®* implies S¢ and Se+ are
each others dual and are reflexive and separable (see Theorem 12.2 in Chapter III
of [9]). The dual of (€ X (Sex)") is B(H) & (Se)” (the usual duality based on
the trace). Since Lemma 4.4 provides a dense subset of V, it suffices to show that
{(XPB[r,X] € B(H)DP(Cop)" | X € E(1; Sg)} is the orthogonal in B(H) B (Se)”
of the set

1O 175 R (R)i2j=n) € €1 X (S00)" | (Rp)izj=n € (RO},

1<j<n

Indeed, if X @ (H;)1<j<n € B(H) ® (64)" is such that

(X Y 1R+ Y RiHj) =0

1<j=<n 1<j=<n

for all (Ry)1<j<n € (R(H)" then Tr( Y, o, ((X. Tj] + Hy)R;) = 0 for all
(Rj)i<j<n € (R(F))", which implies H; = [T;,X], 1 < j < n. Thus we
have proved that [7;, X] € G¢ and hence also X € &(7;8¢). Clearly, also if
X € 8(1;69) and (Rj)1<j<n € (R(H))" we have

(X Y 1R+ Y 1. XIR) =Te( Y. (7. XR;1) = 0. O

1<j<n 1<j=<n 1<j=n

5. Concluding remarks

One may wonder what happens with several of the results of this paper if some of the
conditions I = 7 and k7(t) = 0 are relaxed or removed. For instance, it is natural
to ask whether the density of R(H#) in K (t; 1) when I # I and kz(r) = 0 is
possible. Other questions, such as studying & /K (t; I) whenk 7(t) # Oor I # I©
may require quite different methods in case & /K (t; I) is no longer a C *-algebra.
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