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1. Introduction

�e Toeplitz subshifts are a rich class of symbolic systems introduced by Jacobs

and Keane in [21] in the context of Z-actions. Since then, they have been exten-

sively studied and used to provide series of examples with interesting dynami-

cal properties (see for example [7, 8, 17, 27]). Generalizations of Toeplitz sub-

shifts and some of their properties to more general group actions can be found in

[3, 5, 9, 22, 23]. For instance, in [5] Toeplitz subshifts are characterized as the

minimal symbolic almost 1–1 extensions of odometers (see [13] for this result in

the context of Z-actions). In this paper, we give an explicit construction that gen-

eralizes the result of Downarowicz in [7], to Toeplitz subshifts given by actions of

groups which are amenable, countable and residually �nite. �e following is our

main result.

�eorem A. Let G be an in�nite, countable, amenable and residually �nite group.
For every metrizable Choquet simplex K and any G-odometer O , there exists a
Toeplitz G-subshift which is an almost 1–1 extension of O such that the set of its
invariant probability measures is a�nely homeomorphic to K.

Typical examples of the groups G involved in this theorem are the �nitely gen-

erated subgroups of upper triangular matrices in GL.n;C/.

�e strategy of Downarowicz in [7] is to construct an a�ne homeomorphism

between an arbitrary metrizable Choquet simplex K and a subset of the space of

invariant probability measures of the full shift ¹0; 1ºZ. �en he shows it coincides

with the space of invariant probability measures of a Toeplitz subshift Y � ¹0; 1ºZ.

To do this, he uses the structure of metric space of the space of measures. In this

paper we consider the representation of K as an inverse limit of �nite dimensional

simplices with linear transition maps .Mn/n. �en we use this transition maps to

construct Toeplitz G-subshifts having sequences of Kakutani–Rokhlin partitions

with .Mn/n as the associated sequence of incidence matrices. Our approach is

closer to the strategy used in [17] by Gjerde and Johansen, and deals with the

combinatorics of Følner sequences.

We obtain furthermore some consequences for orbit equivalence. Two mini-

mal Cantor systems are (topologically) orbit equivalent, if there exists an orbit-

preserving homeomorphism between their phase spaces. Giordano, Matui, Put-

nam and Skau show in [15] that every minimal Zd -action on the Cantor set is orbit

equivalent to a minimal Z-action. It is still unknown if every minimal action of

a countable amenable group on the Cantor set is orbit equivalent to a Z-action.

Nevertheless it is clear that the result in [15] can not be extended to any countable
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group. For instance, by using the notion of cost, Gaboriau [14] proves that if two

free actions of free groups Fn and Fp are (even measurably) orbit equivalent then

their rank are the same i.e. n D p. Another problem is to know which are the

Z-orbit equivalence classes that the Zd -actions (or more general group actions)

realize. We give a partial answer for this question. As a consequence of the proof

of �eorem A we obtain the following result.

�eorem B. Let .X; � jX ;Z/ be a Toeplitz Z-subshift. �en for every d � 1 there
exists a Toeplitz Zd -subshift which is orbit equivalent to .X; � jX ;Z/.

�is paper is organized as follows. Section 2 is devoted to introduce the basic

de�nitions. For an amenable discrete group G and a decreasing sequence of �nite

index subgroups of G with trivial intersection, we construct in Section 3 an as-

sociated sequence .Fn/n�0 of fundamental domains, so that it is Følner and each

FnC1 is tileable by translated copies of Fn. In Section 4 we construct Kakutani–

Rokhlin partitions for generalized Toeplitz subshifts, and in Section 5 we use the

fundamental domains introduced in Section 3 to construct Toeplitz subshifts hav-

ing sequences of Kakutani–Rokhlin partitions with a prescribed sequence of inci-

dence matrices. �is construction improves and generalizes that one given in [4]

for Z
d -actions, and moreover allows one to characterize the associated ordered

group with unit. In Section 6 we give a characterization of any Choquet simplex

as an inverse limit de�ned by sequences of matrices that we use in Section 5 (they

are called “managed" sequences). Finally, in Section 7 we use the previous results

to prove �eorems A and B.

2. Basic de�nitions and background

In this article, by a topological dynamical system we mean a triple .X; T; G/,

where T is a continuous left action of a countable group G on the compact metric

space .X; d/. For every g 2 G, we denote T g the homeomorphism that induces

the action of g on X . �e unit element of G will be called e. �e system .X; T; G/

or the action T is minimal if for every x 2 X the orbit oT .x/ D ¹T g.x/ W g 2 Gº

is dense in X . We say that .X; T; G/ is a minimal Cantor system or a minimal

Cantor G-system if .X; T; G/ is a minimal topological dynamical system with X

a Cantor set.

An invariant probability measure of the topological dynamical system .X;T;G/

is a probability Borel measure � such that �.T g .A// D �.A/, for every Borel

set A. We denote by M.X; T; G/ the space of invariant probability measures of

.X; T; G/.
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2.1. Subshifts. For every g 2 G, denote Lg W G ! G the left multiplication

by g 2 G. �at is, Lg.h/ D gh for every h 2 G. Let † be a �nite alphabet.

†G denotes the set of all the functions x W G ! †. �e (left) shift action � of

G on †G is given by �g.x/ D x ı Lg�1 , for every g 2 G. �us �g.x/.h/ D

x.g�1h/. We consider † endowed with the discrete topology and †G with the

product topology. �us every �g is a homeomorphism of the Cantor set †G . �e

topological dynamical system .†G ; �; G/ is called the full G-shift on †. For every

�nite subset D of G and x 2 †G , we denote xjD 2 †D the restriction of x to D.

For F 2 †D (F is a function from D to †) we denote by ŒF � the set of all x 2 †D

such that xjD D F . �e set ŒF � is called the cylinder de�ned by F , and it is a

clopen set (both open and closed). �e collection of all the sets ŒF � is a base of

the topology of †G .

De�nition 1. A subshift or G-subshift of †G is a closed subset X of †G which is

invariant under the shift action.

�e topological dynamical system .X; � jX ; G/ is also called subshift or G-

subshift. See [2] for details.

2.1.1. Toeplitz G -subshifts. An element x 2 †G is a Toeplitz sequence if for

every g 2 G there exists a �nite index subgroup � of G such that � .x/.g/ D

x.�1g/ D x.g/ for every  2 �.

A subshift X � †G is a Toeplitz subshift or Toeplitz G-subshift if there exists

a Toeplitz sequence x 2 †G such that X D o�.x/. It is shown in [5], [22] and [23]

that a Toeplitz sequence x is regularly recurrent, i.e., for every neighborhood V of

x there exists a �nite index subgroup � of G such that � .x/ 2 V , for every  2 �.

�is condition is stronger than almost periodicity, which implies minimality of the

closure of the orbit of x (see [1] for details about almost periodicity).

2.2. Inverse and direct limit. Given a sequence of continuous maps

fn W XnC1 �! Xn; n � 0

on topological spaces Xn, we denote the associated inverse limit by

lim
 n

.Xn; fn/ D X0

f0
 �� X1

f1
 �� X2

f2
 �� � � �

WD ¹.xn/nI xn 2 Xn; xn D fn.xnC1/, for all n � 0º:

Let us recall that this space is compact when all the spaces Xn are compact and

the inverse limit spaces associated to any increasing subsequences .ni /i of indices

are homeomorphic.
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In a similar way, we denote for a sequence of maps

gn W Xn �! XnC1; n � 0

the associated direct limit by

lim
!n

.Xn; gn/ D X0

g0
��! X1

g1
��! X2

g2
��! � � �

WD ¹.x; n/; x 2 Xn; n � 0º= �;

where two elements are equivalent .x; n/ � .y; m/ if and only if there exists k �

m; n such that gkı: : :ıgn.x/ D gkı: : :ıgm.x/. We denote by Œx; n� the equivalence

class of .x; n/. When the maps gn are homomorphisms on groups Xn, then the

direct limit inherits a group structure.

2.3. Odometers. A group G is said to be residually �nite if there exists a nested

sequence .�n/n�0 of �nite index normal subgroups such that
T

n�0 �n is trivial.

For every n � 0, there exists then a canonical projection �n W G=�nC1 ! G=�n.

�e G-odometer or adding machine O associated to the sequence .�n/n is the

inverse limit

O WD lim
 n

.G=�n; �n/ D G=�0

�0
 �� G=�1

�1
 �� G=�2

�2
 �� � � � :

We refer to [5] for the basic properties of such a space. Let us recall that it inherits a

group structure through the quotient groups G=�n and it contains G as a subgroup

thanks to the injection G 3 g 7! .Œg�n/ 2 O , where Œg�n denotes the class of

g in G=�n. �us the group G acts by left multiplication on O . When there is

no confusion, we also call this action an odometer. It is equicontiuous, minimal

and the left Haar measure is the unique invariant probability measure. Note that

this action is free: the stabilizer of any point is trivial. �e Toeplitz G-subshifts

are characterized as the subshifts that are minimal almost 1–1 extensions of G-

odometers [5].

2.4. Ordered groups. For more details about ordered groups and dimension

groups we refer to [12] and [18].

An ordered group is a pair .H; HC/, such that H is a countable abelian group

and HC is a subset of H verifying .HC/C.HC/ � HC, .HC/C.�HC/ D H and

.HC/\ .�HC/ D ¹0º (we use 0 as the unit of H when H is abelian). An ordered

group .H; HC/ is a dimension group if for every n 2 Z
C there exist kn � 1 and a

positive homomorphism An W Z
kn ! Z

knC1 , such that .H; HC/ is isomorphic to

.J; JC/, where J is the direct limit

lim
�!n

.Zkn ; An/ D Z
k0

A0
��! Z

k1
A1
��! Z

k2
A2
��! � � � ;
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and JC D ¹Œv; n� W a 2 .ZC/kn ; n 2 Z
Cº. �e dimension group is simple if the

matrices An can be chosen strictly positive.

An order unit in the ordered group .H; HC/ is an element u 2 HC such that for

every g 2 H there exists n 2 Z
C such that nu� g 2 HC. If .H; HC/ is a simple

dimension group then each element in HC n ¹0º is an order unit. A unital ordered
group is a triple .H; HC; u/ such that .H; HC/ is an ordered group and u is an

order unit. An isomorphism between two unital ordered groups .H; HC; u/ and

.J; JC; v/ is an isomorphism � W H ! J such that �.HC/ D JC and �.u/ D v.

A state of the unital ordered group .H; HC; u/ is a homomorphism � W H ! R

so that �.u/ D 1 and �.HC/ � R
C. �e in�nitesimal subgroup of a simple

dimension group with unit .H; HC; u/ is

inf.H/ D ¹a 2 H W �.a/ D 0 for all state �º:

It is not di�cult to show that inf.H/ does not depend on the order unit.

�e quotient group H=inf.H/ of a simple dimension group .H; HC/ is also a

simple dimension group with positive cone

.H=inf.H//C D ¹Œa� W a 2 HCº:

�e next result is well known. �e proof is left to the reader.

Lemma 1. Let .H; HC/ be a simple dimension group equal to the direct limit

lim
!n

.Zkn ; Mn/ D Z
k0

M0
���! Z

k1
M1
���! Z

k2
M2
���! � � � :

�en for every z D .zn/n�0 in the inverse limit

lim
 n

..RC/kn ; M T
n / D .RC/k0

M T
0

 ��� .RC/k1
M T

1
 ��� .RC/k2

M T
2

 ��� � � � ;

the function �z W H ! R given by

�.Œn; v�/ D hv; zni;

for every Œn; v� 2 H; is well de�ned and is a homomorphism of groups such that
�z.HC/ � R

C. Conversely, for every group homomorphism � W H ! R such that
�.HC/ � R

C, there exists a unique z 2 lim n..RC/kn ; M T
n / such that � D �z .

�e following lemma is a preparatory lemma to prove �eorem A and B.
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Lemma 2. Let .H; HC; u/ be a simple dimension group with unit given by the
following direct limit

lim
!n

.Zkn ; An/ D Z
A0
��! Z

k1
A1
��! Z

k2
A2
��! � � � ;

with unit u D Œ1; 0�. Suppose that An > 0 for every n � 0. �en .H; HC; u/ is
isomorphic to

Z
zA0
��! Z

k1C1
zA1
��! Z

k2C1
zA2
��! � � � ;

where zA0 is the .k1 C 1/ � 1-dimensional matrix given by

zA0 D

0

B

B

B

B

B

B

B

B

@

A0.1; �/

A0.1; �/

A0.2; �/

:::

A0.k1; �/

1

C

C

C

C

C

C

C

C

A

;

and zAn is the .knC1 C 1/ � .kn C 1/ dimensional matrix given by

zAn D

0

B

B

B

B

B

B

B

B

@

1 An.1; 1/� 1 An.1; 2/ � � � An.1; kn/

1 An.1; 1/� 1 An.1; 2/ � � � An.1; kn/

1 An.2; 1/� 1 An.2; 2/ � � � An.2; kn/

:::
:::

:::
:::

1 An.knC1; 1/� 1 An.knC1; 2/ � � � An.knC1; kn/

1

C

C

C

C

C

C

C

C

A

;

for every n � 0.

Proof. For n � 1, consider Mn the .kn C 1/ � kn-dimensional matrix given by

Mn.�; k/ D

8

<

:

Een;1 C Een;2 if k D 1;

EekC1 if 3 � k � kn;

where Een;1; : : : ; Een;knC1 are the canonical vectors in R
knC1. Let Bn be the knC1 �

.kn C 1/-dimensional matrix de�ned by

Bn.i; j / D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

1 if j D 1;

An.i; 1/ � 1 if j D 2;

An.i; j � 1/ if 3 � j � kn C 1:

We have An D BnMn and zAn DMnC1Bn for every n � 1, and zA0 DM1A0.



1014 M. I. Cortez and S. Petite

�us the Bratteli diagrams de�ned by the sequences of matrices .An/n�0 and

. zAn/n�0 are contractions of the same diagram. �is shows that the respective

dimension groups with unit are isomorphic (see [16] or [10]).

2.5. Associated ordered group and orbit equivalence. Let .X; T; G/ be a topo-

logical dynamical systemsuch that X is a Cantor set and T is minimal. �e ordered

group associated to .X; T; G/ is the unital ordered group

G.X; T; G/ D .Dm.X; T; G/; Dm.X; T; G/C; Œ1�/;

where

Dm.X; T; G/ D C.X;Z/=

²

f 2 C.X;Z/ W

Z

fd� D 0, for all � 2M.X; T; G/

³

;

and

Dm.X; T; G/C D ¹Œf � W f � 0º;

and where Œ1� 2 Dm.X; T; G/ is the class of the constant function 1.

Two topological dynamical systems .X1; T1; G1/ and .X2; T2; G2/ are (topo-

logically) orbit equivalent if there exists a homeomorphism F W X1 ! X2 such

that F.oT1
.x// D oT2

.F.x// for every x 2 X1.

In [15] the authors show the following algebraic caracterization of orbit equiv-

alence.

�eorem 1 ([15], �eorem 2.5). Let .X; T;Zd/ and .X 0; T 0;Zm/ be two minimal
actions on the Cantor set. �en they are orbit equivalent if and only if there is an
isomorphism

G.X; T;Zd / ' G.X 0; T 0;Zm/

of unital ordered groups.

3. Suitable Følner sequences

Let G be a residually �nite group, and let .�n/n�0 be a nested sequence of �nite

index normal subgroups of G such that
T

n�0 �n D ¹eº.

For technical reasons it is important to notice that since the groups �n are

normal, we have g�n D �ng, for every g 2 G.

To construct a Toeplitz G-subshift that is an almost 1–1 extension of the odome-

ter de�ned by the sequence .�n/n, we need a suitable sequence .Fn/n of fundamen-

tal domains of G=�n. More precisely, each FnC1 has to be tileable by translated
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copies of Fn. To control the simplex of invariant measures of the subshift, we

need in addition the sequence .Fn/n to be Følner. We did not �nd in the special-

ized literature a result ensuring these conditions.

3.1. Suitable sequence of fundamental domains. Let � be a normal subgroup

of G. By a fundamental domain of G=�, we mean a subset D � G containing

exactly one representative element of each equivalence class in G=�.

Lemma 3. Let .Dn/n�0 be an increasing sequence of �nite subsets of G such
that for every n � 0, e 2 Dn and Dn is a fundamental domain of G=�n. Let
.ni /i�0 � Z

C be an increasing sequence. Consider .Fi /i�0 de�ned by F0 D Dn0

and

Fi D
[

v2Dni
\�ni�1

vFi�1; for every i � 1:

�en for every i � 0 we have the following:

(1) Fi � FiC1 and Fi is a fundamental domain of G=�ni
.

(2) FiC1 D
S

v2FiC1\�ni
vFi .

Proof. Since e 2 Dni
, the sequence .Fi /i�0 is increasing.

F0 D Dn0
is a fundamental domain of G=�n0

. We will prove by induction on

i that Fi is a fundamental domain of G=�ni
. Let i > 0 and suppose that Fi�1 is a

fundamental domain of G=�ni�1
.

Let v 2 Dni
. �ere exist then u 2 Fi�1 and w 2 �ni�1

such that v D wu. Let

z 2 Dni
and  2 �ni

be such that w D z. Since z 2 �ni�1
\Dni

and v D zu,

we conclude that Fi contains one representing element of each class in G=�ni
.

Let w1; w2 2 Fi be such that there exists  2 �ni
verifying w1 D w2. By

de�nition, w1 D v1u1 and w2 D v2u2, for some u1; u2 2 Fi�1 and v1; v2 2 Dni
\

�ni�1
. �is implies that u1 and u2 are in the same class of G=�ni�1

. Since Fi�1

is a fundamental domain, we have u1 D u2. From this we get v1 D v2, which

implies that v1 D v2. �us we deduce that Fi contains at most one representing

element of each class in G=�ni
. �is shows that Fi is a fundamental domain of

G=�ni
.

To show that Dni
\�ni�1

� Fi\�ni�1
, observe that the de�nition of Fi implies

that for every v 2 Dni
\ �ni�1

and u 2 Fi�1, vu 2 Fi . �en for u D e 2 Fi�1

we get v D ve 2 Fi . Now suppose that v 2 Fi \ �ni�1
� Fi . �e de�nition of

Fi implies there exist u 2 Fi�1 and  2 Dni
\ �ni�1

such that v D u. Since v

and  are in �ni�1
, we get that u 2 �ni�1

\Fi�1. �is implies that u D e because

�ni�1
\ Fi�1 D ¹eº.
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In this paper, by Følner sequences we mean right Følner sequences. �at is, a

sequence .Fn/n�0 of nonempty �nite sets of G is a Følner sequence if for every

g 2 G

lim
n!1

jFng4Fnj

jFnj
D 0:

Observe that .Fn/n�0 is a right Følner sequence if and only if .F�1
n /n�0 is a left

Følner sequence.

Lemma 4. Suppose that G is amenable. �ere exists an increasing sequence
.ni /i�0 � Z

C and a Følner sequence .Fi /i2ZC , such that

i) Fi � FiC1 and Fi is a fundamental domain of G=�ni
, for every i � 0.

ii) G D
S

i�0 Fi :

iii) FiC1 D
S

v2FiC1\�ni
vFi , for every i � 0.

Proof. From [26, �eorem 1] (see [22, Proposition 4.1] for a proof in our con-

text), there exists an increasing sequence .mi /i�0 � Z
C and a Følner sequence

.Di /i2ZC such that for every i � 0, Di � DiC1, Di is a fundamental domain of

G=�mi
, and G D

S

i�0 Di . Up to taking subsequences, we can assume that Di is

a fundamental domain of G=�i for every i � 0, and that e 2 D0.

We will construct the sequences .ni /i�0 and .Fn/n�0 as follows:

Step 0 . We set n0 D 0 and F0 D D0.

Step i . Let i > 0. We assume that we have chosen nj and Fj for every

0 � j < i . We take ni > ni�1 in order that the following two conditions are

veri�ed:
jDni

g M Dni
j

jDni
j

<
1

i jFi�1j
; for every g 2 Fi�1: (1)

Dni�1
�

[

v2Dni
\�ni�1

vFi�1: (2)

Such an integer ni exists because .Dn/n�0 is a Følner sequence and Fi�1 is a

fundamental domain of G=�ni�1
(then G D

S

v2�ni�1
vFi�1).

We de�ne

Fi D
[

v2Dni
\�ni�1

vFi�1:

Lemma 3 ensures that .Fi /i�0 veri�es i) and iii) of the lemma. Equation (2)

implies that .Fi /i�0 veri�es ii) of the lemma.

It remains to show that .Fi /i�0 is a Følner sequence.
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By de�nition of Fi we have

�

Fi nDni

�

�
[

g2Fi�1

�

Dni
g nDni

�

:

�en by equation (1) we get

jFi nDni
j

jDni
j
�

X

g2Fi�1

� jDni
g nDni

j

jDni
j

�

�
�

jFi�1j
1

i jFi�1j

�

D
1

i
:

Since

�

jFi \Dni
j C jDni

n Fi j
�

D jDni
j D jFi j D jFi \Dni

j C jFi nDni
j;

we obtain
jDni

n Fi j

jDni
j
�

1

i
:

Let g 2 G. Since

Fi g n Fi D Œ.Fi \Dni
/g n Fi � [

�

.Fi nDni
/g n Fi

�

� Œ.Fi \Dni
/g n Fi � [ .Fi nDni

/g

� ŒDni
g n .Fi \Dni

/�[ .Fi nDni
/g;

we have

jFi g n Fi j

jFi j
�
jDni

g n .Fi \Dni
/j

jDni
j

C
j.Fi nDni

/gj

jDni
j

�
jDni

g n .Fi \Dni
/j

jDni
j

C
1

i
:

(3)

On the other hand, the relation

Dni
g nDni

D Dni
g n Œ.Dni

\ Fi / [ .Dni
n Fi /�

D ŒDni
g n .Dni

\ Fi /� n .Dni
n Fi /;
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implies that

Dni
g n .Fi \Dni

/ D Œ.Dni
g n .Fi \Dni

// \ .Dni
n Fi /�

[ Œ.Dni
g n .Fi \Dni

// n .Dni
n Fi /�

D Œ.Dni
g n .Fi \Dni

// \ .Dni
n Fi /�

[ ŒDni
g nDni

�

� .Dni
n Fi / [ .Dni

g nDni
/;

which ensures that

jDni
g n .Fi \Dni

/j

jDni
j

�
jDni

n Fi j

jDni
j
C
jDni

g nDni
j

jDni
j

: (4)

From equations (3) and (4), we obtain

jFig n Fi j

jFi j
�

2

i
C
jDni

g nDni
j

jDni
j

;

which implies

lim
i!1

jFi g n Fi j

jFi j
D 0: (5)

In a similar way we deduce that

Fi n Fi g � ŒDni
n .Fi \Dni

/g� [ .Fi nDni
/;

Dni
nDni

g D ŒDni
n .Dni

\ Fi /g� n .Dni
n Fi /;

and

Dni
n .Fi \Dni

/g � .Dni
n Fi / [ .Dni

nDni
g/:

Combining the last three equations we get

jFi n Fi gj

jFi j
�

2

i
C
jDni

nDni
gj

jDni
j

;

which implies

lim
i!1

jFi n Fi gj

jFi j
D 0: (6)

Equations (5) and (6) imply that .Fi /i�0 is Følner.

�e following result is a direct consequence of Lemma 4.
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Lemma 5. Let G be an amenable residually �nite group and let .�n/n�0 be a
decreasing sequence of �nite index normal subgroups of G such that

T

n�0 �n D

¹eº. �ere exists an increasing sequence .ni /i�0 � Z
C and a Følner sequence

.Fi /i�0 of G such that

(1) ¹eº � Fi � FiC1 and Fi is a fundamental domain of G=�ni
, for every i � 0;

(2) G D
S

i�0 Fi ;

(3) Fj D
S

v2Fj\�ni
vFi , for every j > i � 0.

Proof. �e existence of the sequence of subgroups of G and the Følner sequence

verifying (1), (2) and (3) for j D i C 1 is direct from Lemma 4. Using induction,

it is straightforward to show (3) for every j > i � 0.

4. Kakutani–Rokhlin partitions for generalized Toeplitz subshifts

In this section G is an amenable, countable, and residually �nite group.

Let † be a �nite alphabet and let .†G ; �; G/ be the respective full G-shift.

For a �nite index subgroup � of G, x 2 †G and a 2 †, we de�ne

Per.x; �; a/ D ¹g 2 G W � .x/.g/ D x.�1g/ D a, for all  2 �º;

and

Per.x; �/ D
[

a2†

Per.x; �; a/:

It is straightforward to show that x 2 †G is a Toeplitz sequence if and only if

there exists an increasing sequence .�n/n�0 of �nite index subgroups of G such

that

G D
[

n�0

Per.x; �n/I

see [5, Proposition 5].

A period structure of x 2 †G is an increasing sequence of �nite index sub-

groups .�n/n�0 of G such that G D
S

n�0 Per.x; �n/ and such that for every

n � 0, �n is an essential group of periods. �is means that if g 2 G is such that

Per.x; �n; a/ � Per.�g.x/; �n; a/ for every a 2 †, then g 2 �n.

It is known that every Toeplitz sequence has a period structure (see for example

[5, Corollary 6]). We construct in this section, thanks to the period structure,

a Kakutani–Rokhlin partition, and we deduce a characterization of its ordered

group.
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4.1. Existence of Kakutani–Rokhlin partitions. In this subsection we suppose

that x0 2 †G is a non-periodic Toeplitz sequence (�g .x0/ D x0 implies g D e)

having a period structure .�n/n�0 such that for every n � 0,

(i) �nC1 is a proper subset of �n;

(ii) �n is a normal subgroup of G.

Every non-periodic Toeplitz sequence has a period structure verifying (i) [5,

Corollary 6]. Condition (ii) is satis�ed for every Toeplitz sequence whose Toeplitz

subshift is an almost 1–1 extension of an odometer (in the general case these sys-

tems are almost 1–1 extensions of subodometers. See [5] for the details).

By Lemma 5 we can assume there exists a Følner sequence .Fn/n�0 of G such

that

(F1) ¹eº � Fn � FnC1 and Fn is a fundamental domain of G=�n, for every n � 0;

(F2) G D
S

n�0 Fn;

(F3) Fn D
S

v2Fn\�i
vFi , for every n > i � 0.

We denote by X the closure of the orbit of x0. �us .X; � jX ; G/ is a Toeplitz

subshift.

De�nition 2. We say that a �nite clopen partition P of X is a regular Kakutani–

Rokhlin partition (r-K-R partition), if there exists a �nite index subgroup � of G

with a fundamental domain F containing e and a clopen Ck , such that

P D ¹�u�1

.Ck/ W u 2 F; 1 � k � N º

and

�
�

N
[

kD1

Ck

�

D
N
[

kD1

Ck for every  2 �:

To construct a regular Kakutani–Rokhlin partition of X , we need the following

technical lemma.

Lemma 6. Let P0 D ¹�u�1

.Dk/ W u 2 F; 1 � k � N º be an r-K-R partition of X

and Q any other �nite clopen partition of X . �en there exists a r-K-R partition
P D ¹�u�1

.Ck/ W u 2 F; 1 � k �M º of X such that

(1) P is �ner than P0 and Q,

(2)
SM

kD1 Ck D
SN

kD1 Dk.
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Proof. Let F D ¹u0; u1; : : : ; ujF j�1º; with u0 D e.

We re�ne every set Dk with respect to the partition Q. �us we get a collection

of disjoint sets

D1;1; : : : ; D1;l1
I : : : IDN;1; : : : ; DN;lN

;

such that each of these sets is in an atom of Q and Dk D
Slk

jD1 Dk;j for every

1 � k � N . �us

P0 D ¹�
u�1

.Dk;j / W u 2 F; 1 � j � lk ; 1 � k � N º

is an r-K-R partition of X . For simplicity we write

P0 D ¹�
u�1

.D
.0/

k
/ W u 2 F; 1 � k � N0º:

We have that P0 veri�es (2) and every D
.0/

k
is contained in atoms of P0 and Q.

Let 0 � n < jF j � 1. Suppose that we have de�ned a r-K-R partition of X

Pn D ¹�
u�1

.D
.n/

k
/ W u 2 F; 1 � k � Nnº;

such that Pn veri�es (2) and such that for every 0 � j � n and 1 � k � Nn there

exist A 2 P0 and B 2 Q such that

�
u�1

j .D
.n/

k
/ � A; B:

Now we re�ne every set �u�1
nC1.D

.n/

k
/ with respect to Q. �us we get a collection

of disjoint sets

D1;1; : : : ; D1;s1
I : : : IDNn;1; : : : ; DNn;sNn

such that each of these sets is in an atom of Q and

�u�1
nC1.D

.n/

k
/ D

sk
[

jD1

Dk;j ;

for every 1 � k � Nn.

For every 1 � k � Nn and 1 � j � sk , let Ck;j D �unC1.Dk;j / � D
.n/

k
. We

have that

PnC1 D ¹�
u�1

.Ck;j / W u 2 F; 1 � j � sk ; 1 � k � Nnº

is an r-K-R partition of X verifying (2) and such that for every 0 � i � n C 1,

1 � j � sk and 1 � k � Nn there exist A 2 P0 and B 2 Q such that

�
u�1

j .Ck;j / � A; B:

At the step n D jF j � 1 we get P D PjF j�1 verifying (1) and (2).
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Proposition 1. �ere exists a sequence .Pn D ¹�
u�1

.Cn;k/ W u 2 Fn; 1 � k �

knº/n�0 of r-K-R partitions of X such that for every n � 0,

(1) PnC1 is �ner than Pn,

(2) CnC1 � Cn D
Skn

kD1
Cn;k ,

(3)
T

n�1 Cn D ¹x0º,

(4) �e sequence .Pn/n�0 spans the topology of X .

Proof. For every n � 0, let de�ne

Cn D ¹x 2 X W Per.x; �n; a/ D Per.x0; �n; a/, for all a 2 †º:

From [5, Proposition 6] we get

Cn D ¹� .x0/ W  2 �nº;

and that P0n D ¹�
u�1

.Cn/ W u 2 Fnº is a clopen partition of X such that � .Cn/ D

Cn for every  2 �n. �us P0n is an r-K-R partition of X . Furthermore, the se-

quence .P0n/n�0 veri�es (1), (2) and (3).

For every n � 0, let

Qn D ¹ŒB�\X W B 2 †Fn ; ŒB�\X ¤ ;º:

�is is a �nite clopen partition of X and .Qn/n�0 spans the topology of X .

We de�ne

P0 D ¹�
u�1

.C0;k/ W u 2 F0; 1 � k � k0º/

the r-K-R partition �ner than P00 and Q0 given by Lemma 6. Now we take P00n the

r-K-R partition �ner that Pn�1 and Qn given by Lemma 6, and we de�ne

Pn D ¹�
u�1

.Cn;k/ W u 2 Fn; 1 � k � knº;

the r-K-R partition �ner than P0 D P0n and Q D P00n given by Lemma 6. �us Pn is

�ner than Pn�1 andQn. �is implies that the sequence .Pn/n�0 veri�es (1) and (4).

Since
Skn

kD1
Cn;k D Cn, we deduce that .Pn/n�0 veri�es (2) and (3).

Remark 1. �e sequence of partitions introduced in Proposition 1 is a generaliza-

tion to Toeplitz G-subshifts of the sequences of Kakutani–Rokhlin partitions for

Toeplitz Z-subshifts introduced in [17]. See [19] for more details about Kakutani–

Rokhlin partitions for minimal Z-actions on the Cantor set

De�nition 3. We say that a sequence .Pn/n�0 of r-K-R partitions as in Proposi-

tion 1 is a nested sequence of r-K-R partitions of X .
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Let

.Pn D ¹�
u�1

.Cn;k/ W u 2 Fn; 1 � k � knº/n�0

be a sequence of nested r-K-R partitions of X .

For every n � 0 we de�ne the matrix Mn 2Mkn�knC1
.ZC/ as

Mn.i; k/ D j¹ 2 FnC1 \ �n W �
�1

.CnC1;k/ � Cn;iºj;

We call Mn the incidence matrix of the partitions PnC1 and Pn.

Let p be a positive integer. For every n � 1 we denote by 4.n; p/ the closed

convex hull generated by the vectors 1
p

e
.n/
1 ; : : : ; 1

p
e

.n/
n , where e

.n/
1 ; : : : ; e

.n/
n is the

canonical basis in R
n. �us 4.n; 1/ is the unitary simplex in R

n.

Observe that for every n � 0 and 1 � k � knC1,

kn
X

iD1

Mn.i; k/ D
jFnC1j

jFnj
:

�is implies that Mn.4.knC1; jFnC1j// � 4.kn; jFnj/.

�e next result characterizes the maximal equicontinuous factor, the space of

invariant probability measures and the associated ordered group of .X; � jX ; G/

in terms of the sequence of incidence matrices of a nested sequence of r-K-R

partitions.

Proposition 2. Let

.Pn D ¹�
u�1

.Cn;k/ W u 2 Fn; 1 � k � knº/n�0

be a nested sequence of r-K-R partitions of X with an associated sequence of
incidence matrices .Mn/n�0. �en

(1) .X; � jX ; G/ is an almost 1–1 extension of the odometer O D lim
 �n

.G=�n; �n/;

(2) there is an a�ne homeomorphism between the set of invariant probability
measures of .X; � jX ; G/ and the inverse limit lim

 �n
.4.kn; jFnj/; Mn/;

(3) the ordered group G.X; � jX ; G/ is isomorphic to .H=inf.H/; .H=inf.H//C;

uC inf.H//, where .H; HC/ is given by

Z
M T

���! Z
k0

M T
0

���! Z
k1

M T
1

���! Z
k2

M T
2

���! � � � ;

where M D jF0j.1; : : : ; 1/ and u D ŒM T ; 0�.
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Proof. (1) For every x 2 X , n � 0, let vn.x/ 2 Fn be such that x 2 �vn.x/�1
.Cn/.

�e map � W X ! O given by �.x/ D .vn.x/�1�n/n�1 is well de�ned, is a

factor map and veri�es ��1.�.x0// D ¹x0º. �is shows that .X; � jX ; G/ is an

almost 1–1 extension of O .

(2) It is clear that for any invariant probability measure � of .X; � jX ; G/, the

sequence .�n/n�0, with �n D .�.Cn;k/ W 1 � k � kn/, is an element of the inverse

limit lim
 �n

.4.kn; jFnj/; Mn/. Conversely, any element .�n;k W 1 � k � kn/m�0 of

such an inverse limit de�nes a probability measure � on the �-algebra generated

by .Pn/n�0, which is equal to the Borel �-algebra of X because .Pn/n�0 spans the

topology of X and is countable. Since the sequence .Fn/ is Følner, it is standard

to check that the measure � is invariant by the G-action.

�e function � 7! .�n/n�0 is thus an a�ne bijection between M.X; � jX ; G/

and the inverse limit lim
 �n

.4.kn; jFnj/; Mn/. Observe that this function is a home-

omorphism with respect to the weak topology in M.X; � jX ; G/ and the product

topology in the inverse limit.

(3) We denote by Œk;�1� the class of the element .k;�1/ 2 Z�¹�1º in H . Let

� W H �! Dm.X; � jX ; G/

be the function given by

�.Œv; n�/ D

kn
X

kD1

vi Œ1Cn;k
�; for every v D .v1; : : : ; vkn

/ 2 Z
kn and n � 0,

and

�.Œk;�1�/ D k1X for every k 2 Z.

It is easy to check that � is a well de�ned homomorphism of groups that ver-

i�es �.HC/ � Dm.X; � jX ; G/C. Since .Pn/n�0 spans the topology of X , ev-

ery function f 2 C.X;Z/ is constant on every atom of Pn, for some n � 0.

�is implies that � is surjective. Lemma 1 and (2) of Proposition 2, imply that

Ker.�/ D inf.H/. Finally, � induces a isomorphism

O� W H=inf.H/ �! Dm.X; � jX ; G/

such that

O�..H=inf.H//C/ D Dm.X; � jX ; G/C:

Since Œ1;�1� D ŒM T ; 0�, we get �.ŒM T ; 0�/ D Œ1X �.
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5. Kakutani–Rokhlin partitions with prescribed incidence matrices

We say that a sequence of positive integer matrices .Mn/n�0 is managed by the

increasing sequence of positive integers .pn/n�0, if for every n � 0 the integer pn

divides pnC1, and if the matrix Mn veri�es the following properties:

(1) Mn has kn � 2 rows and knC1 � 2 columns;

(2)
Pkn

iD1 Mn.i; k/ D
pnC1

pn
, for every 1 � k � knC1.

If .Mn/n�0 is a sequence of matrices managed by .pn/n�0, then for each n � 0,

Mn.4.knC1; pnC1// � 4.kn; pn/.

Observe that the sequences of incidence matrices associated to the nested se-

quences of r-K-R partitions de�ned in Section 4 are managed by .jFnj/n�0.

In this Section we construct Toeplitz subshifts with nested sequences of r-K-R

partitions whose sequences of incidence matrices are managed.

5.1. Construction of the partitions. In the rest of this section G is an amenable

and residually �nite group. Let .�n/n�0 be a decreasing sequence of �nite index

normal subgroup of G such that
T

n�0 �n D ¹eº, and let .Fn/n�0 be a Følner

sequence of G such that

(F1) ¹eº � Fn � FnC1 and Fn is a fundamental domain of G=�n, for every n � 0;

(F2) G D
S

n�0 Fn;

(F3) Fn D
S

v2Fn\�i
vFi , for every n > i � 0.

Lemma 5 ensures the existence of a Følner sequence verifying conditions (F1),

(F2) and (F3).

For every n � 0, we call Rn the set Fn �F
�1
n [F�1

n �Fn. �is will enable us to

de�ne a “border” of each domain FnC1.

Let † be a �nite alphabet. For every n � 0, let kn � 3 be an integer. We say

that the sequence of sets .¹Bn;1; : : : ; Bn;kn
º/n�0 (where ¹Bn;1; : : : ; Bn;kn

º � †Fn ,

for any n � 0, is a collection of di�erent functions) veri�es conditions (C1)–(C4)

if it veri�es the following four conditions for any n � 0:

(C1) ��1
.BnC1;k/jFn

2 ¹Bn;i W 1 � i � knº, for every  2 FnC1 \ �n, and

1 � k � knC1;

(C2) BnC1;k jFn
D Bn;1, for every 1 � k � knC1;
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(C3) For any g 2 Fn such that for some 1 � k; k0 � kn, Bn;k.gv/ D Bn;k0.v/ for

all v 2 Fn \ g�1Fn, then g D e;

(C4) ��1
.BnC1;k/jFn

D Bn;kn
for every  2 .FnC1 \ �n/ \ ŒFnC1 n FnC1g�1�,

for some g 2 Rn.

Example 1. To illustrate these conditions, let us consider the case G D Z, with

† D ¹1; 2; 3; 4º and �n D 32.nC1/Z for every n � 0. �e set

Fn D
°

�
�32.nC1/ � 1

2

�

;�
�32.nC1/ � 1

2

�

C 1; : : : ;
�32.nC1/ � 1

2

�±

is a fundamental domain of Z=�n. Furthermore we have

Fn D
[

v2¹k32n W �4�k�4º

.Fn�1 C v/;

for every n � 1. �is shows that sequence .Fn/n�0 satis�es (F1), (F2) and (F3).

Now let us consider the case where kn D 4 for every n � 0. We de�ne

B0;k.j / D k for every j 2 F0 and 1 � k � 4, and for n � 1,

Bn;k jFn�1
D Bn�1;1;

Bn;k jFn�1Cv D Bn�1;4

for v 2 ¹�l � 32n; l � 32n W l D 3; 4º.

�us they verify the conditions (C1) and (C4). We �ll the rest of the Bn;kjFn�1Cv

with Bn�1;3 and Bn�1;2 in order that Bn;1; : : : ; Bn;4 are di�erent. �ey satisfy

conditions (C2) and (C4). �e limit in †Z of the functions Bn;1 is a Z-Toeplitz

sequence x. If X denotes the closure of the orbit of x, then we prove in the next

lemma (in a more general setting) that

.Pn D ¹�
j .ŒBn;k �\X/ W j 2 Fn; 1 � k � 4º/n�0

is a sequence of nested Kakutani–Rokhlin partitions of the subshift X .

In the next lemma, we show that conditions (C1) and (C2) are su�cient to

construct a Toeplitz sequence. �e technical conditions (C3) (aperiodicity) and

(C4) (also known as “forcing the border”) will allow to construct a nested sequence

of r-K-R partitions of X .
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Lemma 7. Let .¹Bn;1; : : : ; Bn;kn
º/n�0 be a sequence that veri�es (C1)–(C4).

(1) �e set
T

n�0ŒBn;1� contains only one element x0 which is a Toeplitz se-
quence.

(2) Let X be the orbit closure of x0 with respect to the shift action. For every
n � 0, let

Pn D ¹�
u�1

.ŒBn;k�\ X/ W 1 � k � kn; u 2 Fnº:

�en .Pn/n�0 is a sequence of nested r-K-R partitions of X .

Let .Mn/n�0 be the sequence of incidence matrices of .Pn/n�0.

(3) �e Toeplitz subshift .X; � jX ; G/ is an almost 1–1 extension of the odometer
O D lim

 �n
.G=�n; �n/.

(4) �ere is an a�ne homeomorphism between the set of invariant probability
measures of .X; � jX ; G/ and the inverse limit lim

 �n
.4.kn; jFnj/; Mn/.

(5) �e ordered group G.X; � jX ; G/ is isomorphic to .H=inf.H/; .H=inf.H//C,
uC inf.H//, where .H; HC/ is given by

Z
M T

���! Z
k0

M T
0

���! Z
k1

M T
1

���! Z
k2

M T
2

���! � � � ;

with M D jF0j.1; : : : ; 1/ and u D ŒM T ; 0�.

Proof. Condition (C2) implies that
T

n�0ŒBn;1� is non empty, and since G D
S

n�0 Fn, there is only one element x0 in this intersection. Let X be the orbit

closure of x0. For every n � 0 and 1 � k � kn, we denote Cn;k D ŒBn;k �\ X .

Claim: For every m > n � 0, 1 � k � km and  2 Fm \ �n,

��1

.Bm;k/jFn
2 ¹Bn;i W 1 � i � knº: (7)

Condition (C1) implies that (7) holds when n D m�1. We will show the claim

by induction on n.

Suppose that for every 1 � k � km and  2 Fm \ �nC1,

��1

.Bm;k/jFnC1
2 ¹BnC1;i W 1 � i � knC1º:

Let g 2 �n\Fm. Condition (F3) implies there exist v 2 �nC1\Fm and u 2 FnC1

such that g D vu. �us we get

�g�1

.Bm;k/jFn
D �u�1v�1

.Bm;k/ D �v�1

.Bm;k/juFn
:



1028 M. I. Cortez and S. Petite

Since u 2 �n\FnC1, condition (F3) implies that uFn � FnC1. �en by hypothesis

there exists 1 � l � knC1 such that

�v�1

.Bm;k/juFn
D BnC1;l juFn

;

which is equal to some Bn;s , by (C1). �is shows the claim.

From (7) we deduce that ��1
.x0/jFn

2 ¹Bn;i W 1 � i � knº, for every  2 �n.

�us if g is any element in G, and u 2 Fn and  2 �n are such that g D u, then

�g�1
.x0/ D �u�1

.��1
.x0// 2 �u�1

.Cn;k/, for some 1 � k � kn. It follows that

Pn D ¹�
u�1

.Cn;k/ W 1 � k � kn; u 2 Fnº

is a clopen covering of X .

From condition (C2) and (7) we get that ��1

.x0/jFn�1
D Bn�1;1 for any  2

�n, which implies that Fn�1 � Per.x0; �n/. �is shows that x0 is Toeplitz.

Now we will show that Pn is a partition. Suppose that 1 � k; l � kn and

u 2 Fn are such that �u�1
.Cn;k/ \ Cn;l ¤ ;. �en there exist x 2 Cn;k and

y 2 Cn;l such that �u�1
.x/ D y. From this we have x.uv/ D y.v/ for every

v 2 G. In particular, x.uv/ D y.v/ for every v 2 Fn \ u�1Fn, which implies

Bn;k.uv/ D Bn;l .v/ for every v 2 Fn \ u�1Fn. From condition (C3) we get

u D e and k D l . �is ensures that the set of return times of x0 to
Skn

kD1
Cn;k,

i.e. the set ¹g 2 G W �g�1

.x0/ 2
Skn

kD1
Cn;kº, is �n. From this it follows that

Pn is an r-K-R partition. From (C1) we have that PnC1 is �ner than Pn and that

CnC1 �
Skn

kD1
Cn;k D Cn. By the de�nition of x0 we have that ¹x0º D

T

n�0 Cn.

Now we will show that .Pn/n�0 spans the topology of X . Since every Pn is

a partition, for every n � 0 and every x 2 X there are unique vn.x/ 2 Fn and

1 � kn.x/ � kn such that

x 2 �vn.x/�1

.Cn;kn.x//:

�e collection .Pn/n�0 spans the topology of X if and only if .vn.x//n�0 D

.vn.y//n�0 and .kn.x//n�0 D .kn.y//n�0 imply x D y.

Let x; y 2 X be two sequences such that vn.x/ D vn.y/ D vn and kn.x/ D

kn.y/ for every n � 0. Let g 2 G be such that x.g/ ¤ y.g/.

We have then for any n � 0

�vn.x/jFn
D �vn.y/jFn

2 ¹Bn;i W 1 � i � knº;

and then

xjv�1
n Fn

D yjv�1
n Fn

:
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�us by de�nition, we get g 62 v�1
n Fn for any n. We can take n su�ciently large

in order that g 2 Fn�1.

Let  2 �n and u 2 Fn such that vn.x/g D u. Observe that ug�1 … Fn.

Indeed, if ug�1 2 Fn, then the relation vn.x/ D ug�1 implies  D e, but in

that case we get vn.x/g D u 2 Fn which is not possible by hypothesis. By the

condition (C1), there exists an index 1 � i � kn such that ��1
.�vn.x//jFn

D Bn;i

and then

x.g/ D ��1

�vn.x/.�1vng/ D Bn;i .u/:

Let  0 2 �n�1 \ Fn and u0 2 Fn�1 such that u D  0u0. Since  0u0g�1 D

ug�1 … Fn, we get  0 2 Fn n Fngu0�1. �is implies that  0 2 Fn n Fnw, for

w D gu0�1 2 Rn�1 and Bn;i .u/ D Bn�1;kn�1
.u0/ by the condition (C4). �us

x.g/ D Bn�1;kn�1
.u0/. �e same argument implies that y.g/ D Bn�1;kn�1

.u0/ D

x.g/ and we obtain a contradiction.

�is shows that .Pn/n�0 is a sequence of nested r-K-R partitions of X .

�e point (3), (4) and (5) follows from Propositions 2.

�e next result shows that, up to telescoping a managed sequence of matrices,

it is possible to obtain a managed sequence of matrices with su�ciently large

coe�cients to satisfy the conditions of Lemma 7.

Lemma 8. Let .Mn/n�0 be a sequence of matrices managed by .jFnj/n�0. Let kn

be the number of rows of Mn, for every n � 0.

�en there exists an increasing sequence .ni /i�0 � Z
C such that for every

i � 0 and every 1 � k � kniC1
,

(i) Rni
� FniC1

;

(ii) for every 1 � l � kni
,

Mni
MniC1 � � �MniC1�1.l; k/ > 1C

ˇ

ˇ

ˇ

ˇ

ˇ

[

g2Rni

FniC1
n FniC1

g�1

ˇ

ˇ

ˇ

ˇ

ˇ

:

If in addition there exists a constant K > 0 such that knC1 � K
jFnC1j

jFnj
for every

n � 0, then the sequence .ni /i�0 can be chosen in order that

(iii) kniC1
< Mni

� � �MniC1�1.i; k/; for every 1 � i � kni
.
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Proof. We de�ne n0 D 0. Let i � 0 and suppose that we have de�ned nj for every

0 � j � i . Let m0 > ni be such that for every m � m0,

Rni
� Fm:

Let 0 < " < 1 be such that "jRni
j < 1. Since .Fn/n�0 is a Følner sequence, there

exists m1 > m0 such that for every m � m1,

jFm n Fmg�1j

jFmj
<

"

jFniC1j
; for every g 2 Rni

: (8)

Since "jRni
j < 1, there exists m2 > m1 such that for every m � m2,

1�
jFniC1j

jFmj
> "jRni

j:

�en

jFmj

jFniC1j
� 1 > "jRni

j
jFmj

jFniC1j
:

Since the matrices Mn are positive, using induction on m and condition (2) for

managed sequences, we get

Mni
� � �Mm�1.l; j / �

jFmj

jFniC1j
; for every 1 � l � kni

; 1 � j � km:

Combining the last two equations we get

Mni
� � �Mm�1.l; j / � 1 > "jRni

j
jFmj

jFniC1j
;

and from equation (8), we obtain

Mni
� � �Mm�1.l; j / � 1 > jFm n Fmg�1jjRni

j; for every g 2 Rni
;

which �nally implies that

Mni
� � �Mm�1.l; j / >

ˇ

ˇ

ˇ

ˇ

ˇ

[

g2Rni

Fm n Fmg�1

ˇ

ˇ

ˇ

ˇ

ˇ

C 1;

for every 1 � l � kni
and 1 � j � km.
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Now, suppose there exists K > 0 such that

kmC1 � K
jFmC1j

jFmj
for every m � 0.

Property (2) for managed sequences of matrices implies

Mni
� � �Mm.l; j / �

jFmC1j

jFniC1j
for every m > ni :

Let m3 > m2 be such that

K <
jFmj

jFniC1j
for every m � m3:

�en for every m � m3 we have

kmC1 � K
jFmC1j

jFni
j
�Mni

� � �Mm.l; j /

for every 1 � l � kni
and 1 � j � kmC1:

By taking niC1 � m3 we get the desired subsequence .ni /i�0 � ZC.

�e following proposition shows that given a managed sequence, there exists

a sequence of decorations verifying conditions (C1)-(C4). �e aperiodicity condi-

tion (C3) is obtained by decorating the center of Fn in a unique way with respect

to other places in Fn. A restriction on the number of columns of the matrices gives

enough choices of coloring to ensure conditions (C3) and (C4).

Proposition 3. Let .Mn/n�0 be a sequence of matrices which is managed by
.jFnj/n�0. For every n � 0, we denote by kn the number of rows of Mn. Sup-
pose in addition there exists K > 0 such that knC1 � K

jFnC1j

jFnj
, for every n � 0.

�en there exists a Toeplitz subshift .X; � jX ; G/ verifying the following three con-
ditions:

(1) the set of invariant probability measures of .X; � jX ; G/ is a�nely homeo-
morphic to lim

 �n
.4.kn; jFnj/; Mn/;

(2) the ordered group G.X; � jX ; G/ is isomorphic to .H=inf.H/; .H=inf.H//C,
uC inf.H//, where .H; HC/ is given by

Z
M T

���! Z
k0

M T
0

���! Z
k1

M T
1

���! Z
k2

M T
2

���! � � � ;

with M D jF0j.1; : : : ; 1/ and u D ŒM T ; 0�;

(3) .X; � jX ; G/ is an almost 1–1 extension of the odometer O D lim
 �n

.G=�n; �n/.
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Proof. Let .ni /i�0 � Z
C be a sequence as in Lemma 8. Since .Mn/n�0 and the

sequence .Mni
� � �MniC1�1/i�0 de�ne the same inverse and direct limits, without

loss of generality we can assume that, for every n � 0,

Rn � FnC1;

Mn.i; k/ > 1C

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

[

g2Rn

FnC1 n FnC1g�1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

for every 1 � i � kn; 1 � k � knC1;

and

knC1 < min¹Mn.i; j / W 1 � i � kn; 1 � j � knC1º:

Let zM be the 1 � .k0 C 1/-dimensional matrix given by

zM.�; 1/ D zM .�; 2/ DM.�; 1/;

and
zM .�; k C 1/ DM.�; k/ for every 2 � k � k0:

For every n � 0, consider the .knC 1/� .knC1C 1/-dimensional matrix given by

zMn.�; 1/ D zMn.�; 2/ D

0

B

B

B

B

B

B

B

B

@

1

Mn.1; 1/� 1

Mn.2; 1/

:::

Mn.kn; 1/

1

C

C

C

C

C

C

C

C

A

and

zMn.�; k C 1/ D

0

B

B

B

B

B

B

B

B

@

1

Mn.1; k/ � 1

Mn.2; k/

:::

Mn.kn; k/

1

C

C

C

C

C

C

C

C

A

; for every 2 � k � knC1:

Lemma 2 implies that the dimension groups with unit given by

Z
M T

���! Z
k0

M T
0

���! Z
k1

M T
1

���! Z
k2

M T
2

���! � � � ;

and

Z
zM T

���! Z
k0C1

zM T
0

���! Z
k1C1

zM T
1

���! Z
k2C1

zM T
2

���! � � � ;

are isomorphic.



Invariant measures and orbit equivalence for generalized Toeplitz subshifts 1033

�us from Lemma 1 we get that both

lim
 �

n

.4.kn; jFnj/; Mn/ and lim
 �

n

.4.kn C 1; jFnj/; zMn/

are a�nely homeomorphic. Observe that . zMn/�0 is managed by .jFnj/n�0 and

veri�es, for every n � 0,

zMn.i; k/ � 1C

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

[

g2Rn

FnC1 n FnC1g�1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

;

for every 2 � i � kn C 1 and 1 � k � knC1 C 1, and

3 � knC1 C 1 � min¹Mn.i; j / W 2 � i � kn C 1; 1 � j � knC1 C 1º:

�us, by Lemma 7, to prove the proposition it is enough to �nd a Toeplitz subshift

having a sequence of r-K-R-partitions whose sequence of incidence matrices is

. zMn/n�0.

For every n � 0, we call ln and lnC1 the number of rows and columns of zMn

respectively.

For every n � 0, we will construct a collection of functions Bn;1; : : : ; Bn;ln
2

†Fn as in Lemma 7, where † D ¹1; : : : ; l0º.

For every 1 � k � l0 we de�ne B0;k 2 †F0 by B0;k.g/ D k, for every g 2 F0.

Observe that the collection ¹B0;1; : : : ; B0;l0
º veri�es condition (C3).

Let n � 0. Suppose that we have de�ned Bn;1; : : : ; Bn;ln
2 †Fn verifying

condition (C3). For 1 � k � lnC1, we de�ne

BnC1;kjFn
D Bn;1;

and

� s�1

.BnC1;k/jFn
D Bn;ln

for every s 2
[

g2Rn

FnC1 n FnC1g�1 \ �n:

We �ll the rest of the coordinates v 2 FnC1 \�n in order that �v�1
.BnC1;k/jFn

2

¹Bn;1; : : : ; Bn;ln
º and such that

j¹v 2 FnC1 \ �n W �
v�1

.BnC1;k/jFn
D Bn;iºj D zMn.i; k/;

for every 2 � i � ln.

Since zMn.1; k/ D 1, if �v�1

.BnC1;k/jFn
D Bn;1 then v D e.
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Note that the number of such v is at least zMn.2; k/C1, because there are at least
zMn.2; k/ coordinates to be �lled with Bn;2 and at least 1 coordinate to be �lled

with Bn;ln
. �us we have at least zMn.2; k/ C 1 � lnC1 di�erent ways to �ll the

coordinates such that the functions BnC1;1; : : : ; BnC1;lnC1
are pairwise di�erent

(the number of columns of zMn which are equal to the k-column is at most the

number of di�erent functions that “respect the rules" of the k-column).

By construction, every function BnC1;k veri�es (C1), (C2) and (C4). Let us

assume there are g 2 FnC1 and 1 � k; k0 � knC1 such that BnC1;k.gv/ D

BnC1;k0.v/ for any v where it is de�ned, then by the induction hypothesis, g 2 �n.

�is implies �g�1

.BnC1;k/jFn
D BnC1;k0 jFn

D Bn;1 and then g D e. �is shows

that the collection BnC1;1; : : : ; BnC1;lnC1
veri�es (C3). We conclude applying

Lemma 7.

For positive integers n1; : : : ; nk, we denote by .n1; : : : ; nk/Š the corresponding

multinomial coe�cient. �at is,

.n1; : : : ; nk/Š D
.n1 C � � � C nk/Š

n1Š � � �nkŠ
:

Remark 2. To construct the collection of functions .Bn;1 � � � ; Bn;ln
/n�0 in Propo-

sition 3 we just need that the number of columns of zMn which are equal to zMn.�; k/

does not exceed the number of possible ways to construct di�erent functions B 2

†Fn verifying

BjFn�1
D Bn�1;1 and BjvFn�1

D Bn�1;ln�1
;

for every

v 2
[

g2Rn�1

Fn n Fng�1 \ �n�1:

In other words, it is possible to make this construction with zMn verifying the

following property: for every 1 � k � lnC1 the number of 1 � l � lnC1 such that
zMn.�; l/ D zMn.�; k/ is not greater than

0

@ zMn.2; k/; : : : ; zMn.ln � 1; k/; zMn.ln; k/ �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

[

g2Rn�1

Fn n Fng�1 \ �n�1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

AŠ

Among the hypothesis of Proposition 3, we ask a stronger condition on the number

of columns of Mn which is stable under multiplication of matrices, unlike the

condition that we mention in this remark.
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6. Characterization of Choquet simplices

A compact, convex, and metrizable subset K of a locally convex real vector space

is said to be a (metrizable) Choquet simplex, if for each v 2 K there is a unique

probability measure � supported on the set of extreme points of K such that

Z

xd�.x/ D v:

In this section we show that any metrizable Choquet simplex is a�nely homeo-

morphic to the inverse limit de�ned by a managed sequence of matrices satisfying

the additional restriction on the number of columns.

6.1. Finite dimensional Choquet simplices. For technical reasons, we have to

separate the �nite and the in�nite dimensional cases.

Lemma 9. Let K be a �nite dimensional metrizable Choquet simplex with exactly
d � 1 extreme points. Let .pn/n�0 be an increasing sequence of positive integers
such that for every n � 0 the integer pn divides pnC1, and let k � max¹2; dº. �en
there exist an increasing subsequence .ni /i�0 of indices and a sequence .Mi /i�0

of square k-dimensional matrices which is managed by .pni
/i�0 such that K is

a�nely homeomorphic to lim
 �n

.4.k; pni
/; Mi /.

Proof. Let k � max¹3; dº, we will de�ne the subsequence .ni /i�0 by induction

on i through a condition explained later. For every i � 0, we de�ne Mi the

k-dimensional matrix by

Mi .l; j / D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

pniC1

pni

� k.k � 1/ if 1 � l D j � d;

k if l ¤ j; 1 � l � k and 1 � j � d;

Mi .l; d/ if d < j � k:

We always suppose that niC1 is su�ciently large in order to have

pniC1

pni

� k.k � 1/ > 0:

By the very de�nition, Mi is a positive matrix having k � 3 rows and columns;

k
X

lD1

Mi .l; j / D
pniC1

pni

;
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for every 1 � j � k and the range of Mi is at most d . �us the convex set

lim
 �n

.4.k; pni
/; Mi / has at most d extreme points.

If it has exactly d extreme points, it is a�nely homeomorphic to K. We will

choose the sequence .pni
/i�0 in order that P D

T

i�0 M0 � � �Mi .4.k; pniC1
// has

d extreme points, which implies that lim
 �n

.4.k; pni
/; Mi/ has exactly d extreme

points.

For every i � 0, the set Pi DM0 � � �Mi .4.k; pniC1
// is the closed convex set

generated by the vectors vi;1; : : : ; vi;d , where

vi;l D
1

pniC1

M0 � � �Mi .�; l/; for every 1 � l � d:

Since every vi;l is in4.k; pn0
/, there exists a sequence .ij /j�0 such that for every

1 � l � d , the sequence .vij ;l /j�0 converges to an element vl in 4.k; pn0
/.

Observe that P is the closed convex set generated by v1; : : : ; vd . �us if v1; : : : ; vd

are linearly independent then P has d extreme points.

Since for every 1 � l � d we have

k
X

jD1

1

pniC1

M0 � � �Mi .j; l/ D
1

pn0

;

there exists a positive vector

ı
.i/

l
D .ı

.i/

1;l
; : : : ; ı

.i/

k;l
/T

such that
k

X

jD1

ı
.i/

j;l
D 1

and such that, for each 1 � j � k,

1

pniC1

M0 � � �Mi .j; l/ D ı
.i/

j;l

1

pn0

:

�us if Bi is the matrix given by

Bi .�; l/ D

8

ˆ

<

ˆ

:

vi;l if 1 � l � d;

1

pn0

e
.k/

l
if d C 1 � l � k;

then Bi D DAi , where D is the k-dimensional diagonal matrix given by

Di .l; l/ D
1

pn0

; for every 1 � l � k;
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and Ai is the k-dimensional matrix de�ned by

Ai .�; l/ D

8

<

:

ı
.i/

l
if 1 � l � d;

e
.k/

l
if d C 1 � l � k:

If limj!1Aj D A is invertible (A is the k-dimensional matrix whose columns are

the vectors limj!1 ı
.ij /

l
and the canonical vectors e

.k/

dC1
; : : : ; e

.k/

k
), then v1; : : : ; vl

are linearly independent. For this it is enough to show that A is strictly diagonally

dominant (see the Levy–Desplanques �eorem in [20]).

Now we will de�ne .ni /i�0 in order that A is strictly diagonally dominant.

Let " 2 .0; 1
4
/. Let n0 D 0 and n1 > n0 such that for every 1 � l � d ,

ı
.0/

l;l
D 1 �

pn0

pn1

k
X

jD1;j¤l

M0.j; l/ D 1 �
pn0

pn1

k.k � 1/ �
3

4
C ":

For i � 1 we choose niC1 > ni in order that

1

pniC1

M0 � � �Mi�1.l; l/ < "
1

pn0
k.k � 1/2i

; for every 1 � l � d:

After a standard computation, for every i � 1 and 1 � l � d we get

ı
.i/

l;l
� ı

.i�1/

l;l
�

pn0

pniC1

k.k � 1/M0 � � �Mi�1.l; l/;

which implies that

ı
.i/

l;l
� ı

.0/

l;l
� "

X

j�1

1

2j
�

3

4
:

It follows that A.l; l/ � 3
4

for every 1 � l � k, and since the sum of the elements in

a column of A is equal to 1, we deduce that A is strictly diagonally dominant.

6.2. In�nite dimensional Choquet simplices. We use the following character-

ization of an in�nite dimensional metrizable Choquet simplex.

Lemma 10 ([24], Corollary p.186). For every in�nite dimensional metrizable
Choquet simplex K, there exists a sequence of matrices .An/n�1 such that, for
every n � 1,

(1) An.4.nC 1; 1// D 4.n; 1/,

(2) K is a�nely homeomorphic to lim
 �n

.4.n; 1/; An/.
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Our strategy is to approximate the sequence of matrices .An/n by a managed

sequence. �en we show that the associated inverse limits are a�nely homeomor-

phic. For this, we need the following classical density result, whose proof follows

from the fact that every non cyclic subgroup of R is dense.

Lemma 11. Let r D .rn/n�0 be a sequence of integers such that rn � 2 for every
n � 0. Let Cr be the subgroup of .R;C/ generated by ¹.r0 � � � rn/�1 W n � 0º. �en

.Cr/
p \4.p; 1/\ ¹v 2 R

p W v > 0º

is dense in4.p; 1/, for every p � 2, where .Cr/
p is the Cartesian product

Qp
iD1 Cr.

Lemma 12. Let K be an in�nite dimensional metrizable Choquet simplex, and let
.pn/n�0 be an increasing sequence of positive integers such that for every n � 0

the integer pn divides pnC1. �en there exist an increasing subsequence .ni /i�1

of indices and a sequence of matrices .Mi /i�1 managed by .pni
/i�0 such that, for

every i � 0,

kiC1 � min¹Mi .l; k/ W 1 � l � ki ; 1 � k � kiC1º;

and K is a�nely homeomorphic to the inverse limit lim
 �n

.4.ki ; pni
/; Mi/, where

ki is the number of rows of Mi , for every i � 0.

Proof. For every n � 0, let rn � 2 be the integer such that pnC1 D pnrn.

Let .An/n�1 be the sequence of matrices given in Lemma 10. We can assume

that An W 4.n C 3; 1/ �! 4.n C 2; 1/; for every n � 1. Now we de�ne the

subsequence .ni /i by induction.

We set n1 D 0.

Let i � 1 and suppose that we have de�ned ni � 0. We set

r.i/ D .rn/n�ni
:

For every 1 � j � i C 3, Lemma 11 ensures the existence of

v.i;j / 2 .Cr.i//
iC2 \4.i C 2; 1/\ ¹v 2 R

iC2 W v > 0º

such that

kv.i;j / � Ai.�; j /k1 <
1

2i
: (9)

Let Bi be the matrix given by

Bi .�; j / D v.i;j /; for every 1 � j � i C 3:
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Observe that (9) implies that

X

n�1

sup¹kAnv � Bnvk1 W v 2 4nC3º <1:

It follows from [6, Lemma 9] that K is a�ne homeomorphic lim
 �n

.4.iC2; 1/; Bi/.

Let niC1 > ni be such that rni
� � � rniC1�1v.i;j / is an integer vector and such

that rni
� � � rniC1�1v.i;j / > i C 3, for every 1 � j � i C 3.

We de�ne

Mi D
pniC1

pni

Bi :

�us Mi D P�1
i BiPiC1, where Pi is the diagonal matrix given by Pi .j; j / D

pni
for every 1 � j � i C 2 and i � 1. �is shows that lim

 �n
.4.i C 2; 1/; Bi/ is

a�nely homeomorphic to lim
 �n

.4.i C 2; pni
/; Mi /.

�e proof conclude verifying that .Mi /i�0 is managed by .pni
/i�0.

7. Proofs of the main theorems

7.1. Proof of �eorem A. �e proof of �eorem A is a corollary of previous

results.

Proof of �eorem A. Let ext.K/ be the set of extreme points of K. If ext.K/ is

�nite, then the proof is direct from Proposition 3 and Lemma 9. If ext.K/ is

in�nite, the proof follows from Proposition 3 and Lemma 12.

7.2. Proof of �eorem B. We refer to [8] for de�nitions and properties about

Toeplitz Z-subshifts or Toeplitz �ows. See [11] and [19] for details about ordered

Bratteli diagrams, Kakutani–Rokhlin partitions and dimension groups associated

to minimal Z-actions on the Cantor set.

We denote by † a �nite alphabet with at least two elements. For x D .xn/n2Z 2

†Z and n � m 2 Z, we set

xŒn; m� D xn � � �xm:

In a similar way, if w D w0 � � �wn�1 is a word in †n, we set

wŒk; l� D wk � � �wl ; for every 0 � k � l < n.

�e next result follows from the proof of [17, �eorem 8].
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Lemma 13. Let x0 2 †Z be a Toeplitz sequence and let .X; � jX ;Z/ be the as-
sociated Toeplitz Z-subshift. �ere exist a period structure .pn/n�0 of x0 and a
sequence of matrices .An/n�0 managed by .pn/n�0 such that the dimension group
associated to .X; � jX ;Z/ is isomorphic to

Z
AT

0
���! Z

k1
AT

1
���! Z

k2
AT

2
���! � � � :

Furthermore, if kn is the number of rows of An and rn D
pnC1

pn
, then for every

m > n > 0 and 1 � k � km,

j¹1 � l � km W An;m�1.�; l/ D An;m�1.�; k/ºj

� .An;m�1.1; k/ � rnC2 � � � rm�1; : : : ; An;m�1.kn; k/ � rnC2 � � � rm�1/Š;

where An;m�1 D An � � �Am�1.

Proof. In the proof of �eorem 8 in [17] the authors show there exist a period struc-

ture .pn/n�1 of x0 and a sequence .Pn/n�0 of nested Kakutani–Rokhlin partitions

of .X; � jX ;Z/ such that

P0 D ¹Xº

and

Pn D ¹T
j .Cn;k/ W 0 � j < pn; 1 � k � knº;

where

Cn;k D ¹x 2 X W xŒ0; pn � 1� D wn;kº; for every 1 � k � kn;

with Wn D ¹wn;1; : : : ; wn;kn
º the set of the words w of x0 of length pn verifying

wŒ0; pn�1 � 1� D x0Œ0; pn�1 � 1�, for every n � 1 (with p0 D 1).

�us the dimension group with unit associated to .X; � jX ;Z/ is isomorphic to

lim
!n

.Zkn ; AT
n / D Z

AT
0
���! Z

k1
AT

1
���! Z

k2
AT

2
���! � � � ;

where An.i; j / is the number of times that the word wn;i appears in the word

wnC1;j , for every 1 � i � kn, 1 � j � knC1 and n � 1, and the matrix AT
0 is the

vector in Z
k1 whose coordinates are equal to p1.

Since wnC1;i ¤ wnC1;j for i ¤ j , equal columns of the matrix An produce

di�erent concatenations of words in Wn. �is implies that for every 1 � k �

knC1, the number of columns of An which are equal to An.�; k/ can not exceed

the number of di�erent concatenations of rn words in Wn using exactly An.j; k/

copies of wn;j , for every 1 � j � kn. �is means that the number of columns

which are equal to An.�; k/ is smaller than or equal to .An.1; k/; : : : ; An.kn; k//Š:
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Now �x n > 0 and take m > n. �e coordinate .i; j / of the matrix An;m�1

contains the number of times that the word wn;i 2 Wn appears in wm;j 2 Wm.

Observe that every word u in Wm is a concatenation of rnC2 � � � rm�1 words in

WnC2. In addition, each word in WnC2 starts with x0Œ0; pnC1 � 1� 2 WnC1, which

is a word containing every word in Wn (we can always assume that the matrices

An are positive). �us there exist 0 � l1 < � � � < lrnC1���rm�1
< pm such that

uŒls ; ls C pn � 1� D wŒls; ls C pn � 1� 2 Wn, for every 1 � s � rnC2 � � � rm�1 and

u; w 2 Wm.

�is implies that the number of all possible concatenations of words in Wn

producing a word in Wm according to the column k of the matrix An;m�1 is smaller

than or equal to

.An;m�1.1; k/ � rnC2 � � � rm�1; : : : ; An;m�1.kn; k/ � rnC2 � � � rm�1/Š:

Proof of �eorem B. Let x0 2 X be a Toeplitz sequence. Let .pn/n�1 and .An/n�0

be the period structure of x0 and the sequence of matrices given by Lemma 13

respectively. It is straightforward to check that Lemma 13 is also true if we take

a subsequence of .pn/n�0. �us we can assume that for every n � 1, the matrix

An has its coordinates strictly greater than 1 and that there exist positive integers

rn;1; : : : ; rn;d > 1 such that

pnC1

pn

D rn D rn;1 � � � rn;d :

De�ne qnC1;i D r0;i � � � rn;i for every 1 � i � d , and �nC1 D
Qd

iD1 qnC1;iZ,

for every n � 0. We have �nC1 � �n,
T

n�1 �n D ¹0º and jZd =�nj D pn. Let

.Fn/n�0 be a Følner sequence associated to .�n/n�1 as in Lemma 5. We let Rn be

as in Section 5 (the set that de�nes the “border").

Now, we de�ne an increasing sequence .ni /i�1 of integers as follows:

We set n1 D 1. For i � 1, given ni we chose niC1 > ni C 1 such that

X

g2Rni

jFniC1
n FniC1

� gj

jFniC1
j

<
1

jFni
jrni

rniC1

:

�us,

jFniC1
j

jFni
j
�

X

g2Rni

jFniC1
n FniC1

� gj >
jFniC1

j

jFni
j
�

jFniC1
j

jFni
jrni

rniC1

D rni
� � � rniC1�1 � rniC2 � � � rniC1�1

> rni
� � � rniC1�1 � kni

rniC2 � � � rniC1�1:
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Let M0 D A0 and Mi D Ani
� � �AniC1�1 for every i � 1. For every 1 � k � kniC1

we get

Mi .kni
; k/ �

X

g2Rni

jFniC1
n FniC1

� gj > Mi .kni
; k/� rniC2 � � � rniC1�1;

which implies that

.Mi .1; k/; : : : ; Mi.kni
� 1; k/; Mi.kni

; k/ �
X

g2Rni

jFniC1
n FniC1

� gj/Š

is greater than

.Mi .1; k/ � rniC2 � � � rniC1�1; : : : ; Mi.kni
; k/ � rniC2 � � � rniC1�1/Š

�en by the previous inequality and Lemma 13, the number of columns of Mi

which are equal to Mi .�; k/ is smaller than

.Mi .1; k/; : : : ; Mi.kni
� 1; k/; Mi.kni

; k/ �
X

g2Rni

jFniC1
n FniC1

� gj/Š

As in the proof of Proposition 3, we de�ne zMi and we call li and liC1 the number

of rows and columns of zMi respectively, for every i � 0. According to the nota-

tion of the proof of Proposition 3, in our case M0 corresponds to the matrix M

and zM0 corresponds to the matrix zM . Observe that the bound on the number of

columns which are equal to Mi .�; k/ (and then to zMi .�; k/) ensures the existence

of enough possibilities to �ll the coordinates of Fni
in order to obtain di�erent

function Bi;1 � � � ; Bi;li
2 ¹1; : : : ; l1º

Fni as in the proof of Proposition 3, for every

i � 1 (see Remark 2).

�e Toeplitz Zd -subshift .Y; � jY ;Zd / given by .Bi;1; : : : ; Bi;li
/i�1 has an or-

dered group G.Y; � jY ;Zd / isomorphic to .H=inf.H/; .H=inf.H//C; uC inf.H//,

where .H; HC/ is given by

Z

zM T
0

���! Z
l0

zM T
1

���! Z
l2

zM T
2

���! Z
l3

zM T
3

���! � � � ;

with zM0 D jF1j.1; : : : ; 1/ and u D Œ1; 0� (Cf. Lemma 7).

Lemma 2 implies that .H; HC; u/ is isomorphic to the dimension group with

unit .J; JC; w/ associated to .X; � jX ;Z/. �us, we deduce that the ordered group

.J=inf.J /; .J=inf.J //C; w C inf.J // associated to .X; � jX ;Z/ is isomorphic to

G.Y; � jY ;Zd /. We conclude the proof applying �eorem 1.
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In [25], the author shows that every minimal Cantor system .Y; T;Z/ having

an associated Bratteli diagram which satis�es the equal path number property is

strong orbit equivalent to a Toeplitz subshift .X; � jX ;Z/. �us the next result is

immediate.

Corollary 1. Let .X; T;Z/ be a minimal Cantor having an associated Bratteli
diagram which satis�es the equal path number property. �en for every d � 1

there exists a Toeplitz subshift .Y; � jY ;Zd / which is orbit equivalent to .X; T;Z/.

Acknowledgment. We would like to thank the referee for many valuable com-

ments which served to improve the article.
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