
Groups Geom. Dyn. 8 (2014), 1047–1099

DOI 10.4171/GGD/256

Groups, Geometry, and Dynamics

© European Mathematical Society

�e limit set of subgroups of arithmetic groups

in PSL.2 ;C/q
� PSL.2 ;R/r

Slavyana Geninska

Abstract. We consider subgroups � of arithmetic groups in the product PSL.2;C/q �
PSL.2;R/r with q C r � 2 and their limit set. We prove that the projective limit set of

a nonelementary �nitely generated � consists of exactly one point if and only if one and

hence all projections of � to the simple factors of PSL.2;C/q�PSL.2;R/r are subgroups of

arithmetic Fuchsian or Kleinian groups. Furthermore, we study the topology of the whole

limit set of � . In particular, we give a necessary and su�cient condition for the limit set

to be homeomorphic to a circle. �is result connects the geometric properties of � with its

arithmetic ones.

Mathematics Subject Classi�cation (2010). 20H10, 22E40.

Keywords. Fuchsian groups, arithmetic lattices, limit sets.

Contents

0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1048

1 Schottky groups in PSL.2;C/ and PSL.2;R/ . . . . . . . . . . . . . . 1051

2 Products of hyperbolic planes and 3-spaces . . . . . . . . . . . . . . . 1054

3 Nonelementary groups . . . . . . . . . . . . . . . . . . . . . . . . . . 1060

4 Irreducible arithmetic groups . . . . . . . . . . . . . . . . . . . . . . . 1070

5 Small limit sets of subgroups of arithmetic groups

in PSL.2;C/q � PSL.2;R/r . . . . . . . . . . . . . . . . . . . . . . . 1077

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1097



1048 S. Geninska

0. Introduction

Arithmetic subgroups of semi-simple Lie groups have been and still are a major

subject of study. �ey are examples of lattices, i.e., discrete subgroups of �nite

covolume. Margulis’ arithmeticity theorem states that for groups with R-rank

greater than or equal to 2, the only irreducible lattices are the arithmetic ones (see

Margulis [20], �eorem A, p. 298).

�e situation is di�erent for the simple Lie groups PSL.2;R/ and PSL.2;C/.

�ere, the arithmetic lattices represent a minority among all lattices, i.e., the co�-

nite Fuchsian and Kleinian groups. Nevertheless, they provide important exam-

ples since one can get the general form of their elements quite explicitly and not

only in terms of generators.

While lattices are studied very well, only little is known about discrete sub-

groups of in�nite covolume of semi-simple Lie groups (e.g., P. Albuquerque [1],

Leuzinger [16], Link [17], Quint [21, 22]). �e main class of examples are Schottky

groups. �ere are also some rigidity results for subgroups of the product of two

simple Lie groups of real rank 1, see e.g. Burger [5] and Dal’bo and Kim [9]. One

of the goals of this article is to investigate further examples of in�nite covolume

subgroups.

�e so called semi-arithmetic Fuchsian groups constitute a speci�c class of

Fuchsian groups which can be embedded up to commensurability in arithmetic

subgroups of PSL.2;R/r (see Schmutz, Schaller and Wolfart [25]). �ese em-

beddings are of in�nite covolume in PSL.2;R/r . A trivial example is the group

PSL.2;Z/, which can be embedded diagonally in any Hilbert modular group. Fur-

ther examples are the other arithmetic Fuchsian groups and the triangle Fuchsian

groups. It is a general question if certain classes of Fuchsian groups can be char-

acterized by geometric means. �ere is a classical characterization of arithmetic

Fuchsian groups due to Takeuchi which is based on number theoretical properties

of their trace sets [28]. A further characterization in this direction is given in [13].

�e main goal of this article is to connect the arithmetic and the geometric

properties of subgroups of irreducible lattices in PSL.2;C/q �PSL.2;R/r . We are

in particular interested in those groups whose projection to one of the factors is (a

subgroup of) an arithmetic Fuchsian (or Kleinian) group. We prove that these are

exactly the nonelementary groups with the “smallest” possible limit set.

�is article is organized as follows. In Section 1 we have compiled some basic

facts about Fuchsian and Kleinian groups and especially about Schottky groups.

We prove in particular a criterion for a Schottky subgroup of PSL.2;C/ to be

Zariski dense over R.
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Section 2 provides a detailed description of the geometric boundary of the

space .H3/q � .H2/r , which is the set of equivalence classes of asymptotic geo-

desic rays. We introduce the notion of the limit set as the part of the orbit closure

�.x/ in the geometric boundary where x is an arbitrary point in .H3/q � .H2/r .

We also state a natural structure theorem for the regular limit set L
reg
� of discrete

nonelementary groups � due to Link: L
reg
� is the product of the Furstenberg limit

set F� and the projective limit set P� . We also give a criterion for a subgroup of

PSL.2;C/q � PSL.2;R/r to be nonelementary.

Section 3 is devoted to the study of nonelementary groups. We show that the

regular limit set of a nonelementary group is not empty. �e main result of the

section is the following proposition, which is a special case of Proposition 3.8 in

the text.

Proposition. Let � be a nonelementary subgroup of an irreducible arithmetic

group in

PSL.2;C/q � PSL.2;R/r ; q C r � 2:

�en the projective limit set P� is convex and the closure of P� in RPqCr�1 is

equal to the limit cone of � and in particular the limit cone of � is convex.

�is is a result similar to a theorem of Benoist in Section 1.2 in [3] in the case

of PSL.2;C/q � PSL.2;R/r with q C r � 2. Note however that while the interior

of the limit cone is always nonempty for Zariski dense groups, it can be empty for

groups that are just nonelementary.

�e proof was inspired by the proof of a similar statement by Dal’Bo and Kim

in [10] for the product of two Hadamard manifolds and for groups � such that their

projections to the two factors do not contain elliptic elements.

In Section 4 we describe the irreducible arithmetic subgroups of the group

PSL.2;C/q � PSL.2;R/r using quaternion algebras.

In Section 5 we consider subgroups (of in�nite index) of irreducible arith-

metic groups in PSL.2;C/q � PSL.2;R/r . We start by giving the example of

Hecke groups embedded in Hilbert modular groups. In §5.3 we determine the

groups with the smallest possible projective limit set. �e main result connects

the geometric properties of a group with its arithmetic ones. It is a compilation of

�eorem 5.10 and Corollary 5.17.
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�eorem A. Let � be as in the previous proposition and in addition be �nitely

generated. �en the projective limit set P� consists of exactly one point if and only

if � is a conjugate by an element in GL.2;C/q � GL.2;R/r of a subgroup of

Diag.S/ WD ¹.�1.s/; : : : ; �qCr.s// j s 2 Sº;

where S is an arithmetic Fuchsian or Kleinian group and, for each i D 1; : : : ;

q C r , �i denotes either the identity or complex conjugation.

In particular, �eorem 5.10 shows that the projective limit set P� consists of

exactly one point if and only if pj .�/ is contained in an arithmetic Fuchsian or

Kleinian group for one and hence all j 2 ¹1; : : : ; q C rº.
�e main ingredients of the proof are the characterization of co�nite arithmetic

Fuchsian groups by Takeuchi [28] and the analogous characterization for co�nite

arithmetic Kleinian groups given by Maclachlan and Reid in [19], the criterion for

Zariski density of Dal’Bo and Kim [9] and a theorem of Benoist [3] stating that

for Zariski dense subgroups of PSL.2;C/q � PSL.2;R/r the projective limit cone

has nonempty interior.

�ere are some di�erences depending on whether q D 0 or r D 0 or qr ¤ 0.

�e group S and hence pj .�/ can be an arithmetic Kleinian group only if r D 0.

And if q D 0, we can require that only one of the projections of � is nonele-

mentary. �is is due to the following fact. If � is an irreducible arithmetic group

in PSL.2;R/r and � is a subgroup of � such that its projection to one factor is

nonelementary, then � is nonelementary (Lemma 3.5). �is is no longer true in

the general case as the example in the remark after Corollary 5.12 shows.

We can also avoid the assumption that � is nonelementary by using the limit

cone as �eorem 5.15 shows.

We then consider the full limit set (instead of P� only) and determine the

nonelementary groups with the smallest one. �e following theorem is a com-

pilation of �eorem 5.18 and Corollary 5.19.

�eorem B. Let � be a �nitely generated subgroup of an irreducible arithmetic

group in PSL.2;C/q � PSL.2;R/r with q C r � 2 and r ¤ 0 such that pj .�/ is

nonelementary for some j 2 ¹1; : : : ; q C rº. �en the limit set L� is embedded

homeomorphically in a circle if and only if pj .�/ is contained in an arithmetic

Fuchsian group.

Furthermore L� is homeomorphic to a circle if and only if pj .�/ is a co�nite

arithmetic Fuchsian group.
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In the case r D 0, we determine for which � the limit set is di�eomorphic to

the 2-sphere (�eorem 5.21) and for which it is homeomorphic to a circle (�eo-

rem 5.22).

Acknowledgments. �e author would like to thank her advisor Enrico Leuzinger

for the many stimulating discussions. Furthermore, the author would like to thank

Françoise Dal’Bo and Gabriele Link for pointing out and explaining her some

of their results, to Corentin Boissy for helpful discussions and to Alan Reid for

comments on this article.

1. Schottky groups in PSL.2 ;C/ and PSL.2 ;R/

In this section we provide some basic facts and notations that are needed in the

rest of this paper. We will use the notation introduced in Chapter 2 in the book of

Maclachlan and Reid [19].

We will change freely between matrices in SL.2;C/ and their action as frac-

tional linear transformations, namely as elements in PSL.2;C/.

For g D
�

a b
c d

�
2 PSL.2;C/ we set

tr.g/ WD ˙.a C d/;

where the sign is chosen so that tr.g/ D rei� with r � 0 and � 2 Œ0; �/. Note that

for g 2 PSL.2;R/ we have tr.g/ D ja C d j.
For a subgroup � of PSL.2;C/ we call

Tr.�/ D ¹tr.g/ j g 2 �º

the trace set of �.

�e translation length of a loxodromic g is the distance between a point x on

the geodesic �xed by g and its image g.x/ under g. If g is elliptic, parabolic or

the identity, we de�ne

`.g/ WD 0:

�e following notion of “smallness” for subgroups � of PSL.2;C/ is impor-

tant in the subsequent discussion. �e group � is elementary if it has a �nite orbit

in its action on H3 [ C [ ¹1º. Otherwise it is said to be nonelementary. Every

nonelementary subgroup of PSL.2;C/ contains in�nitely many loxodromic ele-

ments, no two of which have a common �xed point (see �eorem 5.1.3 in the book

of Beardon [2]).
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A Schottky group is a �nitely generated free subgroup of PSL.2;C/ that con-

tains only loxodromic isometries except for the identity. We will mainly deal with

two-generated Schottky groups.

Lemma 1.1. For each two loxodromic isometries without common �xed points,

we can �nd powers of them that generate a Schottky group. �is means that every

nonelementary subgroup of PSL.2;C/ has a subgroup that is a Schottky group.

A proof of this lemma can be found in [12].

A Schottky group contains isometries without common �xed points because

it is nonelementary.

Everything above is also true for Fuchsian Schottky groups, i.e., for subgroups

of PSL.2;C/ that after conjugation become subgroups of PSL.2;R/.

Let K be either C or R. �e following is shown by Cornelissen and Marcolli

in [7], Lemma 3.4.

Lemma 1.2 ([7]). A Schottky group is Zariski dense over K in PSL.2;K/.

Since every nonelementary subgroup of PSL.2;K/ contains a Schottky group,

we have the following

Corollary 1.3. A nonelementary subgroup of PSL.2;K/ is Zariski dense over K

in PSL.2;K/.

�e next question is when � is Zariski dense over R. By Corollary 3.2.5 in the

book of Maclachlan and Reid [19], if Tr.�/ is a subset of R, then � is conjugate

to a subgroup of PSL.2;R/. �en the Zariski closure of � over R is a conjugate

of PSL.2;R/. For the case when Tr.�/ is not a subset of R we have the following

lemma.

Lemma 1.4. Let � be a Schottky group such that Tr.�/ is not a subset of R. �en

� is Zariski dense in PSL.2;C/ over R.

Proof. Let y� be the Zariski closure of � over R. �en y� is an algebraic group and

hence a Lie subgroup of PSL.2;C/. Since PSL.2;C/ is connected, it is enough

to show that the dimension of y� is equal to the dimension of PSL.2;C/ over R in

order to conclude that � is Zariski dense in PSL.2;C/ over R.

We will show that the Lie algebra of y� over R is equal to sl.2;C/, which is the

Lie algebra of PSL.2;C/ considered as a real Lie group.

First we consider � and y� as subgroups of SL.2;C/. �en the exponential map

from the Lie algebra of y� to y� is given by the matrix exponential map.
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After conjugation, since Tr.�/ is not a subset of R, we can assume that �

contains a loxodromic element T1 D
�

ex 0
0 e�x

�
with x 2 CnR and and hence

tr.T1/ … R. �ere is also an isometry T2 which does not have common �xed

points with T1 and hence is equal to T2 D
�
a0 b0

c0 d 0

�
with b0 ¤ 0 and c0 ¤ 0 (oth-

erwise 0 or 1 would be a common �xed point). �erefore their preimages in

sl.2;C/ under the exponential map are t1 D
�

x 0
0 �x

�
and t2 D

�
a b
c �a

�
where b ¤ 0

and c ¤ 0. �en sl.2;C/ contains

t3 D Œt1; t2� D
"

0 2bx

�2cx 0

#
;

t4 D Œt1; t3� D
"

0 4bx2

4cx2 0

#
;

t5 D Œt1; t4� D
"

0 8bx3

�8cx3 0

#
;

t6 D Œt1; t5� D
"

0 16bx4

16cx4 0

#
:

Since tr.T1/ D ex C e�x is not real, then x is not only not real but also cannot be

a multiple of i . �is means that x and x3 are linearly independent over R. Hence

the linear span of t3 and t5 over R is
®�

0 bz
�cz 0

�
j z 2 C

¯
.

Analogously, the linear span of t4 and t6 over R is
®�

0 bz
cz 0

�
j z 2 C

¯
.

Hence t3, t4, t5 and t6 span the 4-dimensional real vector subspace of the Lie

algebra of y�

U WD
´"

0 z1

z2 0

#
j z1; z2 2 C

µ
:

By taking the commutator of the elements of U with
�

0 0
1 0

�
, which is also an element

in U , we get that the Lie algebra of y� contains

V WD
´"

z1 0

0 �z1

#
j z1 2 C

µ
:

�e span of U and V is the 6-dimensional real vector space sl.2;C/. Hence the

Lie algebra of y� is sl.2;C/.

�is means that if we consider � and y� as subgroups of PSL.2;C/, the Lie

algebra of y� is still sl.2;C/.

Since every nonelementary subgroup of PSL.2;C/ contains a Schottky group,

we have the following result.
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Corollary 1.5. (i) A nonelementary subgroup � of PSL.2;C/ is Zariski dense

over R in PSL.2;C/ if and only if Tr.�/ is not a subset of R.

(ii) �e Zariski closure over R of a nonelementary subgroup of PSL.2;C/ with

real traces is a conjugate of PSL.2;R/.

2. Products of hyperbolic planes and 3-spaces

Let q and r be two nonnegative integers such that qCr > 0. We consider the prod-

uct .H3/q �.H2/r of q which is the Cartesian product of q upper half 3-spaces and

r upper half planes with the product metric and we denote by d the corresponding

distance function. �e Riemannian manifold .H3/q � .H2/r is a symmetric space

of rank q C r .

In the next sections we will de�ne the geometric boundary of .H3/q � .H2/r

and the limit set of a group acting on .H3/q � .H2/r by isometries.

2.1. �e geometric boundary of .H3/q
� .H2/r . For i D 1; : : : ; q, we denote

by

pi W .H3/q � .H2/r �! H3;

.z1; :::; zqCr/ 7�! zi ;

the i-th projection of .H3/q � .H2/r into H3, and, for i D q C 1; : : : ; q C r , we

denote by

pi W .H3/q � .H2/r �! H2;

.z1; :::; zqCr/ 7�! zi ;

the i-th projection of .H3/q � .H2/r into H2.

Let  W Œ0; 1/ ! .H3/q � .H2/r be a curve in .H3/q � .H2/r . �en  is a

geodesic ray in .H3/q � .H2/r if and only if pi ı  is a geodesic ray or a point

in H3 for each i D 1; : : : ; q and a geodesic ray or a point in H2 for each i D
qC1; : : : ; qCr . A geodesic  is regular if pi ı is a nonconstant geodesic inH3 for

each i D 1; : : : ; q and a nonconstant geodesic in H2 for each i D q C 1; : : : ; q C r .

Two unit speed geodesic rays  and ı in .H3/q �.H2/r are said to be asymptotic

if there exists a positive number c such that d..t/; ı.t // � c for all t � 0. �is

is an equivalence relation on the unit speed geodesic rays of .H3/q � .H2/r . For

any unit speed geodesic  of .H3/q � .H2/r we denote by .C1/ the equivalence

class of its positive ray.
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We denote by

@..H3/q � .H2/r/

the set of all equivalence classes of unit speed geodesic rays of .H3/q � .H2/r .

We call @..H3/q � .H2/r/ the geometric boundary of .H3/q � .H2/r . �e regular

boundary @..H3/q �.H2/r /reg of .H3/q �.H2/r consists of the equivalence classes

of regular geodesics.

�e geometric boundary @..H3/q � .H2/r / with the cone topology is homeo-

morphic to the unit tangent sphere of a point in .H3/q � .H2/r (see Eberlein [11],

1.7). (For example @H2 is homeomorphic to S1.) �e homeomorphism is given by

the fact that for each point x0 and each unit speed geodesic ray  in .H3/q � .H2/r

there exists a unique unit speed geodesic ray ı with ı.0/ D x0 which is asymptotic

to  .

�e group PSL.2;C/q � PSL.2;R/r acts on .H3/q � .H2/r by isometries in

the following way. For g D .g1; : : : ; gqCr/ 2 PSL.2;C/q � PSL.2;R/r ,

g W .H3/q � .H2/r �! .H3/q � .H2/r ;

.z1; : : : ; zqCr/ 7�! .g1z1; : : : ; gqCrzqCr /;

where zi 7! gi zi is the usual action given by linear fractional transformation,

i D 1; : : : ; q C r .

�e action of PSL.2;C/q � PSL.2;R/r can be extended naturally to the space

@..H3/q � .H2/r /. Let g be in PSL.2;C/q � PSL.2;R/r and � be a point in the

boundary @..H3/q � .H2/r/. If  is a representative of �, then g.�/ is the equiva-

lence class of the geodesic ray g ı  .

We call g elliptic if all gi are elliptic isometries, parabolic if all gi are parabolic

isometries, loxodromic if all gi are loxodromic isometries and hyperbolic if all gi

are hyperbolic isometries. In all the other cases we call g mixed.

If at least one `.gi / is di�erent from zero, then we de�ne the translation di-

rection of g as

L.g/ WD .`.g1/ W : : : W `.gqCr // 2 RPqCr�1:

2.2. Decomposition of the geometric boundary of .H3/q
� .H2/r . In this sec-

tion we show a natural decomposition of the geometric boundary of .H3/q �.H2/r

and in particular of its regular part. �is is a special case of a general construction

for a large class of symmetric spaces (see e.g. Leuzinger [15] and Link [17]). �is

decomposition plays a main role in this article.
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Let x D .x1; : : : ; xqCr / be a point in .H3/q � .H2/r . We consider the Weyl

chambers with vertex x in .H3/q � .H2/r given by the product of the images of

the geodesics

ıi W Œ0; 1/ �! H3; with ıi .0/ D xi for i D 1; : : : ; q;

and

ıi W Œ0; 1/ �! H2; with ıi .0/ D xi for i D q C 1; : : : ; q C r .

�e isotropy group in PSL.2;C/q �PSL.2;R/r of x is PSU.2/q �PSO.2/r . It acts

transitively but not simply transitively on the Weyl chambers with vertex x because

a �xed Weyl chamber with vertex x is left unchanged by a group isomorphic to

PSO.2/q�¹idºr . Hence the group acting simply transitively on the Weyl chambers

with vertex x is .PSU.2/= PSO.2//q � PSO.2/r .

Let W be a Weyl chamber with vertex x. In W , two unit speed geodesics

.t/ D .1.t /; : : : ; qCr.t //

and

Q.t/ D . Q1.t /; : : : ; QqCr.t //

are di�erent if and only if the corresponding projective points

.dH .1.0/; 1.1// W : : : W dH .qCr .0/; qCr.1///

and

.dH . Q1.0/; Q1.1// W : : : W dH . QqCr .0/; QqCr.1///

are di�erent. Here dH denotes the hyperbolic distance in H3 and H2. �e point

in RPqCr�1 given by

.dH .1.0/; 1.1// W : : : W dH .qCr .0/; qCr.1///

is a direction in the Weyl chamber and it is the same as .kv1k W : : : W kvqCrk/,

where

v D .v1; : : : ; vqCr/ WD  0.0/

is the unit tangent vector of  in 0.

In other words we can extend the action of Isox to the tangent space at x in

.H3/q � .H2/r . �en Isox maps a unit tangent vector at x onto a unit tangent

vector at x. Let v be a unit tangent vector at x in .H3/q � .H2/r . We denote by vi

the i-th projection of v on the tangent spaces at xi , i D 1; : : : ; q C r . �en all the

vectors w in the orbit of v under Isox have kwik D kvik.
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Let v be a vector in the unit tangent sphere at x in.H3/q �.H2/r . If v is tangent

to a regular geodesic, then the orbit of v is homeomorphic to

.S2/q � .S1/r Š .@H3/q � .@H2/r

because @H3 Š S2 and @H2 Š S1. �e orbit of v under the group

.PSU.2/= PSO.2//q � PSO.2/r

consists of all unit tangent vectors w at x such that kwik D kvik for i D 1; : : :,

q C r .

�e regular boundary @..H3/q � .H2/r/reg of .H3/q � .H2/r consists of the

equivalence classes of regular geodesics. Hence it is identi�ed with the space

.@H3/q � .@H2/r � RP
qCr�1
C , where

RP
qCr�1
C WD ¹.w1 W : : : W wqCr / 2 RPqCr�1 j w1 > 0; : : : ; wqCr > 0º:

Here w1; ::; wqCr can be thought as the norms of the projections of the regular

unit tangent vectors on the simple factors of .H3/q � .H2/r .

.@H3/q � .@H2/r is called the Furstenberg boundary of .H3/q � .H2/r .

We note that the decomposition of the boundary into orbits under the group

Isox is independent of the point x.

2.3. �e limit set of a group. Let x be a point and ¹xnºn2N a sequence of points

in .H3/q � .H2/r . We say that ¹xnºn2N converges to a point � 2 @..H3/q � .H2/r/

if ¹xnºn2N is discrete in .H3/q � .H2/r and the sequence of geodesic rays starting

at x and going through xn converges towards � in the cone topology. With this

topology, .H3/q �.H2/r [@..H3/q �.H2/r / is a compacti�cation of .H3/q �.H2/r .

Let � be a subgroup of PSL.2;C/q �PSL.2;R/r . We denote by �.x/ the orbit

of x under � and by �.x/ its closure. �e limit set of � is

L� WD �.x/ \ @..H3/q � .H2/r/:

�e limit set is independent of the choice of the point x in .H3/q � .H2/r . �e

regular limit set is

L
reg
� WD L� \ @..H3/q � .H2/r/reg

and the singular limit set is

L
sing
� WD L�nLreg

� :
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We denote by F� the projection

F� W Lreg
� �! .@H3/q � .@H2/r ;

and by P� the projection

P� W Lreg
� �! RP

qCr�1
C :

�e projection F� is the Furstenberg limit set of � and P� is the projective limit

set of �.

Let h 2 � be a loxodromic element or a mixed one with only hyperbolic or

elliptic components. �ere is a unique unit speed geodesic  in .H3/q � .H2/r

such that h ı .t/ D .t C Th/ for a �xed Th 2 R>0 and all t 2 R. For y 2  , the

sequence hn.y/ converges to .C1/. Hence also for every x 2 .H3/q � .H2/r ,

the sequence hn.x/ converges to .C1/. �us .C1/ is in L� . �e sequence

h�n.x/ converges to

.�1/ WD �.C1/

and therefore .�1/ is also in L� . �e points .C1/ and .�1/ are the only

�xed points of h in L� . �e point .C1/ is the attractive �xed point of h and the

point .�1/ the repulsive �xed point of h.

If h is loxodromic, then for all i D 1; : : : ; q C r , the projection pi ı  is not a

point. Hence  is regular and .C1/ 2 L
reg
� . �e point .C1/ can be written as

.�F ; �P / in our description of the regular geometric boundary where

�F WD .p1 ı .C1/; : : : ; pqCr ı .C1//

is in the Furstenberg boundary and

�P WD .dH .p1 ı .0/; p1 ı .1// W : : : W dH .pqCr ı .0/; pqCr ı .1///

is in the projective limit set. Here we note that �P is also equal to

.dH .p1 ı .0/; p1 ı .Th// W : : : W dH .pqCr ı .0/; pqCr ı .Th///;

which is exactly the translation direction of h.

�us the translation direction of each loxodromic isometry h in � determines

a point in the projective limit set P� . �is point does not change after conjugation

with h or after taking a power hm of h, because in these cases the translation

direction remains unchanged.
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Recall that, following Maclachlan and Reid [19], a subgroup � of PSL.2;C/ is

elementary if there exists a �nite �-orbit in

H3 WD H3 [ @H3

and nonelementary if it is not elementary. Since H3 and @H3 are �-invariant, any

�-orbit of a point in H3 is either completely in H3 or completely in @H3.

We call a subgroup � of PSL.2;C/q � PSL.2;R/r nonelementary if for all

i D 1; : : : ; q C r , pi .�/ is nonelementary, and if for all g 2 � that are mixed,

the projections pi ı g are either loxodromic or elliptic of in�nite order. Since for

all i D 1; : : : ; q C r , pi .�/ is nonelementary, � does not contain only elliptic

isometries and thus L� is not empty.

�is de�nition of nonelementary is more restrictive than the one given by Link

in [17]. �e de�nition of a nonelementary subgroup � of PSL.2;R/r in [17] is the

following: �e limit set of � is nonempty and if � 2 L� and �.�/ denotes its orbit

under �, then each point in the orbit of � under PSL.2;C/q � PSL.2;R/r can be

connected with a geodesic to at least one point in �.�/.

Two points � and � in @..H3/q � .H2/r / can be connected by a geodesic if and

only if � D .1/ and � D .�1/ for some geodesic  in .H3/q � .H2/r . If � and

� can be connected by a geodesic then they necessarily lie in the same orbit under

PSL.2;C/q � PSL.2;R/r . A possible element mapping � to � is one that �xes a

point on the connecting geodesic and rotates around a geodesic orthogonal to 

by � in each of the �rst q factors and around the �xed point by � in the other r

factors.

Lemma 2.1. If a subgroup � of PSL.2;C/q � PSL.2;R/r is nonelementary (ac-

cording to our de�nition), then it is nonelementary in the sense of Link’s de�nition

in [17].

Proof. Let � and � be in the same orbit under PSL.2;C/q �PSL.2;R/r and  and

ı their representative geodesic rays. �en � and � can be connected by a geodesic

if and only if when pi ı  and pi ı ı are nonconstant in H2 (or H3), then pi ı 

and pi ı ı are not in the same equivalence class in @H2 (or @H3).

Let � be nonelementary (according to our de�nition) and let � be in L� and �

a point in the orbit of � under PSL.2;C/q �PSL.2;R/r . Without loss of generality

we can assume that the �rst k projections of the de�ning geodesics of � and � are

nonconstant. We denote their equivalence classes in @..H3/q � .H2/r/ with �i and

�i respectively, i D 1; : : : ; k. We will show by induction that there is an element

g D .g1; : : : ; gqCr/ of � such that gi .�i / ¤ �i for all i D 1; : : : ; k and therefore

� is nonelementary according to Link’s de�nition.
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First, for j D 1, if �1 D �1, we can �nd g 2 � such that g1.�1/ ¤ �1.

�e existence of g follows from the fact that p1.�/ is nonelementary and thus the

orbit of �1 under p1.�/ is in�nite.

Let g 2 � be such that gi .�i / ¤ �i for all i D 1; : : : ; j , j < k. If gj C1.�j C1/ ¤
�j C1, then g is the desired element. Otherwise, since pj C1.�/ is nonelementary,

there is h D .h1; : : : ; hqCr/ in � such that hj C1 is loxodromic and does not have

�j C1 as a �xed point. Hence for all n 2 N, hn
j C1.�j C1/ ¤ �j C1.

According to our de�nition of nonelementary, for i D 1; : : : ; j , hi is either

loxodromic or elliptic of in�nite order. Hence the point gi .�i / is either a �xed

point for hi or has an in�nite orbit under hi . In the �rst case, for any n 2 N,

hn
i ı gi .�i / ¤ �i , and in the second case for n big enough the same is true. Hence

hn ı g for n big enough is the desired element.

Remark. In the proof we used the assumption that for all g 2 � that are mixed,

the projections pi ı g are either loxodromic or elliptic of in�nite order. We can

prove the lemma without this assumption on �, but then the proof is a little more

complicated because we need to consider di�erent cases. And as we will see later

we are only interested in groups � such that for all g 2 � that are mixed, the

projections pi ı g are either hyperbolic or elliptic of in�nite order.

�e next theorem is a special case of �eorem 3 from the introduction of [17].

It describes the structure of the regular limit set of nonelementary discrete sub-

groups of PSL.2;C/q � PSL.2;R/r .

�eorem 2.2 ([17]). Let � be a nonelementary discrete subgroup of the group

PSL.2;C/q � PSL.2;R/r acting on .H3/q � .H2/r . If L
reg
� is not empty, then F�

is a minimal closed �-invariant subset of .@H3/q � .@H2/r , the regular limit set

equals the product F� � P� and P� is equal to the closure in RP
qCr�1
C of the set

of translation directions of the loxodromic isometries in �.

3. Nonelementary groups

In this part we show �rst that the regular limit set of a nonelementary subgroup of

PSL.2;C/q � PSL.2;R/r is not empty and then we prove that its projective limit

set is convex. �is is a generalization of a result of Benoist in [3]. Additionally,

we describe the groups in which the projection to one factor is nonelementary.
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3.1. �e regular limit set is nonempty. To prove that the regular limit set of

a nonelementary group is nonempty is equivalent in our case to proving that the

group is strongly nonelementary, i.e., that it contains a Schottky subgroup. In

order to prove this we �rst need the next lemma.

Recall the de�nition of translation direction

L.g/ WD .`.g1/ W : : : W `.gqCr //:

Lemma 3.1. Let � be a nonelementary subgroup of PSL.2;C/q � PSL.2;R/r .

Further let g and h be two loxodromic isometries in �. �en there are loxodromic

isometries g0 and h0 in � with L.g/ D L.g0/ and L.h/ D L.h0/ such that the

groups generated by the corresponding components are all Schottky groups (with

only loxodromic isometries).

Proof. Let g D .g1; : : : ; gqCr/ and h D .h1; : : : ; hqCr/ be the given loxodromic

isometries.

Step 1 . We can assume that g1 and h1 do not have a common �xed point:

Since p1.�/ is nonelementary, there exists a transformation Qg D . Qg1; : : : ; QgqCr/

in � such that Qg1 is loxodromic and Qg1 and g1 do not have any common �xed

point. Hence for n 2 N big enough, the isometries g1 and Qgn
1h1 Qg�n

1 do not have

any common �xed point. Since the translation direction does not change under

conjugation, we can consider Qgnh Qg�n instead of h.

Step 2. We can assume that g1 and h1 generate a Schottky group which con-

tains only loxodromic isometries: Indeed, by the previous step, the isometries g1

and h1 do not have a common �xed point, therefore, by Lemma 1.1, for n big

enough, gn
1 and hn

1 generate a Schottky group which contains only loxodromic

isometries. Since L.g/ D L.gn/ and L.h/ D L.hn/, we take gn and hn instead of

g and h.

Step 3. If g and h are as in the �rst and in the second step, then, for i D
2; : : : ; q C r , gi and hi have no common �xed point. In order to show this we

assume that gi and hi have a common �xed point. Possibly after conjugation

we can assume that this common �xed point is in�nity and hence gi and hi are

represented by the matrices
�
a b
0 1=a

�
and

�
c d
0 1=c

�
for some a; c 2 R>0n¹1º and b; d 2

R. �en

Œgi ; hi � D gihig
�1
i h�1

i D
"

1 �cd � abc2 C a2cd C ab

0 1

#
:

Hence the commutator Œgi ; hi � is either parabolic or the identity. On the other hand

Œgi ; hi � has to be loxodromic or elliptic of in�nite order because Œg1; h1� is a loxo-

dromic isometry in the free group generated by g1 and h1. �is is a contradiction.
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Now we take

g0 WD gN and h0 WD hN

for N 2 N big enough so that we can assure that for all i D 2; : : : ; q Cr , the group

generated by g0
i and h0

i is a Schottky group with only loxodromic isometries.

�e next lemma is needed in the proof of Lemma 3.3.

Lemma 3.2. Let g 2 PSL.2;C/q � PSL.2;R/r be elliptic of in�nite order and

h 2 PSL.2;C/q � PSL.2;R/r be loxodromic. �ere are positive integers m and n

such that gmhn and hngm are loxodromic.

Proof. Since g is an elliptic isometry of in�nite order, there is a sequence mk

such that gmk converges to Id when k ! 1. Now if h is loxodromic, then gmk h

converges to h when k ! 1. Hence

tr.gmk h/
k!1����! tr.h/

and there is K 2 N such that for all k > K, the isometries gmk h and hgmk are

loxodromic. If this K is big enough, then for all n > 0 and for all k > K, the

isometries gmk hn and hngmk are loxodromic.

Lemma 3.3. Let � be a nonelementary subgroup of PSL.2;C/q � PSL.2;R/r .

�en L
reg
� is not empty.

Proof. �e idea is to �nd an element h in � such that for all i D 1; :::; q C r ,

the transformation hi is loxodromic. �en the attractive and repulsive �xed points

of h de�ne points in the regular limit set.

We are going to use a diagonal argument. For each i D 1; : : : ; q C r we choose

gi D .gi1; : : : ; gi;qCr/ 2 � such that gi i is loxodromic. �e isometries gi do not

need to be di�erent. Using gi , we will gradually construct the desired isometry h.

In each step of the construction gi i will stay loxodromic.

First we show that for all i D 2; : : : ; q C r , we can choose the isometry gi so

that gi1 is loxodromic.

If for some i D 2; : : : ; q C r , gi1 is not loxodromic then it is elliptic of in�nite

order. If g1i is loxodromic, then instead of gi we take g1. In the other case, when

g1i is elliptic, instead of gi we take gm
1 gn

i where m and n are chosen according

to Lemma 3.2 such that g11gn
i1 and gm

1igi i are loxodromic. �en also gm
11gn

i1 and

gm
1i g

n
ii are loxodromic.

Now assume that for i D k; : : : ; q C r and for j D 1; : : : ; k � 1, the isometries

gij and gi i are loxodromic. We will show that for all i D k C 1; : : : ; q C r , we can

choose gi so that, for j D 1; : : : ; k, the isometries gij and gi i are loxodromic.
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If for some i D k C 1; : : : ; q C r , gki is loxodromic, then instead of gi we take

gk . In the other case gki is elliptic of in�nite order. First instead of gk and gi we

consider g0
k

and g0
i that we get from Lemma 3.1 after projecting � on the �rst k �1

factors. �e types of the isometries remain unchanged under conjugation. Instead

of g0
k

and g0
i , we will continue to write gk and gi .

�en using Lemma 1.1, we take powers of gk and gi so that, for all j D 1; : : :,

k � 1, gkj and gij generate a Schottky group.

Finally, instead of gi we take gm
k

gn
i where m and n are chosen according to

Lemma 3.2 such that gkkgn
ik

and gm
ki

gkk are loxodromic. �en also gm
kk

gn
ik

and

gm
ki

gn
ii are loxodromic.

Remark. �is lemma is also true if we omit the condition for the mixed elements

in the de�nition of a nonelementary group but the proof is more complicated.

If the group � is a subgroup of PSL.2;R/r we have an even stronger statement.

Lemma 3.4. Let � be a subgroup of PSL.2;R/r such that all mixed isometries in

� have only elliptic and hyperbolic components and pj .�/ is nonelementary for

one j 2 ¹1; : : : ; rº. �en L
reg
� is not empty.

Proof. First we show that the subgroup � of PSL.2;R/r contains a hyperbolic

element h D .h1; : : : ; hr/. A proof of this fact is given also by Ricker in [23], in

the proof of Proposition 2.

Without loss of generality we can assume that p1.�/ is nonelementary. In this

case � contains two isometries g and g0 such that g1 and g0
1 are hyperbolic without

common �xed points. We set

Qg WD g0gg0�1
:

�en g1 and Qg1 also do not have any common �xed point. Again without loss of

generality we can assume that, for i D 1; : : : ; k, gi and Qgi are hyperbolic and, for

i D k C 1; : : : ; r , elliptic of in�nite order. By Lemma 1.1 and by Step 3 from the

proof of Lemma 3.1, for n big enough, for all i D 1; : : : ; k, the isometries gn
i and

Qgn
i generate a Schottky group. Hence the isometries Œgn

i ; Qgn
i � D gn

i Qgn
i g�n

i Qg�n
i are

hyperbolic.

For i D k C1; : : : ; r , the isometries gn
i and Qgn

i do not commute, because other-

wise their commutator Œgn
i ; Qgn

i � will be the identity, which cannot be a component

of a mixed isometry. �erefore gn
i and Qgn

i have di�erent �xed points and by �e-

orem 7.39.2 in the book of Beardon [2], the commutator Œgn
i , Qgn

i � is hyperbolic.
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�us we have proved that

h WD gn Qgng�n Qg�n

is a hyperbolic element in �.

�e attractive and repulsive �xed points of h are points in the regular limit set

of p1.�/.

As the next lemma shows, a corollary of the previous lemma is that pj .�/ is

“big”(=nonelementary) if and only if � is “big.”

Lemma 3.5. Let � be a subgroup of PSL.2;R/r such that all mixed isometries

in � have only elliptic and hyperbolic components. If pj .�/ is nonelementary for

one j 2 ¹1; : : : ; rº, then � is also nonelementary.

Proof. Again without loss of generality we can assume that j D 1. By the pre-

vious lemma, � contains a hyperbolic element h D .h1; : : : ; hr/. Since p1.�/ is

nonelementary, the group � contains an element g D .g1; : : : ; gr / such that g1

is hyperbolic and does not have any �xed point in common with h1. �en for all

i D 2; : : : ; r , the isometry gi is either elliptic of in�nite order or it is hyperbolic

and does not have common �xed points with hi (see Step 3 from the proof of

Lemma 3.1). In both cases some powers of hi and gihig
�1
i generate a Schottky

group (by Lemma 1.1).

When � is a subgroup of PSL.2;C/q � PSL.2;R/r , with q � 1 and q C r � 2,

the above statement is, unfortunately, not true.

3.2. Groups with a nonelementary projection. In this section we continue the

investigation of groups with a nonelementary projection in one factor that was

started with Lemma 3.5.

Proposition 3.6. Let � be a subgroup of PSL.2;C/q � PSL.2;R/r such that all

mixed isometries in � have only elliptic and loxodromic components and pj .�/ is

nonelementary for some j 2 ¹1; : : : ; q C rº. �en each projection pi .�/ to a real

factor, i.e., i D q C 1; : : : ; q C r , is nonelementary, and to a complex factor, i.e.,

i D 1; : : : ; q, is either nonelementary or consists only of elliptic isometries with a

common �xed point.
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Proof. For simplicity we will denote pi .�/ by �i for all i D 1; : : : ; q C r .

First we show that �i is nonelementary for i D q C 1; : : : ; q C r . If q C 1 �
j � q C r , then from Lemma 3.5 it follows that all �i are nonelementary for i D
q C 1; : : : ; q C r . Otherwise, we see that the proofs of Lemma 3.4 and Lemma 3.5

work for the projections pi with i D q C 1; : : : ; q C r independently of the fact

that the given nonelementary projection is not among them.

Without loss of generality, we can assume that �qCr is nonelementary. We will

prove that for i D 1; : : : ; q, the subgroup �i of PSL.2;C/ is either nonelementary

or consists only of elliptic isometries and then by �eorem 4.3.7 in Beardon’s

book [2], they have a common �xed point. In order to see this, we assume that

�i contains a parabolic or loxodromic element gi . It is the i-th component of an

element g D .g1 : : : ; gqCr / of �. Since �qCr is nonelementary, it contains a two-

generated Schottky group with only hyperbolic isometries. Let h D .h1 : : : ; hqCr/

and Qh D . Qh1 : : : ; QhqCr/ be the two isometries in � such that hqCr and QhqCr gen-

erate it.

By �eorem 4.3.5 in [2], if hi and Qhi have a common �xed point then their

commutator has trace 2, i.e., it is either the identity or parabolic. Since no com-

ponent of a mixed isometry has trace 2, the commutator of h and Qh can be only

the identity or a parabolic isometry. �erefore the commutator of hqCr and QhqCr

has trace 2 which is impossible because they generate a free group with only hy-

perbolic isometries. Hence hi and Qhi do not have a common �xed point in @H3.

If both hi and Qhi are loxodromic, then by Lemma 1.1 we see that they generate

a Schottky group and hence �i is nonelementary.

If only one of them, let us say hi , is loxodromic and the other one Qhi is elliptic

of in�nite order, then there is a power k for which hi and Qhk
i hi

Qh�k
i do not have

a common �xed point and thus some powers of them generate by Lemma 1.1 a

Schottky group and hence �i is nonelementary.

If both hi and Qhi are elliptic of in�nite order and gi is loxodromic and does

not have common �xed points with at least one of hi and Qhi , we proceed as in the

previous case in order to show that �i is nonelementary. Otherwise gi has one

common �xed point with hi and one with Qhi . �ere is a power k for which hi and
Qhk
i gi

Qh�k
i do not have any common �xed point and we are in the previous case.

If gi is parabolic, then after conjugation we can assume that it is
�

1 1
0 1

�
. For hi

we have the representation
�

a b
c d

�
with a C d real with absolute value less than 2

and for Qhi the representation
�Qa Qb

Qc Qd

�
with Qa C Qd real with absolute value less than 2.

Since hi and Qhi do not have a common �xed point in @H3, they cannot both �x

the point 1. �erefore without loss of generality we can assume that c is di�erent
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from zero. �en

gk
i hi D

"
1 k

0 1

#"
a b

c d

#
D
"

a C kc b C kd

c d

#

is loxodromic for k D 1 if c is not real and hyperbolic for k big enough if c is

real. Hence we found a loxodromic element in �i and as in the previous case �i

is nonelementary.

3.3. �e projective limit set is convex. Recall that the projective limit set P� is

the projection of L
reg
� on RP

qCr�1
C . In this section we show that P� is “nice,” i.e.,

convex.

Lemma 3.7. Let � be a nonelementary subgroup of PSL.2;C/q � PSL.2;R/r

with q C r � 2. �en P� is convex in the real projective space RPqCr�1 with its

standard metric and in particular P� is path connected.

Proof. �e regular limit set L
reg
� is not empty by Lemma 3.3.

Since L
reg
� is not empty, P� contains at least one point. We will show that if

.x1 W : : : W xqCr / and .y1 W : : : W yqCr / are two di�erent points in P� then the

segment .x1 C �y1 W : : : W xqCr C �yqCr / with � > 0 is also contained in P� .

First we consider the case where

.x1 W : : : W xqCr / D .`.g1/ W : : : W `.gqCr //

and

.y1 W : : : W yqCr / D .`.h1/ W : : : W `.hqCr //

for loxodromic transformations g; h in �.

By Lemma 3.1 we can assume that for all i D 2; : : : ; q Cr , the group generated

by gi and hi is a Schottky group with only loxodromic isometries.

Next, using Lemma 4.1 from [8], we proceed as Dal’Bo in the proof of Propo-

sition 4.2 in [8]. �e latter says that there exists C > 0 such that for all m; n 2 N

and all i D 1; : : : ; q C r ,

j`.gm
i hn

i / � m`.gi / � n`.hi /j < C:

Hence

.`.gkm
1 hkn

1 / W : : : W `.gkm
qCrhkn

qCr //

k!1����!
�
`.g1/ C n

m
`.h1/ W : : : W `.gqCr / C n

m
`.hqCr /

�
;
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and so for each � > 0, the point .`.g1/ C �`.h1/ W : : : W `.gqCr / C �`.hqCr// is

in the closure of the translation directions of the loxodromic isometries of � and

hence in P� .

In this way we found a path in P� between

..`.g1/ W : : : W `.gqCr // and .`.h1/ W : : : W `.hqCr//:

Now we consider two arbitrary di�erent points x and y in P� . By Link’s

�eorem 2.2, the translation directions of the loxodromic isometries of � are dense

in P� . �erefore there are sequences ¹xiº and ¹yiº of translation directions of

loxodromic isometries in � such that

xi i!1����! and yi i!1���! y:

We consider the canonical projections of xi , yi , x and y in the hyperplane

¹.t1; : : : ; tqCr/ 2 Rr j t1 C � � � C tqCr D 1º and denote them by

.xi
1; : : : ; xi

qCr /; .yi
1; : : : ; yi

qCr/; .x1; : : : ; xqCr/; .y1; : : : ; yqCr/;

respectively. �en for all j D 1; : : : ; r ,

xi
j

i!1����! xj and yi
j

i!1���! yj :

�erefore

xi
j C �yi

j

i!1���! xj C �yj ; for � > 0.

Hence

.xi
1 C �yi

1 W : : : W xi
qCr C �yi

qCr /

i!1����! .x1 C �y1 W : : : W xqCr C �yqCr /; with � > 0:

As already shown above the points .xi
1 C �yi

1 W : : : W xi
qCr C �yi

qCr / are in P� .

Hence the points .x1 C�y1 W : : : W xqCr C�yqCr / with � > 0 are also in P� , which

is what we wanted to show.

Remark. �is lemma is also true if we omit the condition for the mixed elements

in �.

3.4. �e limit cone and a theorem of Benoist. �e limit cone of a nonelemen-

tary group � � PSL.2;C/q � PSL.2;R/r with q C r � 2 is closely related to the

projective limit set of �.
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In this section we �rst de�ne the limit cone as de�ned by Benoist in [3] and then

show that the limit cone of a nonelementary � is the closure of P� in RPqCr�1

and hence convex. We give also a version of the theorem in Section 1.2 in [3]

which motivated the previous result and is used later in this article.

�e limit cone of � is de�ned via the complete multiplicative Jordan decom-

position of the elements of �. �e multiplicative Jordan decomposition can be

found for example in the the book of Eberlein [11].

Each element g 2 SL.2;C/q � SL.2;R/r can be decomposed in a unique way

into g D eghgug where eg is elliptic (all eigenvalues have modulus 1), hg is hy-

perbolic (all eigenvalues are real positive), ug is unipotent (in our case parabolic)

and all three commute. �e canonical projection of SL.2;C/ into PSL.2;C/ gives

the Jordan decomposition for g 2 PSL.2;C/q � PSL.2;R/r .

For instance, if g 2 PSL.2;C/ is loxodromic, i.e., one of its representatives is

conjugate to
�

exCi� 0
0 e�x�i�

�
with x; � 2 R then eg is conjugate to

�
ei� 0
0 e�i�

�
and

hg is conjugate to
�

ex 0
0 e�x

�
. We have x D `.g/=2, where `.g/ is the translation

length of g.

With �.g/ we denote the unique element in PSL.2;C/q � PSL.2;R/r that

is conjugate to hg and has diagonal form
��

ex1 0
0 e�x1

�
; : : : ;

�
e

xqCr 0
0 e

�xqCr

��
with

xi � 0, i D 1; : : : ; r . �en the limit cone of � is the smallest closed cone in the

space of diagonal elements in sl.2;C/q �sl.2;R/r that contains log.�.�//. E.g., if

�.g/ D
 "

ex1 0

0 e�x1

#
; : : : ;

"
exqCr 0

0 e�xqCr

#!
;

with x1; : : : ; xqCr 2 R�0, then

log.�.g// D
 "

x1 0

0 �x1

#
; : : : ;

"
xqCr 0

0 �xqCr

#!
;

and the limit cone contains the line

 "
tx1 0

0 �tx1

#
; : : : ;

"
txqCr 0

0 �txqCr

#!
; t 2 R:

�e translation direction of the isometry g given above is

L.g/ D .2x1 W : : : W 2xqCr /:

Hence the closure in RPqCr�1 of the translation directions of the hyperbolic and

mixed elements of � can be identi�ed canonically with the limit cone of �.
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�e interior of the limit cone of � is the intersection of the limit cone of � with

RP
qCr�1
C . Hence it is exactly the projective limit set P� of �. In [3] Benoist shows

that for Zariski dense groups �, the limit cone of � is convex and has nonempty

interior. �is means that the limit cone of � is the closure of its interior. �us for

Zariski dense �, the limit cone of � and P� are the same. As the next proposition

shows, the same is true even if � is just nonelementary.

Proposition 3.8. Let � be a nonelementary subgroup of

PSL.2;C/q � PSL.2;R/r ; q C r � 2:

�en P� is convex and the closure of P� in RPqCr�1 is equal to the limit cone of

� and in particular the limit cone of � is convex.

�is statement is similar to a result of Dal’Bo and Kim in [10] which is proved

for the product of two Hadamard manifolds and in the case when the projections

of the group to the di�erent factors do not contain elliptic isometries.

Proof. By Lemma 3.3, L
reg
� is nonempty. �en by �eorem 4.10 in [18] the set of

attractive �xed points of loxodromic isometries in a nonelementary subgroup of

PSL.2;C/q � PSL.2;R/r is dense in its limit set. Hence the translation direction

of every mixed isometry is the limit point of a sequence of translation directions

of loxodromic isometries in �. From this it follows that the limit cone of � is the

closure of P� in RPqCr�1 and since by Lemma 3.7, the projective limit set P� is

convex, its closure in the convex set RPqCr�1 is also convex.

Remark. An alternative proof, which does not use �eorem 4.10 from [18], is

given in [12], �eorem 3.8.

�is theorem extends partially the following special case of Benoist’s theorem

in Section 1.2 in [3].

�eorem 3.9 ([3]). If � is a Zariski dense over R subgroup of

PSL.2;C/q � PSL.2;R/r; q C r � 2;

then the limit cone of � is convex and its interior is not empty.

Remark. Since the limit cone of � is identi�ed with P� , the interior of P� is also

not empty. �is is not always true for nonelementary groups � that are not Zariski

dense.
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4. Irreducible arithmetic groups

A special case of a general result of Margulis is that the irreducible lattices in

PSL.2;C/q � PSL.2;R/r are all arithmetic. We present a construction of the

irreducible arithmetic subgroups of PSL.2;C/q � PSL.2;R/r with the help of

quaternion algebras. �is construction gives a natural connection between some

subgroups of PSL.2;R/ or PSL.2;C/ and irreducible arithmetic subgroups of

PSL.2;C/q � PSL.2;R/r .

4.1. Quaternion algebras. For more details concerning the de�nitions, nota-

tions and theorems in this section we refer to Katok’s book [14], Chapter 5, and

the book of Reid and Maclachlan [19], Chapters 0, 3 and 8. In this section K will

always denote a �eld.

A quaternion algebra over K is a central simple algebra over K which is four

dimensional as a vector space over K.

Each quaternion algebra is isomorphic to an algebra

A D
�a; b

K

�
; a; b 2 K� D Kn¹0º

and a basis

¹1; i; j; kº; i2 D a, j 2 D b, k D ij D �j i .

We denote by M.2; K/ the 2 � 2 matrices with coe�cients in the �eld K.

An isomorphism between A D .a;b
K

/ and M.2; K.
p

a// is given by the linear

map sending the elements of the basis of A to the matrices

1 7�!
"

1 0

0 1

#
; i 7�!

"p
a 0

0 �p
a

#
;

j 7�!
"

0 1

b 0

#
; k 7�!

"
0

p
a

�b
p

a 0

#
:

�us if at least one of a and b is positive, then .a;b
R

/ is isomorphic to the matrix

algebra M.2;R/. If both a and b are negative, then .a;b
R

/ is isomorphic to the

Hamilton quaternion algebra H D .�1;�1
R

/.

K is a totally real algebraic number �eld if for each embedding of K into C

the image lies inside R.
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Let A D .a;b
K

/ be a quaternion algebra. For every

x 2 A; x D x0 C x1i C x2j C x3k;

we de�ne the reduced norm of x to be

Nrd.x/ D x Nx D x2
0 � x2

1a � x2
2b C x2

3ab;

where Nx D x0 � x1i � x2j � x3k.

An order O in a quaternion algebra A over K is a subring of A containing 1,

which is a �nitely generatedOK-module and generates the algebra A over K. (Here

OK denotes the ring of algebraic integers of K.)

�e group of units in O of reduced norm 1 is

O
1 D ¹" 2 O j Nrd."/ D 1º:

We recall that a subgroup of SL.2;C/ is nonelementary if it does not have a

�nite orbit in its action on H3 [ @H3.

Let � be a �nitely generated nonelementary subgroup of SL.2;C/. �en the

subgroup �.2/ of � generated by the set ¹g2 j g 2 �º is a �nite index normal

subgroup of �.

Now we show how we can construct a quaternion algebra and an order starting

from a �nitely generated nonelementary subgroup of SL.2;C/.

Let � be a nonelementary subgroup of SL.2;C/. We denote

A� WD
°X

aigi j ai 2 Q.Tr.�//; gi 2 �
±
;

where only �nitely many of the ai are non-zero. By �eorem 3.2.1 from [19], A�

is a quaternion algebra over Q.Tr.�//.

Two groups are commensurable if their intersection has �nite index in both

of them. �e commensurability class of a subgroup � of a group G is the set

of all subgroups of G that are commensurable with �. �e following theorem is

Corollary 3.3.5 from [19].

�eorem 4.1 ([19]). Let � be a �nitely generated nonelementary subgroup of the

group SL.2;C/. �e quaternion algebra A�.2/ is an invariant of the commensu-

rability class of �.

�e second theorem is Exercise 3.2, No. 1, in [19] and a proof of it can be found

in the proof of �eorem 8.3.2 in [19].
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�eorem 4.2 ([19]). Let � be a �nitely generated nonelementary subgroup of the

group SL.2;C/ such that all traces in � are algebraic integers. Let also

O� WD
°X

aigi j ai 2 OQ.Tr.�//; gi 2 �
±
;

where only �nitely many of the ai are non-zero. �en O� is an order in A�.

4.2. Irreducible arithmetic groups in PSL.2 ;C/q
� PSL.2 ;R/r . In this sec-

tion, following Schmutz and Wolfart [25] and Borel [4], we will describe the ir-

reducible arithmetic subgroups of PSL.2;C/q � PSL.2;R/r .

Let K be an algebraic number �eld of degree n D ŒK W Q� and let �i , i 2
¹1; : : : ; nº, be the n distinct embeddings of K into C, where �1 D id . Further, we

assume that K has q complex places. �is means that K has 2q di�erent embed-

dings into C that can be divided into q pairs of complex conjugated embeddings.

If K is not a sub�eld of R, then for i D 1; : : : ; q, let �i denote one of the

embeddings in the pair and we assume that �1 D id . Let �i , i D q C 1; : : : ; n � q,

be the remaining embeddings of K into C that are actually embeddings into R.

Let A D .a;b
K

/ be a quaternion algebra over K such that for q C 1 � i � q C r ,

the quaternion algebra .
�i .a/;�i .b/

R
/ is unrami�ed, i.e., isomorphic to the matrix

algebra M.2;R/, and for q C r < i � n � q, it is rami�ed, i.e., isomorphic to the

Hamilton quaternion algebra H. In other words, the embeddings

�i W K �! R; i D q C 1; : : : ; q C r

extend to embeddings of A into M.2;R/ and the embeddings

�i W K �! R; i D q C r C 1; : : : ; n � q

extend to embeddings of A into H. �e embeddings

�i W K �! C; i D 1; : : : ; q

extend to embeddings of A into M.2;C/. Note that the embeddings �i , i D
1; : : : ; q Cr , of A into the matrix algebras M.2;C/ and M.2;R/ are not canonical.

As we will see later, they are canonical up to conjugation and complex conjuga-

tion.

In the case when K is a sub�eld of R, the de�nition is analogous. We start with

a number r , 1 � r � n � 2q, and a quaternion algebra A D .a;b
K

/ over K such that

for 1 � i � r , the embeddings �i are embeddings of K into R and the quaternion

algebra .
�i .a/;�i .b/

R
/ is unrami�ed. Each of the embeddings �i , i D rC1; : : : ; qCr ,

is a representative of a di�erent pair of complex conjugated embeddings. Finally,

for q C r < i � n � q, the quaternion algebra .
�i .a/;�i .b/

R
/ is rami�ed.
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�is case is interesting only when K is a totally real algebraic number �eld be-

cause otherwise we can start with �i.K/ that is not a sub�eld of the reals and con-

sider the quaternion algebra .�i .a/;�i .b/
R

/. So for simplicity of the notation we will

assume that �1.K/; : : : ; �q.K/ are not sub�elds of R and �qC1.K/; : : : ; �qCr.K/

are sub�elds of R and q or r can be 0.

Let O be an order in A and O
1 the group of units in O. De�ne

�.A;O/ WD �1.O1/ � SL.2;C/:

If q D 0, then �.A;O/ is a subset of SL.2;R/. �e canonical image of �.A;O/ in

PSL.2;C/ is called a group derived from a quaternion algebra. �e group �.A;O/

acts by isometries on .H3/q � .H2/r as follows. An element g D �1."/ of �.A;O/

acts via

g W .z1; : : : ; zqCr/ 7! .�1."/z1; : : : ; �qCr."/zqCr/;

where zi 7! �i ."/zi is the usual action by linear fractional transformation, i D
1; : : : ; q C r .

For a subgroup S of �.A;O/ we denote by S� the group

¹g� WD .�1."/; : : : ; �qCr."// j �1."/ D g 2 Sº:

Instead of .�1."/; : : : ; �qCr."//, we will usually write .�1.g/; : : : ; �qCr.g// or,

since �1 is the identity, even .g; �2.g/; : : : ; �qCr.g//. �e isometries

�1.g/; : : : ; �qCr .g/

are called �-conjugates.

Note that g� and S� depend on the chosen embeddings �i of A into M.2;C/

and M.2;R/. On the other hand, the type of g� is determined uniquely by the type

of g. �is is given by the following lemma.

Lemma 4.3. Let S be a subgroup of �.A;O/ and S� be de�ned as above. For an

element g 2 S the following assertions are true.

1. If g is the identity, then g� is the identity.

2. If g is parabolic, then g� is parabolic.

3. If g is elliptic of �nite order, then g� is elliptic of the same order.

4. If g is loxodromic, then g� is either loxodromic or mixed such that, for i D
1; : : : ; q C r , �i .g/ is either loxodromic or elliptic of in�nite order.

5. If g is elliptic of in�nite order, then its �-conjugates are loxodromic or elliptic

of in�nite order.
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Proof. If g is the identity (or elliptic of �nite order), then g� is the identity (or

elliptic of the same order) too, because each �i is an isomorphism between A

and �i.A/.

If g is parabolic, i.e., tr.g/ D 2, then g� is parabolic, because �i jQ D id and

�i has a trivial kernel.

If g is loxodromic, then g� is either loxodromic or mixed such that, for i D
1; : : : ; r , �i .g/ is either loxodromic or elliptic of in�nite order. �is is a conse-

quence of the fact that the isometries of H3 (and H2) can be only loxodromic,

elliptic of in�nite order, elliptic of �nite order, parabolic or the identity and the

last three types of isometries are preserved under �-conjugation. Two examples

show the two remaining possibilities. First, if tr.g/ D 3 C
p

5 > 2, i.e., g is hy-

perbolic, then its �-conjugate with trace 3 �
p

5 < 2 is elliptic of in�nite order.

�e second example is with tr.g/ D 6C
p

5 and its �-conjugate with trace 6�
p

5

are both hyperbolic. Note that if g is hyperbolic, it could still have a �-conjugate

that is purely loxodromic.

If g is elliptic of in�nite order, then its �-conjugates are loxodromic or elliptic

of in�nite order but at least one of them is loxodromic, because otherwise S� will

not be discrete.

Hence the mixed isometries in this setting have components that are only lox-

odromic or elliptic of in�nite order. �is justi�es the condition in our de�nition of

nonelementary that the projections of all mixed isometries can be only loxodromic

or elliptic of in�nite order.

By Borel [4], Section 3.3, all irreducible arithmetic subgroups of the group

PSL.2;C/q � PSL.2;R/r are commensurable to a �.A;O/�. �ey have �nite

covolume. By Margulis, for q C r � 2, all irreducible discrete subgroups of

PSL.2;C/q � PSL.2;R/r of �nite covolume are arithmetic, which shows the im-

portance of the above construction.

We will mainly consider subgroups of irreducible arithmetic groups.

P. Schmutz and J. Wolfart de�ne in [25] arithmetic groups acting on .H2/r .

Here we extend the de�nition for .H3/q � .H2/r . An arithmetic group acting on

.H3/q � .H2/r is a group G that is commensurable to a �.A;O/. It is �nitely

generated because it is commensurable to the �nitely generated group �.A;O/.

�en by �eorem 4.1, the quaternion algebra AG.2/ of the group G.2/ generated

by the set ¹g2 j g 2 Gº is an invariant of the commensurability class of G. Hence

AG.2/ is isomorphic to A. By �eorem 4.2, OG.2/ is an order in AG.2/. �erefore

G.2/ is a subgroup of �.AG.2/;OG.2// and we can de�ne .G.2//�. �is explains

“acting on .H3/q � .H2/r” in the name.
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�e interest of this approach is that it allows us to consider a subgroup S of

the group G � PSL.2;C/ and then the corresponding subgroups S .2/�
and G.2/�

of the group PSL.2;C/q � PSL.2;R/r . In this case q and r are determined by the

bigger group G.

4.3. Arithmetic Fuchsian groups. In the case of r D 1, the arithmetic sub-

groups of PSL.2;R/ are arithmetic Fuchsian groups. Since subgroups of arith-

metic groups are sometimes also called arithmetic, we will emphasize the co�nite-

ness of an arithmetic Fuchsian group by calling it a co�nite arithmetic Fuchsian

group. If r D 1 then a subgroup of �nite index of �.A;O/ and its canonical image

in PSL.2;R/ are called Fuchsian groups derived from a quaternion algebra.

�e following characterization of co�nite arithmetic Fuchsian groups is due to

Takeuchi [28].

�eorem 4.4 ([28]). Let � be a co�nite Fuchsian group. Let �.2/ be the subgroup

of � generated by the set ¹g2 j g 2 �º. �en � is arithmetic if and only if the

following two conditions are satis�ed.

(i) K WD Q.Tr.�.2/// is an algebraic number �eld of �nite degree and Tr.�.2//

is contained in the ring of integers OK of K.

(ii) For any embedding ' of K into C which is not the identity, '.Tr.�.2/// is

bounded in C.

Remark. In [28], Takeuchi shows that K is a totally real algebraic number �eld

and the co�nite Fuchsian group �.2/ satisfying (i) and (ii) is derived from a quater-

nion algebra over K. And since �.2/ is of �nite index in �, � is arithmetic. �us

� is arithmetic if and only if �.2/ is derived from a quaternion algebra.

�e above characterization motivated the following de�nition of semi-arith-

metic Fuchsian groups given in [25].

A co�nite Fuchsian group � is semi-arithmetic if and only if

K WD Q.Tr.�.2///

is a totally real algebraic number �eld of �nite degree n D ŒK W Q� and Tr.�.2//

is contained in the ring of integers OK of K. � is called strictly semi-arithmetic if

� is not an arithmetic Fuchsian group.
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�e following theorem is a characterization of semi-arithmetic Fuchsian groups

due to Schmutz Schaller and Wolfart [25].

�eorem 4.5 ([25]). Let � be a co�nite Fuchsian group. �en the following two

conditions are equivalent.

(i) � is semi-arithmetic.

(ii) � is commensurable to a subgroup S of an arithmetic group � acting on

.H2/r .

4.4. Arithmetic Kleinian groups. In the case of q D 1 and r D 0, we call a

group commensurable to �.A;O/ an arithmetic Kleinian group. If an arithmetic

Kleinian group is additionally a subgroup of �nite index of �.A;O/ then it is called

Kleinian group derived from a quaternion algebra.

�e following characterization of co�nite arithmetic Kleinian groups is �eo-

rem 8.3.2 in the book of Maclachlan and Reid [19].

�eorem 4.6 ([19]). Let � be a co�nite Kleinian group. �en � is arithmetic if

and only if the following three conditions hold.

(i) Q.Tr.�.2/// is an algebraic number �eld with exactly one complex place.

(ii) tr.g/ is an algebraic integer for all g 2 �.

(iii) A�.2/ is rami�ed at all real places of Q.Tr.�.2///.

Corollary 8.3.5 in [19] gives additionally that � is arithmetic if and only if �.2/

is derived from a quaternion algebra.

�is characterization is very similar to Takeuchi’s �eorem 4.4. We can see it

from the following formulation, which uses Lemma 5.1.3 from [19].

�eorem 4.7 ([19]). Let � be a co�nite Kleinian group. �en � is arithmetic if

and only if the following two conditions hold.

(i) K D Q.Tr.�.2/// is an algebraic number �eld and Tr.�.2// is contained in

the ring of integers OK of K.

(ii) For any embedding ' of K into C which is neither the identity nor complex

conjugation, '.Tr.�.2/// is bounded in C.
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5. Small limit sets of subgroups of arithmetic groups

in PSL.2 ;C/q
� PSL.2 ;R/r

A way to measure the size of a group is by the size of its limit set. It is still an

open question how exactly to measure the size of the limit set. In our case we can

say that a nonelementary group is small if its projective limit set is the smallest

possible nonempty one, i.e., it is just a point, or if its Furstenberg boundary has

measure 0 and is even just a circle.

�is section contains the main results of this article. We study the limit set of

subgroups � of arithmetic groups in PSL.2;C/q � PSL.2;R/r with q C r � 2 and

determine for which groups the limit sets are the smallest.

First, we look at the projective limit set of a nonelementary � and prove that

it consists of exactly one point if and only if pj .�/ is a subgroup of an arithmetic

Fuchsian or Kleinian group for one j 2 ¹1; : : : ; q C rº.
�en we show that the groups � for which pj .�/ is a subgroup of an arithmetic

Fuchsian or Kleinian group are conjugate to an (almost) diagonal embedding of

a Fuchsian or Kleinian arithmetic group and in particular that their limit set can

be embedded as a topological space in a circle. �is is not the case for the other

groups.

5.1. Examples: triangle groups and Hilbert modular groups. Examples of

nonelementary subgroups of arithmetic groups in PSL.2;C/q � PSL.2;R/r that

are not Schottky groups is provided by the triangle Fuchsian groups. A Fuchsian

triangle group of type .l; m; n/ is a co�nite Fuchsian group generated by elliptic

or parabolic elements g, h and s such that

ghs D id; gl D id; hm D id; sn D id;

where 1=l C 1=m C 1=n < 1.

For a more geometric de�nition we consider the group S0 of re�ections on the

sides of a hyperbolic triangle with angles �=l , �=m and �=n. �en the subgroup

S of S0 of orientation preserving isometries is a Fuchsian triangle group of type

.l; m; n/.

By Proposition 2 in Takeuchi [29], the ring Z
�
2 cos

�
�
l

�
; 2 cos

�
�
m

�
; 2 cos

�
�
n

��

contains the trace set Tr.S/, where �=1 D 0. In particular, the �eld Q.Tr.S// co-

incides with the totally real algebraic number �eld Q
�
cos

�
�
l

�
; cos

�
�
m

�
; cos

�
�
n

��

and Tr.S/ is contained in the ring of integers of Q.Tr.S//. Hence S is a semi-

arithmetic group. By Takeuchi [29], only �nitely many conjugacy classes of arith-

metic triangle groups.
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By �eorem 4.5, S is commensurable to a subgroup of an arithmetic group in

PSL.2;R/r .

Examples of arithmetic subgroups � of PSL.2;R/r are the Hilbert modular

groups. Let F be a totally real number �eld and �i , i D 1; : : : ; r , be the r distinct

embeddings of F into R. For g 2 PSL.2;OF /, g D
�

a b
c d

�
, we de�ne

�i .g/ D
"

�i .a/ �i.b/

�i .c/ �i .d/

#
:

�e group PSL.2;OF /� is an irreducible arithmetic subgroup of PSL.2;R/r and

is called a Hilbert modular group over F . Its quaternion algebra is isomorphic

to .1;1
F

/.

�e Hilbert modular groups are the only arithmetic groups acting on .H2/r that

contain parabolic isometries. Note that PSL.2;Z/ is a subgroup of any Hilbert

modular group.

A Hecke group is a triangle group of type .2; m; 1/. �e Hecke groups are

strictly semi-arithmetic except for m D 3; 4; 6.

A Hecke group S of type .2; m; 1/ is generated by
�

0 1
�1 0

�
and

�
1 2 cos. �

m
/

0 1

�
,

see Katok [14]. Hence all elements in S have entries that are algebraic integers in

Q.cos.�=m//. �erefore S is a subgroup of PSL.2;OF / where F is a �eld which

is a �nite extension of Q.cos.�=m//. Hence PSL.2;OF /� has a subgroup � such

that p1.�/ D S .

5.2. Arithmetic Fuchsian and Kleinian groups as subgroups of arithmetic

groups in PSL.2 ;C/q
� PSL.2 ;R/r . Let � be a subgroup of an irreducible

arithmetic group in PSL.2;C/q � PSL.2;R/r . In this section we show that if

pj .�/ is a subgroup of an arithmetic Fuchsian or Kleinian group for some j 2
¹1; : : : ; q C rº then the same is true for each nonelementary projection pi .�/,

i D 1; : : : ; q C r .

Lemma 5.1. Let us consider an irreducible arithmetic subgroup � of the group

PSL.2;C/q � PSL.2;R/r and a subgroup � of � such that pj .�/ is a co�nite

arithmetic Fuchsian (or Kleinian) group for some j 2 ¹1; : : : ; q C rº. �en, for

all i D 1; : : : ; q C r , the group pi .�/ is either elementary or a co�nite arithmetic

Fuchsian (or Kleinian) group.

Proof. Since � is arithmetic, it is commensurable to an arithmetic group derived

from a quaternion algebra �.A;O/�. Hence for each g D .g1; : : : ; gr/ in � there

is a power k such that gk is in �.A;O/�.
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�e group � is commensurable to the subgroup

S� D � \ �.A;O/�

of �.A;O/�. �en for all i D 1; : : : ; q C r , the groups pi .�/ and �i .S/ are also

commensurable. �is in particular implies that �j .S/ is a co�nite arithmetic Fuch-

sian (or Kleinian) group.

�e group �j .S/.2/ is de�ned via a quaternion algebra B over a �eld k that is a

subalgebra of A and is rami�ed at all in�nite places except one. �is place is real

if �j .S/ is a co�nite Fuchsian and complex if �j .S/ is a co�nite Kleinian group.

�e group �j .S/.2/ is isomorphic to the group of units of reduced norm 1 of an

order OB in B .

For i D 1; : : : ; q C r , if �i .S/ is nonelementary, then B is unrami�ed for the

Galois isomorphism

�i WD �i ı ��1
j

and hence �i jk is the identity. �erefore �i .S/.2/ D �i .�j .S//.2/ is also isomorphic

to the group of units of reduced norm 1 of OB and hence �i .S/ and pi .�/ are

co�nite arithmetic Fuchsian (or Kleinian) groups.

It remains to show that �i .S/ is nonelementary if and only if pi .�/ is nonele-

mentary: Assume that pi .�/ is nonelementary. Let g and h be two hyperbolic

isometries that generate a Schottky group in pi .�/. �e isometries gk1 and hk2

are in �i.S/ for some integers k1 and k2. �en gk1 and hk2 generate a Schot-

tky subgroup of �i.S/ and therefore �i .S/ is nonelementary. �e proof of the

converse is analogous.

Remark. From Proposition 3.6 it follows that pqC1.�/; : : : ; pqCr.�/ are nonele-

mentary and hence of the same type as pj .�/. But they can not be co�nite arith-

metic Kleinian groups. Hence it is possible that pj .�/ is a co�nite arithmetic

Kleinian group only if r D 0.

�e next lemma follows from the previous one.

Lemma 5.2. Let us consider an irreducible arithmetic subgroup � of the group

PSL.2;C/q � PSL.2;R/r and let both � and z� �nitely generated subgroups of �

such that pj .�/ is a nonelementary subgroup of the co�nite arithmetic Fuchsian

(or Kleinian) pj .z�/ for some j 2 ¹1; : : : ; q C rº. �en, for all i D 1; : : : ; q C r ,

the group pi .�/ is either elementary or a nonelementary subgroup of a co�nite

arithmetic Fuchsian (or Kleinian) group.

Proof. If pi .�/ is nonelementary, then pi .z�/ is nonelementary and hence, by the

previous lemma, a co�nite arithmetic Fuchsian (or Kleinian) group.
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Let pi .�/ be elementary. By Proposition 3.6, it consists only of elliptic isome-

tries with a common �xed point. Since pj .�/ has a loxodromic element, pi .�/

has an elliptic element of in�nite order. Hence pi .�/ is not discrete. �erefore

pi .z�/ is also not discrete. Since it is either elementary or a discrete arithmetic

Fuchsian (or Kleinian) group, it is elementary.

5.3. Small projective limit sets. In this section we will determine the groups

for which the projective limit set is the smallest possible nonempty one, namely

when it is just one point.

We need the following criterion for Zariski density which is a special case of

the criterion proved by Dal’Bo and Kim in [9]. For part (iii) we use the fact that

there are no continuous isomorphisms between PSL.2;R/ and PSL.2;C/.

�eorem 5.3 ([9]). (i) Let ' be a surjective homomorphism between two Zariski

dense subgroups � and � 0 of PSL.2;R/. �en ' can be extended to a continuous

automorphism of PSL.2;R/ if and only if the group

�' WD ¹.g; '.g// j g 2 �º

is not Zariski dense in PSL.2;R/ � PSL.2;R/.

(ii) Let ' be a surjective homomorphism between two subgroups � and � 0 of

PSL.2;C/ that are Zariski dense over R. �en ' can be extended to a continuous

automorphism of PSL.2;C/ if and only if the group

�' WD ¹.g; '.g// j g 2 �º

is not Zariski dense over R in PSL.2;C/ � PSL.2;C/.

(iii) Let � be a subgroup of PSL.2;C/ that is Zariski dense over R and � 0

a Zariski dense subgroup of PSL.2;R/. Further let ' W � ! � 0 be a surjective

homomorphism between them. �e group

�' WD ¹.g; '.g// j g 2 �º

is Zariski dense over R in PSL.2;C/ � PSL.2;R/.

A proof of the following theorem is given by Schreier and Van der Waerden

in [26].

�eorem 5.4 ([26]). (i) All continuous automorphisms of PSL.2;R/ are given by

a conjugation with an element of GL.2;R/.

(ii) All continuous automorphisms of PSL.2;C/ are given by a conjugation

with an element of GL.2;C/ or by a complex conjugation followed by a conjuga-

tion with an element of GL.2;C/.
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5.3.1. �e general case. In the �rst four lemmas we will prove �eorem 5.9

which is the essential step of the proof of the main results for nonelementary sub-

groups of PSL.2;C/q � PSL.2;R/r with q C r � 2. �en we consider separately

the three di�erent cases: q D 0, r D 0 and qr ¤ 0.

Unless otherwise speci�ed, �.A;O/ will denote a subgroup of PSL.2;R/ or

PSL.2;C/ derived from a quaternion algebra such that

�.A;O/� � PSL.2;C/q � PSL.2;R/r ; with q C r � 2:

Here we �x for simplicity of notation the order of the complex and real factors.

Let S be a subgroup of �.A;O/ such that S� is nonelementary. �en by

Lemma 3.3 the regular limit set L
reg
S� is not empty and in particular we can de-

�ne the Furstenberg limit set FS� and the projective limit set PS� .

In the �rst two lemmas we prove that PS� contains exactly one point if and

only if the �-conjugated elements have “almost” equal traces. �en we prove that

this is the case if and only if S is a subgroup of an arithmetic Fuchsian or Kleinian

group.

Lemma 5.5. If for at least one i 2 ¹1; : : : ; q C rº, the mapping

�i W Tr.S .2// �! �i .Tr.S .2///

is neither the identity nor complex conjugation, then PS� contains more than one

point.

Proof. We have four cases for Tr.S/ and �i .Tr.S//.

�e �rst one is when Tr.S/ and �i .Tr.S// are both subsets ofR. �en by Corol-

lary 1.5, the Zariski closures over R of S and �i.S/ are conjugates of PSL.2;R/.

Hence, by �eorem 5.3(i) (the criterion of Dal’Bo and Kim),

S�i
WD ¹.s; �i.s// j s 2 Sº

is Zariski dense over R in a conjugate of PSL.2;R/ � PSL.2;R/.

�e second case is when Tr.S/ is not a subset of R and �i.Tr.S// is a subset

of R. �en by Corollary 1.5, the Zariski closure over R of S is PSL.2;C/ and the

Zariski closure over R of �i .S/ is a conjugate of PSL.2;R/. By �eorem 5.3(iii)

S�i
is then Zariski dense over R in a conjugate of PSL.2;C/ � PSL.2;R/

�e third case is when Tr.S/ is a subset of R and �i .Tr.S// not is a subset

of R. It is analogous to the second case.
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�e last case is when both Tr.S/ and �i .Tr.S// are not subsets of R. �en by

Corollary 1.5, the Zariski closures over R of S and �i.S/ are PSL.2;C/. Hence,

by �eorem 5.3(ii) (the criterion of Dal’Bo and Kim), S�i
is Zariski dense over R

in PSL.2;C/ � PSL.2;C/.

In all cases, by �eorem 3.9 it follows that PS�i
has a nonempty interior in

RP1, i.e., PS�i
contains more than one point.

Let h be a loxodromic transformation in S all of whose �-conjugates are loxo-

dromic and whose existence is guaranteed by Lemma 3.3. Since PS�i
contains

more than one point, we can take g 2 S such that the translation directions

.`.h/ W `.�i .h/// and .`.g/ W `.�i .g/// are di�erent.

Case 1 . If all �-conjugates of g are loxodromic isometries, then the transla-

tion directions L.h/ and L.g/ of h and g determine di�erent points in RP
qCr�1
C

and hence PS� consists of more than one point.

Case 2. �ere is a �-conjugate of g that is an elliptic isometry of in�nite

order. By Proposition 3.8, PS� is convex and in particular path connected. Hence

there is a path in PS� between L.h/ and L.g/. Since RP
qCr�1
C is open, there is

an open subset of the path in RP
qCr�1
C . �erefore there is another point in PS�

except L.h/.

�e converse is also true as the following lemma shows.

Lemma 5.6. If for all i 2 ¹1; : : : ; q C rº, the mapping

�i W Tr.S .2// �! �i .Tr.S .2///

is either the identity or complex conjugation, then PS� consists only of the point

.1 W : : : W 1/.

Proof. We prove the negation of this implication. Assume PS� contains at least

one point di�erent from .1 W : : : W 1/. By �eorem 2.2, the translation directions

of the loxodromic isometries in S� are dense in PS� . �erefore PS� contains a

loxodromic transformation h� with L.h�/ ¤ .1 W : : : W 1/. �ere is �i such that

`.h/ ¤ `.�i.h//, where `.g/ denotes the length of the closed geodesic correspond-

ing to g.

For all g; Qg 2 PSL.2;C/, if `.g/ ¤ `. Qg/, then tr.g/ ¤ tr. Qg/ and tr.g/ ¤ tr. Qg/.

�erefore, for the above �i , we have tr.h/ ¤ ˙�i .tr.h// and tr.h/ ¤ ˙�i.tr.h//

and in particular the mapping �i W Tr.S .2// ! �i .Tr.S .2/// is neither the identity

nor complex conjugation.
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Remark. �e last two lemmas are generally true if S is nonelementary and �i for

i D 1; : : : ; q C r are group isomorphisms such that �i.S/ are nonelementary.

We will need the following lemma in the proof of Lemma 5.8.

Lemma 5.7. Let us consider an irreducible arithmetic subgroup � of the group

PSL.2;C/q � PSL.2;R/r . �en for all g D .g1; : : : ; gqCr/ 2 �, the traces

tr.g1/; : : : ; tr.gqCr / are algebraic integers.

Proof. �e group � is commensurable to a �.A;O/�. �en for all g 2 �, there is

a power gn 2 �.A;O/� for some n 2 N.

From Lemma 2.2.7 and Lemma 2.2.4 in [19] it follows that the traces of all

elements in �.A;O/ are algebraic integers. Hence tr.gn
i /, i D 1; : : : ; q C r , are

algebraic integers. Since tr.gn
i / is a monic polynomial with integer coe�cients

in tr.gi /, the trace tr.gi / satis�es a monic polynomial with coe�cients that are

algebraic integers and hence is an algebraic integer.

Lemma 5.8. Let S be �nitely generated. �en the mapping

�i W Tr.S .2// �! �i .Tr.S .2///

is neither the identity nor complex conjugation for at least one �i , with i 2 ¹1; : : : ;

q C rº, if and only if S is not contained in an arithmetic Fuchsian or Kleinian

group.

Proof. We assume that the mapping �i W Tr.S .2// ! �i .Tr.S .2/// is neither the

identity nor complex conjugation for some i 2 ¹1; : : : ; q C rº. We want to prove

that S is not contained in an arithmetic Kleinian or Fuchsian group. According

to �eorem 4.4 and �eorem 4.7, it is enough to show that �i .Tr.S .2/// is not

bounded in C. Recall that S� and hence .S .2//� is nonelementary. �erefore

�i .S
.2// is nonelementary and so it contains a loxodromic transformation h. Since

jTr.hn/j goes to in�nity when n goes to in�nity, �i .Tr.S .2/// is not bounded in C.

�eorem 4.7.

To prove the converse, we assume that, for all i D 1; : : : ; q C r , the map

�i jTr.S.2// is the identity or complex conjugation. �erefore tr.g/ D ˙�i.tr.g//

for all g 2 � or tr.g/ D ˙�i .tr.g// for all g 2 �.

We consider the following set of matrices

AS .2/ D
°X

ai gi j ai 2 Q.Tr.S .2///; gi 2 S .2/
±
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where only �nitely many of the ai are nonzero. By �eorem 4.1, AS .2/ is a quater-

nion algebra over Q.Tr.S .2/// because S is �nitely generated. By construction

it is contained in the quaternion algebra A. Recall that A is unrami�ed at �i for

i � q C r , and rami�ed at �i for q C r < i � n � q. So AS .2/ is a quaternion

algebra over the algebraic number �eld Q.Tr.S .2/// which is unrami�ed at id and

rami�ed at all other in�nite places.

� If the trace set of S .2/ is not contained in the reals, then AS .2/ can not be

rami�ed at id . Otherwise S .2/ is conjugated to a nonelementary (and hence

Zariski dense) subgroup of PSL.2;R/ (see �eorem 1.5) and hence AS .2/ is

unrami�ed at id.

� Every Galois isomorphism � of the trace �eld of S .2/ is a restriction of some

�i . By assumption, if � is not the identity or complex conjugation, then q Cr

< i � n � q. Here A is rami�ed and so is its subalgebra AS .2/.

By Lemma 5.7 all traces in S are algebraic integers and hence by �eorem 4.2,

an order of AS .2/ is

OS .2/ D
°X

ai gi j ai 2 OQ.Tr.S.2///; gi 2 S .2/
±
;

where only �nitely many of the ai are nonzero. �e group

OS .2/1 WD ¹˛ 2 OS j Nrd.˛/ D 1º

is an arithmetic Kleinian or Fuchsian group depending on whether its trace �eld

is a subset of R or not. �e group S .2/ is contained in OS .2/1
.

It remains to construct an arithmetic Fuchsian group containing S . Since S is

�nitely generated, we can assume that it is generated by its elements h1; : : : ; hm.

Note that h2
i 2 OS .2/1

because h2
i 2 S .2/ for all i D 1; : : : ; m. We consider the

group zS generated by OS .2/1
and h1; : : : ; hm.

From the de�nition of OS .2/ and the fact that S .2/ is a normal subgroup of S

it follows that OS .2/1
is a normal subgroup of zS . �e quotient group

Q WD zS=OS .2/1

is �nite. Indeed, it is generated by the cosets hiOS .2/1
, i D 1 : : : ; m, and therefore

every element Nh in Q is of the form hOS .2/1
where h is an element of S . Since

S .2/ is a subgroup of OS .2/, we have Nh2 D id . Hence Q is a �nitely generated

abelian group which implies that it is �nite.

�ereforeOS .2/1
is a �nite index subgroup of zS and zS is an arithmetic Kleinian

or Fuchsian subgroup of �.A;O/.
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Remark. �is also proves the statement that S is contained in an arithmetic Fuch-

sian or Kleinian group if and only if S is contained in an arithmetic Fuchsian or

Kleinian subgroup of �.A;O/.

�e following theorem follows directly from Lemmata 5.5, 5.6, and 5.8.

�eorem 5.9. Let �.A;O/ be a subgroup of PSL.2;C/ or PSL.2;R/ derived

from a quaternion algebra such that �.A;O/� � PSL.2;C/q � PSL.2;R/r with

r C q � 2 and let S be a �nitely generated subgroup of �.A;O/ such that S� is

nonelementary. �en L
reg
S� is not empty and PS� consists of exactly one point if

and only if S is contained in an arithmetic Fuchsian or Kleinian group.

Remark. From �eorem 5.9 follows in particular that if S is not a Fuchsian group,

i.e., S is not discrete, then PS� contains more than one point.

�eorem 5.10. Let us consider an irreducible arithmetic subgroup � of the group

PSL.2;C/q � PSL.2;R/r with q C r � 2 and a �nitely generated nonelementary

subgroup � of �. �en L
reg
� is not empty and P� consists of exactly one point if

and only if pj .�/ is contained in an arithmetic Fuchsian or Kleinian group for

some j 2 ¹1; : : : ; q C rº.

Proof. By Lemma 5.1, the group pj .�/ is contained in an arithmetic Fuchsian

or Kleinian group if and only if the group p1.�/ is contained in an arithmetic

Fuchsian or Kleinian group. �us we prove the statement with p1.�/ instead of

pj .�/.

We recall that L
reg
� is not empty by Lemma 3.4.

Since � is arithmetic, it is commensurable with an arithmetic group derived

from a quaternion algebra �.A;O/�. Hence there is k 2 N such that, for each

g D .g1; : : : ; gqCr/ in �, gk is in �.A;O/�.

�ere is a subgroup S of �.A;O/ such that S� D � \�\�.A;O/�. �e group

� is commensurable with the subgroup S�. �en p1.�/ and S are also commen-

surable. �e group S� is �nitely generated because it is a �nite index subgroup of

the �nitely generated group �. (�is follows from the Schreier Index Formula, see

for example the book [27], 2.2.5.) �e group S� is also nonelementary because �

is nonelementary: Let g and h be two loxodromic isometries that generate a Schot-

tky group in �. �e isometries gk and hk are in S�. �en gk and hk generate a

Schottky subgroup of S�.

�us S� is a �nitely generated nonelementary subgroup of �.A;O/. By �eo-

rem 5.9, the group S is contained in an arithmetic Fuchsian or Kleinian group if

and only if its projective limit set PS� contains exactly one point.
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�e �nal step is to go back to �.

If P� contains at least two points, then it contains two points that are the trans-

lation directions of two loxodromic isometries g and h of �. �e isometries gk

and hk that are in S� have the same translation directions as g and h. Hence L.gk/

and L.hk/ are di�erent points in PS� and therefore S is not a subgroup of an arith-

metic Fuchsian or Kleinian group. �us p1.�/ is not a subgroup of an arithmetic

Fuchsian or Kleinian group too.

If P� contains exactly one point, then PS� contains also exactly one point and

S is contained in an arithmetic Fuchsian or Kleinian group. Hence the quaternion

algebra

B WD AS .2/ D Ap1.�/.2/;

which is an invariant of the commensurability class, is unrami�ed only at one

place. Since by Lemma 5.7 the trace set Tr.p1.�/.2// consists of algebraic integers,

Op1.�/.2/ is an order in B and thus p1.�/.2/ is a subgroup of an arithmetic Fuch-

sian or Kleinian group. �e proof that p1.�/ is a subgroup of an arithmetic Fuch-

sian or Kleinian group is the same as the one for S in the end of Lemma 5.8.

5.3.2. Subgroups of PSL.2 ;R/r . In the case when q D 0 we can specify the

statement of �eorem 5.10. First, we have Lemma 3.4, so requiring that � is

nonelementary is equivalent to requiring that one of its projections is nonelemen-

tary. And second, PSL.2;R/ does not have arithmetic Kleinian subgroups. Hence

we have proved the following corollary.

Corollary 5.11. Let � be an irreducible arithmetic subgroup of PSL.2; R/r with

r � 2 and � a �nitely generated nonelementary subgroup of �. �en L
reg
� is not

empty and P� consists of exactly one point if and only if pj .�/ is contained in an

arithmetic Fuchsian group for some j 2 ¹1; : : : ; rº.

Remark. �is corollary is in particular true when pj .�/ is a co�nite Fuchsian

group.

5.3.3. Subgroups of PSL.2 ;C/q
� PSL.2 ;R/r . In the case when both q and

r are at least 1, we can state �eorem 5.10 more precisely because by the remark

after Lemma 5.1, pj .�/ cannot be a co�nite arithmetic Kleinian group for any

group �.
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Corollary 5.12. Let us consider an irreducible arithmetic subgroup � of the

group PSL.2;C/q � PSL.2;R/r , with q; r � 1, and a �nitely generated nonele-

mentary subgroup � of �. �en L
reg
� is not empty and P� consists of exactly one

point if and only if pj .�/ is contained in an arithmetic Fuchsian group for some

j 2 ¹1; : : : ; q C rº.

Remark. It is not possible to prove an analogous statement to Lemma 3.4 for

subgroups of PSL.2;C/q � PSL.2;R/r because if S is nonelementary subgroup

of a �.A;O/, then S� is not necessarily nonelementary.

An example is the quaternion algebra .
p

2;�1

Q.
p

2/
/ with its embedding

�1 W
�p

2; �1

Q.
p

2/

�
�! M.2;Q.

4
p

2//

given by the linear map sending the elements of the basis of A to the matrices

1 7�!
"

1 0

0 1

#
; i 7�!

"
4
p

2 0

0 � 4
p

2

#
;

j 7�!
"

0 1

�1 0

#
; k 7�!

"
0

4
p

2
4
p

2 0

#
:

�e �nitely generated OQ.
p

2/-module

O D ¹x D x0 C x1i C x2j C x3k j x0; x1; x2; x3 2 OQ.
p

2/º

is a ring containing 1 and hence an order because i2 and j 2 are algebraic integers.

�e group S D �1.O1/ is an arithmetic Fuchsian group because its �-conjugate

is a subgroup of .�
p

2;�1

Q.
p

2/
/, which is isomorphic to the Hamilton quaternion alge-

bra H.

�e group S is a subgroup of the arithmetic group acting on .H2/2 � H3

� D ¹A 2 M.2;Q.
4
p

2// j det A D 1º:

�e group S� is not nonelementary because �3.S/, which is a subgroup of the

group PSL.2;C/, consists only of elliptic isometries.

We can construct some other examples by instead of taking M.2;Q.
4
p

2// we

take M.2; K/ where K is a �nite extension of Q.
4
p

2/.

5.3.4. Subgroups of PSL.2 ;C/q. In the case r D 0, �eorem 5.10 is stated in

the most general way. �is case is of independent interest because this is the only

case when pj .�/ can be a co�nite arithmetic Kleinian group.
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5.4. Small limit cones. �e restriction in �eorem 5.10 that � should be nonele-

mentary is needed so that L
reg
� is nonempty and hence P� is well de�ned. �is can

be avoided by using the limit cone of � as de�ned in Section 3.4. �is is proved

in �eorem 5.15. In order to do so, we �rst need two lemmas.

Lemma 5.13. Let � be a �nitely generated subgroup of an irreducible arithmetic

group � in PSL.2;C/q � PSL.2;R/r with q C r � 2. If pj .�/ for some j 2
¹1; : : : ; q C rº is nonelementary and not a subgroup of an arithmetic Fuchsian

or Kleinian group, then there is i 2 ¹1; : : : ; q C rº, i ¤ j , such that pi .�/ is

nonelementary.

Proof. Since � is arithmetic, it is commensurable with an arithmetic group de-

rived from a quaternion algebra �.A;O/�.

We assume that pi .�/ is elementary for all i except j . �en for the subgroup

S of �.A;O/ de�ned as S� D � \ � \ �.A;O/� only �j .S/ is nonelementary.

�is means that for all embeddings � of the �eld

F WD Q.Tr.�j .S/.2///

into C that are not the identity or complex conjugation, the set �.Tr.�j .S/.2///

is bounded. By Lemma 5.7, the trace set Tr.�j .S/.2// consists of algebraic inte-

gers. Since the properties nonelementary and �nitely generated are invariant in

the commensurability class (see the proof of �eorem 5.10), the group S .2/ is also

nonelementary and hence by Lemma 5.1.3 and Corollary 8.3.7 in [19] it is a sub-

group of an arithmetic Kleinian or Fuchsian group. �en pj .�/ is a subgroup of

an arithmetic Fuchsian or Kleinian group, which is a contradiction.

�e second lemma explains how to make nonelementary a subgroup � of �

that is not nonelementary. In order to do so, we need to consider � as a subgroup

of the product group PSL.2;C/q0 � PSL.2;R/r with q0 < q.

We remark that since all mixed isometries in � have only components that are

loxodromic and elliptic of in�nite order, we have

� D ¹.�1.g1/; �2.g1/; : : : ; �qCr.g1// j g1 2 p1.�/º;

where �i is a surjective homomorphism between p1.�/ and pi .�/. Here �i coin-

cides with the �i coming from �.A;O/� for � \ �.A;O/�.

If for at least one j 2 ¹1; : : : ; q C rº, the projection pj .�/ is nonelementary,

de�ne

�ne WD ¹.�i1.g1/; �i2.g1/; : : : ; �in.g1// j
i1 < : : : < in and pik .�/ nonelementaryº:
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Lemma 5.14. �e group �ne is nonelementary, discrete and its limit set is identi-

�ed canonically with the limit set of �.

Proof. �ne is nonelementary and discrete by de�nition.

By Proposition 3.6 if pi .�/ is not nonelementary then pi .�/ is not a subgroup

of PSL.2;R/ and it consists only of elliptic isometries with a common �xed point.

Let I be the set of all i such that pi .�/ is not nonelementary. �en for each

representative geodesic  of each point in L� , the projection

i WD pi ./

is constant for i 2 I . �e following mapping gives the identi�cation of L� and

L�ne :

 D .1; : : : ; qCr/ 7! .i1 ; : : : ; in/:

�eorem 5.15. Let us consider an irreducible arithmetic subgroup � of the group

PSL.2;C/q � PSL.2;R/r , with q C r � 2, and a �nitely generated subgroup

� of � such that, for at least one j 2 ¹1; : : : ; q C rº, the projection pj .�/ is

nonelementary. �en the limit cone of � consists of exactly one point if and only

if pj .�/ is contained in an arithmetic Fuchsian or Kleinian group.

Proof. �e idea is to apply �eorem 5.10 to �ne. In order to do this we need that

n � 2, because otherwise �ne is just a subgroup of PSL.2;R/ or PSL.2;C/.

If n D 1, then the limit cone of � contains only the line
 "

0 0

0 0

#
; : : : ;

"
0 0

0 0

#
;

"
txj 0

0 �txj

#
;

"
0 0

0 0

#
; : : : ;

"
0 0

0 0

#!
; t 2 R:

But in this case, by Lemma 5.13, pj .�/ is a subgroup of an arithmetic Fuchsian

or Kleinian group.

If n � 2, the limit cone of � is identi�ed with the limit cone of �ne, which

coincides with P�ne . By �eorem 5.10, then L
reg
�ne is not empty and P�ne consists

of exactly one point if and only if pj .�/ is contained in an arithmetic Fuchsian or

Kleinian group for some j 2 ¹1; : : : ; nº.

5.5. �e structure of groups with an arithmetic projection and their limit set.

In �eorem 5.10 we have seen that a �nitely generated nonelementary subgroup

� of an irreducible arithmetic group in PSL.2;C/q � PSL.2;R/r has the smallest

possible nonempty projective limit set only if pj .�/ is a nonelementary subgroup

of an arithmetic Fuchsian or Kleinian group for some j 2 1; : : : ; q C r . In this

section we determine the structure of � and its limit set. Corollary 5.17 �nishes

the proof of �eorem A.
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Lemma 5.16. If

�j WD pj .�/

is nonelementary and a subgroup of an arithmetic Fuchsian or Kleinian group,

then L�j
is homeomorphic to L� .

Proof. If

�i WD pi .�/

is nonelementary only if i D j , then clearly L�j
is homeomorphic to L� .

We assume that there is at least one more i ¤ j such that �i is nonelementary.

�en by Lemma 5.14, the group �ne is a nonelementary subgroup of the group

PSL.2;C/q0 � PSL.2;R/r with q0 � q and q C r � 2 and its limit set is identi�ed

with the limit set of �. For simplicity of the notation, we will assume that � D �ne

and also that j D 1. �e group �1 does not need necessarily to be a subgroup of

PSL.2;C/ even if q ¤ 0.

By �eorem 5.10, the regular limit set L
reg
� is not empty and P� consists of

exactly one point. Since L
reg
� equals the product F� � P� (see 2.2), L

reg
� is home-

omorphic to F� and so it is contained in the generalized torus .@H3/q � .@H2/r .

�eorem 5.12 in [17] says that if L
reg
� is not empty, then the attractive �xed

points of the loxodromic isometries in � are dense in L� . Hence L
reg
� is dense in

L� and so L
reg
� D L� becauseL

reg
� is contained in the compact (and hence closed)

generalized torus .@H3/q � .@H2/r .

We have

� D ¹.g1; �2.g1/; : : : ; �qCr.g1// j g1 2 p1.�/º;

where �i is a surjective homomorphism between p1.�/ and pi .�/. We de�ne the

group

�1i WD ¹.g1; �i .g1// j g1 2 p1.�/º:

If p1.�/ is a subgroup of an arithmetic Fuchsian group, then for all i D
1; : : : ; q C r , the group

�i WD pi .�/

is also a subgroup of an arithmetic Fuchsian group and hence Tr.�i / is a subset

of R. �en by Corollary 1.5, the Zariski closures over R of �i is (a conjugate

of) PSL.2;R/. Since P� consists of exactly one point, P�1i
consists also of ex-

actly one point for all i D 1; : : : ; q C r . Hence by Benoist’s �eorem 3.9, the

group �1i is not Zariski dense in (a conjugate of) PSL.2;R/�PSL.2;R/ and then

by the criterion of Dal’Bo and Kim (�eorem 5.3), for all i D 1; : : : ; q C r , the
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homomorphism �i can be extended to a continuous isomorphism Ai between con-

jugates of PSL.2;R/, which, according to �eorem 5.4, is given by a conjugation

with an element Ai D
�

ai bi

ci di

�
2 GL.2;R/. Hence for all g D .g1; : : : ; gqCr/ 2 �,

gi D Aig1A�1
i .

If �1 is a subgroup of an arithmetic Kleinian group but not a subgroup of

an arithmetic Fuchsian group (this is possible only in the case r D 0), then by

Corollary 1.5, the Zariski closures over R of �i is PSL.2;C/. As above, for each

i D 1; : : : ; q, we can �nd

Ai D
"

ai bi

ci di

#
2 GL.2;C/;

such that

gi D Aig1A�1
i ; for all g D .g1; : : : ; gq/ 2 �;

or

gi D Aig1A�1
i ; for all g D .g1; : : : ; gq/ 2 �,

where g1 denotes the complex conjugate.

If � is an attractive �xed point of an element g1 D p1.g/ in �1 with g D
.g1; : : : ; gqCr/ 2 �, then either

Ai .�/ WD ai� C bi

ci� C di

or

Ai .�/ WD ai
N� C bi

ci
N� C di

is the attractive �xed point of gi and vice versa. �e maps Ai are homeomorphisms

of @H3 (and in the �rst case of @H2).

We consider the mapping

A W L�1
�! L� ;

z 7�! .z;fA2.z/; : : : ;fAr.z// � .1 W : : : W 1/;

where

fAi .z/ WD aiz C bi

ciz C di

if � is the identity and

fAi .z/ WD ai Nz C bi

ci Nz C di
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if � is complex conjugation, i D 1; : : : ; q C r . �is mapping is a homeomorphism

on its image, i.e.,

A W L�1
�! A.L�1

/

is a homeomorphism. Since A is a bijection between the attractive �xed points of

the loxodromic isometries in � and the attractive �xed points of the loxodromic

isometries in �1, and since the attractive �xed points of the loxodromic isometries

are dense in the corresponding limit set, L� D A.L�1
/. �erefore

A W L�1
�! L�

is a homeomorphism.

�e above proof is also the proof of the following corollary.

Corollary 5.17. Let � be a �nitely generated nonelementary subgroup of an irre-

ducible arithmetic group in PSL.2;C/q � PSL.2;R/r with q C r � 2. If

S WD pj .�/

is a subgroup of an arithmetic Fuchsian or Kleinian group for some j 2 ¹1; : : : ;

q C rº, then � is a conjugate by an element in GL.2;C/q � GL.2;R/r of a group

Diag.S/ WD ¹.�1.s/; : : : ; �qCr.s// j s 2 Sº;

where, for i D 1; : : : ; q C r , �i denotes either the identity or complex conjugation.

�is corollary and �eorem 5.10 prove �eorem A from the introduction.

5.6. Small limit sets

5.6.1. Subgroups of PSL.2 ;C/q
� PSL.2 ;R/r . In this section we answer the

question when the limit set of � is topologically a circle or a subspace of a circle

where � is a �nitely generated subgroup of an irreducible arithmetic group in

PSL.2;C/q � PSL.2;R/r with q C r � 2.

We say that a set X is embedded homeomorphically in a circle if there exists

a map f W X ! S1 such that f W X ! f .X/ is a homeomorphism.

�eorem 5.18. Let � be a �nitely generated subgroup of an irreducible arithmetic

group in PSL.2;C/q � PSL.2;R/r with q C r � 2 and r ¤ 0 such that pj .�/ is

nonelementary for some j 2 ¹1; : : : ; q C rº. �en L� is embedded homeomor-

phically in a circle if and only if pj .�/ is contained in an arithmetic Fuchsian

group.
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Proof. If

�j WD pj .�/

is a subgroup of an arithmetic Fuchsian group, then L� and L�j
are homeomor-

phic (Lemma 5.16). Since L�j
is a topological subspace of S1, the limit set L� is

embedded homeomorphically in a circle.

Now let pj .�/ be such that it is not contained in an arithmetic Fuchsian group.

By Lemma 5.13 and Lemma 5.14, the group �ne is a nonelementary subgroup of

PSL.2;C/q0 � PSL.2;R/r with q0 � q and q C r � 2 and its limit set is identi�ed

with the limit set of �. For simplicity of the notation, we will assume that � D �ne.

�en by �eorem 5.10, P� contains at least two di�erent points and by Lem-

ma 3.7 there is a path in P� between these points and thus P� contains an interval.

Let I be an open subinterval (contained in this interval).

�e next step is to show that F� is in�nite. Since L� is nonempty, there is

at least one loxodromic element Qh in �. By Lemma 3.1, starting from Qh and Qh,

we can �nd loxodromic isometries g and h in � such that the groups generated

by the corresponding components of g and h are Schottky with only loxodromic

elements. �e projections of the attractive �xed points of gkhg�k , k 2 N, in the

Furstenberg boundary give us in�nitely many points in F� .

Since F� is closed and lies in the generalized torus .@H3/q �.@H2/r , it contains

a point � that is not isolated. �is means that any neighborhood U of � in F�

contains a point �U di�erent from �.

Let us assume that there is a topological embedding f W L� ! S1, i.e., f is a

homeomorphism betweenL� and f .L�/ with the subset topology. Since ¹�º�I �
L� is connected, the image f .¹�º � I / is also connected. Hence f .¹�º � I / is an

arc in S1 and thus open in S1 and so in f .L�/. Since f is homeomorphism, the

preimage of the open set f .¹�º � I / is open in L� , i.e., ¹�º � I is open in L� .

�e topology of ..@H3/q � .@H2/r/reg is the product topology and L
reg
� �

..@H3/q � .@H2/r/reg has the product subspace topology. In particular, each open

set V containing ¹�º � I contains also ¹�U º � I where U is a neighborhood of �

contained in the projection of V in F� . Hence, since any neighborhood U of �

in F� contains a point �U di�erent from �, ¹�º � I is not open in L� . �is is a

contradiction.

�eorem 5.18 allows us to decide whether pj .�/ is a subgroup of an arithmetic

Fuchsian group or not. �e next corollary distinguishes when pj .�/ is a (co�nite)

arithmetic Fuchsian group and when it is not.
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Corollary 5.19. Let � be a �nitely generated subgroup of an irreducible arith-

metic group in PSL.2;C/q � PSL.2;R/r with q C r � 2 and r ¤ 0 such that

pj .�/ is nonelementary for some j 2 ¹1; : : : ; q C rº. �en L� is homeomorphic

to a circle if and only if pj .�/ is a co�nite arithmetic Fuchsian group.

Proof. If

�j WD pj .�/

is not a subgroup of an arithmetic Fuchsian group, then by the previous theorem,

L� is not homeomorphic to a circle.

Let �j be a subgroup of an arithmetic Fuchsian group. �en by Lemma 5.16,

L� is homeomorphic to L�j
.

If L� be homeomorphic to a circle, then L�j
is connected. Since �j is nonele-

mentary, L�j
contains more than two points and by �eorem 3.4.6 in [14], it is

either the whole boundary @H2 of H2 or it is nowhere dense in @H2 and in partic-

ular not connected. Hence L�j
is @H2.

Combining �eorem 4.6.1 and �eorem 4.5.1 in [14] we get that a �nitely gener-

ated Fuchsian group of the �rst kind, i.e., whose limit set is @H2, has a fundamen-

tal region of �nite hyperbolic area. �erefore �j is co�nite arithmetic Fuchsian

group.

�e converse is also true, namely, if �j is co�nite arithmetic Fuchsian group,

then L�j
and hence L� are homeomorphic to S1.

By the previous theorem, the remark after Lemma 5.6 and the proof of Lem-

ma 5.16, it follows immediately when the limit set of a nonelementary subgroup

of the group PSL.2;C/q � PSL.2;R/r is a circle.

Corollary 5.20. Let � be a nonelementary subgroup of PSL.2;C/q �PSL.2;R/r

with q C r � 2 and r ¤ 0. �en L� is embedded homeomorphically in a circle if

and only if � is a conjugate by an element in GL.2;C/q � GL.2;R/r of a group

Diag.S/ WD ¹.�1.s/; : : : ; �qCr.s// j s 2 Sº;

where S is a subgroup of PSL.2;R/ and, for i D 1; : : : ; q C r , �i denotes either

the identity or complex conjugation.

5.6.2. Subgroups of PSL.2 ;C/q. We consider a subgroup � of an irreducible

arithmetic group in PSL.2;C/q. �e question we answer is when L� is a sphere.

�e next theorem is analogous to Corollary 5.19 but it needs an additional structure

on the geometric boundary @.H3/q.
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�e geometric boundary @.H3/q is homeomorphic to the unit tangent sphere at

a point in .H3/q. �is unit tangent sphere has a natural smooth structure induced

by the Riemannian metric of .H3/q and this makes the unit tangent sphere di�eo-

morphic to the standard .3q �1/-sphere and de�nes a smooth structure on @.H3/q.

�eorem 5.21. Consider a subgroup � of an irreducible arithmetic group in

PSL.2;C/q with q � 2 such that pj .�/ is a co�nite Kleinian group for some

j 2 ¹1; : : : ; qº. �enL� is the image of a di�erentiable embedding of the 2-sphere

S2 in @.H3/q if and only if pj .�/ is an arithmetic Kleinian group.

Proof. For simplicity we will denote pi .�/ by �i for all i D 1; : : : ; q. Without

loss of generality, we can assume that pj .�/ is a co�nite Kleinian group for j D 1.

In order to show the �rst implication let �1 be an arithmetic Kleinian group.

�enL� andL�1
are homeomorphic (Lemma 5.16). From the proof of Lemma 5.16

it follows that L� and L�1
are di�eomorphic because fAi are di�eomorphisms of

the Riemann sphere for i D 1; : : : ; q.

�us L� is the image of an embedding of the S2 in @.H3/q .

In order to show the second implication, we assume that �1 is not arithmetic

and the limit set of � is the image of an embedding of the sphere S2 in @.H3/q.

By Lemma 5.14, L� and L�ne are di�eomorphic. Here @.H3/q0

is a submanifold

of @.H3/q.

�e projective limit set P�ne contains at least two di�erent points (cf. �eo-

rem 5.10) and by Proposition 3.8, it contains also a path joining them.

�eorem 4.10 in [18] says that the set of attractive �xed points of loxodromic

isometries in a nonelementary subgroup of PSL.2;C/n is dense in its limit set.

It follows that L
reg
�ne is dense in L�ne . Additionally, since @.H3/n

reg is open in

@.H3/n, L
reg
�ne is open in L�ne . Hence L

reg
�ne is open and dense in L�ne

�e limit set L�1
of �1 is @H3, i.e., homeomorphic to S2. To each point in L�1

corresponds at least one point in L�ne . We will show that each point in L�1
is the

projection in the �rst factor of a point in L
reg
�ne .

For each point in L
sing
�ne there is a sequence in L

reg
�ne that converges to it. Let �

be a point in L
sing
�ne such that the projection of one of its representative geodesics

in the �rst factor is not a constant. �is means that the �rst factors of the regular

elements converge to the �rst factor of �. �e projections of the regular elements in

the Furstenberg boundary .@H3/q have an accumulation point in .@H3/q (because

.@H3/q is compact). Since F�ne is closed, there is a point in L
reg
�ne such that its

projection in the �rst factor coincides with the �rst factor of �.
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Hence the projection of L
reg
�ne on the �rst factor of the regular boundary is L�1

,

which is the 2-sphere. SinceL
reg
�ne D F�ne �P�ne by �eorem 2.2, the projection of

L
reg
�ne on the �rst factor times P�ne contains a set homeomorphic toR3. On the other

side L
reg
�ne is a two dimensional smooth submanifold of @.H3/reg and therefore its

projection on the �rst factor times P�ne is two dimensional, which is impossible.

�us if �1 is not arithmetic, then the limit set of �ne is not the image of an

embedding of the S2 in @.H3/q.

Remark. �e fact that the projection ofL
reg
�ne on the �rst factor times P�ne contains

a set homeomorphic to R3 while L
reg
�ne is two dimensional is not a contradiction if

L
reg
�ne is just assumed to be homeomorphic to S2.

We can give a more precise answer to the question when the limit set is topo-

logically a circle. An answer is given by the next theorem. We use the following

de�nition. A quasi-Fuchsian group is a subgroup of PSL.2;C/ whose limit set is

homeomorphic to a circle.

�eorem 5.22. Let � be a �nitely generated subgroup of an irreducible arith-

metic group in PSL.2;C/q with q � 2 such that pj .�/ is nonelementary for some

j 2 ¹1; : : : ; qº. �en L� is homeomorphic to a circle if and only if pj .�/ is a

co�nite arithmetic Fuchsian group or a quasi-Fuchsian subgroup of an arithmetic

Kleinian group.

Proof. Again for simplicity we will denote pi .�/ by �i for all i D 1; : : : ; q. With-

out loss of generality, we can assume that pj .�/ is nonelementary for j D 1.

We will consider two main cases: when �1 is a subgroup of an arithmetic

Fuchsian or Kleinian group and when it is not.

Let �1 be an arithmetic Fuchsian or Kleinian group, then L� and L�1
are

homeomorphic (Lemma 5.16). In the next three paragraphs we consider the dif-

ferent possibilities for �1.

If �1 is a co�nite arithmetic Fuchsian group or a quasi-Fuchsian subgroup of

an arithmetic Kleinian group, then L�1
is topologically a circle.

If �1 is a subgroup of an arithmetic Fuchsian group but is not co�nite, then

by �eorem 4.6.1 and �eorem 4.5.1 in Katok’s book [14], �1 is not of the �rst

kind and since it is nonelementary from �eorem 3.4.6 in [14] follows that L�1
is

nowhere dense in the circle in @H3 that is left invariant by �1 and in particular not

connected. �us in this case L� is not homeomorphic to a circle.
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Let �1 be a subgroup of an arithmetic Kleinian group. If �1 is (conjugated

to) a Fuchsian group, then it is contained in an arithmetic Fuchsian group and we

are in the previous case. If �1 contains purely loxodromic elements, then L�1
is

homeomorphic to a circle if and only if �1 is a quasi-Fuchsian group.

Now we come back to the second big case. Let �1 be such that it is not con-

tained in an arithmetic Fuchsian or Kleinian group. By Lemma 5.14, L� and L�ne

are homeomorphic, �ne is a subgroup of PSL.2;C/n and by Lemma 5.13 n � 2.

�en according to �eorem 5.10, P�ne contains at least two di�erent points and

by Lemma 3.3 there is a path in P�ne between these points and thus P�ne contains

an interval. �e rest of the proof in this case is analogous to the corresponding

part in �eorem 5.18 that shows that L� is not homeomorphically embedded in a

circle.

Remark. From the proof it follows in particular that if L� is not contained in a

circle, then pj .�/ is not a subgroup of an arithmetic Fuchsian or Kleinian group.

5.7. Totally geodesic embeddings. �e following theorem is a corollary of �e-

orem 5.18 and �eorem 5.22. A proof can be found in [12].

�eorem 5.23. Let � be a �nitely generated subgroup of an irreducible arithmetic

group in PSL.2;C/q�PSL.2;R/r with qCr � 2 such that pj .�/ is nonelementary

for some j 2 ¹1; : : : ; q C rº. �en there is a totally geodesic embedding of H2 in

.H3/q � .H2/r that is left invariant by the action of � if and only if pj .�/ is a

subgroup of an arithmetic Fuchsian group.
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