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Abstract. In this paper, we give a necessary and su�cient condition for a �nitely generated

group to have a property like Kazhdan’s Property .T / restricted to one isometric represen-

tation on a strictly convex Banach space without non-zero invariant vectors. Similarly, we

give a necessary and su�cient condition for a �nitely generated group to have a property

like Property .FH/ restricted to the set of the a�ne isometric actions whose linear part is a

given isometric representation on a strictly convex Banach space without non-zero invari-

ant vectors. If the Banach space is the `p space (1 < p < 1) on a �nitely generated group,

these conditions are regarded as an estimation of the spectrum of the p-Laplace operator

on the `p space and on the p-Dirichlet �nite space respectively.
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1. Introduction

A �nitely generated group � is said to have Kazhdan’s Property .T /, if every

irreducible unitary representation .�; H/ does not have an almost �xed point, that

is, there exists a positive constant C such that

max

2K

k�.
/v � vk � C kvk

for all v 2 H , where K is a �nite generating subset of �. Kazhdan’s Property .T /

has played important roles in many di�erent subjects (see [2]). A �nitely generated

1 �is research was supported by Global COE Program "Weaving Science Web beyond

Particle-Matter Hierarchy", MEXT, Japan.
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group is said to have Property .FH/, if every a�ne isometric action on an in�nite

dimensional Hilbert space has a �xed point. It is known that a �nitely generated

group has Kazhdan’s Property .T / if and only if it has Property .FH/.

Bader, Furman, Gelander, and Monod [1] introduced a generalization of Kazh-

dan’s Property .T / and Property .FH/ for a Banach space B , and called these

Property .TB/ and Property .FB/ respectively. �ey proved that a �nitely gen-

erated group has Property .TLp.Œ0;1�// for p 2 Œ1; 1/ if and only if it has Kazh-

dan’s Property .T /, which is Property .TL2.Œ0;1�//. �ey also proved, as also did

Chatterji, Druţu and Haglund [5], that a �nitely generated group has Property

.FLp.Œ0;1�// for p 2 Œ1; 2� if and only if it has Property .FH/, which is Property

.FL2.Œ0;1�//. On the contrary, Bourdon and Pajot [4] showed that an in�nite hyper-

bolic group �, which may have Property .FH/, does not have Property .FLp.�//

if p is large enough. As this result shows, in general, Property .FH/ and Property

.FB/ are di�erent.

In this paper, for a strictly convex Banach space B we investigate Property

.TB/ restricting to one linear isometric action without non-zero invariant vectors

via the variation of the displacement function with respect to the orbit of a �nite

generating subset of a �nitely generated group. Also we investigate Property .FB/

restricting to the set of a�ne isometric actions whose linear part is a given linear

isometric action on B without non-zero invariant vectors.

We show the following. Let � be a �nitely generated group, K a �nite gener-

ating set of �, and B a strictly convex Banach space. We de�ne the displacement

function

F˛;r .v/ WD
�

X


2K

k˛.
; v/ � vkrm.
/
�1=r

; F˛;1.v/ WD max

2K

k˛.
; v/ � vk

at v 2 B for an a�ne isometric action ˛ of � on B and 1 � r < 1, where m

is a weight on K. �e absolute gradient jr�F˛;r j.v/ is the maximum descent of

F˛;r .v/ around v (see De�nition 3.2 for details). Let � be a linear isometric action

of � on B without non-zero invariant vectors, and 1 � r � 1.

�eorem 1.1. �e following are equivalent.

(i) �ere is a positive constant C 0 such that every v 2 B satis�es

max

2K

k�.
; v/ � vk � C 0kvk:

(ii) �ere is a positive constant C such that every v 2 Bn¹0º satis�es

jr�F�;r j.v/ � C:
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Denote by A.�/ the set of the a�ne isometric actions whose linear part is � .

�eorem 1.2. �e following are equivalent.

(i) Every ˛ 2 A.�/ has a �xed point.

(ii) For every ˛ 2 A.�/, there is a positive constant C such that every v 2 B

with F˛;r .v/ > 0 satis�es

jr�F˛;r j.v/ � C:

Furthermore, in (ii), C can be a constant independent of each ˛.

We apply these theorems to the left regular representation ��;p of � on `p.�/

(1 < p < 1). Let �p be the p-Laplace operator on Dp.�/ which is the Dirichlet

�nite function space (see Section 6 for details). �en we have

Corollary 1.3. �e following are equivalent.

(i) �ere is a positive constant C 0 such that every f 2 `p.�/ satis�es

max

2K

k��;p.
/f � f k`p.�/ � C 0kf k`p.�/:

(ii) �ere is a positive constant C such that every f 2 `p.�/ satis�es

k�pf k`q.�/ � C kf k
p�1

Dp.�/
;

where q is a conjugate exponent of p.

If p D 2, these conditions are equivalent to a lower estimation of the spectrum

of �2 on `p.�/.

Corollary 1.4. �e following are equivalent.

(i) Every ˛ 2 A.��;p/ has a �xed point.

(ii) �ere is a positive constant C such that every f 2 Dp.�/ satis�es




�pf






`q.�/
� C kf k

p�1

Dp.�/
;

where q is the conjugate exponent of p.
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2. Strictly convex Banach spaces

In this section, we review the de�nitions and several properties of strictly convex

Banach spaces, smooth Banach spaces, uniformly convex Banach spaces and uni-

formly smooth Banach spaces. Basic references are [3], [7] and [8]. We denote by

.B�; k kB�/ the dual Banach space of a Banach space .B; k k/.

De�nition 2.1. A Banach space .B; k k/ is said to be strictly convex if kvCuk < 2

for all v; u 2 B with v 6D u, kvk � 1 and kuk � 1.

De�nition 2.2. A Banach space .B; k k/ is said to be uniformly convex if the

modulus of convexity of B

ıB.�/ WD inf

²

1 �
ku C vk

2
W kuk � 1; kvk � 1 and ku � vk � �

³

is positive for all � > 0.

A uniformly convex Banach space is obviously strictly convex. For instance,

Lp spaces (1 < p < 1) are uniformly convex Banach spaces.

A support functional at v 2 B is a functional f 2 B� such that kf kB� D 1

and f .v/ D kvk.

De�nition 2.3. A Banach space is said to be smooth if every non-zero vector has

a unique support functional.

We denote by j.v/ the support functional at a non-zero vector v in a smooth

Banach space B , and call j the duality map. For the trivial vector 0 of B , we set

j.0/ to be the zero functional on B . If B is a real smooth Banach space, then

j.v/u D lim
t!0

kv C tuk � kvk

t

for all v 2 Bn¹0º and u 2 B .

De�nition 2.4. A Banach space .B; k k/ is said to be uniformly smooth if the

modulus of smoothness of B

�B.�/ WD sup

²

ku C vk

2
C

ku � vk

2
� 1 W kuk � 1 and kvk � �

³

satis�es that �B.�/=� ! 0 when � & 0.
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A real uniformly smooth Banach space B is smooth. Furthermore, the dual-

ity map j from the unit sphere of B into the unit sphere of B� is a uniformly

continuous map with a uniformly continuous inverse. For a complex number

c 2 C, let Re c denote the real part of c. Note that for any w� 2 B� we have

kw�kB� D max¹j Re.w�.v//j W v 2 B; kvk D 1º. �is is because for any w� 2 B�

and any v 2 B there is t 2 C such that ktk D 1 and w�.tv/ 2 R. �e following

proposition for the case that B is real is Proposition A.5. in [3].

Proposition 2.5. Let B be a uniformly smooth Banach space. �en

kj.v/ � j.u/kB� � 2�B

�

2













v

kvk
�

u

kuk













��












v

kvk
�

u

kuk













for all v; u 2 Bn¹0º with v 6D u.

Proof. For u 2 Bn¹0º and v 2 B , we have

Re.j.u/v/ C kuk D Re.j.u/.v C u// � jj.u/.v C u/j � kv C uk:

Hence Re.j.u/v/ � ku C vk � kuk.

Fix x; y 2 Bn¹0º with x 6D y. Since any u 2 Bn¹0º satis�es j.u/ D j.u=kuk/,

we may assume that kxk D kyk D 1. Take an arbitrary z 2 B with kzk D kx�yk.

�en

Re..j.y/ � j.x//z/ D Re.j.y/z/ � Re.j.x/z/

� ky C zk � kyk � Re.j.x/z/ C kxk � Re.j.x/y/

D ky C zk � 1 C Re.j.x/.x � y � z//

� ky C zk � 1 C kx C .x � y � z/k � kxk

D kx C .y � x C z/k C kx � .y � x C z/k � 2

� 2�B.ky � x C zk/

� 2�B.2ky � xk/;

because �B is nondecreasing and ky � x C zk � 2ky � xk. Since z is arbitrary,

the proposition follows.

3. A�ne isometric actions on a strictly convex Banach space

In this section, we summarize some de�nitions and results which relate to an iso-

metric action ˛ of a �nitely generated group on a strictly convex Banach space. We
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will introduce a nonnegative continuous function F˛;r on the Banach space which

plays the most important role in this paper, and investigate its behavior using its

absolute gradient.

Let � be a �nitely generated group and K a �nite generating subset of �. We

may assume K is symmetric, that is, K�1 D K. We call a positive function m on

K satisfying
P


2K m.
/ D 1 a weight on K. A weight m on a symmetric �nite

generating subset K is said to be symmetric if it satis�es m.
/ D m.
�1/ for all


 2 K.

Let � be a linear isometric action of � on a Banach space B . A map c W � ! B

is called a �-cocycle if it satis�es c.

 0/ D �.
/c.
 0/ C c.
/ for all 
; 
 0 2 �.

A cocycle is completely determined by its values on K. For an a�ne isometric

action ˛, there are a linear isometric action � and a �-cocycle c such that ˛.
; v/ D

�.
; v/ C c.
/ for each 
 2 � and v 2 B . We call � the linear part of ˛ and c

the cocycle part of ˛, and we write ˛ D � C c. We denote by A.�/ the set of the

a�ne isometric actions whose linear part is � .

We denote by Z1.�/ the linear space consisting of all �-cocycles. We de�ne

a linear map d W B ! Z1.�/ by dv.
/ WD �.
/v � v for each v 2 B and 
 2 �.

Here, for v 2 B , we have dv.

 0/ D �.
/dv.
 0/ C dv.
/ for all 
; 
 0 2 �, hence

d is well-de�ned. We set B1.�/ WD d.B/, and we call an element in B1.�/ a

�-coboundary. It is a linear subspace of Z1.�/. If � has no non-zero invariant

vector, then d is an isomorphism from B onto B1.�/.

�e space Z1.�/ describes A.�/. Each �-coboundary corresponds to such

an a�ne isometric action having a �xed point. �e �rst cohomology of � with

�-coe�cient is H 1.�; �/ WD Z1.�/=B1.�/. Note that H 1.�; �/ vanishes if and

only if every a�ne isometric action ˛ of � on B with the linear part � has a �xed

point.

We endow Z1.�/ with the norm

kckr WD
�

X


2K

kc.
/krm.
/
�1=r

for 1 � r < 1, or the norm

kck1 WD max

2K

kc.
/k:

�en Z1.�/ becomes a Banach space with respect to each of these norms. Note

that, in general, B1.�/ is not closed in Z1.�/. Since kdvkr � 2kvk for all v 2 B

and 1 � r � 1, d is bounded with respect to each of these norms.
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De�nition 3.1. For an a�ne isometric action ˛ D � C c and 1 � r � 1, we

de�ne

F˛;r W B �! Œ0; 1/

by

F˛;r .v/ WD kdv C ckr D k˛.�; v/ � vkr

for each v 2 B and 1 � r � 1.

�e function F˛;r vanishes at v0 2 B if and only if v0 is a �xed point of ˛.

Using Minkowski’s inequality, we obtain jF˛;r .u/ � F˛;r .v/j � 2ku � vk for all

u; v 2 B , and hence F˛;r is uniformly continuous for each 1 � r � 1.

A function F on a strictly convex Banach space B is said to be convex if, for

any segment c W Œ0; l� ! B , F.c.t l// � .1 � t /F.c.0// C tF.c.l// for t 2 Œ0; 1�.

For an a�ne isometric action ˛ on a strictly convex Banach space, F˛;r is convex

for each 1 � r � 1 by an easy computation.

De�nition 3.2. We de�ne the absolute gradient jr�F˛;r j of F˛;r at v 2 B by

jr�F˛;r j.v/ WD max

´

lim sup
u!v;u2B

F˛;r .v/ � F˛;r .u/

kv � uk
; 0

µ

:

We can regard the function jr�F˛;r j as the size of the gradient in the direction

which decreases F˛;r most. Note that jr�F˛;r j.v/ � 2 for any v 2 B . �e absolute

gradient jr�F˛;r j has the following properties. Proposition 3.3, Corollary 3.4 and

Proposition 3.5 were proved by Mayer [9] for a Hadamard space. His proofs are

valid for Banach spaces.

Proposition 3.3 ([9], Proposition 2.34).

jr�F˛;r j.v/ D max

´

sup
u6Dv;u2B

F˛;r .v/ � F˛;r .u/

kv � uk
; 0

µ

at all v 2 B .

Corollary 3.4 ([9], Corollary 2.35). A point v0 2 B minimizes F˛;r if and only if

jr�F˛;r j vanishes at v0.

Proposition 3.5 ([9], Proposition 2.25). �e absolute gradient jr�F˛;r j is lower

semicontinuous on B .



1148 M. Tanaka

4. A proof of �eorem 1.1 and �eorem 1.2

In this section, we will give a proof of �eorem 1.1 and �eorem 1.2.

Proof of �eorem 1.1. Note that (i) is equivalent to the condition that there is a

positive constant C 0 such that F�;r .v/ � C 0kvk for all v 2 B . Note that F�;r is

convex, and F�;r .av/ D aF�;r .v/ for a > 0 and v 2 B . If we assume (i), we get

jr�F�;r j.v/ � lim
t!0; t>0

F�;r .v/ � F�;r .tv/

kv � tvk
D

.1 � t /F�;r .v/

.1 � t /kvk
� C 0:

�erefore we have (ii).

On the other hand, we assume (ii). Hence, by Proposition 3.3, for all v 2 Bn¹0º

sup
u2Bn¹vº

F�;r .v/ � F�;r .u/

kv � uk
� C:

In particular, F�;r .v/ > 0 for all v 2 Bn¹0º. Besides we assume that (i) is false,

that is, for every �0 > 0 there is a non-zero vector v 2 Bn¹0º such that F�;r .v/ <

�0kvk. �en for 0 < � < 1 we can take w0 2 B such that kw0k D 1 and F�;r .w0/ <

.1 � �/�C . Set for w 2 B

P.w/ WD

²

u 2 Bn¹wº W
F�;r .w/ � F�;r .u/

kw � uk
� .1 � �/C

³

:

By the assumption, P.w/ is not empty for any w 2 Bn¹0º. Since F�;r .0/ D 0

and F�;r .u/ � 0 for any u 2 B , P.w/ does not contain the origin 0 of B for any

w 2 Bn¹0º. For u 2 P.w0/, we have

.1 � �/C kw0 � uk � F�;r .w0/ < .1 � �/�C

and hence, kw0 � uk < �. �erefore kuk > 1 � � for all u 2 P.w0/.

First, consider the case where infv2P.w0/ F�;r .v/ 6D 0. Take w1 2 P.w0/ such

that

F�;r .w1/ � .1 C �/ inf
v2P.w0/

F�;r .v/:

Since w1 2 P.w0/, for any v 2 P.w1/, we have

F�;r .w0/ � F�;r .v/

kw0 � vk
�

.F�;r .w0/ � F�;r .w1// C .F�;r .w1/ � F�;r .v//

kw0 � w1k C kw1 � vk

�
.1 � �/C kw0 � w1k C .1 � �/C kw1 � vk

kw0 � w1k C kw1 � vk

D .1 � �/C:
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Hence v 2 P.w0/ holds, that is, P.w1/ � P.w0/. �us infv2P.w1/ F�;r .v/ 6D 0.

Inductively, for each i 2 N, we can take wi 2 P.wi�1/ such that F�;r .wi / �

.1C �i / infv2P.wi�1/ F�;r .v/. �en we have P.wi/ � P.wi�1/ for each i 2 N and

infv2P.wi / F�;r .v/ 6D 0. �us for u 2 P.wi/, we have

kwi � uk �
F�;r .wi /�F�;r .u/

.1��/C

�
.1C�i / infv2P.wi�1/ F�;r .v/�infv2P.wi / F�;r .v/

.1��/C

�
.1C�i / infv2P.wi�1/ F�;r .v/�infv2P.wi�1/ F�;r .v/

.1��/C

D
�i infv2P.wi�1/ F�;r .v/

.1��/C
:

Since wi 2 P.wi�1/ and F�;r .wj / � F�;r .wj �1/ for each j 2 N, we have

kwi � vk �
�iF�;r .wi /

.1 � �/C
�

�iF�;r .w0/

.1 � �/C

for all v 2 P.wi/. �erefore, for any �0 > 0, there exists i 2 N such that, for every

j; k � i ,

kwj � wkk � diam P.wi/ � 2
�iF�;r .w0/

.1 � �/C
< �0:

Since B is complete, the sequence ¹wiº converges to some point w1 2 B . We

have kw1k � 1 � �, in particular, w1 6D 0, because kwik > 1 � � for all i 2 N.

Since the function

F 0
i .v/ WD

F�;r .wi / � F�;r .v/

kwi � vk

is upper semicontinuous on Bn¹wiº, the subset

¹v 2 Bn¹wiº W F 0
i .v/ < .1 � �/C º D Bn.¹v 2 B W F 0

i .v/ � .1 � �/C º [ ¹wiº/

D Bn.P.wi/ [ ¹wiº/

is open, that is, P.wi/[¹wiº is closed for every i . Hence limi!1 diam P.wi/ D 0

implies that
T1

iD0.P.wi/ [ ¹wiº/ D ¹w1º. However, by the assumption there

exists v0 2 Bn¹w1º such that

F�;r .w1/ � F�;r .v0/

kw1 � v0k
� .1 � �/C:
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Since w1 2 P.wiC1/ [ ¹wiC1º � P.wi/, F�;r .v0/ < F�;r .w1/ < F�;r .wi / for

each i , in particular, wi 6D v0. �us we have

F�;r .wi/ � F�;r .v0/

kwi � v0k
�

.F�;r .wi / � F�;r .w1// C .F�;r .w1/ � F�;r .v0//

kwi � w1k C kw1 � v0k

�
.1 � �/C kwi � w1k C .1 � �/C kw1 � v0k

kwi � w1k C kw1 � v0k

D .1 � �/C

for every i . �is implies that v0 2
T1

iD1.P.wi/[¹wiº/ D ¹w1º, that is, w1 D v0.

�is contradicts v0 2 Bn¹w1º.

Secondly, we treat the case where infv2P.w0/ F�;r .v/ D 0. Take w0
1 2 P.w0/

such that F�;r .w0
1/ � �F�;r .w0/. As the �rst case, P.w0

1/ is a subset of P.w0/.

If infv2P.w 0

1
/ F�;r .v/ 6D 0, then we can deduce a contradiction as the �rst case.

Hence, inductively, for each i 2 N, we suppose that infv2P.w 0

i
/ F�;r .v/ D 0. Take

w0
i 2 P.w0

i�1/ such that F.w0
i / � �F.w0

i�1/. �en we have P.w0
i/ � P.w0

i�1/ for

each i 2 N. �us for u 2 P.w0
i/ we have

kw0
i � uk �

F.w0
i / � F.u/

.1 � �/C
�

�F.w0
i�1/

.1 � �/C
�

�iF.w0
0/

.1 � �/C
:

As the �rst case, w0
i converges to some w0

1 2 B with kw0
1k � 1 � �, and

T1
iD0.P.w0

i/ [ ¹w0
iº/ D ¹w0

1º. �erefore we can deduce a contradiction as the

�rst case.

Proof of �eorem 1.2. Since F˛;r is continuous and convex, infv2B jr�F˛;r j.v/ D

0 by Lemma 5.4 in [12]. Hence, if condition (ii) holds, there exists x0 2 N with

F˛;r .x0/ D 0. �e point x0 is a �xed point of ˛.

Suppose (i). Condition (i) is equivalent to the condition that the �rst cohomol-

ogy H 1.�; �/ vanishes, that is, B1.�/ coincides with Z1.�/. Since � does not

have non-zero invariant vectors, d W B ! B1.�/ is one-to-one. Hence the open

mapping theorem implies that the inverse map d �1 of d is bounded. �us there

exists C > 0 satisfying kvk D kd �1.dv/k � C kdvkr for all v 2 B . Take an

arbitrary a�ne isometric action ˛ 2 A.�/. �en there exists a �xed point v0 2 B

of ˛. Since �.
/v D ˛.
/.v C v0/ � v0 for all v 2 B and 
 2 �, we have

F˛;r .v C v0/ D F�;r .v/ for all v 2 B . �erefore we may assume that ˛ coincides

with � . By the de�nition of d , we have F�;r .v/ D kdvkr for all v 2 B . Hence we
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have

jr�F�;r j.v/ � lim
�!0

F�;r .v/ � F�;r .v�/

kv � v�k

D lim
�!0

kdvkr � kdv�kr

�kvk

D lim
�!0

�kdvkr

�kvk

�
1

C

for all non-zero vectors v 2 B , where v� WD .1��/v for � > 0. Since F�;r .0/ D 0,

we have completed the proof. Since C is independent of each �-cocycle, the

constant C 0 in the theorem can be independent of each ˛.

5. A description of the absolute gradient of F˛;p

In this section, we see a description of the absolute gradient of F˛;p for an a�ne

isometric action ˛ of a �nitely generated group � on some Banach space B and 1 <

p < 1. Suppose that the �nite generating set K and the weight m is symmetric

in this section.

Proposition 5.1. Suppose that B is strictly convex, smooth and real. Let ˛ D �Cc

be an a�ne isometric action of � on B . �en for v 2 B with F˛;p.v/ > 0 we have

jr�F˛;pj.v/

D
1

F˛;p.v/p�1
sup

v2BIkukD1

X


2K

k˛.
/v � vkp�1j.˛.
/v � v/.�.
/u � u/m.
/

D
2

F˛;p.v/p�1













X


2K

k˛.
/v � vkp�1m.
/j.˛.
/v � v/













B�

:

Proof. Fix v 2 B such that F˛;p.v/ > 0. Since F˛;p is convex, for t � s > 0, we

have

F˛;p.v C su/ �
�

1 �
s

t

�

F˛;p.v/ C
s

t
F˛;p.v C tu/:

�erefore we have

F˛;p.v/ � F˛;p.v C tu/

t
�

F˛;p.v/ � F˛;p.v C su/

s
:
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�is implies that

lim
�!0

F˛;p.v/ � F˛;p.v C �u/

�
D sup

s>0

F˛;p.v/ � F˛;p.v C su/

s
:

Hence we have

lim sup
u!v;u2B

F˛;p.v/ � F˛;p.u/

kv � uk
D sup

u2BIkukD1

lim
�!0

F˛;p.v/ � F˛;p.v C �u/

�
:

To calculate the right hand side, we use an inequality in [6, (2.15.1)]:

pbp�1.a � b/ � ap � bp � pap�1.a � b/

for a; b > 0. Set Du.
/ WD ˛.
/u � u for each 
 2 K and u 2 B . �en, for a

small � > 0, we have

F˛;p.v/ � F˛;p.v C �u/

�

�
F˛;p.v/p � F˛;p.v C �u/p

pF˛;p.v C �u/p�1�

D
X


2K

kDv.
/kp � kD.v C �u/.
/kp

pF˛;p.v C �u/p�1�
m.
/

�
X


2K

�

kDv.
/kp�1

F˛;p.v C �u/p�1

kDv.
/k � kD.v C �u/.
/k

�

�

m.
/:

Similarly, we have

F˛;p.v/ � F˛;p.v C �u/

�

�
X


2K

�

kD.v C �u/.
/kp�1

F˛;p.v/p�1

kDv.
/k � kD.v C �u/.
/k

�

�

m.
/:

Since B is real and smooth, for 
 2 K such that Dv.
/ 6D 0,

lim
�!0

kDv.
/k � kD.v C �u/.
/k

�
D lim

�!0

kDv.
/k � kDv.
/ C �du.
/k

�

D �j.Dv.
//.du.
//;

and, for 
 2 K such that Dv.
/ D 0,

lim
�!0

kDv.
/k � kD.v C �u/.
/k

�
D lim

�!0

�k�du.
/k

�
D �kdu.
/k:
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�erefore we have

lim
�!0

F˛;p.v/ � F˛;p.v C �u/

�

D
X


2K

kDv.
/kp�1

F˛;p.v/p�1
.�j.Dv.
//du.
//m.
/

D
1

F˛;p.v/p�1

X


2K

kDv.
/kp�1.j.Dv.
//u � j.Dv.
//�.
/u/m.
/:

Since there is u 2 B at which this limit is nonnegative, the �rst equality in the

proposition is proved. To prove the last line of this equality, we continue the com-

putation. For arbitrary 
 2 K, since �.
/ is a surjective linear isometry,

k�#.
�1/j.Dv.
//kB� D kj.Dv.
//kB� D 1

where �#.
�1/w�.v/ WD w�.�.
/v/ for w� 2 B� and v 2 B , and
�

�#.
�1/j.Dv.
//
�

.�.
�1/Dv.
// D kDv.
/k D k�.
�1/Dv.
/k:

Due to the smoothness of B , �#.
�1/j.Dv.
// coincides with j.�.
�1/Dv.
//.

Since c.e/ D 0 for the identity element e of �, we have

�.
�1/c.
/ C c.
�1/ D c.
�1
/ D 0

for all 
; 
 0 2 �. Hence

�.
�1/Dv.
/ D �.
�1/˛.
/v � �.
�1/v

D �.
�1/�.
/v C �.
�1/c.
/ � �.
�1/v

D v � c.
�1/ � �.
�1/v

D �Dv.
�1/:

We get �#.
�1/j.Dv.
// D j.�Dv.
�1// D �j.Dv.
�1//. Because

kDv.
�1/k D k�.
�1/Dv.
/k D kDv.
/k

and m is symmetric, we have
X


2K

kDv.
/kp�1.j.Dv.
//u � j.Dv.
//.�.
/u//m.
/

D
X


2K

kDv.
/kp�1.j.Dv.
//u C j.Dv.
�1//u/m.
/

D 2
X


2K

kDv.
/kp�1.j.Dv.
//u/m.
/:
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�erefore we obtain

lim sup
u!v;u2B

F˛;p.v/ � F˛;p.u/

kv � uk

D sup
u2BIkukD1

1

F˛;p.v/p�1

0

@2
X


2K

kDv.
/kp�1m.
/j.Dv.
//

1

Au

D
2

F˛;p.v/p�1













X


2K

kDv.
/kp�1m.
/j.Dv.
//













B�

:

Proposition 5.2. Suppose that B is uniformly convex and uniformly smooth. Let

˛ D �Cc be an a�ne isometric action of � on B . �en for v 2 B with F˛;p.v/ > 0

we have

jr�F˛;p j.v/

D
1

F˛;p.v/p�1
sup

v2BIkukD1

X


2K

k˛.
/v � vkp�1

� Re j.˛.
/v � v/.�.
/u � u/m.
/

D
2

F˛;p.v/p�1













X


2K

k˛.
/v � vkp�1m.
/j.˛.
/v � v/













B�

:

Proof. Set Du.
/ WD ˛.
/u � u for each u 2 B and 
 2 K. Fix v 2 B such that

F˛;p.v/ > 0. As in the proof of Proposition 5.1, for a small � > 0 we have

X


2K

�

kDv.
/kp�1

F˛;p.v C �u/p�1

kDv.
/k � kD.v C �u/.
/k

�

�

m.
/

�
F˛;p.v/ � F˛;p.v C �u/

�

�
X


2K

�

kD.v C �u/.
/kp�1

F˛;p.v/p�1

kDv.
/k � kD.v C �u/.
/k

�

�

m.
/:

Because D.v C �u/.
/ D Dv.
/ C �du.
/, for 
 2 K such that Dv.
/ 6D 0, we

get

kDv.
/k � kD.v C �u/.
/k � Re j.Dv.
//.Dv.
/ � D.v C �u/.
//

D �� Re j.Dv.
//.du.
//;
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and

kDv.
/k � kD.v C �u/.
/k � Re j.D.v C �u/.
//.Dv.
/ � D.v C �u/.
//

D �� Re j.D.v C �u/.
//.du.
//:

Since D.v C �u/.
/ 6D 0 for small � > 0, we obtain












D.v C �u/.
/

kD.v C �u/.
/k
�

Dv.
/

kDv.
/k













D













Dv.
/ C �du.
/

kD.v C �u/.
/k
�

Dv.
/

kD.v C �u/.
/k

kD.v C �u/.
/k

kDv.
/k













D













�

1 �
kD.v C �u/.
/k

kDv.
/k

�

Dv.
/

kD.v C �u/.
/k
C �

du.
/

kD.v C �u/.
/k













�

ˇ

ˇ

ˇ

ˇ

1 �
kD.v C �u/.
/k

kDv.
/k

ˇ

ˇ

ˇ

ˇ

kDv.
/k

kD.v C �u/.
/k
C �

kdu.
/k

kD.v C �u/.
/k

�!0
���! 0:

Hence, by Proposition 2.5 and the uniform smoothness of B , j.D.v C �u/.
//

converges to j.Dv.
// in B� as � ! 0. On the other hand, for 
 2 K such that

Dv.
/ D 0, we have

kDv.
/k � kD.v C �u/.
/k

�
D

�k�du.
/k

�
D �kdu.
/k:

Hence we have

lim
�!0

F˛;p.v/ � F˛;p.v C �u/

�

D �
X


2K

�

kDv.
/kp�1

F˛;p.v/p�1
Re j.Dv.
//.du.
//

�

m.
/:

�erefore, using the equality kw�kB� D max¹j Re.w�.v//j W v 2 B; kvk D 1º for

w� 2 B�, as in the proof of Proposition 5.1, the proposition follows.

Corollary 5.3. Let ˛ be an a�ne isometric action of � on Lp.W; �/, where

1 < p < 1 and .W; �/ is a measure space. For any f 2 Lp.W; �/ such that

F˛;p.f / > 0, we have

jr�F˛;p j.f / D 2kG˛;p.f /kLq.W;�/=F˛;p.f /p�1:

Here q is the conjugate exponent of p, that is, q D p=.p � 1/, and

G˛;p.f /.x/ D
X


2K

j˛.
/f .x/ � f .x/jp�2.˛.
/f .x/ � f .x//m.
/

for x 2 W , where j˛.
/f .x/ � f .x/jp�2 D 0 if f .x/ D ˛.
/f .x/ and p < 2.
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Proof. For f 2 Lp.W; �/, we have j.f / D jf jp�2 Nf =kf k
p�1

Lp.W;�/
, where Nf is

the complex conjugation of f . Indeed, we have

Z

W

 

jf .x/jp�2 Nf .x/

kf k
p�1

Lp.W;�/

!

f .x/d�.x/ D

Z

W

jf .x/jp

kf k
p�1

Lp.W;�/

d�.x/ D kf kLp.W;�/

and
Z

W

ˇ

ˇ

ˇ

ˇ

ˇ

jf .x/jp�2 Nf .x/

kf k
p�1

Lp.W;�/

ˇ

ˇ

ˇ

ˇ

ˇ

q

d�.x/ D

Z

W

jf .x/j.p�1/q

kf k
.p�1/q

Lp.W;�/

d�.x/

D

Z

W

jf .x/jp

kf k
p

Lp.W;�/

d�.x/

D 1:

We have thus proved the corollary.

Since ˛.
/v � v D .dv C c/.
/ for all 
 2 � and v 2 B , by Proposition 5.1

and Proposition 5.2, if B is strictly convex, smooth and real, or uniformly convex

and uniformly smooth, then, for 1 < p < 1,

jr�F˛;p j.v/ D
2

kdv C ck
p�1
p













X


2K

k.dv C c/.
/kp�1m.
/j..dv C c/.
//













B�

for all v 2 B such that kdv C ckp > 0. Hence for C > 0, jr�F˛;p j.v/ � C for all

v 2 B such that F˛;p.v/ > 0 if and only if












X


2K

k.dv C c/.
/kp�1m.
/j..dv C c/.
//













B�

�
C

2
kdv C ckp�1

p

for all v 2 B . From �eorem 1.1, we have

Corollary 5.4. Let � be a linear isometric action of � on B without non-zero

invariant vectors. Suppose that B is either strictly convex, smooth and real, or

uniformly convex and uniformly smooth. �en the following are equivalent.

(i) �ere is a positive constant C 0 such that every v 2 B satis�es

max

2K

k�.
; v/ � vk � C 0kvk:

(ii) �ere is a positive constant C such that












X


2K

kdv.
/kp�1m.
/j.dv.
//













B�

� C kdvkp�1
p

for all v 2 B .
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�ere exists a one-to-one correspondence between Z1.�/ andA.�/ if � has no

non-zero invariant vector and the origin of B is �xed. Since dv Cc is a �-cocycle,

from �eorem 1.2, we have

Corollary 5.5. Let � be a linear isometric action of � on B without non-zero

invariant vectors. Suppose that B is either strictly convex, smooth and real, or

uniformly convex and uniformly smooth. �en every ˛ 2 A.�/ has a �xed point if

and only if there exists C > 0 such that












X


2K

kc.
/kp�1m.
/j.c.
//













B�

� C kckp�1
p

for all c 2 Z1.�/.

6. An application of the theorems to an `p space

Let � be a �nitely generated in�nite group, K a symmetric �nite generating subset

of �, m a symmetric weight on K, and 1 < p < 1.

We denote by F.�/ the space of all complex-valued functions on �. �e fol-

lowing argument is also valid for real-valued case. �e left regular representation

�� of � on F.�/ is de�ned by ��.
/f .
 0/ D f .
�1
 0/ for each f 2 F.�/ and

each 
; 
 0 2 �. We de�ne a linear map d on F.�/ by df .
/ WD ��.
/f � f for

each f 2 F.�/ and 
 2 �. �e Lebesgue space `p.�/ is the Banach space ¹f 2

F.�/ W
P


2� jf .
/jp < 1º with the norm kf k`p.�/ WD .
P


2� jf .
/jp/1=p. �e

restriction of �� to `p.�/ is a linear isometric action without non-zero invariant

vectors, and we denote it by ��;p.

We say that f 2 F.�/ is p-Dirichlet �nite if df .
/ 2 `p.�/ for each 
 2 K,

and we denote by Dp.�/ the space of all p-Dirichlet �nite functions. �e space

`p.�/ is a subspace of Dp.�/. �e space of all constant functions on � is also a

subspace of Dp.�/, and is regarded as C. Since this is the kernel of d , we can

de�ne a norm on Dp.�/=C by

kf kDp.�/ D
�

X


2K

kdf .
/k
p

`p.�/
m.
/

�1=p

:

Since

��;p.
/df .
 0/ C df .
/ D ��.
/��.
 0/f � ��.
/f C ��.
/f � f

D ��.

 0/f � f

D df .

 0/

for all f 2 Dp.�/ and 
; 
 0 2 �, we obtain df 2 Z1.��;p/ for f 2 Dp.�/.
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Furthermore, it is proven by Puls in [10] and [11] that d.Dp.�// D Z1.��;p/.

Recall that B1.��;p/ D d.`p.�//. �erefore d induces an isometric isomorphism

from Dp.�/=C onto Z1.��;p/ and a linear isomorphism from Dp.�/=.`p.�/˚C/

onto H 1.�; ��/. Hence, for any a�ne isometric action ˛ on `p.�/ with the linear

part ��;p, there exists a unique f˛ 2 Dp.�/ up to constant functions such that

the cocycle part c of ˛ coincides with df˛ and kckp D kf˛kDp.�/. In particular,

f��; p
� 0.

�e p-Laplacian �pf of f 2 Dp.�/ is de�ned by

�pf .x/ WD
X


2K

jdf .
/.x/jp�2.df .
/.x//m.
/

where for p < 2 we set jdf .
/.x/jp�2 D 0 whenever jdf .
/.x/j D 0. Since

F˛;p.f / D kdf C df˛kp D kf C f˛kDp.�/

for all f 2 `p.�/, using Corollary 5.3, we have

jr�F˛;p j.f / D
2k�p.f C f˛/k`q.�/

kf C f˛k
p�1

Dp.�/

for all f 2 `p.�/ such that F˛;p.f / > 0. In particular,

jr�F��;p ;pj.f / D
2k�pf k`q.�/

kf k
p�1

Dp.�/

for all f 2 `p.�/ such that F��;p ;p.f / > 0. Hence �eorem 1.1 implies

Corollary 6.1. �e following are equivalent.

(i) �ere is a positive constant C 0 such that every f 2 `p.�/ satis�es

max

2K

k��;p.
/f � f k`p.�/ � C 0kf k`p.�/:

(ii) �ere is a positive constant C such that every f 2 `p.�/ satis�es

k�pf k`q.�/ � C kf k
p�1

Dp.�/
;

where q is a conjugate exponent of p.

By the proof of �eorem 1.1, if C 00 > 0 satis�es C 00 � C , then C 00 satis�es

condition .ii/ as C . For g 2 `q.�/ and f 2 `p.�/, set hg; f i WD
P


2� g.
/f .
/.

Assume that there is a positive constant C such that every f 2 `p.�/ satis�es
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h�pf; f i � C kf k
p

`p.�/
. �en, using HRolder’s inequality, we easily deduce con-

dition (i) in Corollary 6.1. On the other hand, for f 2 `p.�/

kf kDp.�/ D F��;p ;p.f / � max

2K

k��;p.
/f � f k`p.�/=jKj1=p:

�erefore, if condition (i) and condition (ii) in Corollary 6.1 holds, then there

is a positive constant C 00 such that every f 2 `p.�/ satis�es k�pf k`q.�/ �

C 00kf k
p�1

`p.�/
. In particular, if p D 2, these represent a lower estimation of the

spectrum of �2.

�eorem 1.2 implies

Corollary 6.2. �e following are equivalent.

(i) Every ˛ 2 A.��;p/ has a �xed point.

(ii) �ere is a positive constant C such that every f 2 Dp.�/ satis�es





�pf






`q.�/
� C kf k

p�1

Dp.�/
;

where q is the conjugate exponent of p.

In particular, if p D 2, condition (ii) in Corollary 6.2 can be regarded as rep-

resenting a lower estimation of the spectrum �2 with respect to an inner product

on D2.�/.
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