Groups Geom. Dyn. 8 (2014), 1141-1160 Groups, Geometry, and Dynamics
DOI 10.4171/GGD/258 © European Mathematical Society

Property (75) and Property (Fp)
restricted to a representation
without non-zero invariant vectors

Mamoru Tanaka!

Abstract. In this paper, we give a necessary and sufficient condition for a finitely generated
group to have a property like Kazhdan’s Property (7") restricted to one isometric represen-
tation on a strictly convex Banach space without non-zero invariant vectors. Similarly, we
give a necessary and sufficient condition for a finitely generated group to have a property
like Property (FH ) restricted to the set of the affine isometric actions whose linear part is a
given isometric representation on a strictly convex Banach space without non-zero invari-
ant vectors. If the Banach space is the £# space (1 < p < oco) on a finitely generated group,
these conditions are regarded as an estimation of the spectrum of the p-Laplace operator
on the £# space and on the p-Dirichlet finite space respectively.
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1. Introduction

A finitely generated group I' is said to have Kazhdan’s Property (7), if every
irreducible unitary representation (z, H) does not have an almost fixed point, that
is, there exists a positive constant C such that

max ||z (y)v —v|| = Cljv]
yeK

for all v € H, where K is a finite generating subset of I'. Kazhdan’s Property (T")
has played important roles in many different subjects (see [2]). A finitely generated
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group is said to have Property (FH), if every affine isometric action on an infinite
dimensional Hilbert space has a fixed point. It is known that a finitely generated
group has Kazhdan’s Property (7') if and only if it has Property (FH).

Bader, Furman, Gelander, and Monod [1] introduced a generalization of Kazh-
dan’s Property (7)) and Property (FH) for a Banach space B, and called these
Property (Tg) and Property (Fp) respectively. They proved that a finitely gen-
erated group has Property (Tp»(jo,17)) for p € [1, 00) if and only if it has Kazh-
dan’s Property (T'), which is Property (T72(jo,17))- They also proved, as also did
Chatterji, Drutu and Haglund [5], that a finitely generated group has Property
(FrLr(o,17)) for p € [1,2] if and only if it has Property (FH ), which is Property
(FL2([0,17))- On the contrary, Bourdon and Pajot [4] showed that an infinite hyper-
bolic group I', which may have Property (FH ), does not have Property (Fz»r))
if p is large enough. As this result shows, in general, Property (FH) and Property
(Fp) are different.

In this paper, for a strictly convex Banach space B we investigate Property
(Tp) restricting to one linear isometric action without non-zero invariant vectors
via the variation of the displacement function with respect to the orbit of a finite
generating subset of a finitely generated group. Also we investigate Property (Fp)
restricting to the set of affine isometric actions whose linear part is a given linear
isometric action on B without non-zero invariant vectors.

We show the following. Let I' be a finitely generated group, K a finite gener-
ating set of I', and B a strictly convex Banach space. We define the displacement
function

/r
Fur@) 1= (L latrov) = vl'm()" Fuoo(v) i= max Jar.v) -]
yeK

at v € B for an affine isometric action « of ' on B and 1 < r < oo, where m
is a weight on K. The absolute gradient |V_Fy ,|(v) is the maximum descent of
Fy.»(v) around v (see Definition 3.2 for details). Let 7 be a linear isometric action
of I" on B without non-zero invariant vectors, and 1 < r < oo.

Theorem 1.1. The following are equivalent.

(1) There is a positive constant C’ such that every v € B satisfies

max ||z (y, v) — v|| = C'||v].
yeK

(ii) There is a positive constant C such that every v € B\{0} satisfies

V. Frr|(0) = C.
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Denote by A(r) the set of the affine isometric actions whose linear part is 7.

Theorem 1.2. The following are equivalent.
(i) Everya € A(m) has a fixed point.
(ii) For every a € A(m), there is a positive constant C such that every v € B
with Fy »(v) > 0 satisfies

IV_Fy r|(v) > C.
Furthermore, in (ii), C can be a constant independent of each «.

We apply these theorems to the left regular representation Ar,, of I' on £7(T")
(1 < p < 00). Let A, be the p-Laplace operator on D, (I") which is the Dirichlet
finite function space (see Section 6 for details). Then we have
Corollary 1.3. The following are equivalent.

(i) There is a positive constant C' such that every f € {P(T') satisfies

max Ar.p()S = fllerary = C'llf ller (ry.-

(ii) There is a positive constant C such that every [ € £P (') satisfies

—1
1A flleaqry = CILS 1D, -

where q is a conjugate exponent of p.

If p = 2, these conditions are equivalent to a lower estimation of the spectrum
of A, on £7(T).

Corollary 1.4. The following are equivalent.
(i) Everya € A(Ar,p) has a fixed point.

(ii) There is a positive constant C such that every f € D,(I") satisfies

18 f leary = €IS rye

where q is the conjugate exponent of p.
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2. Strictly convex Banach spaces

In this section, we review the definitions and several properties of strictly convex
Banach spaces, smooth Banach spaces, uniformly convex Banach spaces and uni-
formly smooth Banach spaces. Basic references are [3], [7] and [8]. We denote by
(B*, || |B+) the dual Banach space of a Banach space (B, | ||)-

Definition 2.1. A Banach space (B, || ||) is said to be strictly convexif |v+ul| < 2
forall v,u € B withv # u, ||v|| <1 and |Ju|| < 1.

Definition 2.2. A Banach space (B, || ||) is said to be uniformly convex if the
modulus of convexity of B

Sp(e) = inf{l _ w; lul <1, [v]| < 1and [[u—v| > e}

is positive for all € > 0.

A uniformly convex Banach space is obviously strictly convex. For instance,
L7 spaces (1 < p < oo) are uniformly convex Banach spaces.
A support functional at v € B is a functional f € B* such that || f||px = 1

and f(v) = v

Definition 2.3. A Banach space is said to be smooth if every non-zero vector has
a unique support functional.

We denote by j(v) the support functional at a non-zero vector v in a smooth
Banach space B, and call j the duality map. For the trivial vector O of B, we set
j(0) to be the zero functional on B. If B is a real smooth Banach space, then

[v + rull — vl

. — i
j@u tgl}) t

for all v € B\{0} and u € B.

Definition 2.4. A Banach space (B, || ||) is said to be uniformly smooth if the
modulus of smoothness of B

[ + vl | Jlu—v]
2 2

oB(7) == sup{ —1:|u|| <1and ||v||§r}

satisfies that pp(7)/r — 0 when 7 \ 0.
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A real uniformly smooth Banach space B is smooth. Furthermore, the dual-
ity map j from the unit sphere of B into the unit sphere of B* is a uniformly
continuous map with a uniformly continuous inverse. For a complex number
¢ € C, let Rec denote the real part of ¢c. Note that for any w* € B* we have
|[w*| g+ = max{|Re(w*(v))|: v € B, ||v| = 1}. This is because for any w* € B*
and any v € B there is ¢ € C such that ||¢|| = 1 and w*(¢v) € R. The following
proposition for the case that B is real is Proposition A.5. in [3].

Proposition 2.5. Let B be a uniformly smooth Banach space. Then

)/

v u

1) — j@) s <208 (z HL _¥ o
Tl Tl ol Tl

forall v,u € B\{0} with v # u.
Proof. Foru € B\{0} and v € B, we have
Re(j(u)v) + flull = Re(j(u)(v +u)) < |j)(v +u)| < [[v+ul.

Hence Re(j(u)v) < |lu + vl — [|ul|.

Fix x, y € B\{0} with x # y. Since any u € B\{0} satisfies j(u) = j(u/||ul),
we may assume that || x|| = ||| = 1. Take an arbitrary z € B with ||z|| = ||[x—y|.
Then

Re((j(y) = j(x))z) = Re(j(y)z) —Re(j(x)z2)
=y +zl =yl =Re(j(x)2) + [[x]| — Re(j(x)y)
=y +zll =1+ Re(j(x)(x -y —2))
sly+zl=1+lx+ &=y =2l = Ilx|
=lx+G-x+2)+lIx--x+2)]-2
=2pp(lly —x +:z[D
= 2p2[ly —xD.

because pp is nondecreasing and ||y — x + z|| < 2|y — x||. Since z is arbitrary,
the proposition follows. U

3. Affine isometric actions on a strictly convex Banach space

In this section, we summarize some definitions and results which relate to an iso-
metric action « of a finitely generated group on a strictly convex Banach space. We
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will introduce a nonnegative continuous function F_, on the Banach space which
plays the most important role in this paper, and investigate its behavior using its
absolute gradient.

Let I' be a finitely generated group and K a finite generating subset of I'. We
may assume K is symmetric, that is, K~! = K. We call a positive function m on
K satisfying ) cx m(y) = 1 aweight on K. A weight m on a symmetric finite
generating subset K is said to be symmetric if it satisfies m(y) = m(y ") for all
y € K.

Let 7 be a linear isometric action of I" on a Banach space B. Amapc: I' - B
is called a w-cocycle if it satisfies c(yy’) = w(y)c(y’) + c¢(y) for all y,y’ € T.
A cocycle is completely determined by its values on K. For an affine isometric
action «, there are a linear isometric action 7 and a w-cocycle ¢ such thata(y, v) =
w(y,v) + c(y) foreachy € I' and v € B. We call & the linear part of o and ¢
the cocycle part of «, and we write « = w + ¢. We denote by A () the set of the
affine isometric actions whose linear part is .

We denote by Z!(r) the linear space consisting of all 7-cocycles. We define
alinear map d: B — Z'(x) by dv(y) := n(y)v —v foreachv € Band y € T.
Here, for v € B, we have dv(yy’) = n(y)dv(y’) + dv(y) for all y,y’ € T, hence
d is well-defined. We set B!(w) := d(B), and we call an element in B!(7) a
m-coboundary. It is a linear subspace of Z!(rr). If = has no non-zero invariant
vector, then d is an isomorphism from B onto B! (r).

The space Z!(x) describes A(r). Each m-coboundary corresponds to such
an affine isometric action having a fixed point. The first cohomology of T with
m-coefficient is H' (T, w) := Z'(;)/B' (). Note that H!(T, 7r) vanishes if and
only if every affine isometric action o of I on B with the linear part = has a fixed
point.

We endow Z! () with the norm

/r
el = (3 e m(y)”

yekK

for 1 < r < oo, or the norm
l[¢lloo := max [lc(y)]|-
yekK

Then Z!(7) becomes a Banach space with respect to each of these norms. Note
that, in general, B!(x) is not closed in Z!(x). Since ||dv|, < 2|v| forallv € B
and 1 <r < oo, d is bounded with respect to each of these norms.
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Definition 3.1. For an affine isometric action« = 7w +cand 1 < r < oo, we
define

Fyr: B—>[0,00)

by
For(v) :=|ldv +c|; = a(.v) =],

foreachve Band1 <r < o0.

The function F, , vanishes at vop € B if and only if vy is a fixed point of «.
Using Minkowski’s inequality, we obtain | Fy ,(u) — Fy.r(v)| < 2||lu — v| for all
u,v € B, and hence Fy , is uniformly continuous for each 1 < r < oo.

A function F on a strictly convex Banach space B is said to be convex if, for
any segment c¢: [0,]] — B, F(c(¢t])) < (1 —1)F(c(0)) + tF(c(l)) fort € [0,1].
For an affine isometric action « on a strictly convex Banach space, Fy , is convex
for each 1 < r < oo by an easy computation.

Definition 3.2. We define the absolute gradient |V_Fy, ;| of F, , atv € B by

F —F,
|V—F0t,r|(v) ‘= max { im sup tx,r(U) a,r(u) ’ ol
u—>v,ucB lv—u]

We can regard the function |V_Fy .| as the size of the gradient in the direction
which decreases F,, , most. Note that |V_ F, |(v) < 2forany v € B. The absolute
gradient |V_ F .| has the following properties. Proposition 3.3, Corollary 3.4 and
Proposition 3.5 were proved by Mayer [9] for a Hadamard space. His proofs are
valid for Banach spaces.

Proposition 3.3 ([9], Proposition 2.34).

F, — F,
|V_Fy r|(v) = max sup ar (V) a’r(u), 0
u#v,uc€B ”v - u”

atallv € B.

Corollary 3.4 ([9], Corollary 2.35). A point vo € B minimizes Fy , if and only if
|V_ Fy | vanishes at vg.

Proposition 3.5 ([9], Proposition 2.25). The absolute gradient |\_F,, | is lower
semicontinuous on B.
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4. A proof of Theorem 1.1 and Theorem 1.2

In this section, we will give a proof of Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. Note that (i) is equivalent to the condition that there is a

positive constant C’ such that F ,(v) > C’|v| for all v € B. Note that F , is

convex, and Fy »(av) = aFy ,(v) fora > 0 and v € B. If we assume (i), we get
Frr(V) = Frp(tv) (1 —=1)Fr,(v) o

V_F > lim -
| n,r|(v)—t_)(1)’t>0 lv—tv] (I =)l

Therefore we have (ii).
On the other hand, we assume (ii). Hence, by Proposition 3.3, for all v € B\{0}

Fn,r (U) - Fn,r (u) >

sup C.

ueB\{v} ||U - u”
In particular, Fy ,(v) > 0 for all v € B\{0}. Besides we assume that (i) is false,
that is, for every € > 0 there is a non-zero vector v € B\{0} such that F; ,(v) <
€’||v]|. Then for 0 < € < 1 we can take wo € B suchthat ||wg|| = 1 and Fy »(wo) <
(1 —¢€)eC. Setforw € B

Fn’,r(w) - Fn’,r(u) >

P(w):= {ueB\{w}: o] _(1—6)C}.

By the assumption, P(w) is not empty for any w € B\{0}. Since F,(0) = 0
and Fy ,(u) > 0 for any u € B, P(w) does not contain the origin 0 of B for any
w € B\{0}. For u € P(wy), we have

(1=e)Cllwo —u|| < Frr(wo) < (1 —€)eC

and hence, ||wo — u|| < €. Therefore ||u|| > 1 — € for all u € P(wy).
First, consider the case where inf,e p(w,) Fr,r(v) # 0. Take wy € P(wp) such
that

Frr(w)) <(1+¢€) inf Fr,(v).
veP(wg)
Since wy € P(wy), for any v € P(w;), we have
Frr(wo) — Fr,r(v) > (Fr,r(wo) — Frp(w1)) + (Frr(w1) — Fr,r(v))

lwo — vl N lwo — w1l + [wy — v

o (=6 Cllwo —wi[[ + (1 = e)Cllwy — v

|wo — w1l + w1 — v

=(1—-¢C.
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Hence v € P(wo) holds, thatis, P(w;) C P(wo). Thus inf,epw,) Fr,r(v) # 0.
Inductively, for each i € N, we can take w; € P(w;—;) such that F ,(w;) <
(1+€) infyep(w;_,) Fr,r(v). Then we have P(w;) C P(w;—1) for eachi € IN and
infyep(w,) Fr,r(v) # 0. Thus for u € P(w;), we have

< Fr.r(w;i)—Fr.r(u)

wi —ull = (1-e)C

< (1+5i)infv€P(wi_1) Fﬂ,r(v)_infUEP(wi) Fr r(v)
— (1—e)C

< (1+€i)infveP(w,-_1) Fﬂ.r(”)_infveP(wi_l) Fr r(v)
— (1—e)C

_ € infueP(w,-_l) Frr()
- (1—-e)C

Since w; € P(w;—1) and Fr (w;j) < Fr ,(wj—;) for each j € IN, we have

eiFn,,(wi) < Einr,r(wO)
1-e)C = (1—-¢€C

for all v € P(w;). Therefore, for any €’ > 0, there exists i € IN such that, for every
Jk=>1,
. € Fr r(wO) ,

wj — w| < diam P(w;) <2—————— < €.

o = well = diam P(w;) < 252 8
Since B is complete, the sequence {w;} converges to some point we, € B. We
have ||weo|| > 1 — €, in particular, weo # 0, because ||w;|| > 1 — € for all i € IN.
Since the function

Fn,r(wi) - Fn,r(v)
w; — vl

F/(v) :=
is upper semicontinuous on B\{w;}, the subset
{veB\{wi}: F{(v) <(1-€)C}=B\({ve B: F/(v) = (1 -€)C}U{w;})
= B\(P(w;) U{w;})

is open, that is, P(w;)U{w;} is closed for every i. Hence lim;_, o, diam P(w;) = 0
implies that (72, (P(w;) U {w;}) = {we}. However, by the assumption there
exists vg € B\{wuo} such that

Fzr,r(woo) - Fzr,r(UO)
[Weo — vol|

> (1—-¢)C.
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Since woo € P(wi1) U{wit1) C P(wi), Fry (Vo) < Frr (Woo) < Fry (w;) for
each i, in particular, w; # vo. Thus we have

Fr r(w;) — Fr r(vo) > (Fr,r(Wi) = Frr(Woo)) + (Fr,r (Woo) — Fr,r (o))
lwi = vol| - lwi — weo |l + [lwoo — voll
o (= 9Cwi = weof| + (1 = €)Clwoo — vo|
- lwi — Wooll + [[woo — vol|

=(1-¢)C

for every i. This implies that vy € ﬂ;’il(P(wi)U{wi}) = {Weo}, thatis, wee = vop.
This contradicts vy € B\{woo}-

Secondly, we treat the case where infye p(wg) Fr,r(v) = 0. Take w] € P(wp)
such that Fy ,(w}) < €Fy,(wp). As the first case, P(w}) is a subset of P(wy).
If infye p(w)) Fr,r (v) # 0, then we can deduce a contradiction as the first case.
Hence, inductively, for each i € IN, we suppose that inf ¢ P! Fr.r (v) = 0. Take
w; € P(w]_,) such that F(w]) < eF(w;_,). Then we have P(w;) C P(w;_,) for
each i € IN. Thus for u € P(w;) we have

, - F(w]) — F(u) - eF(w)_,) - €' F(wy)
lwi—ul = === =—oc ST-ocC"

As the first case, w] converges to some w,, € B with |wl,| > 1 — ¢, and
Nieo(P(w)) U {w!}) = {wl.}. Therefore we can deduce a contradiction as the
first case. O

Proof of Theorem 1.2. Since F, , is continuous and convex, inf,ep |V Fy | (V) =
0 by Lemma 5.4 in [12]. Hence, if condition (ii) holds, there exists xo € N with
Fy r(x0) = 0. The point x is a fixed point of «.

Suppose (i). Condition (i) is equivalent to the condition that the first cohomol-
ogy HY (T, m) vanishes, that is, B!(r) coincides with Z!(r). Since 7 does not
have non-zero invariant vectors, d : B — B!(r) is one-to-one. Hence the open
mapping theorem implies that the inverse map d ! of d is bounded. Thus there
exists C > 0 satisfying ||v] = ||[d~'(dv)|| < C|dv|, for all v € B. Take an
arbitrary affine isometric action « € A(7r). Then there exists a fixed point vy € B
of a. Since m(y)v = a(y)(v + vg) —vg forall v € B and y € I', we have
For(v 4+ vo) = Frr(v) for all v € B. Therefore we may assume that « coincides
with 7. By the definition of d, we have Fy ,(v) = ||dv|, for all v € B. Hence we



Property (Tg) and Property (Fg) 1151

have
Fn,r(v) - Fn,r(ve)

|V Fy.r|(v) > lim
e—0

[v — vl
dvll, — ||dv
_ oo lavll = ldvel,
€0 €]l
. €lldv],
=0 el
1
> _
- C

for all non-zero vectors v € B, where ve := (1 —€)v fore > 0. Since Fy »(0) = 0,
we have completed the proof. Since C is independent of each m-cocycle, the
constant C’ in the theorem can be independent of each «. O

S. A description of the absolute gradient of Fy_,

In this section, we see a description of the absolute gradient of Fy , for an affine
isometric action « of a finitely generated group I" on some Banach space B and 1 <
p < oo. Suppose that the finite generating set K and the weight m is symmetric
in this section.

Proposition 5.1. Suppose that B is strictly convex, smooth and real. Letow = m+c¢
be an affine isometric action of I on B. Then for v € B with Fy, ,(v) > 0 we have
I\ Fa,pl(v)
1 1.
=——— s Y e — ol j@()v — ) (@)U - um(y)

p—1
Fa,p(0)P1 vepiul=1 Jo%

2
Fo,p(v)P~1

> lley)v —vlIP m() jey)v —v)

yek

B*

Proof. Fix v € B such that Fy ,(v) > 0. Since Fy, p is convex, for t > s > 0, we
have

S S
Fop(v+su) < (1 — ;) Fop(v) + ;Fa,p(v + tu).

Therefore we have

Fo,p(v) — Fo,p(v + tu) _ Fo,p(v) — Fo,p(v + su)
t - s ’
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This implies that

lim Fop(v) = Fop(v + €) = sup Fo,p(v) — Fo,p(v + Su).
€0 € $>0 s

Hence we have

F(x - F(x . Fa _ F(x
lim sup (V) p (1) = sup lim p(V) v+ éu)‘

u—v,ucB v —ull ueB;|ul=1€0 €

To calculate the right hand side, we use an inequality in [6, (2.15.1)]:
pbP~(a —b) < a” —b? < pa” ' (a —b)

fora,b > 0. Set Du(y) := a(y)u —u foreach y € K and u € B. Then, for a
small € > 0, we have

Fo,p(v) = Fo,p(v + €u)
€
- Fo,p(0)? — Fy p(v + €u)?
- pFo,p(v+ eu)P=le

_ [Dv(V)II” = |1D(v + ew)(p)||?

N );{ PFo p(v + €u)P~le m(y)

- ( [ Dv(y)[IP~ ||DU(V)||—||D(v+éu)(7/)||)m( )
- oy Fo,p(v + eu)p~1 € v

Similarly, we have

Fo,p(v) — Fo p(v + €u)
€

-y (IID(v +ea)MIP ! IDv()] - 1P +€u)()/)||)m(y)_

Fo,p(v)P~1 €

yeK
Since B is real and smooth, for y € K such that Dv(y) # 0,

lim IDv()| - IIIE)(v el _ lim [1Dv)Il - ||D:(V) + edu(y)||

= —j(Dv()(du(y)).

and, for y € K such that Dv(y) =0,
D — D —
i 1221~ 12C + @O _ e _

€—0 € e—>0
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Therefore we have
lim Fo,p(v) — Fa p(v + €u)

e—0

D p—1
=> " ” ”(”” 2V (Do) duy)m(y)

= —F )71 Y IDvIPT GDv@))u = j(Dv)r(y)um(y).
«.p yeK

Since there is ¥ € B at which this limit is nonnegative, the first equality in the
proposition is proved. To prove the last line of this equality, we continue the com-
putation. For arbitrary y € K, since 7 (y) is a surjective linear isometry,

I=* (=1 j(Dv()lls = 1/ (Dv(y)llp= = 1
where 7#(y "DHw*(v) := w*(w(y)v) for w* € B* and v € B, and
(n#(V_l)j(Dv(V))) (@(y~HDu(y) = [Dv()ll = =y~ HDv(»)].

Due to the smoothness of B, 7#(y~1)j(Dv(y)) coincides with j(z(y 1) Dv(y)).
Since c(e) = 0 for the identity element e of ", we have

7y Ne@) +ce(y™) =c(y7ly) =0
for all y,y’ € T'. Hence
n(y"HDvu(y) = 7 (y " Ha(y)v —x(y
=a(y e+ @y Dely) —a(y
=v—c(y ) —n(y
=—Du(y™ .
We get 7%(y~1) j(Dv(y)) = j(—Dv(y™")) = —j(Dv(y™")). Because
IDv(y™ M = ll=(y" ) Do) = |1 Dv(y)|
and m is symmetric, we have

Y IDvIP D) — (D () (e (y)u)m(y)

yekK

= > IDvIP GDv)u+ j(Dvy ™ Num(y)

yek

=23 [ DvIP G(Dv(y)wm(y).

yekK
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Therefore we obtain

Fa,p(v) - Fa,p(u)

lim sup
u—>v,ucB lv—ul
= ! —1 .
" weBinio Fap )7 (2 ;1; IDv)I? m(V)J(Dv(V))) y
S — R
= Ty > IDv)IP ™ m(y) j(Dv(y)) N 0

yeK

Proposition 5.2. Suppose that B is uniformly convex and uniformly smooth. Let
a = w+c be an affine isometric action of I on B. Then forv € B with Fy ,(v) > 0
we have

|V—Fa,p|(v)
1 _
=———— sup > fa()v—v|"!

p—1
Fo,p (V)P eBijul=1 o

x Re j(a(y)v —v)(@(y)u —u)m(y)

B*

2
Fop(v)P1 VZK lec(yyv = vl P m(y) je(y)v = v)

Proof. Set Du(y) := a(y)u —u foreachu € B and y € K. Fix v € B such that
Fy,p(v) > 0. As in the proof of Proposition 5.1, for a small € > 0 we have

DY) Do) — 1D + @)
= Cree ‘ )
Fo,p(v) — Fo,p(v + €u)
- €
(1D + eI 1Dy - 1D + ey
=2 ( Farp(0)71 . )’”(”'

yek

Because D(v + €u)(y) = Dv(y) + edu(y), for y € K such that Dv(y) # 0, we
get

[Dv() = 1D + €u)(y)]| = Re j(Dv(y)(Dv(y) — D(v + eu)(y))
= —€Re j(Dv(y))(du(y)),
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and

[Dv()I = 1D + eu)(y)|| = Re j(D(v + eu)(y))(Dv(y) — D(v + eu)(y))
= —€Re j(D(v + eu)(y))(du(y)).
Since D(v + eu)(y) # 0 for small € > 0, we obtain

D+en(y)  Du(y) ”
1D+ eI~ 1Dv()]

_ | Do) + eduly) Dv(y)  |[D(v+eu)(y)l H
IDw+en)() D@ +e))  [IDvy)
_ (1 D+ 6u)()/)ll) Du(y)  du®y) H
IDv(y)ll IDw +en)() 1D+ euw)(y)ll
< _1Pw +€u)()/)||‘ [Dv)I _ lldu@)l =0
- IDv )l IDw +en)() D@+ euw)y)ll '

Hence, by Proposition 2.5 and the uniform smoothness of B, j(D(v + €u)(y))
converges to j(Dv(y)) in B* as € — 0. On the other hand, for y € K such that
Duv(y) = 0, we have

Dv(y)|l - |D —lled
1Dv(y)| ||€(v+eu>(y>||: e :(y)”:—lldu(y)ﬂ-
Hence we have
i Four @) = Fap(v + €u)
€—0 €
D p=1
-y (II v((V))“p _Re j(Dv(V))(du(V))) m(y).

yeK
Therefore, using the equality ||w*|| g+ = max{| Re(w*(v))|: v € B, ||v| = 1} for
w* € B*, as in the proof of Proposition 5.1, the proposition follows. O

Corollary 5.3. Let o be an affine isometric action of I' on LP(W,v), where
1 < p < o0 and (W,v) is a measure space. For any f € LP(W,v) such that
Fo,p(f) > 0, we have

|V—Fa,p|(f) = 2”Ga,p(f)”L‘I(W,v)/Fa,p(f)p_l-

Here q is the conjugate exponent of p, that is, ¢ = p/(p — 1), and
Gap(/)(X) = D () f(x) = F)P ) f(x) = f(x)m(y)

yek

for x € W, where |a(y) f(x) = f()[P7> = 0if f(x) = a(y) f(x) and p < 2.
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Proof. For f € LP(W,v), we have j(f) = |f|?~ 2f/||f||L,,(Wv), where 1 is
the complex conjugation of f. Indeed, we have

-2 7
[ (M) s = [ IO ) = 1 f N

”f”Lp(Wv) ||f”LP(Wv)
and
P2 Fiy |2 (r—1)q
[ |2 T gy - [N
w ”f”LP(Wv) w ||f||Lp(Wv)
p
:/ —IfI()X)I dv(x)
w ||f||Lp(W,v)
=1.
We have thus proved the corollary. U

Since a(y)v —v = (dv + ¢)(y) for all y € T" and v € B, by Proposition 5.1
and Proposition 5.2, if B is strictly convex, smooth and real, or uniformly convex
and uniformly smooth, then, for 1 < p < oo,

2

IV Fy pl(0) = ————
“r Ildv + |57

> v + )17

yekK

for all v € B such that ||dv + ¢||, > 0. Hence for C > 0, [V_Fy ,|(v) > C for all
v € B such that Iy, ,(v) > 0 if and only if

> v + o ))1P!

C
3||dv +c||
yeK

for all v € B. From Theorem 1.1, we have

Corollary 5.4. Let w be a linear isometric action of I on B without non-zero
invariant vectors. Suppose that B is either strictly convex, smooth and real, or
uniformly convex and uniformly smooth. Then the following are equivalent.

(1) There is a positive constant C' such that every v € B satisfies

max ||z (y, v) — v = C’[|v].
yeK

(ii) There is a positive constant C such that

> lldvy))P!

yek

> Clldv]2™"

B*

forallv € B.
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There exists a one-to-one correspondence between Z ! (7r) and A (r) if 7 has no
non-zero invariant vector and the origin of B is fixed. Since dv + ¢ is a w-cocycle,
from Theorem 1.2, we have

Corollary 5.5. Let w be a linear isometric action of I' on B without non-zero
invariant vectors. Suppose that B is either strictly convex, smooth and real, or
uniformly convex and uniformly smooth. Then every a € A(x) has a fixed point if
and only if there exists C > 0 such that

D le@IIP m(y)je(y))

yeK

forall c € Z'(m).

—1
> Clelb
B*

6. An application of the theorems to an £? space

Let I be a finitely generated infinite group, K a symmetric finite generating subset
of I', m a symmetric weight on K, and 1 < p < oo.

We denote by F(I') the space of all complex-valued functions on I". The fol-
lowing argument is also valid for real-valued case. The left regular representation
Ar of T on F(T') is defined by Ar(y) f(y') = f(y~'y’) for each f € F(I') and
each y,y’ € T'. We define a linear map d on F(I') by df (y) := Ar(y)f — f for
each f € F(I') and y € T'. The Lebesgue space £7(T") is the Banach space { f €
FI): Yyer | /(NP < 00} with the norm || £ ler(ry = (Xer | £(7)[P)V/7. The
restriction of Ap to £7(I") is a linear isometric action without non-zero invariant
vectors, and we denote it by Ar .

We say that f € F(T") is p-Dirichlet finite if df (y) € £P(T") for each y € K,
and we denote by D,(I") the space of all p-Dirichlet finite functions. The space
£P(T') is a subspace of D, (I"). The space of all constant functions on I' is also a
subspace of D,(I"), and is regarded as C. Since this is the kernel of d, we can
define a norm on D, (I")/C by

1 £ Uy = (310 m) .

yeK
Since
Arp,(VAf () +df (v) = ArWAr(Y) f —ArW)f +Ar()f — f
=Ar(yy¥)f = f
=df(yy')

forall f € D,(T') and y,y’ € T, we obtain df € Z'(Ar,,) for f € D, ().
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Furthermore, it is proven by Puls in [10] and [11] that d(D,(T)) = Z'(Ar,p).
Recall that B (A, ,) = d(£?(T)). Therefore d induces an isometric isomorphism
from D,(I")/C onto Z'(Ar, ») and a linear isomorphism from D,(I")/(£?(T") & C)
onto H (T, Ar). Hence, for any affine isometric action « on £?(I") with the linear
part Ar, ,, there exists a unique fo € D,(I") up to constant functions such that
the cocycle part ¢ of « coincides with dfy and ||c|, = || f«llD, ). In particular,

Jar., =0.
The p-Laplacian A, f of f € D,(I') is defined by

Ap f(x) := Y ldf ()P (df () (x)m(y)

yekK

where for p < 2 we set |df (y)(x)|?~2 = 0 whenever |df(y)(x)| = 0. Since

Fop(f) = lldf +dfallp = f + falD,m)
for all f € £7(T"), using Corollary 5.3, we have

2 A (f + fo)llear
IS+ fallDy iy

for all f* € £7(I") such that Fy ,(f) > 0. In particular,

218, f lescry
—1
115t

IV-Fo,pl(f) =

IV-Fir,.pl(f) =

for all /" € £7(I") such that F. , »(f) > 0. Hence Theorem 1.1 implies

Corollary 6.1. The following are equivalent.

(i) There is a positive constant C' such that every | € £P(I) satisfies

max Ar.p () S = flleray = C'llf ller(ry.-

(ii) There is a positive constant C such that every [ € £P (") satisfies

—1
1A flleaqry = CILS NI, -

where q is a conjugate exponent of p.

By the proof of Theorem 1.1, if C” > 0 satisfies C” < C, then C” satisfies

condition (ii) as C. For g € £9(I") and f € £P(I"), set (g, f) := Zyer g) fy).
Assume that there is a positive constant C such that every f € £7(I") satisfies
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(Apf. f)Y = C|fIl ‘Z »(I)- Then, using Holder’s inequality, we easily deduce con-
dition (i) in Corollary 6.1. On the other hand, for f € £7(I")

1f110,(0) = Farp.p(f) = maxArp () f = flleray/IKTVP.

Therefore, if condition (i) and condition (ii) in Corollary 6.1 holds, then there
is a positive constant C” such that every f e (7(I") satisfies ||A, f|leaqry >
C’If f ,,_(11“) In particular, if p = 2, these represent a lower estimation of the
spectrum of A,.

Theorem 1.2 implies

Corollary 6.2. The following are equivalent.
(i) Everya € A(Ar,p) has a fixed point.

(ii) There is a positive constant C such that every f € D,(I") satisfies

18 f leary = CIS 1, qrye

where q is the conjugate exponent of p.

In particular, if p = 2, condition (ii) in Corollary 6.2 can be regarded as rep-
resenting a lower estimation of the spectrum A, with respect to an inner product
on D, (I).

References

[1] U. Bader, A. Furman, T. Gelander, and N. Monod, Property (T) and rigidity for
actions on Banach spaces. Acta Math. 198 (2007), no. 1, 57--105. Zbl 1162.22005
MR 2316269

[2] B. Bekka, P. de la Harpe, and A. Valette, Kazhdan’s Property (T) New Mathemati-
cal Monographs, 11. Cambridge University Press, Cambridge, 2008. Zbl 1146.22009
MR 2415834

[3] Y. Benyamini and J. Lindestrauss, Geometric nonlinear functional analysis.
Vol. 1. American Mathematical Society, Providence, R.I., 2000. Zbl 0946.46002
MR 1727673

[4] M. Bourdon and H. Pajot, Cohomologie £# et espaces de Besov. J. reine angew.
Math. 558 (2003), 85-108. Zbl 1044.20026 MR 1979183

[5] L Chatterji, C. Drutu and F. Haglund, Kazhdan and Haagerup properties from the
median viewpoint. Adv. Math. 225 (2010), 882-921. Zbl 1271.20053 MR 2671183

[6] G. H. Hardy, J. E. Littlewood, and G. Pdlya, Inequalities. 2nd ed., Cambridge Uni-
versity Press, Cambridge, 1952. Zbl 0047.05302 MR 0046395


http://zbmath.org/?q=an:1162.22005
http://www.ams.org/mathscinet-getitem?mr=2316269
http://zbmath.org/?q=an:1146.22009
http://www.ams.org/mathscinet-getitem?mr=2415834
http://zbmath.org/?q=an:0946.46002
http://www.ams.org/mathscinet-getitem?mr=1727673
http://zbmath.org/?q=an:1044.20026
http://www.ams.org/mathscinet-getitem?mr=1979183
http://zbmath.org/?q=an:1271.20053
http://www.ams.org/mathscinet-getitem?mr=2671183
http://zbmath.org/?q=an:0047.05302
http://www.ams.org/mathscinet-getitem?mr=0046395

1160 M. Tanaka

[7] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. 1. Sequence spaces.
Ergebnisse der Mathematik und ihre Grenzgebiete, 92. Springer, Berlin etc., 1977.
Zbl 0362.46013 MR 0500056

[8] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. 1I. Function spaces.
Ergebnisse der Mathematik und ihre Grenzgebiete, 97. Springer-Verlag, Betlin etc.,
1979. Zbl 0403.46022 MR 0540367

[9] U. F. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic
maps. Comm. Anal. Geom. 6 (1998), 199-253. Zbl 0914.58008 MR 1651416

[10] M. J. Puls, Group cohomology and LZ”-cohomology of finitely generated groups.
Canad. Math. Bull. 46 (2003), 268-276. Zbl 1030.43001 MR 1981681

[11] M. J. Puls, The first LZ-cohomology of some finitely generated groups and
p-harmonic functions. J. Funct. Anal. 237 (2006), 391-401. Zbl 1094.43003
MR 2230342

[12] M. Tanaka, The energy of equivariant maps and a fixed-point property for Buse-
mann nonpositive curvature spaces. Trans. Amer. Math. Soc. 363 (2011), 1743-1763.
Zb1 1218.58013 MR 2746663

Received January 7, 2011; revised September 13, 2012

M. Tanaka, Advanced Institute for Materials Research, Tohoku University, Sendai,
980-8577 Japan

e-mail: mamoru.tanaka @ wpi-aimr.tohoku.ac.jp


http://zbmath.org/?q=an:0362.46013
http://www.ams.org/mathscinet-getitem?mr=0500056
http://zbmath.org/?q=an:0403.46022
http://www.ams.org/mathscinet-getitem?mr=0540367
http://zbmath.org/?q=an:0914.58008
http://www.ams.org/mathscinet-getitem?mr=1651416
http://zbmath.org/?q=an:1030.43001
http://www.ams.org/mathscinet-getitem?mr=1981681
http://zbmath.org/?q=an:1094.43003
http://www.ams.org/mathscinet-getitem?mr=2230342
http://zbmath.org/?q=an:1218.58013
http://www.ams.org/mathscinet-getitem?mr=2746663
mailto:mamoru.tanaka@wpi-aimr.tohoku.ac.jp

	Introduction
	Strictly convex Banach spaces
	Affine isometric actions on a strictly convex Banach space
	A proof of Theorem 1.1 and Theorem 1.2
	A description of the absolute gradient of F_,  p
	An application of the theorems to an p space
	References

