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Pseudo-Anosov subgroups of �bered 3-manifold groups
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Abstract. Let S be a hyperbolic surface and let VS be the surface obtained from S by

removing a point. �e mapping class groups Mod.S/ and Mod. VS/ �t into a short exact

sequence

1 �! �1.S/ �! Mod. VS/ �! Mod.S/ �! 1:

If M is a hyperbolic 3-manifold that �bers over the circle with �ber S , then its fundamental

group �ts into a short exact sequence

1 �! �1.S/ �! �1.M/ �! Z �! 1

that injects into the one above.

We show that, when viewed as subgroups of Mod. VS/, �nitely generated purely pseudo-

Anosov subgroups of �1.M/ are convex cocompact in the sense of Farb and Mosher. More

generally, if we have a ı-hyperbolic surface group extension

1 �! �1.S/ �! �‚ �! ‚ �! 1;

any quasiisometrically embedded purely pseudo-Anosov subgroup of �‚ is convex co-

compact in Mod. VS/. We also obtain a generalization of a theorem of Scott and Swarup

by showing that �nitely generated subgroups of �1.S/ are quasiisometrically embedded in

hyperbolic extensions �‚.
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1. Introduction

In [10], Farb and Mosher de�ned a notion of convex cocompactness for subgroups
‚ < Mod.S/ of the mapping class group of a closed hyperbolic surface S by anal-
ogy with convex cocompactness in the theory of Kleinian groups. �is analogy
was extended by the second and third authors [15, 16]. Combining the results of
Farb–Mosher [10] and Hamenstädt [11], it follows that the associated �1.S/-exten-
sion �‚ of ‚ < Mod.S/ given by

1 �1.S/ �‚ ‚ 1

is ı-hyperbolic for some ı if and only if ‚ is convex cocompact. For punctured
surfaces, one has a similar statement for associated orbifold extensions [10], or
one can replace hyperbolicity with relative hyperbolicity [21]; see Section 2.6.

If ‚ < Mod.S/ is convex cocompact, then it must be �nitely generated and
purely pseudo-Anosov, i.e. every in�nite order element is pseudo-Anosov. Con-
versely, if ‚ is purely pseudo-Anosov then the (orbifold) extension �‚ has no
Baumslag–Solitar subgroups. As such subgroups are the natural obstructions to
being hyperbolic, Farb and Mosher [10] asked

Question 1. If ‚ < Mod.S/ is a purely pseudo-Anosov, �nitely generated free
group, is ‚ convex cocompact?

�e hypotheses imply that �‚ has a 3-dimensional K.�‚; 1/, and so this is
a special case of a question of Gromov, see [14]. More generally one can ask
if every �nitely generated purely pseudo-Anosov subgroup is convex cocompact.
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�ese questions seem di�cult in general as the class of purely pseudo-Anosov
subgroups is somewhat mysterious.

We attack Question 1 for certain classes of purely pseudo-Anosov subgroups
related to the Kleinian origins of convex cocompactness. Recall that if M D
H

3=� is an orientable �nite volume hyperbolic 3-manifold that �bers over S1

with �ber S , and VS denotes the surface equipped with a distinguished basepoint,
then there is a natural injection � ! Mod. VS/; see sections 2.1 and 2.5. We may
then view any subgroup G < � as a subgroup of Mod. VS/.

�eorem 1.1. Let � be the fundamental group of hyperbolic 3-manifold that �bers

over the circle with �ber S , considered as a subgroup of Mod. VS/. If G is a �nitely

generated purely pseudo-Anosov subgroup of �, then it is convex cocompact.

�is above result is a generalization of the second and third authors’ work with
Schleimer [17], where the subgroup G was contained in the �ber group �1.S/ <

�1.M/ Š �. In that case, the group G could be naturally identi�ed with a Fuch-
sian group, and 2-dimensional hyperbolic geometry could be used to provide the
additional leverage needed to prove convex cocompactness. In �eorem 1.1, G is
naturally a Kleinian group, and 3-dimensional geometric techniques can be ap-
plied in a similar way to prove convex cocompactness, though there are a number
of technical obstacles in the generalization.

�e ideas used to deal with these obstacles apply in a more general setting.
Speci�cally, given ‚ < Mod.S/, the extension �‚ also naturally injects into
Mod. VS/.

�eorem 1.2. Suppose S is a closed surface, ‚ < Mod.S/ is a convex cocompact

subgroup and G < �‚ is a �nitely generated quasiisometrically embedded sub-

group. If G is purely pseudo-Anosov as a subgroup of Mod. VS/, then it is convex

cocompact.

In [25], Scott and Swarup prove that if � is the fundamental group of a hyper-
bolic 3-manifold �bered over the circle with �ber S , then any �nitely generated
in�nite-index subgroup of the �ber subgroup �1.S/ < � is convex cocompact.
A consequence of our work is the following generalization of this to arbitrary
hyperbolic extensions �‚. See [20] for a discussion of an analog for hyperbolic
free-by-cyclic groups.

�eorem 1.3. Let

1 �1.S/ �‚ ‚ 1
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be a ı-hyperbolic surface group extension. If H is a �nitely generated in�nite-in-

dex subgroup of �1.S/, then H is quasiisometrically embedded in �‚.

�is theorem follows from Proposition 8.1, and is proven in the �nal section.

1.1. Outline of the proofs. As discussed above, both �eorems 1.1 and 1.2 follow
the approach used in [17]. We brie�y describe the main ideas and technical results
needed to carry out the proofs. See Section 2 for de�nitions.

Suppose G < � is as in �eorem 1.1. According to [15] or [11], convex co-
compactness is equivalent to the orbit map G ! G � u to the curve complex C. VS/

being a quasiisometric embedding for some vertex u 2 C.0/. VS/. �e di�culty
establishing this criterion is proving that distances in C. VS/ are coarsely bounded
below by those in G equipped with a word metric.

�e �rst step is to prove that G is convex cocompact as a Kleinian group (see
Lemma 3.1). �e corresponding step in [17] is straightforward, but here we need
to appeal to some fairly technical results in Kleinian groups (Tameness [1, 6] and
the Covering �eorem [8, 7]). It follows that distances in G are comparable to
distances between orbit points in H

3, and, more importantly, in the convex hull
Hull.G/ � H

3 of the limit set for G.

It then su�ces to bound the distance between orbit points in H
3 by the dis-

tance of the corresponding orbit points in C. VS/. We do this as follows. For any
edge-path between orbit points in C. VS/ of some length n, we construct a piece-
wise geodesic path in H

3 between corresponding orbit points in Hull.G/, built
from n C 1 geodesic segments. Each of the geodesic segments is contained in a
convex set Hull.u/ � H

3 canonically associated to one of the vertices u of the
path in C. VS/. Speci�cally, Hull.u/ D Hull.�1.S/u/, where �1.S/u < �1.S/ is
the stabilizer of u under the action of �1.S/ on C. VS/ coming from the natural
injection �1.S/ < � ! Mod. VS/.

�e remaining step is to prove that, when this path is projected back to Hull.G/,
each of the nC1 geodesic segments projects to a path of uniformly bounded length.
�e key to this is Proposition 6.1, which states that for any simplex u � C. VS/, the
set Hull.u/ \ Hull.G/ has diameter bounded independently of u.

�is in turn relies on Proposition 5.1. To brie�y describe this, �rst observe
that the �bration M ! S1 lifts to a �bration H

3 ! R of the universal cover
whose �bers are naturally viewed as hyperbolic planes. Roughly speaking, Propo-
sition 5.1 states that for any simplex u � C. VS/, there is a tu 2 R so that the convex
hull of the limit set of �1.S/u in the �ber over tu is uniformly close to Hull.u/.
�e proof of this uses recent work of the second and third authors [13].
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�eorem 1.2 follows the same basic approach. �e abstraction from hyperbolic
3-space to a more general Gromov hyperbolic space is an obstacle that causes little
di�culty. However, the technical results in Kleinian groups are unavailable here,
and we must assume that G is quasiconvex to begin with. �e proof then reduces
to proving the analogue of Proposition 5.1 in this setting, which is Proposition 8.1.

Acknowledgements. �e authors would like to thank Ian Agol for helpful conver-
sations. In particular, the proof of Lemma 3.1 was inspired by an idea of Ian Agol.
�e authors would also like to thank the referee for several useful comments and
suggestions.

2. Background

2.1. Hyperbolic geometry. An orientable hyperbolic n-manifold is the quotient
of hyperbolic n-space H

n by a discrete torsion-free subgroup of IsomC.Hn/. We
will be primarily interested in the case of n D 2; 3, where such a group is called a
(torsion-free) Kleinian group. A Kleinian group G is called a lattice if the volume
of Hn=G is �nite.

Hyperbolic space is compacti�ed by adding a sphere at in�nity @1H
n to ob-

tain a ball H
n

D H
n [ @1H

n. �e limit set of a Kleinian group G is the set of
accumulation points of any orbit

ƒG D G � x n G � x � @1H
n:

�e limit set is independent of the choice of point x 2 H
n used to de�ne it. �e

convex hull of the limit set is the smallest closed convex set in H
n whose closure

in H
n

contains ƒG , and will be denoted

Hull.G/ � H
n:

Since ƒG is G-invariant, so is Hull.G/.
We say that a Kleinian group G is convex cocompact if Hull.G/=G is compact.

If G is convex cocompact, then it is purely hyperbolic, meaning that every in�-
nite order element is hyperbolic. In dimension 2, the converse is true for �nitely
generated G.

�eorem 2.1 (see [2, �eorem 10.1.2]). A torsion-free Kleinian group

G < IsomC.H2/

(usually called a torsion-free Fuchsian group) is convex cocompact if and only if

it is �nitely generated and contains no parabolics.
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�e situation is more complicated when G < IsomC.H3/. For this case, we
consider a special situation. Suppose � < IsomC.H3/ is a torsion-free lattice. Let
M D H

3=�. Suppose that M �bers over the circle with �ber a surface S

S M S1:

�en the fundamental groups �t into a short exact sequence

1 �1.S/ � Z 1;

where � D �1.M/ and Z D �1.S1/. In particular, the subgroup �1.S/ < � is a
�nitely generated, in�nite-index, normal subgroup of � that we call a �ber group.
By normality, we have equality of the limit sets ƒ�1.S/ D ƒ� D S2

1 and there is
an in�nite-sheeted covering

Hull.�1.S//=�1.S/ D Hull.�/=�1.S/ ! Hull.�/=�:

By the Tameness �eorem [1, 6] and the Covering �eorem [8, 7], this is essentially
the only type of subgroup of � which fails to be convex cocompact.

�eorem 2.2. Suppose � < IsomC.H3/ is a torsion-free lattice, and G < � is a

�nitely generated subgroup without parabolics. �en either G is convex cocom-

pact, or else there is a subgroup zG < G with index at most 2 and a �nite index

subgroup z� < � such that zG < z� is a �ber subgroup.

2.2. Coarse geometry. Let ı � 0. A geodesic triangle 4 in a geodesic metric
space X is ı-thin if each of its sides lies in the ı-neighborhood of the union of
the other two sides. A geodesic metric space X is ı-hyperbolic if every geodesic
triangle is ı-thin.

Let K and C be positive numbers. A map f W X ! Y between metric spaces
is a .K; C /-quasiisometric embedding if

1

K
dX .a; b/ � C � dY .f .a/; f .b// � KdX.a; b/ C C

for all a and b in X . A quasiisometric embedding f is a quasiisometry if its image
is D-dense for some D. A quasiisometric embedding G W I ! X from an interval
I � R into X is called a quasigeodesic.

If A > 0, a subset Y of a geodesic metric space X is A-quasiconvex if each
geodesic joining points of Y lies in the A-neighborhood of Y .

�e Gromov boundary @1X of a proper ı-hyperbolic space X is de�ned to be
the set of equivalence classes of quasigeodesic rays G W Œ0; 1/ ! X , where two
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rays are equivalent if they have �nite Hausdor� distance. In this way each biin-
�nite quasigeodesic determines two distinct endpoints at in�nity. �e following
consequence of ı-hyperbolicity is well known; for a proof see [5, �eorem III.1.7].

�eorem 2.3 (Stability of quasigeodesics). Given K; C; ı > 0, there exists a sta-

bility constant R > 0 with the following property. For any .K; C /-quasigeodesic

G0 in a ı-hyperbolic space X , every geodesic G in X with the same endpoints

(possibly at in�nity) has Hausdor� distance at most R from G0.

A �nitely generated group is made into a metric space by equipping its Cayley
graph with the path metric induced by declaring that edges have length one and
giving the group the subspace metric. Up to quasiisometry, this metric does not
depend on the �nite generating set. �e group is said to be ı-hyperbolic if there is
a choice of �nite generating set such that its Cayley graph is ı-hyperbolic. We will
make frequent use of the following well-known fact; see [5, Proposition I.8.19] for
a proof.

�eorem 2.4 (Švarc–Milnor lemma). If X is a proper geodesic metric space,

and G acts properly and cocompactly by isometries on X , then X and G are

quasiisometric. In fact, for any x in X , the orbit map G ! X given by g 7! gx is

a quasiisometry.

�e following is a consequence of the stability of quasigeodesics.

Proposition 2.5. If � is ı-hyperbolic and G < � is �nitely generated, then G is

quasiisometrically embedded if and only if it is quasiconvex.

We conclude this section by noting that, for Kleinian groups, convex cocom-
pactness may be reformulated in terms of coarse geometry as follows.

�eorem 2.6. A Kleinian group G < IsomC.Hn/ is convex cocompact if and only

if the orbit map G ! G � x � H
n is a quasiisometric embedding.

2.3. Mapping class groups and the complex of curves. Let S be a �nite-vol-
ume hyperbolic surface, we may then identify �1.S/ with a lattice in Isom.H2/

and write S D H
2=�1.S/. �e complexity of S is �.S/ D 3g � 3 C n, where g

is the genus of S and n is the number of its punctures. We assume throughout
that �.S/ � 1, which means that S has negative Euler characteristic and is not a
thrice-punctured sphere. �e mapping class group Mod.S/ of S is the group of
isotopy classes of orientation-preserving homeomorphisms of S .
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�e mapping class group acts on a number of spaces, but for our purposes, the
most important one is the complex of curves C.S/. �is is a simplicial complex
whose vertices are isotopy classes of essential simple closed curves – these are
precisely the isotopy classes with simple closed geodesic representatives. When
�.S/ > 1, we say that k C 1 distinct isotopy classes span a k-simplex if and
only if they can be realized disjointly on the surface (equivalently, their geo-
desic representatives are all disjoint). When �.S/ D 1, the surface S is either
a once-punctured torus or a four-times punctured sphere. In these cases, k C 1

isotopy classes are the vertices of a k-simplex if and only if they pairwise inter-
sect once or twice, respectively.

We view C.S/ as either a combinatorial object or a geometric object. For the
latter, we declare each simplex to be isometric to a regular Euclidean simplex,
and give C.S/ the induced path metric. We make extensive use of the following
celebrated theorem of Masur and Minsky [19].

�eorem 2.7 (Masur–Minsky [19]). For any S there is a ı > 0 such that C.S/ is

ı-hyperbolic.

An element of Mod.S/ is pseudo-Anosov if it has positive (asymptotic) trans-
lation length on C.S/. �at is, the pseudo-Anosov elements are precisely the ana-
logues of the hyperbolic isometries of Hn.

2.4. Exact sequences. We will also be concerned with the marked surface VS ,
which is simply the surface S equipped with a distinguished basepoint (or an ad-
ditional preferred puncture). In the corresponding based mapping class group
Mod. VS/, homeomorphisms and isotopies are required to �x the basepoint. �ere
is a natural surjection Mod. VS/ ! Mod.S/ obtained by simply ‘forgetting’ the
basepoint. Birman [3, 4] showed that the kernel of this map may be identi�ed
with �1.S/ thus giving an exact sequence

1 �1.S/ Mod. VS/ Mod.S/ 1: (1)

�e injective homomorphism Mod.S/ ! Out.�1.S// naturally gives rise to an
inclusion of short exact sequences

1 �1.S/ Mod. VS/ Mod.S/ 1

1 �1.S/ Aut.�1.S// Out.�1.S// 1

(2)
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�e following result of Kra [18] provides many pseudo-Anosov elements. Re-
call that a loop  2 �1.S/ is �lling if the geodesic representative of the free ho-
motopy class cuts S into disks and once-punctured disks.

�eorem 2.8 (Kra [18]). An element  2 �1.S/ is pseudo-Anosov as an element

of Mod. VS/ if and only if  is �lling as an element of �1.S/.

2.5. Surface and orbifold group extensions. Given ‚ < Mod.S/, the exact
sequence (1) can be used to describe a �1.S/-extension �‚. Speci�cally, we can
de�ne �‚ as the preimage of ‚ in Mod. VS/, which gives rise to an inclusion of
short exact sequences

1 �1.S/ �‚ ‚ 1

1 �1.S/ Mod. VS/ Mod.S/ 1

(3)

When ‚ D h'i, and ' is pseudo-Anosov, then �‚ D �1.M/, where

M' D S � Œ0; 1�=.x; 1/ � .'.x/; 0/

is the mapping torus of '. By �urston’s Geometrization �eorem [22, 23, 24, 12],
we have M D H

3=� with �‚ Š �1.M/ Š � < IsomC.H3/. In particular, this
allows us to view � and its subgroups as both Kleinian groups and subgroups of
Mod. VS/.

When S has punctures, there are other extensions of ‚. Namely, replacing
each puncture of S with a cone point of some order, we consider S as a hyper-
bolic orbifold. �ere is an inclusion Mod.S/ ! Out.�1.S/orb/, and we build an
extension � orb

‚ as the preimage in Aut.�1.S/orb/

1 �1.S/orb � orb
‚ ‚ 1

1 �1.S/orb Aut.�1.S/orb/ Out.�1.S/orb/ 1

2.6. Convex cocompactness. Farb and Mosher de�ned convex cocompactness
for G < Mod.S/ in terms of the action of Mod.S/ on Teichmüller space. An
equivalent formulation mirroring �eorem 2.6 is that G is convex cocompact if
and only if G is �nitely generated and the orbit map G ! G � v � C.S/ is a
quasiisometric embedding (for any v 2 C.S/), see [15] or [11]. Analogous to the
Kleinian group setting, if G is convex cocompact, it is ı-hyperbolic and purely
pseudo-Anosov.
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�e following provides the link with the coarse geometry of surface group
extensions and combines the results of Farb–Mosher [10] and Hamenstädt [11].

�eorem 2.9 (Farb–Hamenstädt–Mosher [10, 11]). Suppose S is a closed surface

and ‚ < Mod.S/ is a subgroup. �en ‚ is convex cocompact if and only if �‚ is

ı-hyperbolic.

Although we will not need it, this theorem is also true when S has punctures,
provided we replace �‚ with � orb

‚ . More recently, Mj–Sardar [21] proved that
‚ is convex cocompact if and only if �‚ is hyperbolic relative to the peripheral
subgroups.

3. Convex cocompactness as a Kleinian group.

We now embark on the proof of �eorem 1.1, letting � be the fundamental group
of a hyperbolic 3-manifold M �bering over the circle with �ber S , considered
as a subgroup of Mod. VS/. Let G be a �nitely generated purely pseudo-Anosov
subgroup of �.

Lemma 3.1. G is a convex cocompact Kleinian group.

Proof. By replacing G with a subgroup of index at most two (which does not
change the conclusion), �eorem 2.2 implies that either G is convex cocompact,
or G contains a parabolic, or G is a �ber subgroup of a �nite index subgroup
z� < �.

We begin by observing that any element of � which is pseudo-Anosov in
Mod. VS/ must be hyperbolic. For if not, it would be parabolic and hence con-
tained in a maximal parabolic subgroup which is isomorphic to Z

2. Since the
centralizer of a pseudo-Anosov element is virtually cyclic (contains a cyclic sub-
group of �nite index), it cannot be contained in any subgroup isomorphic to Z

2,
and therefore cannot be parabolic in �.

�erefore we must show that G is not a �ber group of some z� < �. We assume
that it is and derive a contradiction.

To this end, we let zM ! M denote a �nite cover that �bers over S1 with
a �ber subgroup G, and let z� < � denote the corresponding subgroup of the
fundamental group. �en G is a normal subgroup of z� with z�=G Š Z. Since
z�=.z� \ �1.S// Š Z, it follows that

Œz�; z�� < G \ �1.S/ \ z�
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where Œz�; z�� is the commutator subgroup.
Now consider any strict essential subsurface † � S , and let †0 be any compo-

nent of the preimage of † in the (�nite-sheeted) covering zS ! S , corresponding
to �1.S/\ z� < �1.S/. Any nontrivial commutator in �1.†0/ < �1.S/ has in�nite
order (since all groups in question are torsion-free) and lies in Œz�; z��, hence also
in G. On the other hand, every element of �1.†0/ projects to a loop in †, and
hence a non�lling loop in S . It follows that G contains an in�nite order element
which is not pseudo-Anosov. �is contradicts the assumption that G is purely
pseudo-Anosov and completes the proof.

4. Metrics and covers.

�e 3-manifold M is a quotient of H3 by �, and so has a quotient hyperbolic met-
ric we denote by d . We will want to consider an auxiliary metric Od constructed
as follows. �e manifold M is the mapping torus of ' W S ! S , and we choose a
suspension �ow 't . �at is, 't is a �ow transverse to the �bers such that 't sends
�bers to �bers for all t , and '1 is the �rst return map on each �ber. We choose a
Riemannian metric so that the induced metric on each �ber is a hyperbolic met-
ric, and so that 't is a �ow along �ow lines that are orthogonal to the �bers. We
let Od denote the metric induced by this Riemannian metric. We also assume that
the Riemannian metrics de�ning Od and d agree on some horoball neighborhoods
of the cusps when M is noncompact. �is is possible since the �bration can be
chosen so that in the hyperbolic metric d , the �bers intersect the cusps in totally
geodesic surfaces, and so that the integral curves of the suspension �ow are horo-
cycles orthogonal to the �bers.

By compactness of the complement of the horoball cusp neighborhoods, the
identity .M; d/ ! .M; Od/ is bilipschitz. It follows that the same is true for any
cover of M if we pull back the metrics d and Od .

We let MS ! M be the cover corresponding to �1.S/, which �bers over R by
lifting the �bration M ! S1. We record this, together with the homeomorphisms
of the universal coverH3 Š H

2�R and MS Š S �R in the following commutative
diagram:

H
3 MS M

H
2 � R S � R

R R S1
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We pull the metric Od on M ! S1 back to H
3 and MS . We let H2

t D H
2 � ¹tº

and St D S � ¹tº denote the �bers of the �brations H
3 ! R and MS ! R,

respectively. We equip these �bers with their path metrics induced by Od .
Let � W � ! Z denote the homomorphism induced by the �bration M ! S1.

We assume that in addition to being purely pseudo-Anosov and �nitely generated,
G < � is not contained in �1.S/: if G < �1.S/ then we can apply [17], and G

is convex cocompact in Mod. VS/. Let G0 D G \ �1.S/, which is the kernel of
�jG W G ! Z.

1 G0 G Z 1
�jG

By replacing � with a �nite index subgroup (namely the preimage in � of the im-
age of G in Z), we can assume without loss of generality that G ! Z is surjective.
We also let g 2 G be an element that maps to 1 in Z. If G0 is trivial, then G is
cyclic and we are done, so we assume G0 is nontrivial.

We consider the covers MG0
! MG ! M corresponding to G0 < G < �, as

well as the cover SG0
! S corresponding to G0 < �1.S/. We can add this to the

previous diagram to get

MG

H
3 MG0

MS M

H
2 � R SG0

� R S � R

R R R S1

Keeping with the same notation, we write SG0;t D SG0
� ¹tº with its induced

hyperbolic metric.

Notation. �e metrics d and Od both pull back to metrics on all the covers, and
we denote these by the same names d and Od .

For any of the spaces that �ber over R, we write dt for the path metric on the
�ber over t 2 R induced by Od . By construction, dt is a hyperbolic metric on
each �ber. For metric-dependent constructions we will add a pre�x to the name to
signify what metric is being used in the construction. For example, we will refer
to dt -geodesics, dt -diameter, dt -Hausdor� distance, et cetera. If there is no pre�x
this signi�es that the metric d is being used, though we will sometimes include
the d for clari�cation.
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5. Simplex hulls

For any simplex u � C. VS/, we consider the stabilizer of u in �1.S/ < Mod. VS/.
�is is the fundamental group of the subsurface determined by u, see [17] for a
detailed discussion. Since the stabilizer �1.S/u acts on H

3 as well as each H
2
t for

every t , we can consider the convex hull of its limit set in any one of these spaces.
We write Hull.u/ � H

3 for the d -convex hull in H
3 and Hullt .u/ � H

2
t for the

dt -convex hull in H
2
t . By the main theorem of [25], the limit set of Hullt .u/ in

@1H
2
t maps homeomorphically onto the limit set of Hull.u/ in @1H

3.

Given any  2 � we have .Hull.u// D Hull. � u/, where  acts on C. VS/ via
the inclusion � < Mod. VS/ from (3). Recall also that � W � ! Z is the homomor-
phism of fundamental groups induced by the �bration M D H

3=� ! S1.

Proposition 5.1. �ere exist K; C; R > 0 with the following property. For any

simplex u � C. VS/ there exists a tu 2 Z satisfying t �u D tu C �./ for all  2 �,

and such that the following holds.

(1) �e inclusion Hulltu.u/ ! H
3 is a .K; C /-quasiisometric embedding.

(2) For any z; w 2 Hull.u/, there exists z0; w0 2 Hulltu.u/ such that

d.z; z0/; d.w; w0/ � R

and the dtu -geodesic Œz0; w0�tu � Hulltu.u/ and the d -geodesic Œz; w� �
Hull.u/ have d -Hausdor� distance at most R.

One of the key ingredients in the proof of this proposition is the following
result from [13], which shows that the convex hull Hull.u/ � H

3 D H
2 �R is not

too wide.

Proposition 5.2 (Kent–Leininger [13]). �ere exists W > 0 such that for any

simplex u � C. VS/, the image of Hull.u/ in R under the projection

H
3 D H

2 � R �! R

onto the second coordinate has diameter at most W .

Given this Proposition, we now sketch the proof of Proposition 5.1 before
proceeding to the details.

Sketch of Proposition 5.1. We choose tu uniformly close to the image of Hull.u/

in R under the projection H
3 ! R. According to Proposition 5.2, the image of
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Hull.u/ in R is contained in an interval Iu centered on tu of uniformly bounded di-
ameter. Since Iu has bounded diameter, the inclusion H

2
tu

! H
2 �Iu is uniformly

bilipschitz provided we giveH2
tu

the hyperbolic metric dtu andH
2�Iu the induced

path metric from Od or from the hyperbolic metric d . Since Hulltu.u/ � H
2
tu

is
convex, the same is true for the inclusion Hulltu.u/ ! H

2 � Iu, and in particular,
Hulltu.u/ is uniformly quasi-convex in the Gromov hyperbolic space H

2 � Iu.
Next we observe that Hull.u/ � H

2 � Iu. Since Hull.u/ is convex, the path
metric on Hull.u/ induced by d is precisely the restriction of the hyperbolic metric
d . Since Hull.u/ and Hulltu.u/ have the same limit set, and both are quasi-convex,
they are uniformly close to each other inside H

2 � Iu. From this and the fact that
both spaces are uniformly quasi-isometrically embedded in H

2 � Iu, we see that
distances between points in Hulltu.u/ are uniformly comparable to distances in
Hull.u/. On the other hand, distances in Hull.u/ are precisely distances in H

3, as
required.

With this sketch in mind, we proceed to the actual proof of Proposition 5.1. It
turns out that comparing distances in Hulltu.u/ and Hull.u/ as just described is a
bit messy. �e following Lemma allows us to restrict attention to the points which
lie on biin�nite geodesics contained in the respective hulls.

Lemma 5.3. �ere exists ı > 0 such that for n D 2 or 3 the following holds. Let Z

be a closed subset of @1H
n. �en any geodesic segment Œz; w� in the convex hull

Hull.Z/ in H
n has Hausdor� distance at most ı from a geodesic segment Œz0; w0�

which is contained in a biin�nite geodesic in Hull.Z/.

Proof. Extend Œz; w� as far as possible in both directions. If it extends inde�nitely
in both directions in Hull.Z/, then Œz; w� is itself contained in a biin�nite geo-
desic in Hull.Z/ and we are done. If not, then Œz; w� is contained in G, a geodesic
segment or ray that terminates in the boundary of the convex hull. By moving G

a uniformly bounded amount to some G0 if necessary, we can assume that each
endpoint lies on a biin�nite geodesic in the boundary of Hull.Z/, and that G0 has
length at least 10, say. �is follows from the fact that if Hull.Z/ has dimension
2, then the boundary of Hull.Z/ is a union of biin�nite geodesics, and if Hull.Z/

has dimension 3, its boundary is a hyperbolic surface bent along a geodesic lam-
ination [9]. To each endpoint of G0, append a ray of the biin�nite geodesic in the
direction that makes the larger of the two angles with G0 (which is at least �=2).
�e resulting broken geodesic is a uniformly bounded distance from a biin�nite
geodesic, and this geodesic contains Œz; w� in a uniformly bounded neighborhood,
as required.
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Proof of Proposition 5.1. Let W � 1=2 be as in Proposition 5.2. �erefore, for
each u there exists an integer t 2 R such that

Hull.u/ � H
2 � Œt � W; t C W �: (4)

�e action of � on H
2 � R descends to an action on R given by translation

under �. �erefore, the projection of

Hull. � u/ D Hull.u/

to R is the image of Hull.u/ under the projection, after translating by �./. It fol-
lows that if t is an integer satisfying (4) for u, then

Hull. � u/ � H
2 � Œtu C �./ � W; tu C �./ C W �: (5)

Let T be a transversal for the action of � on the set of simplices in C. VS/, that
is, a choice of simplex from each � orbit. For any u 2 T , pick tu D t satisfying
(4), then de�ne t �u D tu C �./ for any u 2 T and  2 �. >From (5), it follows
that

Hull.u/ � H
2 � Œtu � W; tu C W �

for every u 2 C. VS/. Since � is a homomorphism, t �u D tu C �./ holds for every

 2 � and u � C. VS/.
Given any integer t , let d �

t denote the path metric on H
2 � Œt � W; t C W �

induced by the hyperbolic metric d .

Claim. �ere exists K > 0 such that the inclusion

H
2
t �! H

2 � Œt � W; t C W �

is a K-bilipschitz embedding (with respect to dt and d �
t ).

Proof of Claim. Let Od �
t denote the path metric on H

2 � Œt � W; t C W � induced
by Od . Let K0 be the bilipschitz constant for the identity map between d �

t and Od �
t .

It follows that the inclusion

H
2
t �! H

2 � Œt � W; t C W �

with respect to dt and d �
t is K0-Lipschitz.

�ere is a K1 > 1 such that the suspension �ow 't is K t
1-bilipschitz with re-

spect to Od . �is follows from compactness of the complement of the cusp neigh-
borhoods and the fact that the �ow is by isometries on the cusp neighborhoods.
Lifting this �ow to H

3, we can use it to de�ne a projection

H
2 � Œt � W; t C W � ! H

2
t
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by projecting out the �ow lines. �is is KW
1 -Lipschitz with respect to Od �

t and dt ,
and hence K0KW

1 -Lipschitz with respect to d �
t and dt . Setting K D K0KW

1 > K0,
it follows that the inclusion

H
2
t �! H

2 � Œt � W; t C W �

is K-bilipschitz.

Let R0 > 0 be the stability constant for .K; 0/-quasigeodesics in the Gromov
hyperbolic metric space .H2 � Œtu � W; tu C W �; d �

t /, see �eorem 2.3. Let ı > 0

be the constant from Lemma 5.3 and set

C D 4K.Kı C R0/:

�e next claim will prove the �rst part of the proposition.

Claim. For any u � C. VS/ the inclusion

Hulltu.u/ �! H
3

is a .K; C /-quasiisometric embedding.

Proof of Claim. Since Hulltu.u/ � H
2
tu

is isometrically embedded, it follows that
the inclusion

Hulltu.u/ �! H
2 � Œtu � W; tu C W �

is a K-bilipschitz embedding.

Now let z0; w0 2 Hulltu.u/ be any two points. According to Lemma 5.3 there
are points z0

0; w0
0 2 Hulltu.u/ such that

dtu.z0; z0
0/; dtu.w0; w0

0/ � ı (6)

and such that the geodesic segment Œz0
0; w0

0� extends to a biin�nite dtu -geodesic
G0 � Hulltu.u/.

Since the limit set of Hulltu.u/ in @1H
2
tu

embeds in @1H
3, the path G0 has

two endpoints in @1H
3. Let G be the d -geodesic with these endpoints, which is

necessarily contained in Hull.u/ � H
2 � Œtu � W; tu C W �. In particular, G is a

d �
tu

-geodesic. Since the dtu -geodesic G0 is a .K; 0/-quasigeodesic with respect to
d �

tu
, �eorem 2.3 implies that G and G0 have d �

tu
-Hausdor� distance at most R0.
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Let z; w 2 G be points with

d �
tu

.z0
0; z/; d �

tu
.w0

0; w/ � R0:

Since d is less than d �
tu

, appealing to this and (6) we have

d.z0; z/ � d �
tu

.z0; z/ � d �
tu

.z0; z0
0/ C d �

tu
.z0

0; z/ � Kı C R0; (7)

and likewise

d.w0; w/ � d �
tu

.w0; w/ � Kı C R0: (8)

Combining (7) and (8) with the triangle inequality, the fact that

Hulltu.u/ �! H
2 � Œtu � W; tu C W �

is a K-bilipschitz embedding, and the fact that d D d �
tu

on Hull.u/ (since Hull.u/

is convex) we �nd

dtu.z0; w0/ � Kd �
tu

.z0; w0/

� K.d �
tu

.z; w/ C d �
tu

.z0; z/ C d �
tu

.w; w0//

� Kd.z; w/ C K.2.Kı C R0//

� K.d.z0; w0/ C d.z; z0/ C d.w0; w// C 2K.Kı C R0/

� Kd.z0; w0/ C 2K.Kı C R0/ C 2K.Kı C R0/

D Kd.z0; w0/ C C:

On the other hand, since d � d �
tu

on H
2 � Œtu � W; tu C W � it follows that

d.z0; w0/ � d �
tu

.z0; w0/ � Kdtu.z0; w0/ C C:

�erefore, the inclusion Hulltu.u/ ! H
3 is a .K; C /-quasiisometric embedding,

proving the claim.

To �nish the proof of the proposition, let R D R0 C ı > 0, where R0 is as in
the proof of the claim. By increasing R0 > 0 if necessary, we can assume that if
G0 is a .K; 0/-quasigeodesic in H

2 � Œt � W; t C W � and G is the unique geodesic
a d �

t -Hausdor� distance at most R0 away, then for any segment Œz; w� � G there
is a segment Œz0; w0� � G0 for which the d �

t -Hausdor� distance between Œz; w� and
Œz0; w0� is at most R0 and d �

t .z; z0/; d �
t .w; w0/ � R0.
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Let u � C. VS/ be any simplex. Given z; w 2 Hull.u/, let G be a biin�nite
geodesic in Hull.u/ containing points z0; w0 � G such that

d.z; z0/; d.w; w0/ � ı;

as given by Lemma 5.3.
Let G0 be the unique dtu -geodesic in Hulltu.u/ with the same endpoints as G.

Since G0 is a .K; 0/-quasigeodesic for d �
tu

, it has d �
tu

-Hausdor� distance at most R0

from G. Let z0; w0 2 G0 be any points such that the d �
tu

-Hausdor� distance between
Œz0; w0� and Œz0; w0� is at most R0 and

d �
tu

.z0; z0/; d �
tu

.w0; w0/ � R0:

Since d �
tu

� d , it follows from the triangle inequality that d.z; z0/; d.w; w0/ � R0

and Œz; w� and Œz0; w0� have d -Hausdor� distance at most R0 C ı D R, completing
the proof.

6. Hull intersections

Let C.MG0
/ D Hull.G0/=G0 and C.MG/ D Hull.G/=G. Since G0 G G is an in�-

nite normal subgroup, the limit sets are equal so Hull.G0/ D Hull.G/, and hence
there is an induced covering map C.MG0

/ ! C.MG/ – in fact it is a Z-covering.
�e same is true for the r-neighborhoods, for any r > 0,

Nr .C.MG0
// ! Nr .C.MG//:

We can compose the �bration M ! S1 with the map Nr.C.MG// ! M

obtained by restricting the covering map MG ! M . �is gives a map

f W Nr.C.MG// �! S1:

�is lifts to
Qf W Nr .C.MG0

// �! R

which is simply the restriction to Nr .C.MG0
// of the projection onto the second

coordinate of the product structure MG0
Š SG0

� R. Let SG0;0 D SG0
� ¹0º.

Nr .C.MG0
// Nr .C.MG//

MG0
MG M

R S1 S1
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Because � W G ! Z is surjective, the �bers of Qf project homeomorphically to
the �bers of f by the covering map Nr .C.MG0

// ! Nr .C.MG//. In particular,
because f has compact �bers, so does Qf , and hence

Qf �1.0/ D Nr .C.MG0
// \ SG0;0 � SG0;0

is compact. We assume, without loss of generality, that for whatever choice of r we
investigate, 0 is a regular value for Qf restricted to the boundary of Nr .C.MG0

//.
�en Qf �1.0/ � SG0;0 is a compact submanifold, hence has only �nitely many
components.

�e next result is the key ingredient needed to adapt the arguments from [17].

Proposition 6.1. �ere exists D > 0 such that for any simplex u 2 C. VS/, the

diameter of Hull.u/ \ N1.Hull.G// is at most D.

Before we launch into the proof we give a brief sketch.

Sketch of Proposition 6.1. Given two points of Hull.u/ \ N1.Hull.G//, the geo-
desic between these points is contained in the intersection by convexity. According
to Proposition 5.1 any geodesic segment contained in Hull.u/ is within a distance
R of a dtu -geodesic segment in Hulltu.u/. �us, it su�ces to �nd a uniform bound
on the length of a dtu -geodesic segment in the intersection

Hulltu.u/ \ NRC1.Hull.G// D Hulltu.u/ \ NRC1.Hull.G0//:

Furthermore, replacing u by its image under an element of G, we can assume
tu D 0.

Now suppose we have a d0-geodesic segment in Hulltu.u/\NRC1.Hull.G0//.
Taking the quotient by G0 we obtain a d0-geodesic segment inside Qf �1.0/ �
SG0;0. Since Qf �1.0/ is compact, the fundamental group is �nitely generated, G1 <

G0. �e compact subsurface Qf �1.0/ and the d0-geodesic segment lift to the cover
SG1;0 ! SG0;0 corresponding to G1. Now we observe that G1 < �1.S/ is a
�nitely generated Fuchsian group, and is purely pseudo-Anosov as a subgroup of
Mod. VS/. �us, we can appeal directly to the arguments of [17] to bound the length
of the d0-geodesic segment.

�e proof of Proposition 6.1 requires the following result from [17].

Proposition 6.2 (Corollary 5.2 of [17]). Let G0 < �1.S/ be a �nitely gener-

ated subgroup which is purely pseudo-Anosov when considered as a subgroup

of Mod. VS/. �en for each t 2 R, there exists D0
t > 0 such that for any simplex

u 2 C. VS/, the dt -diameter of Hullt .u/ \ N1.Hullt .G
0// is at most D0

t .
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We also need the following lemma.

Lemma 6.3. Let R > 0 be the constant from Proposition 5.1. �ere exists a

D0 > 0 with the following property. Given any u 2 C. VS/, let tu 2 Z be the integer

from Proposition 5.1. �en any dtu -geodesic segment

Œz0; w0� � NRC1.Hull.G0// \ Hulltu.u/

has dtu-length at most D0.

Proof of Lemma 6.3. Recall that we have chosen g 2 G with �.g/ D 1. Given
u 2 C. VS/ and any dtu -geodesic segment

Œz0; w0� � NRC1.Hull.G0// \ Hulltu.u/;

Proposition 5.1 implies

tg�tu �u D tu C �.g�tu/ D tu � tu D 0:

Combining this with the fact that g�tu is an isometry on all of H3, as well as from
H

2
tu

to H
2
0, and the fact that it preserves Hull.G0/ D Hull.G/, it follows that

Œg�tuz0; g�tuw0� D g�tu.Œz0; w0�/

� g�tu
�

NRC1.Hull.G0// \ Hulltu.u/
�

D NRC1.Hull.G0// \ g�tu.Hulltu.u//

D NRC1.Hull.G0// \ Hull0.g�tu � u/

�erefore, it su�ces to prove the lemma for the case that tu D 0.
By compactness, there are only �nitely many components of

Qf �1.0/ D NRC1.C.G0// \ SG0;0:

To prove the lemma we must bound the length of a segment in NRC1.Hull.G0//\
Hull0.u/. Since such a segment must project to one of the components X0 �
Qf �1.0/, it su�ces to �nd a constant D0

0 > 0 such that the conclusion of the lemma
is satis�ed for segments that project to X0. Taking the maximum of the constants
over the �nitely many components of Qf �1.0/ will complete the proof.

Let p0 W H
2
0 ! SG0;0 be the covering projection and zX0 � p�1

0 .X0/ a compo-
nent of the preimage. Since G0 acts transitively on the components of p�1

0 .X0/,
given a d0-geodesic segment

Œz0; w0� � p�1
0 .X0/ \ Hull0.u/
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there exists an element g0 2 G0 such that

Œg0.z0/; g0.w0/� D g0.Œz0; w0�/ � zX0 \ Hull0.g0 � u/:

�erefore, it su�ces to �nd a constant D0
0 > 0 such that for all u 2 C. VS/ with

tu D 0, any geodesic segment

Œz0; w0� � zX0 \ Hull0.u/

has d0-length at most D0
0. �is follows from the next claim.

Claim. �ere exists D0
0 > 0 such that for any u 2 C. VS/ with tu D 0, the d0-diam-

eter of zX0 \ Hull0.u/ is at most D0
0.

Proof of claim. Since X0 is a compact manifold, �1.X0/ is �nitely generated, and
hence the image in G0 is a �nitely generated subgroup G1 < G0. A conjugate of
G1 acts cocompactly on zX0, and without loss of generality, assume it is G1 itself.
It follows that there exists r > 0 such that Nr .C0.G1//, the r-neighborhood of the
d0-convex core of G1, contains X0. Consequently we have

zX0 � Nr .Hull0.G1//:

By Proposition 6.2, since G1 is �nitely generated and purely pseudo-Anosov there
exists D0

0 > 0 such that Nr .Hull0.G1// \ Hull0.u/ has diameter at most D0
0.

�erefore, so does zX0 \ Hull0.u/.

�is completes the proof.

Proof of Proposition 6.1. Let D0 > 0 be as in Lemma 6.3 and set D D 2R C
KD0 C C , where K; C; R are as in Proposition 5.1. Now suppose u � C. VS/ is a
simplex and

z; w 2 N1.Hull.G// \ Hull.u/:

Since this is the intersection of two convex sets in H
3, the geodesic Œz; w� also

lies in this intersection. By Proposition 5.1 there exists a dtu -geodesic Œz0; w0� �
Hulltu.u/ with d -Hausdor� distance at most R from Œz; w�.

It follows that

Œz0; w0� � NRC1.Hull.G// \ Hulltu.u/;

and hence has dtu -length at most D0 by Lemma 6.3. Combining this with Propo-
sition 5.1 and the triangle inequality we see that the d -distance between z; w is at
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most

d.z; w/ � d.z; z0/ C d.z0; w0/ C d.w0; w/

� R C Kdtu.z0; w0/ C C C R

� 2R C KD0 C C D D

as required.

7. End of the proof

We remark that this is formally just like the proof of �eorem 6.3 in [17].

Proof of �eorem 1.1. Fix a vertex u 2 C0. VS/ and a point x 2 Hull.u/ \ Hull.G/.
Let dC denote the path metric on the curve complex C. VS/ and equip G with the
metric de�ned by

dG.g; h/ WD dHull.G/.g � x; h � x/ D d.g � x; h � x/:

Since G acts cocompactly on Hull.G/, the Švarc–Milnor lemma (�eorem 2.4)
implies that dG is quasiisometric to any (�nitely generated) word metric on G.

We need to show that the orbit map .G; dG/ ! .C. VS/; dC/ de�ned by g 7! g �u
is a quasiisometric embedding, so we must �nd constants K � 1 and C � 0 such
that

1

K
dG.1; g/ � C � dC.u; g � u/ � KdG.1; g/ C C

for all g 2 G. Such an upper bound follows immediately from the triangle in-
equality and the fact that dG is quasiisometric to the word metric on G, and we
therefore focus on the lower bound.

Let .u0; u1; : : : ; un/ be a geodesic path in C. VS/ from u D u0 to g � u D un,
where n D dC.u; g � u/. We will use this to construct a path from x to g � x in
Hull.G/ whose length is bounded in terms of n. Let !i D Œui�1; ui � � C. VS/,
1 � i � n, denote the 1-simplices comprising our C-geodesic from u to g � u. For
a simplex v � C. VS/, recall that Hull.v/ � H

3 is de�ned to be the convex hull of
the limit set of the stabilizer �1.S/v of v in �1.S/ < �. Since ui�1; ui � !i , the
corresponding stabilizers are related by �1.S/!i

� �1.S/ui�1
\ �1.S/ui

. So the
corresponding hulls satisfy

Hull.!i/ � Hull.ui�1/ \ Hull.ui /:

In particular, for each 1 � i < n we have that

Hull.!i/; Hull.!iC1/ � Hull.ui /: (9)
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We now construct a piecewise geodesic path  � H
3 connecting x to g � x as

follows. For each 1 � i � n choose any point xi 2 Hull.!i/; we also set x0 D x

and xnC1 D g � x. Recall that, by choice of x, we have x0 D x 2 Hull.u/ D
Hull.u0/ and therefore also that xnC1 D g � x 2 Hull.g � u/ D Hull.un/. For
each 0 � i � n we let i denote the d -geodesic Œxi ; xiC1�; since Hull.ui / is
convex, equation (9) and the above implies that i � Hull.ui /. �e concatenation
 D 01 : : : n now gives a piecewise geodesic path from x to g � x.

�e path  may be arbitrarily long and is furthermore not necessarily contained
in Hull.G/.

Let � W H3 ! Hull.G/ be the closest point projection. It is a well known fact
in hyperbolic geometry that � is a contraction and that, furthermore, there exists a
constant T > 0 such that for any d -geodesic segment � outside of N1.Hull.G//,
the projection �.�/ has length at most l.�.�// � T . Now, since Hull.ui / \
N1.Hull.G// is convex, it cuts i into at most three geodesic segments: at most one
in Hull.ui / \ N1.Hull.G//, which, by Proposition 6.1, has length at most D, and
at most two which are disjoint from Hull.ui / \ N1.Hull.G//. By the contraction
properties of � , it follows that

l.�.i // � 2T C D

for each 0 � i � n. Since �./ is a path in Hull.G/ connecting x to g � x, we
conclude that

dG.1; g/ D dHull.G/.x; g � x/ � l.�.// � .2T C D/.n C 1/:

Isolating n D dC.u; g � u/, we �nd that

dC.u; g � u/ D n �
1

2T C D
dG.1; g/ � 1:

8. Generalizations

We now modify the proof of �eorem 1.1 to prove �eorem 1.2. Suppose that S is
a closed surface and ‚ < Mod.S/ is a subgroup of Mod.S/. Section 2.5 explains
that there is an associated �1.S/ extension which includes into the Birman Exact
Sequence as in Equation ( 3):

1 �1.S/ �‚ ‚ 1

1 �1.S/ Mod. VS/ Mod.S/ 1
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According to �eorem 2.9, the group �‚ is ı-hyperbolic if and only if ‚ is
convex cocompact; see also [21].

�eorem 1.2. Suppose S is a closed surface, ‚ < Mod.S/ is a convex cocompact

subgroup and G < �‚ is a �nitely generated quasiisometrically embedded sub-

group. If G is purely pseudo-Anosov as a subgroup of Mod. VS/, then it is convex

cocompact.

Remark. We note that although we are able to replace the � from �eorem 1.1
with a more general class of groups, we do need the assumption on the subgroup
G < �‚. �is is due to the fact that a generalization of Lemma 3.1 seems quite
di�cult, or perhaps false, in this more general setting.

To simplify notation, we henceforth write � D �‚.
We start by describing a geometric model for � that will be most useful for

the proof. By passing to �nite index subgroups, we assume ‚ is torsion-free. Let
zB denote the Cayley graph of ‚ with respect to some �nite generating set, and
B D zB=‚ the quotient wedge of circles. Choose any continuous map

zB �! Teich.S/

which is equivariant with respect to the actions of ‚ on zB by covering transfor-
mations and on Teich.S/ via the action induced by the inclusion

‚ �! Mod.S/:

�e Bers �bration

H
2 Teich. VS/ Teich.S/

is equivariant with respect to the Birman Exact Sequence, and we can pull back
the bundle to zB so that all maps are equivariant:

1 �1.S/ � ‚ 1

H
2 zX zB

1 �1.S/ Mod. VS/ Mod.S/ 1

H
2 Teich. VS/ Teich.S/

'
	 	 	

	 	 	

(10)



Pseudo-Anosov subgroups of �bered 3-manifold groups 1271

We give zX a �-invariant geodesic metric d for which the induced path metric
on the �ber '�1.t / D H

2
t for t 2 zB is the hyperbolic metric dt . Each quotient by

the corresponding group is compact, and this produces an S -bundle over B:

S X B:

By the Švarc–Milnor lemma (�eorem 2.4), any orbit map � ! zX is a quasi-
isometry with respect to the word metric on � for any �xed �nite generating set.

�e analogue of Proposition 5.1 we need is the following. Here � acts on zB via
the homomorphism � ! ‚ and on C. VS/ by the homomorphism � ! Mod. VS/.
We write Hullt .u/ to denote the convex hull in H

2
t of the stabilizer �1.S/u of u in

�1.S/, as before.

Proposition 8.1. Suppose that we are in the situation of Diagram (10) and zX is

ı-hyperbolic. �ere exist K; C > 0 with the following property. For any simplex

u � C. VS/ there exists a vertex tu 2 zB.0/ satisfying

t �u D  � tu

for all  2 �, and such that the inclusion

Hulltu.u/ �! zX

is a .K; C /-quasiisometric embedding.

In Section 9, we derive �eorem 1.3 from this Proposition.
�e proof of Proposition 8.1 requires the following analogue of Proposition 5.2

which is proven in [13]. Given any simplex u � C. VS/, we let Hull.u/ denote the
union of all quasiinvariant geodesic axes in zX of elements in �1.S/u.

Proposition 8.2. Suppose that we are in the situation of Diagram (10) and zX is

ı-hyperbolic. �en there exists W > 0 such that for any simplex u � C. VS/, the set

Hull.u/ has diam zB.'.Hull.u/// < W .

With this Proposition, the proof of Proposition 8.1 is similar to that of Propo-
sition 5.1. �e key idea is again to pick tu 2 zB.0/ lying within a uniformly
bounded distance of the image of Hull.u/ in zB so that '�1.BR.tu// will play
the role of H

2
tu

� Œtu � W; tu C W �. As before, we will see that the inclusion
H

2
tu

! '�1.BR.tu// is uniformly bilipschitz and, using the fact that Hull.u/ �
'�1.BR.tu// is convex, we will show that distances in Hulltu.u/ are comparable
to those in Hull.u/ and thus also in zX .

We also need the following minor modi�cation of Lemma 5.3.
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Lemma 8.3. �ere exists ı0 > 0 such that for any convex cocompact Fuchsian

group H < PSL.2;R/, any geodesic segment Œz; w� in Hull.ƒH / � H
2 has Haus-

dor� distance at most ı0 from a geodesic segment Œz0; w0� which is contained in a

biin�nite periodic geodesic in Hull.ƒH /.

Proof. Since the �xed points of hyperbolic elements is dense in ƒH � ƒH , it
follows that any biin�nite geodesic in Hull.ƒH / is a limit of periodic geodesics.
So we may apply Lemma 5.3 to �rst �nd a segment Œz0

0; w0
0� in some biin�nite

geodesic in Hull.ƒH /, then approximate this as close as we like by a segment
Œz0; w0� contained in a periodic geodesic.

Proof of Proposition 8.1. For any simplex u � C. VS/ we choose a vertex tu within
a distance at most 1 from '.Hull.u//, subject to the equivariance condition t �u D
 � tu (compare the proof of Proposition 5.1). We now prove that tu has the required
properties.

Let R D W C 1, let t 2 zB.0/, and consider the preimage '�1.BR.t // of the
closed ball BR.t /. Equip '�1.BR.t // with the induced path metric d �

t . Since
�1.S/ acts cocompactly on H

2
t and '�1.BR.t //, the Švarc–Milnor lemma (�eo-

rem 2.4) implies that this inclusion is a .K; C 0/-quasiisometry for some K; C 0 > 1.
In particular, the space '�1.BR.t // is Gromov hyperbolic. Since ‚ acts transi-
tively by isometries on zB.0/ (because B has only one vertex), K and C 0 are inde-
pendent of t . Given any simplex u � C. VS/, we have Hulltu.u/ � '�1.BR.tu// by
assumption. Since the inclusion Hulltu.u/ ! H

2
tu

is an isometric embedding, the
inclusion

Hulltu.u/ �! '�1.BR.tu//

is a .K; C 0/-quasiisometric embedding.

Let R0 > 0 be the stability constant for .K; C 0/-quasigeodesics in the Gromov
hyperbolic metric space '�1.BR.tu// given by �eorem 2.3. Let ı0 > 0 be the
constant from Lemma 8.3 and set

C D 4K.ı0 C R0/ C C 0:

�e next claim will prove the proposition.

Claim. For any u � C. VS/ the inclusion

Hulltu.u/ �! zX

is a .K; C /-quasiisometric embedding.
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Proof of Claim. Let z0; w0 2 Hulltu.u/ be any two points. Observe that �1.S/u is
a �nitely generated subgroup of the closed surface group �1.S/, so it is a convex
cocompact Fuchsian group. By Lemma 8.3 there are points z0

0; w0
0 2 Hulltu.u/

such that
dtu.z0; z0

0/; dtu.w0; w0
0/ � ı0 (11)

and such that the geodesic segment Œz0
0; w0

0� extends to a biin�nite periodic dtu -ge-
odesic G0 � Hulltu.u/ invariant under an element h 2 �1.S/u.

Let G be a quasiinvariant d -geodesic axis for h; thus

G � Hull.u/ � '�1.BR.tu//:

In particular, G is a d �
tu

-geodesic. Since the dtu -geodesic G0 is a .K; C 0/-quasi-
geodesic with respect to d �

tu
, the d �

tu
-Hausdor� distance between G and G0 is at

most R0.
Let z; w 2 G be points with

d �
tu

.z0
0; z/; d �

tu
.w0

0; w/ � R0:

Notice that d.z; w/ D d �
tu

.z; w/ because z; w 2 G � Hull.u/. Appealing to this
and (11), we have

d.z0; z/ � d �
tu

.z0; z/ � d �
tu

.z0; z0
0/ C d �

tu
.z0

0; z/ � ı0 C R0; (12)

since d is less than d �
tu

, and likewise

d.w0; w/ � d �
tu

.w0; w/ � ı0 C R0: (13)

Combining (12) and (13) with the triangle inequality, the fact that

Hulltu.u/ �! '�1.BR.tu//

is a .K; C 0/-quasiisometric embedding, and the fact that d.z; w/ D d �
tu

.z; w/, we
�nd

dtu.z0; w0/ � Kd �
tu

.z0; w0/ C C 0

� K.d �
tu

.z; w/ C d �
tu

.z0; z/ C d �
tu

.w; w0// C C 0

� Kd.z; w/ C 2K.ı0 C R0/ C C 0

� K.d.z0; w0/ C d.z; z0/ C d.w0; w// C 2K.ı0 C R0/ C C 0

� Kd.z0; w0/ C 2K.ı0 C R0/ C 2K.ı0 C R0/ C C 0

D Kd.z0; w0/ C C:
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On the other hand, since d � d �
tu

� dtu on Hulltu.u/, it follows that

d.z0; w0/ � d �
tu

.z0; w0/

� dtu.z0; w0/

� Kdtu.z0; w0/ C C:

�erefore, the inclusion Hulltu.u/ ! zX is a .K; C /-quasiisometric embedding,
proving the claim.

�is claim completes the proof of the proposition.

We have the following corollary which will be used to prove �eorem 1.2.

Corollary 8.4. Suppose that we are in the situation of Diagram (10) and zX is

ı-hyperbolic. �en there exists D0 > 0 such that for any pair of adjacent vertices

u1; u2 2 C.0/. VS/, there are points x0 2 Hulltu1
.Œu1; u2�/ and x00 2 Hulltu2

.Œu1; u2�/

with d.x0; x00/ < D0.

Proof. First observe that the inclusions

Hulltu1
.Œu1; u2�/ � Hulltu1

.u1/

and

Hulltu2
.Œu1; u2�/ � Hulltu2

.u2/

are isometric embeddings, and hence Hulltu1
.Œu1; u2�/ and Hulltu2

.Œu1; u2�/ are

.K; C /-quasiisometrically embedded in zX . A quasiinvariant d -geodesic axis for
any element of �1.S/Œu1;u2� is contained in a uniformly bounded neighborhood of
each of Hulltu1

.Œu1; u2�/ and Hulltu2
.Œu1; u2�/, and hence there are points in these

hulls within some uniform distance D0 > 0 of each other.

Let G0 D G \ �1.S/ and OG < ‚ denote the image of G under the homomor-
phism � ! ‚. Denote the quotients of zX by the actions of G0, G, and �1.S/ by
XG0

, XG , and XS , respectively. Denote the quotient of H2 by the action of G0

by SG0
, and the quotient of zB by the action of OG by BG . We arrange all these

quotient maps and all previous maps into the following diagram, labeling those
we will need to refer to explicitly.
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H
2 SG0

S

H
2 � zB SG0

� zB S � zB XG

zX

XG0
XS X

zB BG B

f

p

p1
p0

Qf

q

(14)

�e fact that each of the spaces zX , XG0
, and XS are products follows from

the fact that XS is a product, which in turn follows from the fact that the quotient
of Teich. VS/ by �1.S/ is an S -bundle over the contractible space Teich.S/. We
also note that XG0

and XG are SG0
-bundles over zB and BG , respectively, with the

latter bundle the quotient of the former by the action of G=G0 D OG by bundle
transformations.

For any vertex t 2 zB.0/ we let H2
t , SG0;t , and St denote the �bers over t in zX ,

XG0
, and XS , respectively. We equip these with their induced path metrics, all of

which we denote dt . Similarly, given v 2 B
.0/
G , let SG0;v denote the �ber over v

in XG with its path metric dv . Observe that if q.t/ D v, then the restriction of p0

to .SG0;t ; dt / is an isometry to .SG0;v; dv/.

Lemma 8.5. Suppose that we are in the situation of Diagram (10), the space zX
is ı-hyperbolic, and G < �. Given x 2 zX and R > 0 there exists D0 > 0 with the

following property. If u is a simplex of C. VS/, then any dtu -geodesic segment

Œz; w�tu � NR.G � x/ \ Hulltu.u/

has length at most D0.
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Proof. �e reader may wish to refer to Diagram (14) throughout the proof.

For any x 2 zX and R > 0 we consider the closed R-neighborhood NR.G �x/ of
the G-orbit of x. Observe that p.G �x/ D p.x/, and so p.NR.G �x// D BR.p.x//,
the closed ball of radius R about p.x/, which is compact. Since f is continuous,
it follows that f .BR.p.x/// � BG is compact, and hence contains only �nitely
many vertices

V D ¹v1; : : : ; vnº D f .BR.p.x/// \ B
.0/
G :

Also, for each i D 1; : : : ; n, pick ti with q.ti/ D vi and set

T D ¹t1; : : : ; tnº � zB.0/

so that G � T D q�1.V / (where G is acting on T � zB by the quotient G ! OG).
�en, given any t 2 zB.0/ we have

H
2
t \ NR.G � x/ ¤ ; () SG0;t \ p1.NR.G � x// ¤ ;

() 9 g 2 G such that g � t 2 T:
(15)

For all i D 1; : : : ; n, the map p0 takes .SG0;ti ; dti / isometrically to .SG0;vi
; dvi

/,
and restricts to a homeomorphism on the intersections

SG0;ti \ p1.NR.G � x// SG0;vi
\ BR.p.x//:

p0

Š

Since the target of this restriction is compact, so is the domain. So there is a
compact connected subsurface †i � SG0;ti with

SG0;ti \ p1.NR.G � x// � †i :

We may assume †i is �1-injective, and we let Gi D �1.†i / < G0 be the �nitely

generated image.

Let z†i denote the component of p�1
1 .†i/ � H

2
ti

stabilized by Gi and let ri > 0

be such that

z†i � Nri
.Hullti .Gi //:

Observe that any geodesic segment Œz; w�ti � H
2
ti

\ NR.G � x/ projects by p1 to
be contained in SG0;ti \ p1.NR.G � x// � †i . �erefore Œz; w�ti is contained in a
G0 translate of z†i , and hence a G0-translate of Nri

.Hullti .Gi//.
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Now, let u � C. VS/ denote any simplex. Given any geodesic segment in the
intersection

Œz; w�tu � Hulltu.u/ \ NR.G � x/;

we may apply an element g 2 G with g � tu D ti to this, by (15). By Proposition 8.1,
we have g � tu D tg �u, and so

Œg � z; g � w�tg�u
D Œg � z; g � w�ti � Hullti .g � u/ \ NR.G � x/

D Hulltg�u
.g � u/ \ NR.G � x/:

Since g acts by isometries, it follows that

diam.Œz; w�tu/ D diam.Œg � z; g � w�tg�u
/:

So it su�ces to prove the lemma for segments Œz; w�tu where tu D ti for some i . As
noted above, all such segments are contained in a G0 translate of Nri

.Hullti .Gi //.
�erefore, appealing to Proposition 8.1 again, it su�ces to prove the lemma for
segments

Œz; w�ti � Nri
.Hullti .Gi // \ Hulltu.u/

where tu D ti .
By Proposition 6.2, we again see that there exists a Di which bounds the

length of such a segment, depending on Gi and ri , but not u. Setting D0 D
max¹D1; : : : ; Dnº completes the proof.

Given a subset Y � zX , let � W zX ! Y denote a closest point projection map.
�e following is a consequence of quasiconvexity and hyperbolicity.

Lemma 8.6. Suppose that we are in the situation of Diagram (10), the space zX
is ı-hyperbolic, and Y � zX an A-quasiconvex subset. �ere is a � > 0 such that

� is .�; �/-coarsely Lipschitz.

Moreover, given K; C > 0 there exists R0 > 0 such that for any R > R0 and

any .K; C /-quasigeodesic  � zX ,

diam.�.// � diam.. \ NR.Y //0/ C R0

where . \ NR.Y //0 is the longest segment of  contained in NR.Y /.

Proof. �e �rst part is well known. To prove the second part, we observe that a
quasigeodesic  D Œz; w� can be decomposed into three segments

Œz; w� D Œz; z0�Œz0; w0�Œw0; w�
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(some of which may be empty), where Œz0; w0� remains a bounded distance from
Y and Œz; z0� remains a bounded distance from a geodesic joining z to �.z/ (and
therefore has uniformly bounded projection diameter). Similarly, the path Œw0; w�

remains a bounded distance from a geodesic joining �.w/ to w.

�e next proposition follows by simply assembling the results above.

Proposition 8.7. Suppose that we are in the situation of Diagram (10), the space
zX is ı-hyperbolic, and G < � quasiisometrically embedded. Given x 2 zX and

letting � W zX ! G � x denote a closest point projection map, there exists D > 0

with the following property. Given any simplex u � C. VS/ and tu-geodesic segment

Œz; w�tu � Hulltu.u/ we have diam.�.Œz; w�tu// < D.

Proof. Let K; C be as in Proposition 8.1. Since G < � is quasiisometrically
embedded, G � x is also, and hence is A-quasiconvex for some A > 0. Let R0 > 0

be given by Lemma 8.6, and �x R � R0. Finally, let D0 > 0 be as given by
Lemma 8.5 and set D D D0 C R0.

Now Œz; w�tu � Hulltu.u/ is .K; C /-quasigeodesic by Proposition 8.1. By
Lemma 8.5 and the second part of Lemma 8.6, it follows that

diam.�.Œz; w�tu// � diam..Œz; w�tu \ NR.G � x//0/ C R0

� D0 C R0 D D;

where .Œz; w�tu \ NR.G � x//0 is the longest segment in the intersection

Œz; w�tu \ NR.G � x/ � Hulltu.u/ \ NR.G � x/:

�is completes the proof.

Proof of �eorem 1.2. �is now follows a similar outline to the proof of �eo-
rem 1.1.

We choose any vertex u 2 C. VS/ and let x 2 Hulltu.u/ � zX be any point. Let
D > 0 be as in Proposition 8.7. Since G < � is quasiisometrically embedded,
distances in G are comparable to those in G �x � zX . As in the proof of �eorem 1.1,
it su�ces to prove that there exist constants K0; C0 > such that

d.x; g � x/ � K0dC.u; g � u/ C C0:

Let D0 > 0 be as in Corollary 8.4 and � > 0 as in Lemma 8.6. We claim that
C0 D max¹�.D0 C 1/; Dº and K0 D 2C0 su�ces.
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Let u D u0; : : : ; un D g � u denote the vertices of a geodesic Œu; g � u� � C. VS/

connecting u to g � u, so that n D dC.u; g � u/. For each 1 � i � n, choose points

x0
i 2 Hulltui�1

.Œui�1; ui �/ and x00
i 2 Hulltui

.Œui�1; ui �/

which are a distance D0 apart, which is possible by Corollary 8.4.
Now consider the path  connecting x and g � x given by

 D Œx; x0
1�tu0

Œx0
1; x00

1 �Œx00
1 ; x0

2�tu1
Œx0

2; x00
2 � � � � Œx00

n�1; x0
n�tun�1

Œx0
n; x00

n�Œx00
n; g � x�tun

:

Here Œz; w� denotes a d -geodesic from z to w in zX and Œz; w�t denotes a dt -geo-
desic from z to w in H

2
t . Since

x00
i 2 Hulltui

.Œui�1; ui �/ � Hulltui
.ui /

and
x0

iC1 2 Hulltui
.Œui ; uiC1�/ � Hulltui

.ui /;

it follows that Œx00
i ; x0

iC1�tui
� Hulltui

.ui / for every 1 � i � n � 1. In particular,
the path  alternates between geodesic segments in hulls Hulltui

.ui / and segments
of the form Œx0

i ; x00
i � (note that x; x0

1 2 Hullt0.u0/ and x00
n; g � x 2 Hulltun

.un/).
Let � W zX ! G � x denote a closest point projection. By Proposition 8.7, for

every i D 0; : : : ; n � 1 we have

d.�.x00
i /; �.x0

iC1// � diam.�.Œx00
i ; x0

iC1�tui
// � D

and
d.x; �.x0

1//; d.�.x00
n/; g � x/ � D:

Since � is .�; �/-coarsely Lipschitz, we also have

d.�.x0
i /; �.x00

i // � �d.x0
i ; x00

i / C � � �.D0 C 1/:

�erefore, since C0 D max¹�.D0 C 1/; Dº, K0 D 2C0, and dC.u; g � u/ D n

we have

d.x; g � x/ � d.x; �.x0
1// C

n
X

iD1

d.�.x0
i /; �.x00

i //

C
n�1
X

iD1

d.�.x00
i /; �.x0

iC1// C d.�.x00
n/; g � x/

� .n C 1/D C n.�.D0 C 1//

� .2n C 1/C0

D .2dC.u; g � u/ C 1/C0

D K0dC.u; g � u/ C C0

as required.
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9. On a theorem of Scott and Swarup

We now prove our generalization of Scott and Swarup’s �eorem [25].

�eorem 1.3. Let

1 �1.S/ �‚ ‚ 1

be a ı-hyperbolic surface group extension. If H is a �nitely generated in�nite-in-

dex subgroup of �1.S/, then H is quasiisometrically embedded in �‚.

Proof. It su�ces to show that a �nite-index subgroup H 0 of H is quasiisometri-
cally embedded.

By a theorem of Scott [26, 27], there is a �nite cover S 0 of S in which the
subgroup H represents the fundamental group of a subsurface of S 0. Let S 00 be
the �nite cover of S such that

�1.S 00/ D
\

�2‚

�.�1.S 0//:

�en ‚ lifts to Mod.S 00/, and so there is a �nite-index subgroup � 0
‚ of �‚ of the

form

1 �1.S 00/ � 0
‚ ‚ 1:

It follows immediately from Proposition 8.1 that H 0 D H \�1.S 00/ is quasiisomet-
rically embedded in � 0

‚. As the latter is �nite-index in �‚, it is quasiisometrically
embedded there, and so H 0 is quasiisometrically embedded in �‚.
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