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1. Introduction

Let W be a discrete group, let RW denote its group algebra over R, and let L2W

denote the Hilbert space completion of RW with respect to the standard inner
product. Let NW be the von Neumann algebra obtained by taking the bounded
operators on L2W that commute with the right RW -action. We regard NW as
an algebra of (left) operators on L2W . �en any closed RW -invariant subspace

1 �e second author was supported in part by an IBM Research Grant awarded by Santa Clara
University.
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V � .L2W /n has a well-de�ned von Neumann dimension, which we denote by
dimW V . Examples of such subspaces arise naturally in L2-homology calcula-
tions as kernels and image closures of equivariant boundary maps and Laplacians,
all of which can be represented as right-multiplication by matrices with entries in
QW , the rational group ring. �e Atiyah Conjecture asserts that any invariant sub-
space of the form ker RM where RM W .L2W /n ! .L2W /m is right multiplication
by a matrix M with entries in QW will have rational von Neumann dimension. In
full generality this conjecture is false; a counterexample was �rst given by Austin
[1], see also [6, 10]. In all of these counterexamples the group has �nite subgroups
of arbitrarily large order. For groups with bounded torsion, a stronger form of
the conjecture, which speci�es denominators of these rational dimensions, is still
open. Namely, if ƒ denotes the additive subgroup of R generated by ¹1=jH jº
where H ranges over �nite subgroups of W , then the Strong Atiyah Conjecture
asserts that dimW ker RM 2 ƒ.

In the case where W is a right-angled Coxeter group W , the Strong Atiyah
Conjecture was recently settled by Linnell, Okun and Schick [7]. It remains open
for arbitrary Coxeter groups. Here we consider a version of Atiyah’s conjecture
that makes sense for Hecke algebras. We let W be a Coxeter group with standard
generating set S , and let RqW denote the Hecke algebra corresponding to W

with real deformation multiparameter q D .qs/s2S (as usual, we require qs D
qt whenever s and t are conjugate in W ). �is algebra has a canonical R-basis
¹Tw j w 2 W º, and multiplication determined by

TsTw D

8

<

:

Tsw if jswj > jwj,

.qs � 1/Tw C qsTsw if jswj < jwj,

for all s 2 S , and w 2 W . We let qw denote the product qs1
� � � qsn

where s1 � � � sn is
a reduced expression for w. It follows from Tits’ solution to the word problem for
W that qw is independent of the choice of reduced expression. �e algebra RqW

can be regarded as a deformation of the group algebraRW , and the canonical inner
product on RW deforms to the inner product on RqW de�ned by hTw ; Tw 0i D
qwıw;w 0 for all w; w0 2 W . In particular, the basis elements Tw are orthogonal,
and left and right multiplication by Ts (for s 2 S ) are self-adjoint operators. We
let L2

qW denote the Hilbert space completion with respect to this inner product.
Again one obtains a von Neumann algebra, which we denote by NqW , by taking
the bounded operators on L2

qW that commute with the right RqW -action. And
again one obtains von Neumann dimensions for closed RqW -invariant subspaces
V � .L2

qW /n. We denote this dimension by dimq
W V .
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To motivate the algebraic formulation of the Atiyah Conjecture in the context
of Hecke algebras, we recall some properties of Coxeter groups and re�ection
actions (a good reference for this material is [2][Chapter 20]). A subset J � S is
called spherical if the parabolic subgroup WJ generated by J is �nite, and we let
S denote the set of spherical subsets of S . For any J 2 S, we let WJ .q/ denote the
growth series (a polynomial in this case) of WJ de�ned by

WJ .q/ D
X

w2WJ

qw ;

and we let aJ be the element of RqW de�ned by

aJ D 1

W.q/

X

w2WJ

Tw :

Right-multiplication by aJ de�nes an orthogonal projection from L2
qW onto a

closed (left) RqW -invariant subspace, which we denote by AJ . �e von-Neumann
dimension of this subspace is

dimq
W AJ D 1

WJ .q/
:

Given a re�ection action of W on a CW-complex X , there is a correspond-
ing cochain complex of NqW -modules, and the “weighted” L2

q-Betti numbers of
X are de�ned as the von-Neumann dimensions of the corresponding cohomol-
ogy groups. In [3][Section 7] it is proved that these Betti numbers are continuous
with respect to the multiparameter q and, in light of Atiyah’s question, the au-
thors ask whether or not these Betti numbers are piecewise rational functions. A
purely algebraic version of the question can be obtained by �rst noting that the
NqW -modules in the weighted chain complex all decompose into orthogonal di-
rect sums of AJ ’s, and the boundary and coboundary maps can all be represented
by matrices whose entries are Z-linear combinations of the aJ

0s. 1
To get an algebraic formulation of the conjecture, we replace boundary and

coboundary maps with a suitable class of matrices, and ask about von-Neumann
dimensions of the kernels. To have a canonical specialization of each matrix for
di�erent values of the multiparameter q, we let Q.q/ denote the formal ring of
rational functions in the indeterminates qs, s 2 S , and we de�ne HW to be the

1 In [2], [3], and [5], the boundary map formula has coe�cients involving the parameters q

and square roots. However, if one scales the L2 norms of the cells in each orbit appropriately, and
expresses the boundary map in terms of the projection operators aJ , the coe�cients all become
integers. �e weighted Betti numbers remain unchanged by this scaling.
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abstract Hecke algebra over Q.q/ with generators Tw , w 2 W , and the same mul-
tiplication rules given above for RqW . (To avoid extra notation, we use the same
symbols ¹qsº both for formal indeterminates and for real parameters.) By allowing
polynomial denominators, all of the projections aJ are well-de�ned elements of
HW , and we let AW denote the subalgebra they generate. Since denominators in
AW will always be polynomials with non-negative coe�cients, there will be no
division by zero problems when specializing to any multiparameter q 2 .R>0/S .

Weighted Atiyah conjecture. Let M be an n � m matrix with entries in AW and

for any multiparameter q 2 .R>0/S , let Mq denote the specialization of this matrix

to RqW . �en the von Neumann dimension of the kernel of right multiplication

by Mq on .L2
qW /n is a piecewise rational function of the form

dimq
W ker RMq D

X

J 2S

nJ .q/

WJ .q/

where the numerators nJ are piecewise-constant integer functions of q.

One complication in trying to establish this conjecture is that, in general, sub-
groups of W do not correspond to subalgebras of RqW . If W is right-angled,
however, there is a canonical isomorphism between RqW and the ordinary group
algebra RW (see [9] and Section 2, below). �us, for any subgroup G � W ,
there is a canonical subalgebra RqG � RqW isomorphic to the group subalgebra
RG � RW . Moreover, because this isomorphism is induced by identifying the
idempotents aJ in RW with those in RqW , the statement of the Weighted Atiyah
Conjecture in the right-angled setting takes a slightly simpler form (which we give
at the end of Section 2).

�e point of this paper is to establish the conjecture for the �rst nontrivial ex-
ample in the right-angled setting, namely, when W is the in�nite dihedral group.
Although the result is admittedly limited in scope, the proof is surprisingly sub-
tle and much more involved than the corresponding result in the Coxeter group
setting. In what follows, we assume W is the in�nite dihedral group with gener-
ators s and t , and we let G be the in�nite cyclic subgroup of index 2 generated
by st . �e proof of the (non-weighted) Atiyah Conjecture for W boils down to
two facts. First, if V � .L2W /n is a left RW -invariant closed subspace then
dimG V D 2 dimW V . �is follows from the orthogonal decomposition

L2W D L2G ˚ .L2G/s Š .L2G/2:
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And second, (right) multiplication in L2G by a nonzero element of the group al-
gebra RG has trivial kernel. �is follows from a Fourier series argument. When
qs ¤ 1 or qt ¤ 1, the argument breaks down in two places: �rst, L2

qG and
.L2

qG/s are not orthogonal, and second, L2
qG has nontrivial submodules of the

form ker RM . We address these di�culties by describing a �ner orthogonal de-
composition of L2

qW . We then prove the following case of the Weighted Atiyah
Conjecture.

�eorem. Let W be the in�nite dihedral group hs; t j s2 D t2 D 1i, and let M be

a matrix with entries in AW . �en for any multiparameter q D .qs; qt /, we have

dimq
W ker RMq D n; C ns

1 C qs

C nt

1 C qt

where n;; ns; nt are piecewise constant integer functions of q.

To make the paper easier to follow, we outline here the key steps in the proof of
the main theorem. �e �rst step is to identify RqW with RW using the canonical
isomorphism and then to pass to the subalgebra RG where G is the free abelian
subgroup of W generated by the translation st . �e advantage of RG over RW

is that the former is isomorphic to the commutative ring of Laurent polynomials,
and matrices over this ring are easier to work with. We then consider the action
of the group generator st on L2

qG, letting KC and K� denote the C1 and �1-
eigenspaces, respectively. We obtain an orthogonal decomposition

L2
qG D KC ˚ K� ˚ K;

where K; is the orthogonal complement of KC and K�. We then show that right
multiplication by any element y 2 RG, restricted to any of these three summands,
is either an isomorphism or the zero map (Proposition 5.1). �is follows from
two facts. First, being a Laurent polynomial in one variable, y factors into linear
factors overC. Second, C1 and �1 are the only complex eigenvalues for the action
of st on L2

qG. Section 3 is devoted entirely to this second fact, which is the main
technical result of the paper.

We then extend this decomposition to L2
qW , proving that

L2
qW D KC ˚ K� ˚ K; ˚ K;s (1.1)

as NqG-modules (Proposition 4.13).
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Remark. For any Coxeter group W , Davis et al. [3, �eorem 9.11] prove a decom-
position theorem for L2

qW that generalizes the decomposition of Solomon [11] for
�nite Coxeter groups (and the ordinary group algebra). In the case of the in�nite
dihedral group, the two subspaces KC and K� in our decomposition are not just
NqG-modules, but they are also NqW -modules, and can be used to give an even
�ner decomposition of L2

qW than that in [3]. �e subspace KC corresponds to
either the constant functions or “harmonic” functions (denoted by AS or H S , re-
spectively, in [3]), but the invariant subspace K� is new. It can be regarded as
the image of KC under one of the “partial j ” automorphisms described in [9,
Section 9] and is a proper invariant subspace of one of the summands in the de-
composition of Davis et al.

Given an RW -invariant subspace V � .L2
qW /n, we obtain a corresponding

decomposition

V D VC ˚ V� ˚ V;

where VC � .KC/n, V� � .K�/n, and V; � .K; ˚ K;s/n (Proposition 4.15). We
then prove that if V is the kernel of an RW -matrix, then as NqG-modules we have
isomorphisms,

VC Š .KC/a; V� Š .K�/b; V; Š .K;/c

where a; b; c are nonnegative integers (Lemmata 5.2 and 5.4). �e proof of this
requires one to �rst show that right multiplication by an RW -matrix corresponds
to right multiplication by an RG-matrix with respect to the decomposition (1.1)
above, and then to use the fact that matrices over Laurent polynomial rings are
essentially diagonalizable. �is means that right multiplication by an RG-matrix
on any of the subspaces .KC/n, .K�/n, or .K; ˚ K;s/n Š .K;/2n reduces to the
1-dimensional case, where (by Proposition 5.1, mentioned above), the kernel is
either trivial or the entire space.

Finally, we calculate the NqG-dimensions of the modules VC Š .KC/a, V� Š
.K�/b, and V; Š .K;/c (Lemma 4.9), relate these to their NqW -dimensions
(Lemma 4.16), and then complete the proof (�eorem 5.5).

2. Hecke–von Neumann algebras for right-angled Coxeter groups

Let W be a right-angled Coxeter group with generating set S , and let q D .qs/s2S

be a real-valued S -tuple satisfying qs > 0 for all s 2 S . We let RqW denote
the corresponding Hecke algebra and note that in addition to the multiplication
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formulas from the introduction

TsTw D

8

<

:

Tsw if jswj > jwj,

.qs � 1/Tw C qsTsw if jswj < jwj,

there are analogous right-multiplication formulas

TwTs D

8

<

:

Tws if jwsj > jwj,

.qs � 1/Tw C qsTws if jwsj < jwj.

In a previous paper, the authors noted that for right-angled Coxeter groups,
there is a canonical isomorphism � W RW ! RqW of R-algebras induced by

�.s/ D 1 � qs

1 C qs

C 2

1 C qs

Ts

for all s 2 S (see [9][Corollary 9.7]). �is isomorphism is induced by mapping
each of the idempotents as D 1Cs

2
in RW to the corresponding idempotent as D

1CTs

1Cqs
2 RqW . In fact, (and this is unique to the right-angled setting) for any

spherical subset J 2 S, one has

�.aJ / D aJ :

�e Hecke algebra RqW has an R-basis ¹Twº canonically indexed by elements
of W : each Tw is a product Tw D Ts1

� � � Tsn
where s1 � � � sn is a reduced expression

for w. We let �w D ��1.Tw/, keeping in mind that �w depends on the choice of
q. We then have two bases ¹w j w 2 W º and ¹�w j w 2 W º for the group algebra
RW (which coincide if and only if qs D 1 for all s 2 S ). �roughout the paper, we
shall denote the unit element �1 D ��1.T1/ by 1 and identify R with the constants
R�1 � RW . From the de�nition of � we have, for all s 2 S ,

s D 1 � qs

1 C qs

C 2

1 C qs

�s; (2.1)

and since � is an algebra isomorphism, the multiplication formulas for the Hecke
basis Tw correspond to the same formulas for the �w basis in the group algebra,
namely

�s�w D

8

<

:

�sw if jswj > jwj,

.qs � 1/�w C qs�sw if jswj < jwj,
(2.2)

and

�w�s D

8

<

:

�ws if jwsj > jwj,

.qs � 1/�w C qs�ws if jwsj < jwj.
(2.3)
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Pulling back the inner product on RqW from the introduction, we obtain, a
corresponding inner product h; iq on the group algebra RW . �is inner product is
given by

h�w ; �w 0iq D hTw ; Tw 0i D qwıw;w 0

for all w; w0 2 W .

We then identify the Hilbert space completion L2
qW with the completion of the

group algebra RW with respect to the inner product h; iq. As in [2, Section 19.2],
one obtains a von Neumann algebraNqW of (left) operators on L2

qW by taking all
bounded operators that commute with the right RW -action. Alternatively, we say
that an element x 2 L2

qW is bounded if there is some constant C such that kxyk �
C kyk for all y 2 RW . �e von Neumann algebraNqW can then be identi�ed with
the weak closure of the subset of L2

qW consisting of bounded elements acting on
the left of RW . (Similarly, there is a von Neumann algebra of right operators on
L2

qW , which we also denote by NqW . �e context will usually determine which
algebra we are using.)

A basic fact we shall need about the inner product h; iq on L2
qW is that for any

generator s 2 S , left and right multiplication by s and �s are self-adjoint.

Proposition 2.4. For any s 2 S and x; y 2 L2
qW ,

hsx; yiq D hx; syiq and hxs; yiq D hx; ysiq

and

h�sx; yiq D hx; �syiq and hx�s ; yiq D hx; y�siq:

Proof. In [5, Proposition 2.1], any Hecke algebra RqW , together with the involu-
tion � de�ned by T �

w D Tw�1 and the inner product de�ned by

hTw ; Tw 0i D qwıw;w 0;

is shown to satisfy the axioms for a Hilbert algebra structure in the sense of
Dixmier [4]. In particular, for any x 2 RqW , left (respectively, right) multiplica-
tion by x� is the adjoint of left (resp., right) multiplication by x with respect to h; i.
When W is right-angled, the isomorphism ��1 W RqW ! RW induces a Hilbert
algebra structure on RW where the inner product is h; iq and the �-involution is
given by w� D w�1 on the ¹wº basis and ��

w D �w�1 on the ¹�wº basis. �us,
s� D s, and ��

s D �s for all s 2 S .
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For any positive integer n, we let .L2
qW /n denote the Hilbert space direct sum

of n copies of L2
qW , and we let �1; : : : ; �n denote the standard basis; in other words

�i D .0; : : : ; 0; 1; 0; : : : ; 0/ where the 1 in the i th position represents the element
1 2 RW . Any closed (left) RW -invariant subspace V � .L2

qW /n will be called a
Hilbert NqW -module, and has von Neumann dimension de�ned by

dimq
W V D

n
X

iD1

hprV .�i /; �i iq

where prV W .L2
qW /n ! V is orthogonal projection onto V . An isomorphism

of Hilbert modules is an RW -equivariant Hilbert space isomorphism. Isomor-
phic Hilbert modules have the same von Neumann dimension (see e.g., [8, �eo-
rem 1.12]). Similarly, if G is any subgroup of W , we can restrict the inner product
h; iq to RG. �e Hilbert space completion L2

qG can then be identi�ed with the
closure of RG in L2

qW . As above, one de�nes the von Neumann algebra NqG

to be the algebra of bounded operators on L2
qG that commute with the right RG-

action. A Hilbert NqG-module V is de�ned by replacing W with G in the previous
paragraph, and its von Neumann dimension will be denoted by dimq

G V .
With this identi�cation of L2

qW (for any q) with a suitable completion of the
ordinary group algebra RW , the statement of the Weighted Atiyah Conjecture is
simpli�ed. In particular, the specialization homomorphism AW ! RqW , when
composed with the isomorphism ��1 W RqW ! RW is independent of q. �is
means that for all q, we can regard M as a matrix with entries in the rational
group algebra QW . Clearing denominators, we obtain the following.

Right-angled weighted Atiyah conjecture. Let W be a right-angled Coxeter

group, and let M be an n � m matrix with entries in the integer group ring ZW .

�en

dimq
W ker RM D

X

J 2S

nJ .q/

WJ .q/

where the numerators nJ are piecewise-constant integer functions of q.

3. �e G -action on L
2
qW

For the remainder of the paper W will be the in�nite dihedral group with standard
generators s and t . We let G be the in�nite cyclic subgroup generated by the prod-
uct st , and we consider the operator on L2

qW de�ned by right multiplication by
st . We shall prove that the only possible eigenvalues for this operator are 1 and �1
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(and even these may or may not occur depending on the values of the parameters
qs and qt ). �e same result holds for left multiplication by st , as well, with the
same resulting eigenvalues and eigenvectors, but we shall omit the argument since
it is virtually identical to that for right-multiplication.

We work both with the orthogonal basis ¹�wº for L2
qW and the orthonormal

basis ¹ Q�wº de�ned by
Q�w D .1=

p

qw/�w :

For the RW -action on L2
qW , we introduce the special elements as and at de�ned

by

as WD 1 C s

2
D 1 C �s

1 C qs

and at WD 1 C t

2
D 1 C �t

1 C qt

(3.1)

(the equations follow from (2.1)).
One checks easily using the fact that s2 D 1 and t2 D 1 that as and at are

self-adjoint idempotents, as are their complements hs D 1 � as and ht D 1 � at .
�e latter are given in terms of the bases ¹wº and ¹�wº by

hs D 1 � s

2
D qs � �s

1 C qs

and ht D 1 � t

2
D qt � �t

1 C qt

: (3.2)

Our �rst step is to replace the operator st with as � at .

Lemma 3.3. �e vector � 2 L2
qW is an eigenvector for st with eigenvalue � if

and only if � is an eigenvector for as � at with eigenvalue

� D ˙
r

1

2
� 1

2
Re �:

Proof. Let � be an eigenvector for st with eigenvalue �. Since s and t are self-
adjoint involutions, st is a unitary operator with .st/� D t s. It follows that j�j D 1.
Moreover, � will be in the kernel of the operator

.st � �/.st � N�/ D .st/2 C 1 � 2st Re � D .st C t s � 2 Re �/.st/:

Since st is invertible, � will therefore be an eigenvector for st C t s with eigenvalue
2 Re.�/. Using the de�nition of as and at in (3.1), we have s D 2as � 1 and
t D 2at � 1, hence

st C t s D 4.asat C at as/ � 4.as C at / C 1 D 1 � 4.as � at /
2;

where the last expression follows from a2
s D as and a2

t D at . It follows that � is

an eigenvector for as � at with eigenvalue ˙
q

1
2

� 1
2

Re �. Tracing the argument
backward gives the reverse implication.
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Next we compute the action of as � at on the basis vectors ¹�wº. To avoid
denominators, we let c D .1 C qs/.1 C qt / and let R be the operator

R D c.as � at / D .qt � qs/ C .1 C qt /�s � .1 C qs/�t :

Any eigenvector of as � at with eigenvalue � will then be a nonzero vector in the
kernel of R � c�. We compute the products �w.R � c�/ using the formulas for
right-multiplication by �s and �t :

�1.R � c�/ D .qt � qs � c�/�1 C .1 C qt /�s � .1 C qs/�t

and (for jwsj > jwj)

�ws.R � c�/ D .qt � qs � c�/�ws

C .1 C qt /Œ.qs � 1/�ws C qs�w � � .1 C qs/�wst

D �.1 C qs/�wst C .qsqt � 1 � c�/�ws C qs.1 C qt /�w ;

and (for jwt j > jwj)

�wt .R � c�/ D .qt � qs � c�/�ws

C .1 C qt /�wts � .1 C qs/Œ.qt � 1/�wt C qt�w �

D .1 C qt /�wts � .qsqt � 1 C c�/�wt � qt .1 C qs/�w :

Using the substitutions �w D p
qw Q�w , we obtain formulas with respect to the

orthonormal basis:

Q�1.R � c�/ D p
qs.1 C qt / Q�s � p

qt .1 C qs/ Q�t C .qt � qs � c�/ Q�1 (3.4)

and (for jwsj > jwj)

Q�ws.R � c�/ D �p
qt .1 C qs/ Q�wst C .qsqt � 1 � c�/ Q�ws C p

qs.1 C qt / Q�w

(3.5)

and (for jwt j > jwj)

Q�wt .R � c�/ D p
qs.1 C qt / Q�wts � .qsqt � 1 C c�/ Q�wt � p

qt .1 C qs/ Q�w :

(3.6)
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Now suppose � is an eigenvector for st with eigenvalue � (hence an eigenvector
for R with eigenvalue c�). For each w 2 W , let ¹xwº be the coordinates of � with
respect to the orthonormal basis ¹ Q�wº, i.e., xw D h�; Q�wiq. We then have

� D
X

w2W

xw Q�w ;

and � 2 L2
qW if and only if

P

w jxw j2 < 1.
Rewriting the equation �.R � c�/ D 0 in terms of the coordinates ¹xwº us-

ing (3.4), (3.5), and (3.6), we obtain the equations

.qt � qs � c�/x1 C p
qs.1 C qt /xs � p

qt .1 C qs/xt D 0;

and (for jwsj > jwj)
p

qs.1 C qt /xw C .qsqt � 1 � c�/xws � p
qt .1 C qs/xwst D 0;

and (for jwt j > jwj)

�p
qt .1 C qs/xw � .qsqt � 1 C c�/xwt C p

qs.1 C qt /xwts D 0:

With the substitutions

˛s D p
qs C 1

p
qs

; (3.7a)

˛t D p
qt C 1

p
qt

; (3.7b)

˛st D p
qsqt � 1

p
qsqt

; (3.7c)

and

ı D ˛s

˛t

; (3.7d)

ˇ D ˛st

˛s

� ˛t �; (3.7e)

 D ˛st

˛t

C ˛s�; (3.7f)

these three equations simplify to

xs

˛s

� xt

˛t

D
�

� � 1

1 C qs

C 1

1 C qt

�

x1; (3.8)
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and (for jwsj > jwj)

xwst D ı�1xw C ˇxws; (3.9)

and (for jwt j > jwj)

xwts D ıxw C xwt : (3.10)

Applying these last two formulas consecutively to xwsts we have

xwsts D ı�1xw C .ı C ˇ/xws; (3.11)

and applying them to xwtst , we have

xwtst D ˇıxw C .ı�1 C ˇ/xwt : (3.12)

Equations (3.9) and (3.11) give a second order linear recurrence for the coe�cients
x1; xs; xst ; xsts; : : : given in matrix form by

"

x.st/nC1

x.st/nC1s

#

DM

"

x.st/n

x.st/ns

#

; where M D
"

ı�1 ˇ

ı�1 ˇ C ı

#

(3.13)

and the equations (3.10) and (3.12) yield a recurrence for the coe�cients x1; xt ; xts,
xtst ; : : : given by

"

x.ts/nC1

x.ts/nC1t

#

DN

"

x.ts/n

x.ts/nt

#

; where N D
"

ı 

ˇı ˇ C ı�1

#

(3.14)

for n D 0; 1; 2; : : :. We let m and n denote the initial vectors

m D
"

x1

xs

#

and n D
"

x1

xt

#

of these recurrences. �ey are constrained only by the single equation (3.8)

xs

˛s

� xt

˛t

D
�

� � 1

1 C qs

C 1

1 C qt

�

x1:

Note that the matrices M and N from (3.13) and (3.14) have the same trace and
determinant

tr M D tr N D ˇ C ı C ı�1 and det M D det N D 1;
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hence they have the same eigenvalues. Moreover, these eigenvalues are multi-
plicative inverses of each other. �e basic fact we shall use to eliminate most of
the possible eigenvectors for as � at is that a nonzero solution � D

P

w xw Q�w to
the recurrence (3.13) (and similarly for (3.14)) must satisfy M n

m ! 0 as n ! 1.
Otherwise, the sum

1
X

nD0

kM n
mk2 D

1
X

nD0

.jx.st/n j2 C jx.st/nsj2/;

which is a lower bound for k�k2 D
P

w jxw j2, will diverge.
First we rule out the case where M and N do not have a basis of eigenvectors.

In particular, M and N will only have one eigenvalue in this case, and it will be
equal to C1 or �1.

Lemma 3.15. If M (and hence N ) does not have linearly independent eigenvec-

tors and the initial vectors m and n are not both zero, then
P

w jxw j2 D 1.

Proof. Without loss of generality, we can assume that m is nonzero. Let � 2
¹1; �1º be the eigenvalue for M . Since the �- eigenspace for M is 1-dimensional,
the Jordan form for M will be upper triangular with � on the diagonal and a 1 in
the upper corner. It follows that there exists a basis ¹m1; m2º such that

M n
m1 D �n

m1; and M n
m2 D �n

m2 C n�n�1
m1:

Writing m D am1 C bm2, we then have

M n
m D .a� C bn/�n�1

m1 C b�n
m2:

Since a and b are not both zero and � D ˙1, the sequence M n
m does not converge

to zero.

Now assume M and N each have linearly independent eigenvectors m1; m2

and n1; n2, respectively. Since M and N have the same eigenvalues, we can as-
sume further that mi and ni correspond to the same eigenvalue, which we denote
by �i . Since �1�2 D 1, we also assume j�1j � 1 � j�2j > 0. Our next step is
to rule out the case where either of the initial vectors has a nonzero component in
the direction of the �1-eigenvector.

Lemma 3.16. Assume the initial vectors m and n are expressed as linear com-

binations of ¹m1; m2º and ¹n1; n2º, respectively. If m has a nonzero component

in the direction of m1 or n has a nonzero component in the direction of n1 then
P

w jxw j2 D 1.
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Proof. Suppose m D am1 C bm2 with a ¤ 0. �en

M n
m D a.�1/n

m1 C b.�2/n
m2:

Since j�1j � 1, these vectors do not converge to zero. �e n case is similar.

In light of Lemmas 3.15 and 3.16, we may assume that if � D
P

w xw Q�w is an
eigenvector of as � at with eigenvalue �, then

� M (and also N ) has distinct eigenvalues �1 and �2 with j�1j > 1 > j�2j, and

� m (respectively, n) is a �2-eigenvector of M (resp., N ).

We consider the following two cases.

Case 1. Either ˇ D 0 and �2 D ı�1 or  D 0 and �2 D ı.

Case 2. �e vectors

m
0 D

"

ˇ

�2 � ı�1

#

and n0 D
"



�2 � ı

#

are both nonzero.

We �rst rule out Case 1. Suppose ˇ D 0 and �2 D ı�1. Since ˇ D 0, the
matrices M and N simplify to

M D
"

ı�1 0

ı�1 ı

#

and N D
"

ı 

0 ı�1

#

;

and

� D ˛st

˛s˛t

D qsqt � 1

.qs C 1/.qt C 1/
:

Since �2 D ı�1, a calculation then shows that the �2-eigenvectors of M and N

are
"

qs � qt

�2
p

qs.1 C qt /

#

and

"

�2
p

qt .1 C qs/

qs � qt

#

;

respectively. Since qs and qt are positive reals, the �rst coordinates of these vectors
cannot both be zero. On the other hand, since these vectors are nonzero multiples
of m and n (which both have �rst coordinate equal to x1), neither of these two
vectors can have vanishing �rst coordinate. It follows that x1 ¤ 0, so we can scale
� so that x1 D 1. �en

m D
"

1

xs

#

and n D
"

1

xt

#

:
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Since these are multiples of the �2-eigenvectors above, we have

xs D �
2
p

qs.qt C 1/

qs � qt

;

and
xt D � qs � qt

2
p

qt .1 C qs/
:

Substituting these values into the initial equation (3.8), and isolating the numera-
tor, we obtain

.qs C qt C 2/.2qsqt C qs C qt / D 0

which has no solutions for positive qs and qt . A similar analysis yields a contra-
diction in the case  D 0 and �2 D ı.

For Case 2, the vectors m
0 and n0 are nonzero. A calculation shows that they

are �2-eigenvectors for M and N , respectively, hence are nonzero multiples of m

and n. We can assume that ˇ and  are not both zero. (Otherwise, both M and
N would be diagonal with entries ı and ı�1, which means �2 would have to be
one of these, putting us back into Case 1.) Moreover, since m

0 and n0 are nonzero
multiples of the vectors m and n, respectively, and the latter both have the same
�rst coordinate x1, we know that neither ˇ nor  can be zero. Again, by scaling �

if necessary to get x1 D 1, we then have

xs D �2 � ı�1

ˇ
(3.17)

and since

n D
"

x1

xt

#

is a multiple of n2, we have

xt D �2 � ı


: (3.18)

Substituting these values into the initial equation (3.8) we obtain

�2 � ı�1

ˇ˛s

� �2 � ı

˛t

D � � 1

1 C qs

C 1

1 C qt

:

On the other hand, �2 must also satisfy the characteristic equation for M and N ,
which is

�2
2 � .ˇ C ı C ı�1/�2 C 1 D 0
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Rewriting these equations in terms of qs and qt , and solving simultaneously for
�2 and �, we obtain the solutions

� �2 D p
qsqt and � D 0,

� �2 D 1=
p

qsqt and � D 0,

� �2 D �p
qs=

p
qt and � D 1,

� �2 D �p
qt=

p
qs and � D �1.

It follows that the only possible eigenvalues for as � at are � D 0 and � D ˙1,
and hence (by Lemma 3.3), the only possible eigenvalues for st are � D C1 (if
� D 0) and � D �1 (if � D ˙1).

To describe the corresponding eigenvectors in a concise way, we de�ne for any
real parameters rs ; rt the vector �.rs; rt / as follows. For each w 2 W , we de�ne
the coe�cient rw as we did qw . For the dihedral group, this looks like

rw D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

rn
s rn

t if w D .st/n or w D .ts/n,

rnC1
s rn

t if w D .st/ns,

rn
s rnC1

t if w D t .st /n,

(3.19)

for all n � 0. We then de�ne �.rs; rt / by

�.rs ; rt/ D
X

w

rw�w :

�e L2-norm of �.rs ; rt/ is given by the geometric series

k�.rs; rt /k2 D
X

w

.rw/2qw

D 1 C r2
s qs C r2

t qt C
1

X

nD1

.2 C r2
s qs C r2

t qt /.rsrt /
2n.qsqt /

n:

�is series converges if and only if

.rsrt /
2 <

1

qsqt

;

and in this case converges to

k�.rs; rt /k2 D .1 C r2
s qs/.1 C r2

t qt /

1 � r2
s r2

t qsqt

: (3.20)

Putting all of this together, we obtain the following theorem.
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�eorem 3.21. If � is an eigenvalue for right or left multiplication by st on L2
qW ,

then � 2 ¹�1; C1º and the corresponding eigenspace is spanned by a single vector.

�e eigenvalue/eigenvector pairs occur as follows:

(1) if qsqt < 1, then � D 1 occurs with eigenvector �.1; 1/;

(2) if qsqt > 1, then � D 1 occurs with eigenvector �.�1=qs; �1=qt /;

(3) if qs < qt , then � D �1 occurs with eigenvector �.1; �1=qt /;

(4) if qs > qt , then � D �1 occurs with eigenvector �.�1=qs; 1/.

Proof. For right multiplication by st , the only thing left to prove is that the in-
dicated eigenvectors are the solutions to the recurrences (3.13) and (3.14) for the
given values of � and q. Using the initial vectors

m D
"

1

xs

#

and n D
"

1

xt

#

to get

x.st/n D .�2/n;

x.ts/n D .�2/n;

x.st/ns D .�2/nxs ;

x.ts/nt D .�2/nxt ;

with xs and xt given by (3.17) and (3.18). If, for example, � D 1 and qsqt < 1,
then � D 0 and �2 D p

qsqt . It follows that x1 D 1, xs D p
qs, xt D p

qt , and in
general xw D p

qw . Hence

� D
X

w

p

qw Q�w D
X

w

�w D �.1; 1/;

which is in L2
qW . �e cases (2)-(4) are similar.

For left multiplication, one notes that � is a �-eigenvector for right multi-
plication by .st/ if and only if �� is a N�-eigenvector for left multiplication by
.ts/ D .st/�. But since j�j D 1, this is true if and only if �� is a �-eigenvector for
left multiplication by st D .ts/�1. �e result then follows from the fact that for
real values of rs and rt , �.rs ; rt/ is self-adjoint.
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4. Decompositions of NqG and NqW -modules

In this section we use the eigenspaces for the st -action to obtain orthogonal de-
compositions of L2

qG and L2
qW . We then use these decompositions to decompose

any NqW -module in order to relate its von Neumann dimension as an NqG-mod-
ule to its dimension as an NqW -module.

First we describe key properties of the eigenvectors in �eorem 3.21. For a
given q, we let �C denote the vector

�C D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�.1; 1/ if qsqt < 1,

�.�1=qs; �1=qt/ if qsqt > 1,

0 if qsqt D 1,

and we let �� denote the vector

�� D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�.1; �1=qt/ if qs < qt ,

�.�1=qs; 1/ if qs > qt ,

0 if qs D qt .

Remark 4.1. Many of the results of this section follow from results of Davis et
al. [3]. In particular, for qsqt < 1 the span of �C is the invariant subspace of
L2

qW consisting of constants, which is denoted by A¹s;tº in [3]. Projection onto
this subspace is the averaging operator denoted by a¹s;tº in [3] and by Q�C, below.
�e vectors �˙ for other values of q can all be obtained from �C by applying the
“partial j -automorphisms” of L2

qW described in [9, Section 9]. For completeness,
we present proofs here without using these more general results.

Proposition 4.2. Any element w 2 W �xes the vectors �C and �� (up to sign).

More precisely, we have

(1) s�C D �Cs D �C and t�C D �Ct D �C if qsqt < 1,

(2) s�C D �Cs D ��C and t�C D �Ct D ��C if qsqt > 1,

(3) s�� D ��s D �� and t�� D ��t D ��� if qs < qt , and

(4) s�� D ��s D ��� and t�� D ��t D �� if qs > qt .

Proof. �ese are all calculations using Hecke multiplication. �e two basic iden-
tities one needs are sas D as and shs D �hs. �ese follows from the de�nitions
of as and hs in (3.1) and (3.2) in terms of the group algebra basis:

sas D s.1 C s/

2
D s C s2

2
D s C 1

2
D as;
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and

shs D s.1 � s/

2
D s � s2

2
D s � 1

2
D �hs:

Rewriting these identities using the expressions for as and hs using the Hecke
algebra basis in (3.1) and (3.2), and multiplying both sides by 1 C qs, we obtain
the identities

s.1 C �s/ D 1 C �s and s.qs � �s/ D �.qs � �s/: (4.3)

Now to get, for example, the identity s�C D �C when qsqt < 1, we have

s�C D s�.1; 1/

D s.1 C �s C �t C �st C �ts C �sts C � � � /

D s.1 C �s/.1 C �t C �ts C � � � /

D .1 C �s/.1 C �t C �ts C � � � /

D �C:

To get the identity s�� D ��� when qs > qt , we have

s�� D s�.�1=qs; 1/

D s.1 � �s=qs C �t � �st =qs � �ts=qs C �sts=q2
s � � � � /

D s.qs � �s/.1=qs C �t =qs � �ts=q2
s � � � � /

D �.qs � �s/.1=qs C �t=qs C �ts=q2
s � � � � /

D ���:

�e remaining identities are obtained in a similar fashion by factoring .1 C �s/,
.1C �t /, .qs � �s/, or .qt � �t / out of �˙ on the right or left depending on the case.
We leave the details to the reader.

Solving for �s in (3.1) we get the formulas

�s D qs � 1

2
C qs C 1

2
s and �t D qt � 1

2
C qt C 1

2
t:

Using Proposition 4.2, we then obtain additional formulas for products �˙ with
the Hecke generators �s and �t :

�s�C D �C�s D qs�C and �t �C D �C�t D qt�C if qsqt < 1; (4.4a)

�s�C D �C�s D ��C and �t �C D �C�t D ��C if qsqt > 1; (4.4b)

�s�� D ���s D qs�� and �t �� D ���t D ��� if qs < qt ; (4.4c)

�s�� D ���s D ��� and �t �� D ���t D qt�� if qs > qt : (4.4d)
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�ese are useful because they allow us to show that the vectors �˙ extend to well-
de�ned operators in NqW .

Proposition 4.5. �e elements �C and �� acting on RW extend to bounded op-

erators in NqW (and NqG).

Proof. Let � be either �C or ��. Since � commutes with all elements in RW , it
su�ces to show that for any y 2 RW , we have k�ykq � C kykq for some constant
C . In fact, we’ll show that C D k�k2

q works. By de�nition, � is one of the four
vectors �.rs ; rt / where .rs; rt/ is one of the pairs

.1; 1/; .�1=qs; �1=qt/; .1; �1=qt/; .�1=qs; 1/I

hence,

� D
X

rw�w

with rw given by (3.19). Expressing �w as a product of �s’s and �t ’s, and using the
product formulas (4.4), one can verify that

��w D qwrw�: (4.6)

Letting y D
P

w yw�w , we then have

�y D
X

w

yw��w D
X

w

ywqwrw� D
X

w

.yw

p

qw/.rw
p

qw/�:

Taking square norms, we have

k�yk2
q D

ˇ

ˇ

ˇ

ˇ

X

w

.yw

p

qw/.rw
p

qw/

ˇ

ˇ

ˇ

ˇ

2

k�k2
q

�
X

w

jyw

p

qw j2
X

w

jrw
p

qw j2k�k2
q

D
�

X

w

jyw j2qw
��

X

w

jrw j2qw
�

k�k2
q

D kyk2
qk�k2

qk�k2
q;

and taking square roots gives k�ykq � k�k2
qkykq.

Let KC and K� denote the C1 and �1-eigenspaces (respectively) for the right
st -action on L2

qW . In light of �eorem 3.21, KC (respectively, K�) is spanned by
the single vector �C (resp., ��).
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Proposition 4.7. �e subspace L2
qG � L2

qW is st -invariant (on both sides) and

contains both KC and K�. In fact, we have an orthogonal decomposition of

NqG-modules given by

L2
qG D KC ˚ K� ˚ K;

where K; is the orthogonal complement of KC ˚ K� in L2
qG.

Proof. �at L2
qG is st -invariant is clear, as is the orthogonality of KC and K�

(st is a unitary operator so its eigenspaces are orthogonal). It only remains to
prove then that K˙ � L2

qG. For this, we use the fact that the orthogonal pro-
jection � from L2

qW onto L2
qG is an NqG-module map, hence commutes with

multiplication by st . It follows that � must map st -eigenspaces to st -eigenspaces
(with the same eigenvalue). Since KC is spanned by the single vector �C we must
have either �.�C/ D �C or �.�C/ D 0. In other words, �C is either in the sub-
space L2

qG or it is orthogonal to it. To be orthogonal to L2
qG, one would have to

have h�C; 1iq D 0 since 1 2 RG � L2
qG. But it follows immediately from the

de�nition of �C that either �C is zero (in which case KC � L2
qG, trivially) or

h�C; 1iq D 1. Hence �C 2 L2
qG and so KC � L2

qG. �e same argument applied
to the �1-eigenspace for st shows that K� � L2

qG.

It will be convenient to work with the orthogonal projections onto KC and
K�. Since KC and K� are the spans of the single vectors �C and ��, the relevant
projections are simply given by appropriate scalings. We de�ne Q�C and Q�� by

Q�C D �C

k�Ck2
q

and Q�� D ��

k��k2
q

;

and we de�ne Q�; by

Q�; D 1 � Q�C � Q��:

Proposition 4.8. �e elements Q�˙ and Q�; are central self-adjoint idempotents in

the von Neumann algebras NqG and NqW . In particular, multiplication on the

right or left by Q�˙ de�nes orthogonal projection from L2
qG onto K˙ and multi-

plication by Q�; de�nes orthogonal projection from L2
qG onto K;.

Proof. Since Q�˙ are multiples of �˙, by Proposition 4.5 they are elements of NqG

and NqW . Since Q�; is a �nite linear combination of 1, Q�C and Q��, it is in NqG

and NqW as well. Since all three of these operators commute with every ele-
ment of RW (by Proposition 4.2) and RW is dense in L2

qW , they are all central.
Self-adjointness follows from the explicit formulas for �C and ��, in which the
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coe�cient of �w is always the same as the coe�cient of ��
w D �w�1 . It remains to

show that they are all idempotent. If � denotes �C or ��, then we have

� D
X

w

rw�w

with rw given by (3.19), hence by (4.6) we have

�2 D
X

w

rw�w� D
X

w

.rw/2qw� D kkk2
q�:

Dividing both sides by k�k2
q gives Q�2 D Q�. �e operator

Q�; D 1 � Q�C � Q�1

is idempotent because it is the orthogonal projection onto the complement of KC

and K�.

Using these idempotents, we can compute NqG-dimensions of the various
pieces in our decomposition.

Lemma 4.9. �e von Neumann dimensions of the NqG-modules KC, K�, and K;

are all piecewise rational functions of the form

n; C ns

1 C qs

C nt

1 C qt

:

where n;; ns; nt are piecewise constant integer functions of q. More precisely, we

have

dimq
G KC D j1 � qsqt j

.1 C qs/.1 C qt /
;

dimq
G K� D jqt � qsj

.1 C qs/.1 C qt /
;

and

dimq
G K; D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

2qs

1 C qs

if qsqt � 1 and qs � qt ,

2qt

1 C qt

if qsqt � 1 and qs � qt ,

2

1 C qt

if qsqt � 1 and qs � qt ,

2

1 C qs

if qsqt � 1 and qs � qt .
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Proof. By de�nition of von Neumann dimension and the idempotents Q�˙, we have

dimq
G K˙ D hQ�˙; 1iq D 1

k�˙k2
q

h�˙; 1iq D 1

k�˙k2
q

:

Substituting .rs; rt/ D .1; 1/ and .rs; rt/ D .�1=qs; �1=qt/ into (3.20) to get
k�Ck2

q, we obtain

dimq
G KC D hQ�C; 1iq D j1 � qsqt j

.1 C qs/.1 C qt /
; (4.10)

and substituting .rs; rt / D .1; �1=qt/ and .rs; rt/ D .�1=qt ; 1/ into (3.20) to get
k��k2

q, we obtain

dimq
G K� D hQ��; 1iq D jqt � qsj

.1 C qs/.1 C qt /
: (4.11)

Since K; is the orthogonal complement of KC and K� in L2
qG and dimq

G L2
qG D 1,

we have

dimq
G K; D 1 � j1 � qsqt j

.1 C qs/.1 C qt /
� jqt � qsj

.1 C qs/.1 C qt /

which simpli�es to the given formulas in the four cases indicated.
To see that all of these expressions are piecewise rational functions of the in-

dicated form, simply note that

1 � qsqt

.1 C qs/.1 C qt /
D �1 C 1

1 C qs

C 1

1 C qt

;

qt � qs

.1 C qs/.1 C qt /
D 1

1 C qs

� 1

1 C qt

;

and
2q

1 C q
D 2 � 2

1 C q
:

We extend the orthogonal decomposition of L2
qG to any Hilbert NqG-mod-

ule. By Proposition 4.7, we can identify L2
qGn with the orthogonal sum .KC/n ˚

.K�/n ˚ .K;/n.

Proposition 4.12. Let V � L2
qGn be a closed subspace that is invariant with

respect to the diagonal left RG-action, and let VC D Q�CV , V� D Q��V , V; D Q�;V .

�en we have an orthogonal decomposition

V D VC ˚ V� ˚ V;

with VC � .KC/n, V� � .K�/n and V; � .K;/n.
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Proof. By Proposition 4.8, Q�C, Q��, and Q�; are all elements of NqG and de�ne
orthogonal projections from L2

qG onto KC, K�, and K;, respectively. It follows
that diagonal left multiplication by these elements on L2

qGn de�nes orthogonal
projection onto the subspaces .KC/n, .K�/n, .K;/n, respectively. It follows that
the summands VC, V�, V; are orthogonal. Since V is a left NqG-module, each of
the summands VC, V�, and V; must be contained in V , so we have

V � VC ˚ V� ˚ V;:

On the other hand, since 1 D Q�C C Q�� C Q�;, we know that x D Q�Cx C Q��x C Q�;x

for any x 2 V , giving us the opposite inclusion.

To extend our decomposition of L2
qG to a decomposition of L2

qW , we note
that L2

qW is spanned by L2
qG and its translate L2

qGs. By Proposition 4.2, both
KC and K� are also contained in L2

qGs, suggesting the following decomposition
for L2

qW .

Proposition 4.13. We have an orthogonal decomposition of NqG-modules given

by

L2
qW D KC ˚ K� ˚ K; ˚ K;s:

Moreover, K; and K;s are isomorphic as NqG-modules.

Proof. Right multiplication by s is a self-adjoint involution, hence an isometry.
It follows that (1) K; maps isomorphically (isometrically and equivariantly with
respect to the left RW -action) to K;s, and (2) preserves orthogonality in L2

qW .
�e latter implies that

L2
qGs D .KC ˚ K� ˚ K;/s D .KCs ˚ K�s ˚ K;s/ D .KC ˚ K� ˚ K;s/;

where the last equality follows from Proposition 4.2. Since L2
qW is spanned by

L2
qG and L2

qGs, we have

L2
qW D L2

qG C L2
qGs

D .KC ˚ K� ˚ K;/ C .KC ˚ K� ˚ K;s/

D KC ˚ K� ˚ .K; C K;s/:

�e only thing left to prove is that K; and K;s are orthogonal. Since G spans
a dense subspace of L2

qG, we know that ¹.st/n Q�; j n 2 Zº spans a dense subspace
of K;, and ¹.st/ns Q�; j n 2 Zº spans a dense subspace of K;s. It therefore su�ces
to prove that

h.st/n Q�;; .st /ms Q�;iq D 0
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for all m; n 2 Z. Using the fact that Q�; is a self adjoint idempotent and .st/� D
.st/�1, we have

h.st/n Q�;; .st /ms Q�;iq D hs.st/n�m Q�2
;; 1iq D hs.st/n�m Q�;; 1iq: (4.14)

But since Q�; is central, we have (for any x 2 L2
qW )

hsxs Q�;; 1iq D hxs Q�;; siq D hxs2 Q�;; 1iq D hx Q�;; 1iq

and, similarly,
htxt Q�;; 1iq D hx Q�;; 1iq:

Repeated applications of this identity then reduce (4.14) to

h.st/n Q�;; .st /ms Q�;iq D

8

<

:

hs Q�;; 1iq if n � m is even,

ht Q�;; 1iq if n � m is odd.

By de�nition of Q�; and Proposition 4.2, we have

hs Q�;; 1iq D hs; 1iq � hs Q�C; 1iq � hs Q��; 1iq

D hs; 1iq � �1h Q�C; 1iq � �2h Q��; 1iq

where �1 is C1 (resp., �1) if qsqt < 1 (resp. qsqt > 1) and �2 is C1 (resp., �1) if
qs < qt (resp. qs > qt ). Since s D 1�qs

1Cqs
C 2

1Cqs
�s, we have hs; 1iq D 1�qs

1Cqs
, and

hence by (4.10) and (4.11) we have

hs Q�;; 1iq D 1 � qs

1 C qs

� 1 � qsqt

.1 C qs/.1 C qt /
� qt � qs

.1 C qs/.1 C qt /
D 0:

A similar calculation gives

ht Q�;; 1iq D 1 � qt

1 C qt

� 1 � qsqt

.1 C qs/.1 C qt /
� qs � qt

.1 C qs/.1 C qt /
D 0:

�is completes the proof.

We extend our orthogonal decomposition of L2
qW to any Hilbert NqW -mod-

ule. By Proposition 4.13, it is possible to identify .L2
qW /n with .KC/n ˚ .K�/n ˚

.K; ˚ K;s/n.

Proposition 4.15. Let V � .L2
qW /n be a closed subspace that is invariant with

respect to the diagonal left RW -action, and let VC D Q�CV , V� D Q��V , V; D
Q�;V . �en we have an orthogonal decomposition

V D VC ˚ V� ˚ V;

with VC � .KC/n, V� � .K�/n and V; � .K; ˚ K;s/n.
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Proof. �e proof is the same as the proof of Proposition 4.12. �e only di�erence
is that as an operator on L2

qW , the idempotent Q�; projects onto the orthogonal
complement of KC ˚ K� in L2

qW , which is now K; ˚ K;s.

Any NqW -module is naturally an NqG-module, hence we can ask for its von
Neumann dimension with respect to either structure. �e following lemma relates
the two.

Lemma 4.16. Let V � .L2
qW /n be a Hilbert NqW -module. �en

(1) dimq
W VC D dimq

G VC,

(2) dimq
W V� D dimq

G V�,

(3) dimq
W V; D 1

2
dimq

G V;.

Proof. We identify .L2
qW /n with .KC/n ˚ .K�/n ˚ .K; ˚ K;s/n. To prove (1)

and (2), let �C W .KC/n ! .KC/n and �� W .K�/n ! .K�/n denote orthogonal
projections onto VC and V�, respectively. By composing projections, we then
have that the orthogonal projection from .L2

qW /n to VC, and hence from L2
qGn to

V C, are both given by �C Q�C. Similarly, the orthogonal projection from .L2
qW /n

to V� is given by �� Q��. Let �1; : : : ; �n be the standard basis for .L2
qW /n as a free

NqW -module. �en it can also be regarded as the standard basis for the subspace
L2

qGn regarded as a free NqG-module. Hence, we have

dimq
G VC D

n
X

iD1

h�C. Q�C�i /; �i i D dimq
W VC;

and

dimq
G V� D

n
X

iD1

h��. Q���i /; �i i D dimq
W V�:

To prove (3), we let �; W .K;˚K;s/n ! .K;˚K;s/n be orthogonal projection
onto V;. Again by composing projections, we have that the orthogonal projection
from .L2

qW /n to V; is given by �;k;, and hence

dimq
W V; D

n
X

iD1

h�;.k;�i /; �i i:
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To calculate the dimension of V; as an NqG-module, we shall embed it in the free
NqG-module L2

qGn ˚ L2
qGn. We let �1; : : : ; �n denote the standard basis for the

�rst summand of L2
qGn ˚ L2

qGn and �0
1; : : : ; �0

n denote the standard basis for the
second summand. We then de�ne

� W .K; ˚ K;s/n �! L2
qGn ˚ L2

qGn

by

�.x1 C x0
1s; : : : ; xn C x0

ns/ 7�! ..x1; : : : ; xn/; .x0
1; : : : ; x0

n//:

�is map is an isometric embedding, equivariant with respect to the left RG-ac-
tion, and the image is .K;/n˚.K;/n. As anNqG-module .K;˚K;s/n is generated
by Q�;�1; : : : ; Q�;�n and Q�;s�1; : : : ; Q�;s�n. �e images of these generators are given
by �. Q�;�i / D Q�;�i and �. Q�;s�i / D Q�;�0

i . As an NqG-module V; is isomorphic to
the image �.V;/ � L2

qGn ˚ L2
qGn, and orthogonal projection onto this image is

given by the composition ��;��1 Q�;. We can therefore compute

dimq
G V; D dimq

G �.V;/

D
n

X

iD1

h��;��1 Q�;.�i /; �i i C
n

X

iD1

h��;��1 Q�;.�0
i /; �0

i i

(de�nition of dimq
G)

D
n

X

iD1

h��;��1 Q�2
;.�i /; �i i C

n
X

iD1

h��;��1 Q�2
;.�0

i /; �0
ii

( Q�; is idempotent)

D
n

X

iD1

h Q�;��;��1 Q�;.�i /; �i i C
n

X

iD1

h Q�;��;��1 Q�;.�0
i /; �0

i i

(��;��1 Q�; is NqG-equivariant)

D
n

X

iD1

h��;��1 Q�;.�i /; Q�;�i i C
n

X

iD1

h��;��1 Q�;.�0
i /; Q�;�0

i i

( Q�; is self-adjoint)

D
n

X

iD1

h��;. Q�;�i /; �. Q�;�i /i C
n

X

iD1

h��;. Q�;s�i /; �. Q�;s�i i

(de�nition of �)

D
n

X

iD1

h�;. Q�;�i /; Q�;�i i C
n

X

iD1

h�;. Q�;s�i /; Q�;s�i i
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(� is an isometry)

D
n

X

iD1

h Q�;�;. Q�;�i /; �i i C
n

X

iD1

hs Q�;�;. Q�;s�i /; �ii

(s and Q�; are self-adjoint)

D
n

X

iD1

h�;. Q�2
;�i /; �i i C

n
X

iD1

h�;.s Q�2
;s�i /; �i i

(�; is NqW -equivariant)

D
n

X

iD1

h�;. Q�;�i /; �i i C
n

X

iD1

h�;. Q�;�i /; �ii

( Q�; is a central idempotent and s2 D 1)

D 2 dimq
W V;:

5. Kernels of RG and RW -matrices

In this section, we consider only those NqG-modules (respectively, NqW -mod-
ules) that are given by kernels of right multiplication by RG-matrices (resp.,
RW -matrices). �e fundamental fact that our arguments rely on is that the sub-
modules KC; K�; K; � L2

qG are irreducible in the sense that right multiplication
by an element of RG is either the zero map or an isomorphism. For KC and K�

this is obvious since they are each spanned by a single vector, but for K; we need
the fact that there are no other st -eigenvectors in L2

qG.

Proposition 5.1. For any element y 2 RG, let

Ry W K; �! K;

denote (right) multiplication by y. �en

ker Ry D

8

<

:

K; if y D 0,

0 if y ¤ 0.
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Proof. Since G is in�nite cyclic generated by st , y is a Laurent polynomial in st ,
hence can be factored as

y D C � .st/�n � p.st/

where n is an integer, C is a nonzero real constant, and p.z/ is a polynomial in z

with real coe�cients. Factoring this polynomial gives

y D C .st/�n .st � �1/ � � � .st � �k/;

where the �i 2 C are the roots of p.z/. If Ry.x/ D 0 for some nonzero x 2
K;, then at least one of the linear factors .st � �i / must have nontrivial kernel,
contradicting �eorem 3.21.

Now we suppose M is an .m � n/-matrix with RG-entries. We let

RM W L2
qGm �! L2

qGn

denote right multiplication by M . �en ker RM is a left NqG-module, hence, by
Proposition 4.12, decomposes as

ker RM D .ker RM /C ˚ .ker RM /� ˚ .ker RM /;:

Moreover, each summand can be regarded as the kernel of right multiplication by
M on the corresponding invariant subspace of

L2
qGm D .KC/m ˚ .K�/m ˚ .K;/m:

More precisely, if

RC
M W .KC/m �! .KC/m;

R�
M W .K�/m �! .K�/m;

R;
M W .K;/m �! .K;/m

each denotes right multiplication by the matrix M , then

.ker RM /C D ker RC
M ; .ker RM /� D ker R�

M ; .ker RM /; D ker R;
M :

Lemma 5.2. Let M be a matrix withRG-entries, and let RC
M , R�

M , and R;
M denote

right multiplication by M on .KC/m, .K�/m, and .K;/m, respectively. �en there

exist NqG-module isomorphisms

ker RC
M Š .KC/a; ker R�

M Š .K�/b; ker R;
M Š .K;/c;

for some choice of integers a; b; c 2 ¹0; 1; : : : ; mº.
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Proof. Adding a zero column to M does not e�ect the kernel of RC
M , R�

M , or
R;

M , and adding a zero row only alters the kernel by a free summand of KC, K�,
or K;, respectively. We can therefore assume that M is a square matrix of size
m � m. �e entries of M are elements of RG, which we regard as the ring of
Laurent polynomials in z D st over R. Since right multiplication by z D st

(a unitary operator on L2
qGn) de�nes an NqG-module automorphism of .KC/m,

.K�/m, and .K;/m, resp., we can multiply M by any power of z without changing
the kernel of RC

M , R�
M , or R;

M , resp. �us, we can assume that M has polynomial
entries. Since polynomials over R form a principal ideal domain, we can multiply
M on the right and left by invertible matrices (over RG) to obtain a diagonal
matrix. Hence the proof of the lemma reduces to the case where M is a diagonal
matrix diag.y1; : : : ; ym/. Finally we simply recall, from Proposition 5.1 and the
paragraph preceding it, that right multiplication on KC, K�, or K; by any element
yi 2 RG is either an isomorphism or the zero map. �e result follows.

Finally, we consider NqW -modules that are kernels of RW -matrices. Let M

be an .m � n/-matrix with RW -entries, and let

RM W .L2
qW /m �! .L2

qW /n

denote right multiplication by M . As in the case of RG-matrices, we obtain a
decomposition of left NqW -modules:

ker RM D ker RC
M ˚ ker R�

M ˚ ker R;
M ; (5.3)

where

RC
M W .KC/m �! .KC/m;

R�
M W .K�/m �! .K�/m;

R;
M W .K; ˚ K;s/m �! .K; ˚ K;s/m

each denotes right multiplication by the matrix M . �ese three summands are
also left NqG-modules, however, in order to use Lemma 5.2 , we need to know
that as NqG-modules they are isomorphic to kernels of RG-matrices.

Lemma 5.4. Let M be an .m � n/-matrix with entries in RW . �en there exist

.m�n/-matrices MC and M�, and a .2m�2n/-matrix M; all with entries in RG

such that as NqG-modules,

ker RC
M Š ker RMC

; ker R�
M Š ker RM�

; ker R;
M Š ker RM;

;
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where RMC
denotes right-multiplication by MC on .KC/m, RM�

denotes right-

multiplication by M� on .K�/m, and RM;
denotes right-multiplication by M; on

.K;/2m.

Proof. Any element y in RW can be written in the form y D y1.z/ C y2.z/s

where y1.z/ and y2.z/ are Laurent polynomials in z D st . Moreover, since
.st/ns D s.ts/n D s.st/�n, any Laurent polynomial f .z/ 2 RG satis�es the
relation f .z/s D sf .z�1/ in RW . �ese same properties hold for any matrix M

with RW entries. Given such a matrix M , we let M D M1.z/ C M2.z/s where
M1.z/ and M2.z/ are .m�n)-matrices with entries in RG. Given x 2 .KC/m, we
have x D x Q�C, so

xM D x Q�C.M1.z/ C M2.z/s/

D x Q�CM1.z/ C x Q�CsM2.z�1/

D x Q�CM1.z/ ˙ x Q�CM2.z�1/ (sign depending on q)

D x Q�C.M1.z/ ˙ M2.z�1//

D x.M1.z/ ˙ M2.z�1//:

In other words, right multiplication by M on .KC/m is the same as right multipli-
cation by M1.z/ ˙ M2.z�1//, which has entries in RG. Letting MC be the matrix
MC D M1.z/ ˙ M2.z�1//, we therefore have ker RC

M Š ker RMC
, as desired.

A similar argument works for R�
M acting on .K�/m.

For x 2 .K; ˚ K;s/m, we express it as x D x1 C x2s where x1; x2 2 .K;/m.
�en

xM D .x1 C x2s/.M1.z/ C M2.z/s/

D x1.M1.z/ C M2.z/s/ C x2s.M1.z/ C M2.z/s/

D x1M1.z/ C x1M2.z/s C x2M1.z�1/s C x2M2.z�1/

D Œx1M1.z/ C x2M2.z�1/� C Œx1M2.z/ C x2M1.z�1/�s:

It follows that if we identify .K;˚K;s/m with .K;/m˚.K;/m (using theNqG-iso-
morphism x1 C x2s 7! .x1; x2/), then right multiplication by M corresponds to
right multiplication by the .2m � 2n/ block matrix

M; D
"

M1.z/ M2.z/

M2.z�1/ M1.z�1/

#

:

Hence the two matrices M and M; will have isomorphic kernels (as NqG-mod-
ules).
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We now prove the main theorem of the paper.

�eorem 5.5. If M is any .m � n/-matrix with entries in RW and

RM W .L2
qW /m �! .L2

qW /n

denotes right multiplication by M , then

dimq
W ker RM D n; C ns

1 C qs

C nt

1 C qt

where n;; ns ; nt are piecewise constant integer functions of qs and qt with jumps

only along the curves qs D qt and qsqt D 1.

Proof. By (5.3), we have

dimq
W ker RM D dimq

W ker RC
M C dimq

W ker R�
M C dimq

W ker R;
M ;

hence by Lemma 4.16, we have

dimq
W ker RM D dimq

G ker RC
M C dimq

G ker R�
M C 1

2
dimq

G ker R;
M : (5.6)

By Lemma 5.4, all of these NqG-modules are isomorphic to kernels of RG-
matrices, hence by Lemma 5.2, we have

dimq
G ker RC

M D dimq
G.KC/a; (5.7a)

dimq
G ker R�

M D dimq
G.K�/b; (5.7b)

dimq
G ker R;

M D dimq
G.K;/c; (5.7c)

for some integers a; b; c. Note that these integers are constant with respect to the
parameter q. Combining (5.6) and (5.7) we have

dimq
W ker RM D a � dimq

G KC C b � dimq
G K� C c

2
� dimq

G K;;

and the theorem then follows from Lemma 4.9.
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