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Multiple conjugacy problem in graphs of free abelian groups

Benjamin Beeker

Abstract. A group G is a vGBS group if it admits a decomposition as a finite graph of
groups with all edge and vertex groups finitely generated and free abelian. We prove that
the multiple conjugacy problem is solvable between two n-tuples A and B of elements of G
whenever the elements of A does not generate an elliptic subgroup.
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1. Introduction

Let I be a finite graph of groups with all vertex (and edge) groups free abelian
of finite rank. Let G be the fundamental group of I'. We call such a group a
Generalized Baumslag—Solitar group of variable rank, or vGBS group. The graph
I' is a vGBS decomposition of G. When a vGBS decomposition of a vGBS group
G has all vertex and edge groups of a fixed rank n, we say that G is a GBS,, group
or GBS group ifn = 1.

The paper focuses on the following problem:

Problem 1.1 (Multiple conjugacy problem). Let G be a VGBS group. Let A =
(ai,...,ay) and B = (b, ..., by) be two n-tuples of elements of G. Is there an
element of G which conjugates A to B?

Given I' a graph of groups, with fundamental group G, an element g € G is
elliptic if it is conjugate into a vertex group, otherwise g is hyperbolic. In [2],
O. Bogopolski, A. Martino, and E. Ventura show that the conjugacy problem is
not decidable in GBS,, groups with n > 4. The non-decidability is resulting from
the fact that it is impossible to decide whether two elements of Z* belong to the
same orbit of Z* under the action of a finitely generated subgroup (¢, ..., ¢p)
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of Gl4(Z). Now take the GBS, group F = Z* X (4, ,..4,) Fp, two elements a and b
of Z* are conjugate in F if and only if there exists an element ¢ in (g1, ...¢,) C
Gl4(Z) such that ¢(a) = b. Thus the conjugacy problem is unsolvable for elliptic
elements in GBS4 groups.

However, this kind of counter-example is the only obstruction to the conju-
gacy problem, it is even the only obstruction to the multiple conjugacy problem
in vGBS groups. Actually, we have the following result.

Theorem 1.2. Let G be a VGBS group with vGBS decomposition T'. Let A =
(a1,...,ay) and B = (b1, ..., by) be two n-tuples of elements of G. Assume that
the group {ai, ...,ay) is not elliptic in T'. Then we can decide whether A and B
are conjugate in G or not. If A and B are conjugate we explicit a conjugating
element.

Let us give a sketch of the proof. The conjugacy problem between hyperbolic
elements is solvable in groups much more general than vGBS groups. We give in
Section 4 some conditions under which this problem is decidable.

Now consider two n-tuples A and B of elements of G. If the subgroup (A4)
generated by the elements of A4 is not elliptic then we may find a hyperbolic ele-
ment a € (A). We may construct » € (B) such that if A and B are conjugate by
an element g, then gag™! = b.

If b is not hyperbolic, then A and B cannot be conjugate. Otherwise we may
decide whether a and b are conjugate or not. If @ and b are not conjugate then again
A and B are not conjugate. If there exists g such that gag™! = b, by conjugating
B by g~ !, we reduce Theorem 1.2 to solving the following problem.

Problem 1.3. Given two n-tuples A and B, and a hyperbolic element a, does there
exist an element g of Cg(a), the centralizer of a in G, which conjugates A to B?

For simplicity, we describe the case n = 1, with A = {a;} and B = {b;}.
The case n > 1 follows from the same techniques.

We denote by T the Bass—Serre tree of I'. If an element 4 is elliptic, its char-
acteristic space is the set of its fixed points in J. If an element / is hyperbolic,
its characteristic space is the unique line of 7 on which it acts by a translation,
also called the axis of h. The characteristic space of an element % is denoted Ay,.
The centralizer Cg (h) of a hyperbolic element / fixes the axis of & setwise, acting
on it by a translation. To be more precise, we can decompose Cg (/) as a semi-
direct product Z? x Z such that the Z? part fixes the axis pointwise while the Z
part acts on it by a translation.
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If there exists an element g such that ga;g~' = by, then g - Aay = Ap,.
This gives strong informations on g. In particular, if we assume in addition that g
belongs to the centralizer of a hyperbolic element a, we may obtain the translation
length of g on A, by looking at the relative position of A,, and Aj, with respect
to A, (see Figure 1 for an example).

r< r o
N S~ Ag N i S~ Ap
~ ~
N ! < !
S~ /’ S~ /’
| =
1 1
1 1
Ag = Ag - d
gU l gV

Figure 1. An element g which acts on A, such that g - A,, = Ap, has translation length
equal to /.

We may determine this position:

Theorem 1.4. Let G be a vGBS group with vGBS decomposition T, let a and a,
be two elements of G, with a hyperbolicinI'. Call A, and A, their characteristic
spaces.

There exists an algorithm which decides

o whether A, N Ay, = 0, and if so gives the shortest path between A, and
‘Aaly

o or A, N Ag, is non empty and of finite length, and if so gives its endpoints,

o or A, N Ag, is a half-line, and if so gives the origin and the direction of the
half-line,

o or Ay N Ay = A,

We give a proof of this theorem in Section 7.

As Cg(a) >~ 7P xZ with Z? fixing A, pointwise, the Z coordinate of g is fully
determined as soon as A, N A, # A (if Ag N Ag, = Ag, the problem reduces
to a problem of conjugacy in polycyclic groups which is solved [1]). We are then
reduced to finding the Z” coordinate, that is finding a conjugating element in a
given elliptic subgroup. We discuss this problem in Section 3.

In the case of GBS groups, an idea of V. Guirardel and G. Levitt permits to
solve the conjugacy problem for elliptic elements. We thus have the following
result.
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Theorem 1.5. Let G be a GBS group and T' a GBS decomposition of G. The
multiple conjugacy problem is decidable in G.

We give a proof of this theorem in Section 9. The conjugacy problem in GBS,
and GBS; groups remains unknown.

2. Preliminaries

2.1. Conventions

Presentation adapted to a graph of groups Let G be a finitely presented group
and T a finite graph of groups with 71(I') = G. Call Vr and Er the sets of
vertices and oriented edges of I'. Given an edge e € Er, the opposite edge is
denoted ¢. We note G, the edge group of e. For a vertex v € Vr the vertex
group is denoted G,. For each edge e, call ¢! and ¢! the injections of G, into the
groups of respectively the initial and terminal vertices of e. We have G, = G;
and goé = ¢.. We denote T the Bass—Serre tree of '

Recall that an element of G is elliptic if it fixes a vertex of T, and hyperbolic
otherwise. Given a hyperbolic element g € G, it acts by translation on a line A,
of T called the axis of g. We define the positive direction on Ag (depending on g),
as the direction of the translation of g on A,. A half-line contained in Ay is said
to be g-positive if it is infinite in the positive direction and g-negative otherwise.
A fundamental domain of g is a segment [v, v'] of Ag in T suchthat g-v = v'.

The translation length of an element g is denoted /(g).

Assume that I has finitely presented vertex and edge groups. We fix a preferred
generating set and a presentation of G in the following way:

(1) we fix a maximal subtree A of I', and call E4 the set of edges of 4,
(2) for each vertex v of Vr, with vertex group G,, we fix a presentation
(Ao, 1y ey Qury: Tods - Tosy)
of Gy,

(3) for each edge e with initial vertex v and edge group G., we fix de 1, .. .de,r,
a generating set of G, such that g.; = dz; We define a.; = goé (Ge,i) and we
express the a,; as words in the generators of G,,.
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The preferred generating set of G is {ay,j, v € Vr, j € N} U {t,, e € Er}.
The element ¢, is called the stable letter associated to e. The stable letter 7z will
also be written 7,.

To obtain a presentation from this generating set, we add the following rela-
tions:

(1) {rv,I, . -ry’sv}, fOl‘ all V€ Vl“,
(2) t =1, foralle € Er,

(3) de,j = teasz jt; ', foralle € Er and all j € IN,

e

@) t; =1,foralle € Ey4.

By [6], this is a presentation of G and it will be called a presentation adapted
to the decomposition T. This presentation defines an injection of the vertex groups
of [ into G.

If T is a vGBS decomposition, we suppose in addition that for each vertex v
and edge e, the sets {ay,1,...,dvr,} and {de1,...,de,r,} are bases of G, ~ Z"
and G, >~ Z'-.

Loop form A path between two vertices v and v’ in T is a sequence (v = vy,
€1,V1,...,en, U, = V') where the v; are vertices of I' and the e; are edges of T’
with starting point v;_; and endpoint v;. The integer n is the length of the path.
A loop is a path between a vertex v and itself.

Similarly, a path in T is a sequence (vg, 1, V1, . - ., €, Uy) Where the v; are ver-
tices of T and the e; are edges of T with initial vertex v;_; and terminal vertex v;.

Let G be a vGBS group given by a presentation adapted to a vGBS decompo-
sition I'. Let us fix a base vertex vg of T".

Let I = (vo,e1,...,ep.vp = vp) be a loop of I' whose base point is vg
and let g is an element of G. A loop form of g (of basis the loop /) is a word
coticita .. . tpcp representing g in G, with each ¢; a — possibly trivial — element of
the vertex group G, , and ¢; the stable letter associated to the edge e;.The terms ¢;
are called vertex terms and the ¢; are called edge terms. The integer p is the length
of the loop form.

If [ is fixed, a loop form of g of basis / may not exist. However, there always
exists some loop form of g:

Lemma 2.1. Let g be an element of G given as a word in the preferred generators
of G. We may explicitly construct a loop form of g.

Moreover elements which fix a common vertex in T admit loop forms with a
common base loop.
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Proof. Let g1 = aity...ap and g» = bysy ...b, be two elements expressed in
some loop form. Then a loop form of g1g> is a1 ... (apb1)s1 ...b4, and a loop
form of gi'is a, 'ty ... f1a7".

Thus, to construct a loop form for g it is sufficient to construct one for the stable
letters and the generators of the vertex groups.

Let ¢ be the stable letter associated to an edge e. Call v and v’the initial
and the terminal vertices of e. Let (vo,e1,...,ep, v, = v) and (vo, €], .. .,e;,
v; = v’) be paths between vy and v, and vy and v’ in A. Then a loop form for 7 is
Ite, 1... llepll‘llegl colet 1.

Let v be a vertex of I' and (vo, e1, ..., ep, v, = v) be a path between vo and v
in A. Then any element a of G, admits a loop form 1z 1... 1t ,atz, ...tz 1.

We may note that in both cases every element t,; or f;; is trivial.

The moreover part follows immediately from the previous paragraph, if we

note
e thatif a and b have loop forms with a common base loop, then the same holds
for gag™! and ghg™! and
o that elements which fix a common vertex in 7 may be simultaneously conju-

gated into the group of a vertex of I'. U

A loop form coticitz . . . tycp is a reduced form if moreover we have the impli-
catione; = ej1; = ¢; ¢¢fi (Gei)-

Lemma 2.2 ([6, Theorem 11]). The trivial element has a unique reduced form, the
basis of this loop form is the trivial loop (vo) of length 0.

In general a reduced form is not unique. We can however exhibit a kind of
uniqueness:

Lemma 2.3. If g admits two reduced forms, their base loops are equal.

Proof. Take coticita ... tpcp and coticity .. . t,c, the two reduced form. As the
product of the first expression by the inverse of the second

X Lo =1\ =1 =1 -1
cotlcltz...tp(cpcq )zq Cqrlg_1 -

et
is a loop form (up to replacing #/~' by 7]) representing the trivial element,
by Lemma 2.2, this loop form is not reduced. But the only simplification may
occur at tycpcy )1

Sot, =t and c,,c(/]_1 belongs to the associated edge group. We obtain a new
loop form. By recurrence on the length p + ¢, we must have p = ¢, and the loops
must be identical. O
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Moreover in vGBS decompositions we may explicitly construct a reduced form
from a loop form. As the matter of fact, we may algorithmically construct re-
duced forms whenever G is the fundamental group of a graph of groups I' (with
finitely presented vertex and edge groups) whenever the following membership
problem (P1) is solvable:

Problem 2.4 (P1). Let e be an edge of T" with initial vertex v. Given g € G, does
g belong to ¢ (G.)?

Given a loop form coti¢it2 . . . tpcp, Wwe may compute a reduced form using the
following process. If there exists an i such that e; = é&;11 and ¢; € @}’ (Ge;), we
may find d; € G, such that ¢; = <pff (di), we then replace c;_iticiti+1ci+1 by
(ci—1dici+1) in the loop form. Since the edge groups of I are finitely presented,
it permits us here to express the preimage by ¢! of any element in ¢’ (G,) in term
of generators of G,.

Thanks to Lemma 2.2, we can assert that the word problem is solvable when-
ever (P1) and the word problem for vertex groups are solvable.

2.2. Algorithmic generalities. We fix A a lift of A in T such that the lift 7 of a
vertex v in A has stabilizer G,. For each edge e in T\ A, with initial and terminal
vertices v and v/, we fix a lift € in T defined as the edge between ¥ and ¢, - 7'
We may then identify each vertex v and edge e of I" with a vertex v and an edge e
of 7.

Note that the 1ift of ¢ is not é but zzé.

Convention 2.5. A vertex w of T is now seen as a product g - v with g an element
of G and v a vertex of I, such that 0 = g - . We may note that g is not unique.

The following algorithmic property gives us a kind of constructibility of the
Bass—Serre tree T:

Proposition 2.6. Let G be a group with decomposition T'. Assume that (P1) is
solvable in T'. Let g, and g, be two elements given as words in preferred genera-
tors of G. Let v = gy - v; and v' = gy - v; be two vertices of T. We may compute
the distance between v and v' in T and construct the minimal path between them
in the tree.

Given any finite set V of vertices of T, we may explicitly construct the convex
hull of V in 7.
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Proof. By Lemma 2.1, we may construct loop forms

coliCila .. . 1pCp of I
and

d0S1d1S2...Sqdq Ofgv/.

Let! = (vo,e1,...,ep,0p = vg) and I’ = (wo = vo, fi,..., fq, Wg = Vo) be the
base loops of these two loop forms.

Let (vo, 1, Y1, Y2, - -+, Yk = v;) and (vo, 01, 21,682, ...,z = v;) be the paths
between vy and v;, and vg and v; in A. Then a path between v and v’ is the
concatenation of the four following paths:

(1) (gv-vi=gv-Yk»
gv-fk,...,
gl} '?lagv'vo),

) (gv cWq = (cot101Z2 . ..Zp) - Vo,
(Cotlcllz...cp_llp)'ép,...,
coly - €1,

Co - Wo = Vo),

(3) (vo.do - f1.dos1 - Wy,
dosidy - [,
d0S1d1S2 cW2, ...,
dos1d152...5q - Wg = gy * Vo),

(4) (8w - vo,
v 01,80 " Z1,..., &V “Vj = v/).

Let us now reduce this path. A path is reduced if for every triplet
C=ge-e,0=gu-w f=grf)

such that f = e appears in the path, we have & # f, that is g;l ge € Gy.
Problem (P1) allows us to check whether the element g;l ge € Gy, belongs to Gy
or not. If g;l ge € Gy we delete the triplet and the immediately following vertex
(which is the same as the immediately preceding one). Iterating the process, we
obtain the minimal path between v and v’.

We obtain the convex hull of a set of vertices V, by constructing the path be-
tween each pair of vertices of V, and then glue the paths together (by checking if
some vertices of these paths are equal). U
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Corollary 2.7. Assume that (P1) is decidable.

(1) Given g € G, we may compute 1(g). If g is elliptic (I(g) = 0) we may
construct a fixed point, and if g hyperbolic, we may construct a fundamental
domain.

(2) Given a vertex v, we may decide if v belongs to the characteristic space of g.

Proof. Let g be an element of G and v a vertex of 7. By Proposition 2.6 we
may construct the minimal path P between v and g - v. Now P contains a fixed
point if g is elliptic, or a fundamental domain if g is hyperbolic. Constructing for
each vertex w in P the path between w and g - w permits to determine whether
g is elliptic or hyperbolic: if one of these paths is of length 0, the element g is
elliptic, otherwise g is hyperbolic and the constructed path of minimal length is a
fundamental domain.

For the second part, to see if a vertex v belongs to the characteristic space, it
suffices to check if the path between v and g - v has length /(g). U

3. Algorithmic properties of vGBS groups

Until now, we have given general properties of graphs of groups. We now describe
algorithmic properties specific to vGBS groups.

By Lemma 2.2 and the construction of a reduced form, the word problem is
solvable in vGBS groups. However, the vertex groups are free abelian and so
the algorithmic properties are much stronger. It is thus possible to solve certain
equations in vGBS groups:

Lemma 3.1. Let G be a vGBS group. Let g1, ..., gn, a0, - . .,an be elements of G
with all a; elliptic. Let p be an integer and o : [|0,n|] — [|1, p|] @ map. Then the
set

ko ko ko
K={k=(ki.....kp): ay’¥g1a;°Vgs...gnan"™ =1}

is a finite union of affine sublattices of 7.7, i.e. a finite union of sets of the form

{x:x=a+ g,g € R} where a is an element of Z? and R a subgroup of 7.”.
The set K may be algorithmically described.

Proof. All elements which may be written under the form alg"‘o’gl . gnal,f""”,

have loop forms with a common base loop: for a given i the elements of the form

af““ > all belong to the same vertex group, and thus by Lemma 2.1 have loop forms
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with a base loop which does not depend on the k. Thus it suffices to construct a
loop form to each g; and then to glue the different part together (see Lemma 2.1).

We obtain a common loop form
ko ko kon
ag” P g1a," Vg gnan”"” = wo(k)tiwi (k) . .. wi—1 () t;w; (k) .. . tmwpm (k)

where the #; are edge terms and the w; vertex terms depending on k. Moreover
if v; is the vertex associated to w;, there exist p + 1 elements b; o, ...b; , (non
necessarily distinct) which belong to the vertex group G,, and such that we have

the equality w; (k) = b; o []%. i b J
The lemma is now reduced to the following equivalent fact:

Given a loop [ = (vg.e1,...,em, V) of length m, and elements (b; ;) for
i €[|0,m|]and j € [|0, p|] with b; ; € Gy, we may algorithmically describe the
set

Kz{l_(z(kl,... ky):

bo,O(l_[ 0/)f1b10<1£[ ]f ) "tmbmﬁ(lﬂ[bfn{.i):l}

j=1 j=1 j=1

as a finite union of sublattices of Z~”.

The proof will be performed by recurrence on m. For the need of the re-
currence, we only suppose that there exists r € IN such that the b; ; belongs to
1G,, = Gy, ®z 17, the set of vectors of which coefficients are fractions with r
as denominator. We may then see the w;’s as maps from Z? to }Gvi . For each w;
let w; be the morphism defined by

p
-~ k;
w; (k) = | | bi,Jj-
Jj=1

Unlike w;, the morphism w; is a group homomorphism.

The goal is now to construct the set of p-tuples k = (ky,...k,) € Z” such
that for all i, the element w; (k) belongs to G,; C %Gv . and such that the equality

wo(K)tiwy (k) ... wi—1(K)tiwi (k) . .. tmwm (k) =1

is verified. We also have to show that this set is an affine sublattice of Z”. The
lemma is the case r = 1.
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By recurrence on the length m of the base loop of w.

(1) m = 0. We have to find the set K of k = (k1 ...kp) € Z” such that

p
k.
wo (k) = bo,o l_[ by, = 1.
j=1

The set of solutions is just the set wy ! ({1}). Computing it consists in solv-

ing the linear equation by o ]_[f7 — bg’] = 1in Z”. We deduce that the set is
of the form {x: x = a + g, g € R} where a is a solution and R is the kernel
of II)().

Thus, in this case, the solutions forms an affine sublattice which may be
explicitly described.

(2) m > 0. Using Lemma 2.2, if w(ky, ..., kp) is trivial, there exists i such that
t; is associated to an edge ¢; and ¢, to ¢; and such that w; (ky,....kp) €
.. (Ge,) the associated edge group.

Let i be such that ¢#; is associated to an edge e; and ;41 to e;. We first
compute S; = {k: w; (k) € ¢, (Ge;)}-

Let us call 7; the projection of %Gvi onto (}Gvi) / goél_ (Ge;). Then S; may
be put under the form {x: x = a + y,y € R} where a is a solution of the
equation ir; o w; = 1 and where R is the kernel of 7; o w;. Thus §; is an
affine sublattice of Z7 that we may explicitly describe.

Let V; be a vector space such that
Gy ®Q = (9(Ge)) ®Q) DV
and let us define a morphism
Vit Gy, ®Q —> Gy,_, ® 0

in the following way:

For g € ¢, (Ge,), the element ¥ (¢) = (¢;,)eq° (¢, )5 (8), andif g € V;
then ¥;(g) = 1. Note that if ¢, and goél, are given as matrices, then v; may
be explicitly determined as a matrix.
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Let I C [|1,m — 1]], the set of i such that ¢;, = —e;+1. Then the set of
solutions K is

U (Si Nk woty ... ti—y(wi—1 (k)Y (Wi (k) wit1(k))tit2, .. tmwm = 1}).
iel

Note that if k& belongs to {k: w;(k) € Ge,}, then the element v; (w; (k)))
belongs to G, _, (and not only to G,;_, ® Q) .

To be able to apply the recurrence hypothesis, we must check that we may
write the expression w;—1 (k)i (w; (k))w;+1(k) under the form co [/, C;Cj
with the ¢; in %Gvi—l for an v’ € IN. We know that there exists r such that

all values of the w; belongs to 2G,,. The map y; sends 1G,, to =Gy,
where r” is the index [} (G.,). (¢}, (G¢;) ® Q) N Gy,_, .
We may then write w;—1(k)g; (w; (k))w;+1(k) as co ]_[ 1 ] , with ¢; in

- le_l with r’ = r". We conclude by recurrence.

Since the intersection of two sublattices of Z? is a constructible sublattice,
the set of solutions may be given in an explicit manner. U

Corollary 3.2. Let g and g’ be two elements of G and v a vertex of T. Then the set
of elements of G, which conjugate g in g’ is an affine sublattices of G, which may
be describe explicitly. In particular, for g = g, the intersection of the centralizer
of g and G, is computable.

Proof. Letay,...,ap, be the preferred basis of Gv Then the set of elements conju-
gating g in g’ are the elements of the form Ha such that Ha ‘gTla; ’g/ T=1.

Since the centralizer of g in G, is a subgroup of G, this set is an affine sublattice
of G,. We may construct this set applying Lemma 3.1. O

4. Conjugacy problem for hyperbolic elements

Let I" be a graph of groups of which vertex and edge groups are finitely presented.

If two elements a and b are conjugate by a third element g, then g sends the
characteristic space of a to the one of b. If a and b are hyperbolic their character-
istic spaces are lines and are very simple to describe. Knowing these spaces gives
us information on g.

Fix a preferred presentation for G the fundamental group of I' as described
in Section 2. Call T the Bass—Serre tree of I'. We assume that every element
of G is given as a word in the preferred generators, and that every vertex is given
following Convention 2.5.
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Lemma 4.1. Assume that the following problems are solvable.

(P1) Let € be an edge of T with an endpoint . Given g € Gy, does g belong
to Gz?

(P2) Let © and ¥’ be two vertices of T and g € G an elliptic element. Is the
intersection Gy N (Gy - g) empty?

Given two hyperbolic elements a and b and n € N, we may decide if there exists
g € G such that the intersection of the axes Aq and Agp,—1 has length at least n.

Problem (P1’) is equivalent to Problem (P1) expressed in the Bass—Serre tree
rather than in the graph of groups: given a vertex v = h-v of initial vertexé = h-e
and an element g, we have g € Gz if and only if = 'gh € G,.

Proof. Applying Corollary 2.7, we may construct fundamental domains D, and
Dy, associated to a and b.

A pair of segments ([v, V'], [w, w’]) is a good pair if
e v belongs to D,

e [v,v'] is included in the axis of a,

e w belongs to Dy,

e [w,w'] is included in the axis of b,

e there exists a g € G sucht that g - [v, v'] = [w, w']

We may note that there exists g € G such that A, N Agp,—1 contains a seg-
ment [v, v'] of length n, if and only if there exists two integers p and ¢ such that
(a? - [v,v'],b%g - [v,v']) is a good pair of segments of length n. We thus have to
decide if such a good pair exists.

Note that if ([v, V'], [w, w']) is a good pair of segments, then truncating both
segments gives a new good pair of segments ([v, v"], [w, w”]). We then say that
([v, V], [w, w']) extends ([v, v"], [w, w"]). If two good pairs of segments have same
length and extend a common good pair of segments, then they are equal. Said
differently, if a good pair of segments admits an extension of a fixed length, this
extension is unique.

By recurrence, we show that we may construct all good pairs of segments of
length n. And in particular, we may know if there exists one.
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If n = 0, then a good pair of segments is just a couple of vertices (v, w) €
Da x Dy such that v and w are in the same orbit. Since vertices are given by the
product of an element of G and the representative in " of its orbit, all of these
good pairs are obtained directly.

Suppose now that we have constructed all good pairs of segments of length 7.

For every good pair of segments ([v, v'], [w, w’]) of length n, we first find g
such that g - [v, v'] = [w, w’]. We may proceed by an exhaustive search.

Call v” and w” the vertices of A, and A}, respectively such that [v,v"] is a
segment of length n + 1 in A, and [w, w”] is a segment of length n + 1 in Ap.
Call e the edge between v’ and v”, and ¢’ the edge between w’ and w”.

The only candidate which may extend ([v, V'], [w,w’]) is ([v,v"], [w, w"]).
We thus have to decide whether this last pair is a good pair or not.

If e and e’ are not in the same orbit, then there is no good pair of segments of
length n + 1 extending ([v, v'], [w, w']).

If e and ¢’ are in the same orbit, find /& such that g - e = ¢’. Then & belongs
to Gy, and is consequently elliptic. An element g’ sends [v, v”] on [w, w"] if
and only if g’g™! belongs to G, and g’g~'h~! belongs to G~. It is sufficient
to decide if the intersection Gy, N Gy~ - h is empty. This problem is solvable by
hypothesis.

We may thus construct all good pairs of segments of length n + 1. O

Let ' be a graph of group with Bass—Serre tree T. The tree T is said to be
k-acylindrical if the stabilizer of any segment [v, v'] in T of length k is trivial, i.e.
the intersection G, N Gy is trivial. It is said acylindrical if it is k-acylindrical for
some k. Acylindricity is defined by Sela in [5].

Corollary 4.2. Let T be a graph of groups of Bass—Serre tree T in which (P1)
and (P2) are solvable. If T is k-acylindrical for a given k € IN then the conjugacy
problem is decidable for hyperbolic elements of G.

Proof. Leta and b be two hyperbolic elements of G. We are computable /(a) and
/(D) thanks to Corollary 2.7. If /(a) # [(b) then a and b are not conjugate, else
fixn =k + [(a).

Applying Lemma 4.1, we may decide if there exists g such that A, and A g1
have an intersection of length n. Obviously if no such g exists then @ and b are
not conjugate. If such a g exists, then a~!ghg™! fixes a segment of which length
is at least & which is thus trivial, and then a and b are conjugate. O
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In a vGBS decomposition, problems (P1’) and (P2) are easily solvable:

e problem (P1") consists in understanding if an element of Z? belongs to a
subgroup;

e problem (P2) consist in successively computing the intersection of subgroups
of ZP.

However vGBS decompositions are never acylindrical. To solve the conjugacy
problem for hyperbolic elements we need to know how to solve another problem:

Proposition 4.3. Let T be a graph of groups for which (P1") and the local conju-
gacy Problem (P3) are solvable:

(P3) Given a vertex v and two hyperbolic elements a, b, is there g € Gy, such that
—1
gag—' =b?

Then the conjugacy problem for hyperbolic elements is solvable in G = w1 (T).
By Corollary 3.2, Problem (P3) is solvable for vGBS groups.

Corollary 4.4. The conjugacy problem for hyperbolic elements is solvable in
vGBS groups. O

Proof of Proposition 4.3. Let a and b be two hyperbolic elements of G. Call T
the Bass—Serre tree of .

As (P1') is solvable, applying Corollary 2.7, we may construct a vertex v which
belongs to the axis of a and D, a fundamental domain of . Assume that ¢ and
are conjugate by an element g € G. Then for w in the axis of a, the vertex g - w
belongs to the axis of . Up to multiplying g on the left by a well-chosen power
of b, we may assume that g - v belongs to Dy,

Let Dy = {vi,...,v;,} be the vertices of Dj in the G-orbit of v. Choose
g1, - - -, &p some elements of G such that g; - v = v;;.

Then a and b are conjugate if and only if there exists j € [|1, p|] and /4 in
the stabilizer of v;; such that hgjag;'h™" = b. Thus it suffices to apply for each
element of D, the local conjugacy problem that we have assumed to be solvable.

O



16 B. Beeker

Reduction of the problem We now look at the multiple conjugacy problem in
vGBS groups.

Problem 4.5. Let G be a vGBS. Given two (n + 1)-tuples A = (aq, ..., a,) and
B = (bo,...,by), does there exist an element of G which conjugates A in B?

For the same reasons as for the conjugacy problem, the general problem is not
solvable. We have to restrict it to the case where the group G4 generated by the
elements of A contains a hyperbolic element.

Remark 4.6. By a lemma of Serre [6, Proposition 26], either G4 is elliptic or
there exist two elements a; and a; such that a;a; is hyperbolic. Then adding this
element to A, and at the same time adding the element b;b; to B, we may assume
that A contains a hyperbolic element.

Using proposition 4.3, the Theorem 1.2 is equivalent to solving the following
problem:

Problem 4.7. Given two n-tuples A and B and a hyperbolic element a, does there
exist an element of Cg(a) the centralizer of a in G which conjugates A to B?

We solve this problem in two steps. In Section 5 we give an explicit description
of Cg(a). In Section 7 we determine the position of the characteristic spaces of
the a; and b; relative to the one of a, in the way to decide if they are compatible
the one with the others.

5. Centralizer of hyperbolic elements

If two elements ¢ and b commute, then b preserves the characteristic space of a.
Unfortunately, it is hard to describe the characteristic space of an elliptic element.
It is easy to describe the centralizer of a hyperbolic element using the fact that its
characteristic space is a line:

Proposition 5.1. Let I" be a graph of groups and G its fundamental group. Let h
be a hyperbolic element of G. Then Cg(h), the centralizer of h in G, is a semi-
direct product E x H where E is an elliptic subgroup and H a cyclic subgroup
generated by a hyperbolic element.

If T is a vGBS decomposition, the centralizer of a hyperbolic element is of the
Jorm 2" x 7. Moreover in this case, we may explicitly give a generating set.
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Proof. By definition, the group Cg(h) commutes with 4, and thus acts on its
axis by translation in the Bass—Serre tree. This action defines a map from Cg (%)
to 7Z with image pZ for p the minimal non-zero translation length in Cg(h).
The kernel E of this map fixes the axis pointwise, and then is included in an edge
group. We can take for H any section of pZ.

If G is a vGBS group, we proceed in two steps to explicitly determine Cg (k).

e STEP 1: computation of E.

Let v be a vertex of the axis of 4. The group E fixes the axis, in particular
it is included in G,. This group is the set of elements in G, which com-
mute with . Corollary 3.2 explicitly gives the sublattice of G, consisting of
elements which commute with 4.

e STEP 2: compute a generator for H.

From the first part of the lemma, it suffices to find a hyperbolic element 4’

of Cg(h) with minimal translation length. Let D = (vy,...,vy) be a fun-
damental domain of /. Then the desired element /'’ satisfy 4" - vg = vy for
some k <d.

We determine K C [|1, d|] the set of elements such that v and vy are in
the same G-orbit. Then for all k € K we compute g such that g - vo = vg.

Now, we search i’ of the form i’ = grg forak € K and a g in Gy,.
By Lemma 3.1, for every k € K we may compute the set G of elements g
in Gy, such that [gx g, h] = 1. Note that G, is not empty since hg;1 belongs
to G4. Let ko be the least integer such that G, # @. We may take for /" any
element in gg, G- O

6. Modulus of a hyperbolic element in a vGBS group

Let M be a finitely generated free abelian group seen as a Z-module. Let V' and
W be two subgroups of M and ¢: V — W an isomorphism of groups.

Denote pgq: V ® Q — W ® Q the extension of ¢, where V ® Q and W ® Q
are seen as subspaces of M ® Q. Call D, the setof elements x € (VN W) ® Q
verifying

there exists (x,)n=0 € (V N W) ® Q)Y such that
veq(Xn+1) = xp, and x = xg

the Q-subspace of M ® Q composed of elements x of V' ® @ such that g, (x) is
defined for all n € IN. We define the Q-linear map ¢ = (¢gq)|p,,-
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The minimal polynomial of a linear map ¢ will be for us the monic polyno-
mial P of least degree such that P(¢) = 0.

Proposition 6.1. With the same notations as before,

(1) the map ¢ is an automorphism of D,. We may see D, as the set of elements
x of M ® Q such that cp%Q(x) is defined for all n € Z (or for all n € IN).

(2) Forallk # 0,
Dy =D, and (o) = @)
(3) Let ¢ and ¢’ be two homomorphisms respectively of sources V. C M and
V' c M. If V and V' are commensurable and ¢|yny: = ¢'|vay, then
Dy =Dy and § = ¢/,

(4) for x € M, we have x € D, if and only if for all k € Z there exists p € IN
such that ¢* (x?) is defined.

(5) Letx bein M. There exists p € IN such that o* (xP) is defined for all k € N if
and only if there exists a subspace Dx C D, containing x and ¢-invariant,
such that the minimal polynomial of ¢|p, belongs to Z[X].

(6) Let x be in M. There exists p € IN such that ¢™* (x?) is defined for all k € N
if and only if there exists a subspace Dy C D, containing x and ¢-invariant,
such that the minimal polynomial of $~|p . belongs to Z[X].

Proof. (1) By construction, if x € D, then there exists a sequence (x,)xen such
that pgo (Xp+1) = X, and xo = x. In particular x; € D,. Thus go(gmlQ is an
isomorphism from W ® Q to V' ® QO which send D, into D, with D, of finite
dimension. Hence the linear map ¢ is an isomorphism.

(2) From (1), we have D, = D ,—1. We thus prove (2) only for k € IN. For all
k € IN the sequence (y,) = (xx,) is such that ¢¥ (y,+1) = y, and yo = x. Hence
Dy C D k.

Conversely, if there exists a sequence (y,)nen such that ¢¥(y,41) = y, and
yo = x, we may extend the sequence in a sequence (x,) define by xo = x and
X(kp—q) = ¢4 (yp) with p € Nand g € [|0,k — 1]]. As for all p € N, the element
ok (yp) is defined, the elements ¢9(y,) for g € [|0,k — 1|] are also defined. The
sequence (x,) verifies ¢(xn+1) = x, and xo = x. In particular Dy = D ,«.

(3) As V and V'’ are commensurable, V @ Q = V' Q= (VNV)® Q. In
particular pgq = (¢lvnv)eq = (¢'lvav)eq = ¢gq- Hence D, = Dy and

¢ =(9).



Multiple conjugacy problem in graphs of free abelian groups 19

(4) We proved that the Q-vector space D« does not depend on k, however
the definition set Vi of ¢* (which is a subgroup of D ,«) depends on k. Note that
Vi=V,V_y=Wandforall k > 0wehave Vy1 C Viyand V_p_; C V_g.

As D i /(Vk N D) is a torsion group, if y € D« then there exists p such
that y? € Vg, then ¢*(y?) is defined. If x € D, then for all k € Z, the element
x isin Dy = Dy. Thus, for all k there exists p such that @ (xP) is defined.

Conversely, assume that for all k there exists an integer px such1 that x?* be-

longs to Vi. Call x; = ¢*(xP%). and define the sequence ¥ = xkp K of element
in V ® Q. We have pgq(xk) = xx4+1 and xo = x. Thus by definition x belongs
to Dy.

(5) Call Dy = (¢¥(x?),k € N) C M the Z-module generated by the iterated
images of x”. By construction ¢ is an endomorphism of D,. In particular the
minimal polynomial of ¢| p, has its coefficients in Z. Moreover as ¢(Dy) C Dy,
we have ﬁx C Dy,. Hence Dy := 5x ® Q is a g-invariant subspace of D,. The
minimal polynomial of ¢|5 which is equal to the minimal polynomial of ¢|5
has its coefficients in Z.

Conversely, suppose there exists a ¢-invariant subspace D, of D, contain-
ing x and such that the minimal polynomial of ¢|p, has its coefficients in Z.
The matrix of the restriction of ¢ to D, has integer entries in the basis associated
to its invariant factors. On the one hand, there exists p such that all pth powers of
the elements of this basis belongs to V', on the other hand there exists m such that
x™ has integer coordinates in this basis. Then p = mgq is as required.

(6) It suffices to apply the previous point to ¢~ !. U

Modulus of hyperbolic elements Let G be a vGBS group, let /2 be a hyperbolic
element. Fix wq a vertex of the axis of /. Define

M = Gwa

V = Guy Nh™ ' Gugh = Guy N Gy,
and

W = Gyy N hGyoh™ = Gy N Ghay,.
Then t; the conjugation by % defines an isomorphism between V and W.
We call

on = 1p

the modulus of h (relative to wop). It is an automorphism of D;, C Gy, ® Q.
We take the notation Dy, instead of Dy, .
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Remark 6.2. By point 4 of Proposition 6.1, an element g € Gy, belongs to Dy, if
and only if for every n € Z there exists an integer p such that 7;(g”) € Gy, that
is, for every n € Z there exists an integer p such that g? belongs to Gj—n.y,,.

Lemma 6.3. (1) The modulus ¢ is an element of GI(Dy,) and for all k € Z* the
modulus of h* is (Dy, cp}’f).

(2) Let (D}, ¢},) the modulus of h constructed from an other vertex wy, of the axis.
Then D = Dy N Gy, and D" = D} N Gy, are commensurable and

YrlonD = 90;,|Drm/-

In particular, we may identify canonically (D, ¢n) and (D}, ¢},).

(3) The set Dy, and the map ¢y, are explicitly constructible.

Proof. The point 1 is the transcription in G of point 1 of the Proposition 6.1.

By the Remark 6.2, the intersections Dj, N Gy, and D} N Gy, are commen-
surable. Thus the point 2 is a consequence of point 2 of Proposition 6.1.

We now construct D and ¢;. We may assume that the group is given by a
preferred presentation (cf Section 2.1). First, with Corollary 2.7, we may con-
struct a fundamental domain [wg, & - we] of & and its projection to I". Note that
the preferred presentation gives us a basis of the image of the edge groups in
the vertex groups. As V and W may be seen as intersections of edge groups,
we may construct two bases B and B’ of ¥V and W. We may also compute a
matrix representing #,: V' — W in the bases B and B’. Moreover, we may iter-
atively construct the sequence V; of subgroups of G, defined by Vo = V and
Vi = th(Vi—1) N Vi—1. The sequence V; ® Q is first strictly decreasing (for the
inclusion) and then stationary. The set Dy, is thus equal to the first term V; ® Q
suchthat V; ® Q = Vi41 ® Q. Then ¢, = t4]p, ® Q. O

7. Characteristic spaces

Given wy a vertex of the axis of &, we define
17}1 = Gy, N Dy,

which does not depend on the choice of wy up to commensurability. Let g be an
elliptic element of G. If there exists n € IN such that g” < Vi, then we write
g € [Dy]. By Proposition 6.1 we have g € [Dy] if and only if for all & € Z, there
exists p € IN such that g7 € Gx.pp,-
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Proposition 7.1. Let G be a vGBS group. Let h be a hyperbolic element with axis
A and let g be an elliptic element. For every p, denote €, the set of fixed points
of g”.

There exists p such that €, N A is a h-positive half-line if and only if
g € [Dy] and there exists a gy -stable subspace D¢ of Dy, such that g has a power
in Dg N Gy, and such that the minimal polynomial of ¢y |p, is in Z[X].

Proof. By definition £, N A is a h-positive half-line if and only if there exists kg
such that for all k¥ > k¢, the element g# belongs to the group Gy s that is, for
all k € IN we have h*g?h* € G,,. Thus, the proposition results directly from
the point 5 of Proposition 6.1. O

Corollary 7.2. With the notations of Proposition 7.1, call s the translation length
of h. If gP fixes a h-positive half-line and g fixes a segment of the axis of length
d = s-dim Dg then g fixes a h-positive half-line.

Proof. Suppose g? fixes a h-positive half-line. Let D, be as in Proposition 7.1.
We may assume that D is chosen of minimal dimension. Define r = dim Dy its
dimension. If g fixes a segment of the axis of length d, then forall 0 < k < r,
the elements ¢* (g) all fix a same vertex v of the axis. Moreover (¢¥ (g)) generate
Dg(C G, ® Q), thus (©*(2))k<r is a basis of Dg(C Gy ® Q). The matrix of
¢|p, in this basis is ( I d?—l ‘ff) with ag an element of QQ and A a column vector
of length r — 1 of elements of Q. From Proposition 7.1, the minimal polynomial
of ¢|p, is in Z[X], thus the coeflicients of the vector A and the element a belong
to Z. That is ¢|p,ng, has its image in Dg N G,. Hence, for all k € IN we have
ok (g) € D¢ N Gy. Thus g fixes a h-positive half-line. O

This proposition is algorithmic. More precisely,

Proposition 7.3. Given a hyperbolic element h with axis Ay and any element g
with characteristic space Ag, we may decide is which case g fall:

o The intersection Ag N Ay, is finite (possibly empty),

e the intersection Ay N Ay, is a positive half-line of Ay,
e the intersection Ag N Ay, is a negative half-line of Ay,
o Ay =Ap.

Moreover, if Ay N Ay is empty, we may compute the shortest path between the
two spaces. If this intersection is finite, we may compute this intersection. If this
intersection is a half-line (with a known direction), we may compute its origin.
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Proof. The moreover part is a direct consequence of Proposition 2.6 and Corol-
lary 2.7: if the intersection Ag N A}, is empty, we find one vertex of A and one of
Ap, and construct the path between them. We may then reduce this path until no
edge belong to A, or Aj. The obtained path is the shortest path between A, and
Ap. If the intersection is not empty, using the same method we may find a vertex
v which belongs to A, N Ay. If Ag N Ay, is finite in a given direction of Ay, we
may run trough Ay, starting from v in this direction until its extremity.

Let us prove now the main part of the proposition. Let v be a vertex in Ag,
and w a vertex in Ay. Call d the translation length of # on Aj. Using Propo-
sition 2.6, we first construct the path [v, w] between v and w. Applying Corol-
lary 2.7,
we may checkif [v, w] C Ag UAy. If [v, w] ¢ Ag UA}, then the two characteristic
spaces are disjoint.

If [v,w] C Ag U Ay, we have to distinguish the elliptic and the hyperbolic
cases.

(1) First assume g is elliptic. Call v’ a vertex belonging to the intersection
Ag N Ajp. The element g belongs to G,». Let Dy be the definition set of
¢ in Gy @ Q. By Corollary 6.3, we may construct D, C Gy ® Q. Call n
its dimension. We may decide if g € [Dy].

If g & [Dp] then Ay U Ay, is finite.

If g € Dy, we compute the smallest gp,-invariant subspace Dy = (¢’ (g),
i € [|1,n]]) of Dy containing g, and the minimal polynomial Pg of ¢4|p,.
Then, applying Proposition 7.1 and Corollary 7.2, the element g fixes a pos-
itive half line if and only if P, belongs to Z[X] and g fixes a segment of
length d - dimDg. As the characteristic space is connected, checking that g
fixes a segment of length d - dim D4 containing v’ is sufficient.

To check if g fixes the negative half-line, it suffices to repeat the process
interchanging 4 and h~!.

The four cases are the following:

o the element g does not fix neither a positive nor a negative half-line of
Ap, then A, N Ay, is finite;

o the element g fixes a positive half-line, but no negative half-line, then
Ag N Ay is a positive half-line;

o the element g fixes a negative half-line, but no positive half-line, then
Ag N Ap is a negative half-line;

e the element g it fixes both a positive and a negative half-line, then it
fixes globally Aj,.
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(2) Assume now that g is hyperbolic. Call d’ the translation length of g. Con-
struct v’ a vertex of the intersection A N.Aj. We then check if the intersection
Ag N Aj has length > d +d’.

If Ag N Ay has length less than d + d’, then it is trivially finite. If its
length is greater than d + d’, call g’ = [g, h] the commutator of g and A.
Then g’ fixes a vertex of Ay N A, and thus is elliptic. Moreover Ag N Ay
and Ag N Ay have Hausdorff distance less than d + d’. As we may decide if
Agr N Ay is finite, a positive half-line, a negative half-line or the whole axis
Ap , we may also decide it for Ag N Ap,. O

Take h, g and g’ three elements of G with & hyperbolic, with characteristic
spaces Ap, Ag and Ag/. Suppose that A, N Aj, and Ag N A have the same form
in the sens of Proposition 7.3, we may define the shift length between g and g’ in
the following way:

o if Ag N Ay and Agr N Ay, are both empty. Let v and w be the closest vertices
of A to respectively A, and A,/, then the shift length between g and g’ is
the distance between v and w;

o if Ag N Ap and Agr N Ay are both finite, assume A, N A; = [v,v'] and
Ag'NAp = [w, w'] with v and w the endpoints of the segments in the negative
direction of A, the shift length between g and g’ is the distance between v
and w;

o if A, N Ay and Agr N Ay, are both half-lines of the same direction, the shift
length between g and g’ is the distance between the origin of the two half-
lines;

o if Ay N Ay = Agr N Ay = Ay, the shift length is not defined.

By Proposition 2.6, the shift length is computable.

8. Multiple conjugacy problem

Now let us solve problem 4.7, which we proved to be equivalent to Theorem 1.2.

Theorem 8.1. Let G be a vGBS group, A = (a1,...,ay) and B = (by,...,by)
two n-tuples of G, and a an hyperbolic element. We may decide whether A and B
are conjugate by an element of Cg(a), the centralizer of a in G, or not.
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Proof. By Proposition 5.1, we may explicitly give Cg (a) under the form E x (k).
Thus, the new problem is now:

is there « € E and m € 7 such that ah™ Ah"™a~! = B?

We proceed in two steps: first finding m then determining «.

Denote / the translation length of 4 on its axis A, = A,. Every element of £
fixes Ay pointwise. If there exists g € Cg(a) which conjugates a; to b;, then it
sends the characteristic space of a; to the one of b;. In particular the intersections
Aa N Ag; and A, N Ay, differ by a translation.

Applying Proposition 7.3, we may determine A, NAg; and A, N Ay, for every
i. If each intersection is equal to the whole axis A, then the group G4, p generated
by the a;, the b; and Cg (a) is polycyclic (because it acts on a line with free abelian
stabilizers). As A and B are conjugate in G if and only if they are conjugate in G4,
then the problem is reduced to multiple conjugacy in polycyclic groups which is
solvable [3, 1].

Otherwise, choose i such that the intersection A, N A, differs from A,. Call
F the form of this intersection, which is either finite, positive half-line or negative
half-line. Compute the intersection A, N Ay, . If the form of this intersection is
not F, then A and B are not conjugate.

If A, N Ap,; has form F, then compute d the shift length between a; and b;.
If I does not divide d then no element of Cg send A, N Ap,; to Ag N Ay, thus A
and B are not conjugate.

If [ divides d, after conjugating B by h%, we have the equivalence

A and B are conjugate in Cg(a) <= they are conjugate by an element of E.

By Lemma 3.1, we may compute the sets of elements E; C E which conjugate
a; to b;. Every E; is a union of sublattice of E. Then A and B are conjugate if
and only if the intersection (/_, E; (which is computable) is not empty. Thus the
problem is algorithmically solvable. O

9. The case of GBS groups

The case of vGBS groups whose vertex and edge groups are cyclic is different.
These groups are called GBS groups. In the case of GBS groups, the conjugacy
problem is solvable even for elliptic elements.

For hyperbolic elements, the problem is solved by Theorem 4.3. The last case to
study is the one of elliptic elements. The method consists in reducing the problem
into the reachability problem in Petri Nets which is solvable according to [4].
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First, let us solve the problem for GBS groups with a GBS decomposition with
one vertex. Let G be one of these groups. Call v the vertex and ¢ € G an element
generating G,. Let k be the number of loops in the graph of groups. The group
admits a presentation G = (a, ..., | t;a% 7' = a®). To introduce symmetry
in the presentation, we introduce k new generators fx 1, ..., I2x, and 2k relation
itk = Zi_l, and tiaaitl-_l =a%,i € [|k + 1,2k|] where 0;+r = 7; et 1,1, = 0j.
Note that this gives a preferred presentation (see Section 2.1 for the definition).

An elliptic element of G is obviously conjugate to an element of the sub-
group {a). Moreover, we may find explicitly an element of (a) in its conjugacy
class (e.g. by an exhaustive enumeration). We may thus restrict the conjugacy
problem for elliptic elements to the conjugacy problem for elements in {a).

Proposition 9.1. The conjugacy problem in G is solvable.

Proof. Let g = a™ and g’ = a” be two elements of {(a). We prove that g and g’
are conjugate in G if and only if there exists a finite sequence of integers (my =
m,my,...,mg = n) such that for all i < s there exists a integer j; verifying
0j, | mi and mj 1 = m; ;’T’l Call such a sequence a conjugating sequence.

If there exists a conjugating sequence (mg = m, my, ..., ms = n). Directly, we
have the equality ;2 , ...1;,gt;'¢;" ... 1;1 = g'. Thus g and g’ are conjugate.

If ¢ and g’ are conjugate. Let ¢ be such that cg’c™! = g. Then g fixes both
vertices v and ¢ - v in the Bass—Serre tree. Thus, it fixes the path [v,c - v]. Let
(vo = v, v1,...,vs = c¢-v). Then there are some generators a; of G,, and integers
Jji such that ag = a and afj" = airﬂzl. Note that a; = cac™!.

Take the sequence (my, . . ., m;) of integers such that g = a;"'. Thenasa, ' =
lmﬁ” we have oj, | m; and m; 41 = m; ;’T’ Since g = a™ we have mg = m
and since cg’c™! = ca”c7!, and a; = caé_l, we have mgy = n. The sequence
(mo, . .., my) is as required.

We reduced the conjugacy problem to the problem of finding such a sequence a
sequence (my, . .., my). Remark that if such a sequence exists, the prime divisors
of the m;’s belongs to the (finite) set of prime divisors P = {p;, ..., pr} of the el-
ements t;, 0;, n and m. Call 7 the natural bijection between integers whose prime
divisors are in P and IN* x Z/27 (which associate to an integer its decomposition
in prime factors and its sign).

a

Finding a conjugating sequence (m¢ = n,...,mgs = m) is now equivalent to
finding a sequence (ro = 7 (n),...,rs = w(m)) of elements of Nk x Z /27 such
that for all i < s there exists an integer j; verifying r; — n(0j,) € Nk x 7,/27. and
riv1 = ri + 7(z;;) — 7 (o).
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The problem to decide if such a sequence exists is proven to be solvable in [4]
(the Z/27. does not appear in the proof of [4] but may easily be added). U

Using the same method we may prove the conjugacy problem is solvable in
any GBS group:

Theorem 9.2. The conjugacy problem in GBS groups is solvable.

Proof. Let G = m1(I") be a GBS group with set of vertices V = {vq,...v,}, we
denote a; a generator of the group G, . Let g and g’ be two elliptic elements which
belongs to the groups of two vertices v and v’. Let m and n be such that g = »™
and g’ = b where b generates G, and b’ generates G, .

Let ey, ..., e, be the edges of I'. Denote o; and t; the integers such that the
relation associated to e; is t;as’t;7' = a;’. Call i(e;) and t(e;) the initial and
terminal vertex of e;.

We prove that g and g’ are conjugate in G if and only if there exists a finite
sequence ((mg, wo) = (m,v), (my,wy), ..., (ms,ws) = (n,v")) of elements of
7, x V such that for all i < s there exists a edge e;, verifying i(ej;) = w;, t(ej;) =
w;+1 and o, | m; and m; 1 = m; ;’T’ By extension we also call such a sequence
a conjugating sequence. l

The proof is the same as in the previous proposition.

Let P = {pi1...., pr} be the set of prime divisors of o;, 7;, m and n.
Let Q = {q1,...,q-} be a set of r prime numbers disjoint from P. Note that
if a conjugating sequence ((mg, wo) = (m,v), (my, wy), ..., (Mg, ws) = (n,v"))
exists then the integers m; have their prime divisors in P. Call Zs the set of inte-
gers with prime divisors in P. Call 7 the map from Zy x V to (IN* x Z/27) x IN"
which maps (z, vj) to the couple (s, ) where s € IN % 7,/27. is the decomposition
in prime factors of z (with its sign), and ¢ € IN" is the vector (§;,j); where § is the
Kronecker symbol.

Finding a conjugating sequence ((mg, wo) = (m, v), ..., (mg, ws) = (n,v’) is
now equivalent to finding a sequence (ro = w(n),...,rs = m(m)) of elements
of N¥ x 7/27 x N" such that for all i < s there exists an edge e;, verifying
ri —m(oj;,i(ej;)) € INK % 7/2Zx N" andripq = r;i + (T, t(ej;) — m(oi,i(ej;).

The problem to decide if such a sequence exists is proven to be solvable in [4].

O
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Corollary 9.3. The multiple conjugacy problem in GBS groups is solvable.

Proof. Let G be a GBS group. Take A = (ap,...,ax) and B = (by,...,bx)
to k + 1-tuples of G. If {ay,...,ax) is not an elliptic subgroup, then the prob-
lem is already solved by Theorem 8.1. Otherwise, all a; belongs to a same vertex
group (a), and obviously, we can to the same for B. Call b a generator of the
vertex group containing (b, ..., br). Call a’ the gcd of the ¢;’s in (@) and b’ the
gcd of the b;’s in (b). For every i there exists m; and n; such that a; = a’™i and
b; = b™i. Then A and B are conjugate if and only if ¢’ and b’ are conjugate and
m; = n; for every i. Finally Theorem 9.2 allows us to conclude. O
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