
Groups Geom. Dyn. 9 (2015), 29–53

DOI 10.4171/GGD/304

Groups, Geometry, and Dynamics

© European Mathematical Society

On the growth of Hermitian groups

Rui Palma

Abstract. A locally compact group G is said to be Hermitian if every selfadjoint element

of L1.G/ has real spectrum. Using Halmos’ notion of capacity in Banach algebras and a

result of Jenkins, Fountain, Ramsay and Williamson we will put a bound on the growth of

Hermitian groups. In other words, we will show that if G has a subset that grows faster than

a certain constant, then G cannot be Hermitian. Our result allows us to give new examples

of non-Hermitian groups which could not tackled by the existing theory. �e examples

include certain in�nite free Burnside groups, automorphism groups of trees, and p-adic

general and special linear groups.
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Introduction

A locally compact group G is said to be Hermitian when L1.G/ is a Hermitian Ba-

nach �-algebra, i.e. when every selfadjoint element of L1.G/ has real spectrum.

�ere are many classes of locally compact groups which are known to be Her-

mitian, and these include abelian groups, compact groups, nilpotent groups and

F C �-groups. Also on the Hermitian class are all compactly generated groups of

polynomial growth [12] and also a wide class of Lie groups (the reader is referred

to [15, 12.6.22] for an account).

�e class of Hermitian groups has been more successfully studied in the case of

connected locally compact groups. In this setting it is known, by a result of Jenk-

ins [10, �eorem 4.5], that a connected, reductive Lie group is Hermitian if and

only if its semisimple quotient is compact. Moreover, it was shown by Palmer [15,

�eorem 12.5.18 (e)] that every almost connected Hermitian locally compact group

is necessarily amenable. Both these results automatically provide us with many
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examples of non-Hermitian groups, as for instance, any non-amenable connected

Lie group.

In the case of discrete groups the most important result is due to Jenkins [9,

�eorem 5.1], and states that a discrete Hermitian group cannot contain a free sub-

semigroup in two generators. �is result also automatically provides us with many

examples of non-Hermitian discrete groups, such as all non-abelian free groups

and all solvable groups of exponential growth, for example.

�e question of Hermitianess in the case of non-discrete totally disconnected

groups has been, largely unaddressed in the literature, with no general results

known and with several concrete examples still to be decided whether they are

Hermitian or not. According to Palmer [15, Table 5, pp. 1488–1490] such groups,

for which the question remains unanswered, include the automorphism groups of

trees (in their totally disconnected topology) and the p-adic “ax+b” groupQpÌQ�
p.

In fact, we only know of one example of a non-discrete totally disconnected group

which has been proven to be non-Hermitian, and that is PGL2.Qp/, as shown by

Jenkins in [10, page 300].

�e goal of this article is to establish a connection between growth rates in

locally compact groups and Hermitianess. Our main result says, essentially, that

if a locally compact group has a subset whose growth rate is larger than a cer-

tain �xed number, than the group is not Hermitian. In other words, subsets of

Hermitian locally compact groups cannot grow very fast.

Our result was inspired and based on the, seemingly independent, works of

Jenkins [10] and Fountain, Ramsay, and Williamson [5]. Using Halmos’ notion

of capacity in Banach algebras [7], they gave a su�cient condition for a Banach
�-algebra to be non-Hermitian. �is allowed Fountain, Ramsay and Williamson

to give an alternative proof that the free group on two generators is not Hermitian

based on the very fast growth of this group. Our goal is to extend this idea to more

general locally compact groups.

As a consequence of our result we can give new examples of non-Hermitian

groups which could not be tackled by the existing theory. For instance, we can

show that certain free Burnside groups are not Hermitian, being the �rst exam-

ples of discrete torsion groups of exponential growth for which this property is

established. Other examples that will be treated in this article include certain au-

tomorphisms groups of trees, p-adic general linear groups GLn.Qp/ and special

linear groups SLn.Qp/, in their totally disconnected topology.

�is article is organized as follows. In Section 1.1 we review Halmos’ notion of

capacity in Banach algebras and the Jenkins, Fountain, Ramsay and Williamson’s

result relating capacity and spectrum of selfadjoint elements. In Section 1.2 we
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develop the appropriate notions and results regarding growth rates in locally com-

pact groups.

Our main result and its corollaries, which relate fast growth with non-Hermi-

tianess, are stated and proven in Section 2.

Finally, in Section 3, we give some known and also some new examples of

non-Hermitian groups, using the methods developed in Section 2. We also state

some open questions in Subsection 3.6.

�e author is thankful to the referee for some valuable comments, particularly

concerning the clari�cation of the hypotheses appearing in the statement of the

main theorem.

1. Preliminaries

Given a �-algebra A and an element a 2 A we will use throughout this article

the notations �.a/ and R.a/ to denote, respectively, the spectrum and the spectral

radius of a. Also, if S is a set, jS j stands for the cardinality of S .

1.1. Capacity in Banach algebras. In [7] Halmos introduced the notion of ca-

pacity of an element of a Banach algebra, so as to give an appropriate analytic

generalization, for Banach algebras, of the notion of an algebraic element (much

like topological nilpotent elements are an analytic generalization of nilpotent ele-

ments). Halmos’ de�nition, which can be found in [7, page 857], was the follow-

ing:

De�nition 1.1 (Halmos). Let A be a Banach algebra. �e capacity of an element

a 2 A, denoted cap.a/, is the number de�ned in the following way:

cap.a/ WD lim
n

inf
p2Mn

kp.a/k 1
n D lim

n
inf

p2Pn�1

kan C p.a/k 1
n ; (1)

where Mn is the set of all monic complex polynomials of degree n and Pn is the

set of all complex polynomials of degree n. �e limit in (1) can be shown to exist

always.

Halmos’ de�nition of capacity had roots in the classical notion of capacity

of a subset X � C coming from potential theory. �e relation between the two

concepts was established by Halmos himself when he showed that the capacity of

an element a of a Banach algebra is the same as the classical notion of capacity of

the set �.a/. �is highlights the fact that the capacity of an element is in some way

related with certain properties of its spectrum. In this regard, it is for instance clear
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that the capacity of an element a is always bounded by its spectral radius. Another

important result in this setting is due Jenkins [10, Corollary 1.4] and, apparently

independently, to Fountain, Ramsay and Williamson [5, Lema 5.1], which says that

for a selfadjoint element in a Banach �-algebra to have real spectrum, its capacity

must necessarily be less than half of its spectral radius:

�eorem 1.2 (Jenkins [10], Fountain, Ramsay, Williamson [5]). Let A be a Ba-

nach �-algebra and a 2 A a selfadjoint element. If �.a/ � R, then cap.a/ �
1
2
R.a/.

Jenkins did not state the above result in this way, but in an equivalent form.

�e above formulation appears in [5], and a proof of the result can be found there

as well.

�eorem 1.2 is a useful tool for showing that certain Banach �-algebras are not

Hermitian: one just needs to �nd a self-adjoint element for which cap.a/ > 1
2
R.a/.

Fountain, Ramsay and Williamson used this result to give a new proof that the free

group in two generators is not Hermitian [5, pages 246-247] and to give the �rst

example of a non-Hermitian locally �nite group [5, page 248]. �e above result

was also used later by Bomash [3] to show that certain solvable groups are not

Hermitian. Jenkins used the result to prove that PGL2.Qp/ is not Hermitian in its

totally disconnected topology [10, page 300].

In all these applications the authors established that a given element in the

group algebra had a “large” capacity (greater than half of its spectral radius). In

the case of Fountain, Ramsay and Williamson’s new proof that the free group on

two generators is not Hermitian, it is clear that the estimation of the capacity is

based on the very fast growth of the free group. �is is the idea we will follow in

the remaining part of this article: we will show that if a subset of a group grows

too fast, then there is a selfadjoint element with large capacity, and therefore the

group cannot be Hermitian. We start, in the next subsection, by establishing the

appropriate notions of growth in locally compact groups.

1.2. Growth in locally compact groups. We recall the de�nition of the growth

function and growth rate of a subset of a locally compact group.

De�nition 1.3. Let G be a locally compact group with a Haar measure �. For a

measurable set S � G the sequence ¹�.Sn/
1
n ºn2N is called the growth function

of S , and the limit superior

!G.S/ WD lim sup
n!1

�.Sn/
1
n

is called the growth rate of S .
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Another important notion is that of spherical growth. �is notion is common-

place in the theory of growth of �nitely generated discrete groups (see for exam-

ple [4, VI.A 1]), but we have not seen it used in the more general context of locally

compact groups. �e generalization of the de�nition is in any case straightfor-

ward, as we now present it:

De�nition 1.4. Let G be a locally compact group. For a measurable set S � G

the sequence ¹�.SnnSn�1/
1
n ºn2N is called the spherical growth function of S , and

the limit superior

�G.S/ WD lim sup
n!1

�.Sn n Sn�1/
1
n

is called the spherical growth rate of S .

It is clear that both the growth rate and the spherical growth rate do not depend

on the choice of Haar measure �.

We have the following result.

�eorem 1.5. Let G be a locally compact group and S � G any nonempty rela-

tively compact open set. We have that the limit

lim
n!1

�.Sn/
1
n ;

always exists, is �nite, and is greater or equal to 1.

�e above result was established for compactly generated groups by Guiv-

arc’h [6, �éoreme I.1], in the case where S is a compact neighbourhood of e

that generates G. Since we are interested in general locally compact groups (not

necessarily compactly generated) and since it will be especially important for us

to consider sets that do not contain the identity e, we were lead to state and prove

the result in the generality provided above. Before we prove this result, we recall

the following standard de�nition:

De�nition 1.6. A relatively compact open subset S � G is said to have exponen-

tial growth if 1 < �G.S/ and subexponential growth if �G.S/ D 1.

We will now turn to the proof of the above result.

Proof of �eorem 1.5. By [Guivarch Lemme I.1] we have that

�.S/�.SnCk/ � �.SnS/�.S�1Sk/ D �.SnC1/�.S�1Sk/; (2)



34 R. Palma

for any n; k 2 N. Also by [Guivarch Lemme I.1] we have that

�.S�1/�.S�1Sk/ � �.S�1S�1/�.SSk/ D �.S�2/�.SkC1/: (3)

Taking the decomposition SmC1 D Sm�1S2 for any m > 2 and applying [Guiv-

arch Lemme I.1] one last time we have that

�.S/�.SmC1/ � �.Sm�1S/�.S�1S2/ D �.Sm/�.S�1S2/: (4)

Using inequalities (2), (3) and (4) and the fact that S is nonempty we obtain

�.SnCk/ � 1

�.S/
�.SnC1/�.S�1Sk/

D �.S�2/

�.S/�.S�1/
�.SnC1/�.SkC1/

D �.S�2/�.S�1S2/2

�.S/3�.S�1/
�.Sn/�.Sk/:

Hence, the sequence ¹log.�.Sn/
1
n /ºn2N satis�es the conditions of [Guivarch Lem-

me I.2] and we therefore conclude that the limit limn!1 �.Sn/
1
n exists and is

�nite. It is clear that this limit is always greater or equal to 1 since 0 < �.S/ �
�.Sn/ for all n 2 N.

�e spherical growth also always satis�es 1 � �G.S/ < 1, provided one is

only considering relatively compact symmetric sets S that do not generate a com-

pact subgroup, as we will now see. If S generates a compact subgroup then it can

happen, for example, that �G.S/ D 0. We will also see later in this section, in

Proposition 1.9, that under appropriate assumptions the limsup in the de�nition of

�G.S/ is also a true limit, as we showed to be true for !G.S/.

Proposition 1.7. Let G be a locally compact group and S � G a relatively com-

pact, symmetric, open set that does not generate a compact subgroup of G. �en

the spherical growth �G.S/ is always �nite and greater or equal to 1.

Proof. It is clear that the spherical growth is �nite since �G.S/ � !G.S/ and

!G.S/ is �nite by �eorem 1.5.

Suppose that �G.S/ < 1. �en there is a real number r such that eventually

we have �.SnnSn�1/
1
n < r < 1, say for n � n0. �is means that, for n � n0, we

have �.SnnSn�1/ < rn and therefore the series
P

n�2 �.SnnSn�1/ converges.



On the growth of Hermitian groups 35

Since S is symmetric, the subgroup hSi it generates is precisely the set

hSi D
[

n�1

Sn; (5)

We can then conclude that �.hSi/ has �nite measure because

�.hSi/ D �
�

S [
[

n�2

SnnSn�1
�

D �.S/ C
X

n�2

�.SnnSn�1/ < 1:

From (5) it is clear that hSi is an open subgroup, and therefore it is also closed.

Since it has �nite measure, it must be compact, which is a contradiction. Hence,

we conclude that 1 � �G.S/.

It is a well-known fact that for non-compact �nitely generated discrete groups

the growth rate and the spherical growth rate coincide. We will now show that

this holds for general locally compact groups too. �is result will be very useful

for us in the remaining sections of this article.

�eorem 1.8. Let G be a locally compact group and S � G a symmetric, rela-

tively compact, open set that does not generate a compact subgroup. We have that

the growth rate and the spherical growth rate of S coincide, i.e.

!G.S/ D �G.S/:

Proof. In this proof we consider two cases. First we consider the case where the

sequence
�

�.SnnSn�1/
�

n2N is bounded by a constant C 2 RC. In this case we

necessarily have that

1 � lim sup
n!1

�.SnnSn�1/
1
n � lim sup

n!1
C

1
n D 1:

So that �G.S/ D lim supn!1 �.SnnSn�1/
1
n D 1. We also have that

!G.S/ D lim sup
n!1

�.Sn/
1
n

� lim sup
n!1

�

�.S/ C
n�1
X

iD1

�.S iC1nS i/
�

1
n

� lim sup
n!1

.�.S/ C nC /
1
n

D 1:
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Since it is always true that 1 � !G.S/, we conclude that !G.S/ D 1, and therefore

!G.S/ D �G.S/.

We consider the case where the sequence .�.SnnSn�1//n2N is not bounded.

It is clear that !G.S/ � �G.S/ so we only need to prove that !G.S/ � �G.S/.

Since .�.SnnSn�1//n2N is not bounded we can always �nd a subsequence

.�.SnknSnk�1//k2N such that �.S inS i�1/ � �.SnknSnk�1/ for any i � nk .

By �eorem 1.5 we have !G.S/ D limk!1 �.Snk /
1

nk and by the choice of the

subsequence .�.SnknSnk�1//k2N we then have

!G.S/ � lim sup
k!1

�

�.S/ C
nk�1
X

iD1

�.S iC1nS i/
�

1
nk

� lim sup
k!1

.�.S/ C nk�.Snk nSnk�1//
1

nk

� .lim sup
k!1

n
1

nk

k
/.lim sup

k!1
�.SnknSnk�1/

1
nk /

� lim sup
n!1

�.SnnSn�1/
1
n :

�is �nishes the proof.

We now turn to the fact that, under certain assumptions on the set S , the limsup

in the de�nition of the spherical growth rate �G.S/ is in fact a true limit:

Proposition 1.9. Let G be a locally compact group and S a symmetric, relatively

compact, open subset of G. Let us assume the following two conditions.

(i) S does not generate a compact subgroup of G.

(ii) �ere exists a measurable symmetric set K � G with 0 < �.K/ and such

that SK � S .

�en the limit limn!1 �.SnnSn�1/
1
n exists and is greater or equal to one.

�e above result is well-known in the case of discrete groups (where condition

(ii) is trivially satis�ed by taking K D ¹eº). We do not known if the result holds

for a general subset S , i.e. if the result still holds without assuming condition (ii).

Nevertheless, as we will see at the end of the section, this condition is satis�ed by

many subsets of totally disconnected locally compact groups.

In order to prove Proposition 1.9 we will need the following lemma.

Lemma 1.10. Let G be a locally compact group and S a relatively compact open

subset of G. If K � G is a symmetric set such that SK � S , then for every n 2 N

we have .SnnSn�1/K � .SnnSn�1/.
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Proof. If SnnSn�1 D ; the result is obvious. Let us assume that SnnSn�1 ¤ ;
and let g 2 SnnSn�1 and k 2 K. Since SK � S we have SnK � Sn, and therefore

gk 2 Sn. We now want to prove that gk … Sn�1. Suppose by contradiction that

gk 2 Sn�1. �en g 2 Sn�1k�1 and since K is symmetric we have g 2 Sn�1K �
Sn�1, which is a contradiction. �us, .SnnSn�1/K � .SnnSn�1/

Proof of Proposition 1.9. We claim that (i) implies that the sets SnC1nSn are non-

empty for every n 2 N. If this was not the case, and SnC1nSn D ; for a certain

n � 1, then SnC1 � Sn and consequently Sk � Sn for every k > n. �is would

imply that the subgroup generated by S , which is
S

n2N Sn, could be covered by

the sets S1; : : : ; Sn, and would be therefore compact. Since this contradicts (i),

we then know that the sets SnC1nSn are all non-empty.

We claim that SnCknSnCk�1 � .SnnSn�1/.SknSk�1/ for every n; k 2 N. To

see this, let s1; : : : ; sn; t1; : : : ; tk 2 S be such that

s1 : : : snt1 : : : tk 2 SnCknSnCk�1:

Hence, s1 : : : sn 2 SnnSn�1, because if s1 : : : sn 2 Sn�1 then we would have

s1 : : : snt1 : : : tk 2 SnCk�1, which is not true by assumption. �e same reasoning

shows that t1 : : : tk 2 SknSk�1. Hence s1 : : : snt1 : : : tk 2 .SnnSn�1/.SknSk�1/.

By [Guivarch Lemme I.1] we have that

�.K/�..SnnSn�1/.SknSk�1// � �..SnnSn�1/K/�.K�1.SknSk�1//:

By Lemma 1.10 we know that .SnnSn�1/K � .SnnSn�1/, and similarly, using

the symmetry of S , we know that K�1.SnnSn�1/ � .SnnSn�1/. We can then

conclude that

�..SnnSn�1/.SknSk�1// � 1

�.K/
�.SnnSn�1/�.SknSk�1/:

As was shown before, we have that SnCknSnCk�1 � .SnnSn�1/.SknSk�1/,

so that

�.SnCknSnCk�1/ � 1

�.K/
�.SnnSn�1/�.SknSk�1/:

Hence, by [Guivarch Lemme I.2], the limit limn!1 �.SnnSn�1/
1
n must exist.

�e fact that this limit is �nite and greater or equal to 1 was already shown in

Proposition 1.7.

As we stated before, condition (ii) in Proposition 1.9 is very suitable when

dealing with totally disconnected groups, as the following result (which we are

sure to be folklore for the experts in totally disconnected groups) shows.
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Proposition 1.11. Let G be a locally compact totally disconnected group. Let S

be any compact open subset of G. �ere exists a symmetric compact open subset

K � G such that SK D S .

Proof. For every g 2 S choose a compact open subgroup Hg inside g�1S . We

have

S D
[

g2S

gHg :

Since S is compact we can extract a �nite cover g1Hg1
; : : : ; gnHgn

of S . Take

then any compact open subgroup K such that K �
Tn

iD1 Hgi
. Since for any i D

1; : : : ; n we have that K is a subgroup of Hgi
, we necessarily have Hgi

K D Hgi
.

Hence, we conclude that

SK D
n

[

iD1

giHgi
K D

n
[

iD1

giHgi
D S:

2. Main Result

�e following theorem is the main result of this article and is our tool for establish-

ing that certain groups are not Hermitian based on how fast some of their subsets

grow. For discrete groups the result admits a simpler statement, which will give

later in Corollary 2.2.

�eorem 2.1. Let G be a locally compact group. Suppose there exist sets S; K �
G such that S is a relatively compact, open, symmetric set that does not generate a

compact subgroup and K is a measurable, relatively compact, symmetric set such

that �.K/ > 0 and SK � S . Set

D WD
Z

S

�� 1
2 .h/d�.h/:

If we have

!G.S/ >
D

2�.K/ inf
h2S

�� 1
2 .h/

; (6)

then G is not Hermitian. Particularly, the element f 2 L1.G/ given by

f .g/ WD 1

D
�� 1

2 .g/�S.g/;

is a selfadjoint element with non-real spectrum.
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As we saw at the end of the previous section (Proposition 1.11), the existence of

sets S and K satisfying the assumptions of the above theorem is naturally assured

in the context of totally disconnected locally compact groups. Hence, �eorem 2.1

is more easily applied in the totally disconnected setting and all the examples we

will provide in Section 3 belong to this class of groups.

Proof of �eorem 2.1. A straightforward computation shows that f is selfadjoint.

Moreover, the spectral radius of f is less than 1, because

�.f / � kf k1 D 1

D

Z

G

�� 1
2 .g/�S.g/d�.g/ D 1:

Hence by the Jenkins, Fountain, Ramsay, Williamson theorem (�eorem 1.2 of the

present article), we only need to prove that cap.f / > 1=2 in order to show that f

has non-real spectrum, and hence that G is not Hermitian.

We claim that for any n � 1 we have, for any g 2 Sn,

f n.g/ � �� 1
2 .g/�.K/n�1

D
n : (7)

We will prove this claim by induction on n. �e case n D 1 follows easily

from the de�nition of f . Let us now consider the case n H) n C 1. Assume

that the inequality (7) holds for a certain n. Any g 2 SnC1 can be written as

g D g1 : : : gnC1, with g1; : : : ; gnC1 2 S . We have

f nC1.g/ D 1

D

Z

G

f n.h/�� 1
2 .h�1g/�S.h�1g/d�.h/

� 1

D

Z

g1:::gnK

f n.h/�� 1
2 .h�1g/�S .h�1g/d�.h/:

Since SK � S , it follows that SnK � Sn, and therefore g1 : : : gnK � Sn. Hence,

by the induction hypothesis, we have that

f nC1.g/ � �.K/n�1

DnC1

Z

g1:::gnK

�� 1
2 .h/�� 1

2 .h�1g/�S .h�1g/d�.h/

D �� 1
2 .g/�.K/n�1

DnC1

Z

g1:::gnK

�S .h�1g/d�.h/

D �� 1
2 .g/�.K/n�1

DnC1

Z

K

�S .h�1g�1
n : : : g�1

1 g/d�.h/

D �� 1
2 .g/�.K/n�1

DnC1

Z

K

�S .h�1gnC1/d�.h/:
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Since K�1S � S it follows that h�1gnC1 2 S , for any h 2 K. �us we conclude

that

f nC1.g/ � �� 1
2 .g/�.K/n�1

DnC1

Z

K

1d�.h/

D �� 1
2 .g/�.K/n

DnC1
;

and this proves our claim.

We now claim that

kf njSnnSn�1k1 � .infh2S �� 1
2 .h//n�.K/n�1�.SnnSn�1/

Dn
:

To see this we start by using the previous claim according to the following com-

putation:

kf njSnnSn�1k1 D
Z

SnnSn�1

f n.h/d�.h/

� �.K/n�1

Dn

Z

SnnSn�1

�� 1
2 .h/d�.h/

� �.K/n�1

Dn
.infh2SnnSn�1 �� 1

2 .h//�.SnnSn�1/

� .infh2Sn �� 1
2 .h//�.K/n�1�.SnnSn�1/

Dn
:

Since �
1
2 is a homomorphism we have that

inf
g2Sn

�� 1
2 .g/ � . inf

g2S
�� 1

2 .g//n

so that

kf njSnnSn�1k1 � .infh2S �� 1
2 .h//n�.K/n�1�.SnnSn�1/

Dn
:

We will now estimate the capacity of f .

cap.f / D lim
n

inf
p2Pn�1

kf n C p.f /k
1
n

1

D lim
n

inf
p2Pn�1

kf njSnnSn�1 C f njSn�1 C p.f /k
1
n

1 :
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Since supp.p.f // � Sn�1 for any p 2 Pn�1, it follows that

cap.f / D lim
n

inf
p2Pn�1

.kf njSnnSn�1k1 C kf njSn�1 C p.f /k1/
1
n

� lim
n

inf
p2Pn�1

kf njSnnSn�1k
1
n

1

D lim
n

kf njSnnSn�1k
1
n

1

� lim
n

�.infh2S �� 1
2 .h//n�.K/n�1�.SnnSn�1/

Dn

�
1
n

D lim
n

.infh2S �� 1
2 .h//�.K/.n�1/=n�.SnnSn�1/

1
n

D

D .infh2S �� 1
2 .h//�.K/!G.S/

D
;

where in the last step we used �eorem 1.8 and Proposition 1.9. Hence, since we are

assuming that inequality (6) holds, we conclude that cap.f / > 1
2
, and therefore

the element f has non-real spectrum.

For discrete groups the statement of �eorem 2.1 can be greatly simpli�ed:

Corollary 2.2. Suppose G is discrete. If there exists a �nite symmetric set S � G

with jS j � 2 and for which the inequality

!G.S/ >
jS j
2

;

holds, then G is not Hermitian. In particular, the function f 2 `1.G/ de�ned by

f WD 1

jS j�S ;

is a selfadjoint element with non-real spectrum.

Proof. If jS j � 2 and !G.S/ > jS j
2

it follows immediately that !G.S/ > 1 and

therefore S cannot generate a �nite subgroup. �e result then follows immediately

from �eorem 2.1 by taking the counting measure as the Haar measure in G and

by taking K as the trivial subgroup ¹eº.

�e following corollary of �eorem 2.1 is especially useful for tackling the

question of Hermitianess in certain totally disconnected groups, as we shall see in

Section 3.
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Corollary 2.3. Let G be a locally compact group and K � G a compact open

subgroup. We choose the normalized Haar measure � such that �.K/ D 1. If

there exists a g 2 G satisfying the following conditions

(i) KgK D Kg�1K,

(ii) �.KgK/ > 1,

(iii) !G.KgK/ > �.KgK/
2

,

then G is not Hermitian.

Proof. We take

S WD KgK;

which is clearly a compact open symmetric set satisfying SK D S . Since

�.KgK/ � 2 and !G.KgK/ >
�.KgK/

2
;

it immediately follows that S has exponential growth, and therefore does not gen-

erate a compact subgroup of G.

�e modular function � is constant on the double coset KgK, since K is a

compact subgroup. Hence we have

Z

KgK

�� 1
2 .h/d�.h/

2�.K/ infh2KgK �� 1
2 .h/

D �.KgK/

2
:

From (iii) and �eorem 2.1 we conclude that G is not Hermitian.

Remark 2.4. A natural question to ask is if the growth condition (6) in �eo-

rem 2.1 could be improved in order to ensure that G is not Hermitian. �e an-

swer to this question is that, without any further assumptions, condition (6) is the

sharpest possible, meaning that there are non-compact Hermitian groups G for

which

!G.S/ D D

2�.K/ infh2S �� 1
2 .h/

;

for certain sets S and K. A example of this is when G D Z, S D ¹1; �1º and

K D ¹0º.
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3. Applications

In this section we will provide new examples of non-Hermitian groups, and also

recover some known examples, based on the results of the previous section that

relate growth and Hermitianess.

3.1. Some known results

Corollary 3.1. Suppose G is discrete. If G contains a non-abelian free subgroup,

then G is not Hermitian.

Proof. Let a; b 2 G be two elements that generate a non-abelian free subgroup

of G. As it is well-known, the growth rate of S WD ¹a; b; a�1; b�1º is !G.S/ D 3.

�us we have !G.S/ > jS j
2

D 2, and therefore G is not Hermitian by Corollary 2.2.

It is known that, more generally, the existence of a free sub-semigroup in two

generators is enough to ensure that G is not Hermitian. It seems unlikely, however,

that we can derive this more general result from Corollary 2.2 with the above

proof, without any further assumptions. �e problem lies with the fact that if a

and b generate a free sub-semigroup, then we can only estimate the growth rate

of S WD ¹a; b; a�1; b�1º to be !G.S/ � 2. Hence, it is in principle possible that

!G.S/ D 2 D jS j
2

;

and this is not enough to ensure that G is not Hermitian (see Remark 2.4).

Example 3.2. �e fundamental group �g of a closed orientable surface of genus

g � 2 is not Hermitian. It is known that such groups contain free subgroups in

two generators, and therefore cannot be Hermitian, but we will now present an

alternative proof based on growth rates. �e group �g has the presentation:

�g WD ha1; b1; : : : ; ag ; bg ja1b1a�1
1 b�1

1 : : : agbga�1
g b�1

g D 1i:

Let us consider the symmetric set of generators

Sg WD ¹a1; a�1
1 ; b1; b�1

1 ; : : : ; ag ; a�1
g ; bg ; b�1

g º:

By [4, VII Proposition 15] it is known that !�g
.S/ � 4g � 3 for any set S of gen-

erators of �g (this means that �g has what is usually called uniformly exponential

growth). Hence we see that

!�g
.S/ � 4g � 3 >

4g

2
D jSg j

2
;
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for all g � 2. �us, by Corollary 2.2 it follows that �g is not Hermitian.

Example 3.3. �e modular group G WD .Z=2Z/ � .Z=3Z/ is not Hermitian. �is

group contains a free subgroup in two generators (just like any non-trivial free

product of groups with the exception of .Z=2Z/ � .Z=2Z/), and therefore cannot

be Hermitian, but this can also be seen by looking at the growth rates.

Let us say that a is the generator of .Z=2Z/ and b is the generator of .Z=3Z/.

We consider the symmetric set S WD ¹a; ab; b2aº. As described in [4, VI 7], we

have !G.S/ D
p

5C1
2

and therefore

!G.S/ D
p

5 C 1

2
>

3

2
D jS j

2
;

so that G cannot be Hermitian by Corollary 2.2.

It is interesting to note, however, that the argument does not work if one chooses

the more natural symmetric set S 0 D ¹a; b; b2º. In this case we have (by [4, VI 7])

that !G.S/ D
p

2 so that

!G.S/ D
p

2 6> 3

2
D jS 0j

2
:

�is di�erence of behaviour of the growth rate with respect to a chosen set of

generators (both S and S 0 generate G) highlights the fact that one often has to

make a careful choice for the set S in order to able to apply �eorem 2.1 (see also

question 5 in subsection 3.6).

Remark 3.4. Concerning known results, it is also interesting to notice that Jenkins

proof that PGL2.Qp/ is not Hermitian in its totally disconnected topology ([10,

page 300]) is done along similar lines as our Corollary 2.3, despite the fact that

Jenkins does not explicitly refer to growth rates.

3.2. Free Burnside groups. �e property of having a free sub-semigroup in

two generators was, essentially, the only general criterium in the literature for

deciding that a discrete group was not Hermitian. Discrete groups without free

sub-semigroups were therefore largely outside the scope of the existing theory,

with the only examples of discrete groups without free sub-semigroups that were

known to be non-Hermitian being the Fountain, Ramsay Williamson group [5,

page 248] and Hulanicki’s group [8, Section 4] (both being locally �nite groups).

We will now give the �rst examples of discrete groups of exponential growth

without free sub-semigroups which are non-Hermitian. Recall that a free Burnside

group B.m; n/, where m; n 2 N, is the (unique) group generated by m elements
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and such that every element g 2 B.m; n/ satis�es the law gn D e. �ese are

obviously torsion groups (hence, without free sub-semigroups) and are sometimes

in�nite and of exponential growth (see [1, �eorem 2.15]).

Proposition 3.5. �e free Burnside groups B.m; n/ are not Hermitian for m > 1

and odd n � 665.

Proof. It is enough to prove this result for m D 2, since a free Burnside group

B.m; n/ with a number of generators m larger than two always contains B.2; n/

and Hermitianess passes to open subgroups ([15, �eorem 12.5.18 (a)]).

�e spherical growth function for B.2; n/ with odd n � 665 (with respect to

the canonical set of generators, which we denote by S ) was estimated by Adian

in his proof that the free Burnside groups have exponential growth. In the proof

of [1, �eorem 2.15] he shows that this spherical growth function is very close to

that of a free group in two generators, in the sense that

jSk n Sk�1j � 4 � .2:9/k�1:

�us, if a1; a2 are the canonical generators of B.2; n/, the exponential growth rate

of S D ¹a1; a2; a�1
1 ; a�1

2 º in B.2; n/ is

!B.2;n/.S/ D �B.2;n/.S/ D lim
k

jSk n Sk�1j 1
n � 2:9:

Hence, we clearly have !B.2;n/.S/ > jS j
2

D 2, and by Corollary 2.2 we conclude

that B.2; n/ is not Hermitian.

3.3. Automorphism groups of trees. We start by recalling some of the termi-

nology and facts about trees and their automorphisms that we are going to use.

Recall that a tree is a connected graph with no cycles. A tree X has a natural

distance function d W X0 � X0 ! N on the set of its vertices X0. By a geodesic

L in a tree we mean a subgraph which is isomorphic to the real line R. Also, the

number of edges which are incident to a vertex x0 is called the degree of x0, and

the tree is said to be locally �nite if every vertex has �nite degree.

A tree automorphism is a bijective map of the set of vertices of the tree onto

itself which preserves the edges, and a tree automorphism is called a translation of

length k 2 N if it has an (unique) invariant geodesic whose vertices are translated

by a distance of length k.

�e group Aut.X/ of automorphisms of a locally �nite tree X can be naturally

given a locally compact totally disconnected topology, with the sets

UF .g/ WD ¹h 2 Aut.X/ W g.x/ D h.x/; for all x 2 F º;
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where F is a �nite set of vertices, forming a basis of neighbourhoods of the ele-

ment g 2 Aut.X/. In this topology, the stabilizer of a vertex is a compact open

subgroup.

We have the following result.

Proposition 3.6. Let X be a locally �nite tree and G � Aut.X/ a closed subgroup

of automorphisms of X . Suppose that the following conditions are satis�ed:

(i) G contains a translation g along a geodesic L, with translation length k;

(ii) L contains a point x0 with degree at least 3;

(iii) �e stabilizer K of x0 inside G acts transitively on each sphere Sn.x0/ WD
¹x 2 X W d.x0; x/ D nº, with n 2 N.

�en G is not Hermitian in its totally disconnected topology.

Proof. Let � be the normalized Haar measure of G for which �.K/ D 1. Since

the action of K on the sphere Sk.x0/ is transitive and g takes x0 into a point in

this sphere, it follows from [2, Lemma 2.1 (3)] that KgK D Kg�1K.

It follows also from [2, Lemma 2.1 (3)] that �.KgK/ equals the cardinality of

the sphere Sk.x0/. Since x0 has degree greater or equal to 3, X has a geodesic that

contains x0 and the action of K is transitive on each sphere, there must be at least

3 elements in Sk.x0/, and therefore �.KgK/ > 1.

Since the action of K on each sphere Sn.x0/, where n 2 N, is transitive, all

the vertices of Sn.x0/ must have the same degree, which we denote by degn 2 N.

It is now not di�cult to see that, for n � 1,

jSnC1.x0/j D .degn �1/ � jSn.x0/j;

and of course jS1.x0/j D deg0. Hence, the cardinality of the each sphere is given

by

jSn.x0/j D deg0

n�1
Y

iD1

.degi �1/:

Since g is a translation of translation length k, it is not di�cult to see that degnCk D
degn, for all n 2 N. Hence we have that

jSnk.x0/j D deg0.deg0 �1/n�1

k�1
Y

iD1

.degi �1/n:
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Using [2, Lemma 2.1 (3)] again, we see that �.KgnK/ is the cardinality of the

sphere Snk.x0/. Hence, we see that

�..KgK/n/ � �.KgnK/

D jSnk.x0/j

D deg0.deg0 �1/n�1

k�1
Y

iD1

.degi �1/n

� .deg0 �1/n

k�1
Y

iD1

.degi �1/n:

Observing that for any integer q � 3 we have .q � 1/ � 2
3
q, it follows that

�..KgK/n/ �
�2

3
deg0

�n
k�1
Y

iD1

.degi �1/n D
�2

3

�n

�.KgK/n:

Hence we have

lim
n!1

�..KgK/n/
1
n D 2

3
�.KgK/ >

1

2
�.KgK/:

�e conditions of Corollary 2.3 are then satis�ed, and therefore G cannot be Her-

mitian.

Among the most studied trees in the literature are the so-called semihomo-

geneous trees. �ese are the locally �nite trees for which we can divide the set

of vertices into two disjoint sets X1 and X2, with the vertices of X1 (respectively,

X2) all having the same degree, and such that every vertex of X1 is connected only

to vertices of X2 and vice-versa. �e automorphism group of such trees always

has translations and the stabilizer of any vertex acts transitively on every sphere

around it. Hence, we immediately have the following result.

Corollary 3.7. Let X be a semihomogeneous tree that has a vertex with degree

at least 3. �en its automorphism group Aut.X/ is not a Hermitian group in its

totally disconnected topology.

Remark 3.8. It also follows from Proposition 3.6 that the group SL2.Qp/, where

Qp is the �eld of p-adic numbers, is not Hermitian in its totally disconnected

topology, by considering it as a group of automorphisms of its associated Bruhat–

Tits tree. �is group was shown to be non-Hermitian in [14, page 19], using a

di�erent method.



48 R. Palma

3.4. General linear groups GLn.Qp/. Let p be a prime number and Qp be the

�eld of p-adic numbers.

Given an n-tuple � WD .�1; : : : ; �n/ 2 Zn we will denote by �� the diagonal

matrix

�� D

0

B

@

p�1

: : :

p�n

1

C

A
2 GLn.Qp/:

As it is known K WD GLn.Zp/ is a compact open subgroup of GLn.Qp/. Let �

denote the Haar measure of GLn.Qp/, normalized so that �.K/ D 1. In our next

result we will need know to the precise value of measure of K��K. �e case

where � 2 Nn has been computed in [13, Chapter V (2.9)] and we have that

�.K��K/ D p2h�;�i�n.p�1/=��.p�1/; (8)

where h�; �i is the usual inner product, � WD 1
2
.n � 1; n � 3; n � 5; : : : ; 1 � n/ 2 Zn,

each function �m.t /, de�ned in [13, Chapter III - 1], is given by

�m.t / D .1 � t /�m

m
Y

iD1

1 � t i ;

and for any � D .�1; : : : ; �k/ the function ��.t /, de�ned in [13, Chapter III - 1], is

given by

��.t / D
m

Y

iD1

�mi
.t /;

where mi is the number of �j equal to i , for each i � 0.

We have the following result.

Proposition 3.9. For any n � 2 and any prime p � 5, the group GLn.Qp/ is not

Hermitian in its totally disconnected topology.

Proof. Let � WD .1; 0; 0; : : : ; 0; 0; �1/ and K WD GLn.Qp/. Since K contains all

the permutation matrices, it is clear that K.��/�1K D K���K D K��K.

For any k 2 N it is clear that .��/k D �k�. Our goal is to use Corollary 2.3

and for that we have to compute the measure of K�k�K. Expression (8) is only

valid for � 2 Nn, which is not the case here, but there is nevertheless a simple

trick that allows us to reduce to this case: letting Nk 2 Nn be the constant tuple
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equal to k, we observe that

�.K�k�K/ D �.�
NkK�k�K/ D �.K�

Nk�k�K/

D �.K�k�C NkK/

D p2hk�C Nk;�i�n.p�1/=�k�C Nk.p�1/:

It is not di�cult to see that h Nk; �i D 0, so that

p2hk�C Nk;�i D p2hk�;�i D pk.n�1/�k.1�n/ D p2k.n�1/:

Moreover, since there is precisely one entry in k� C Nk that equals 0, one entry

that equals 2k, and n � 2 entries that equal k, an easy computation yields that

�k�C Nk.p�1/ D �1.p�1/2�n�2.p�1/. Hence, we have that

�.K�k�K/ D p2k.n�1/ �n.p�1/

�1.p�1/2�n�2.p�1/

D p2k.n�1/ .1 � p�.n�1//.1 � p�n/

.1 � p�1/2
:

From this, it readily follows that �.K��K/ > 1 and moreover

lim
k!1

�..K��K/k/
1
k � lim

k!1
�.K�k�K/

1
k D p2.n�1/:

In order for us to use Corollary 2.3 we will then need to show that

p2.n�1/ >
�.K��K/

2
;

which amounts to showing that

p2.n�1/ >
p2.n�1/.1 � p�.n�1//.1 � p�n/

2.1 � p�1/2
;

or equivalently

2.1 � p�1/2 � .1 � p�.n�1//.1 � p�n/ > 0: (9)

We will prove that this is true for any n � 2 and any prime p � 5. To see this we

consider the function

f .t/ D 2.1 � t�1/2 � 1:

We clearly have that

2.1 � t�1/2 � .1 � t�.n�1//.1 � t�n/ > f .t/;
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for t � 0, so we just need to see that f .t/ > 0 for all t � 5. We have that

f .5/ D 2.4
5
/2 � 1 D 32

25
� 1 > 0. Moreover, we have that f 0.t / D 4.1 � t�1/t�2,

so that f 0.t / > 0 for t � 5. Hence, f is surely growing from the point t D 5

onwards, and therefore f .t/ > 0 for all t � 5.

By Corollary 2.3 we conclude that GLn.Qp/ is not Hermitian for p � 5 and

n � 2.

Remark 3.10. It can also be seen from the proof above that GL2.Q2/, GL2.Q3/

and GL3.Q3/ are not Hermitian in their totally disconnected topology, simply by

checking that inequality (9) is satis�ed with respect to these choices of n and p.

Remark 3.11. �ere are other choices of matrices �� which could be usefully con-

sidered. For example, if n is even, we could take � WD .1; : : : ; 1; 0; : : : ; 0/, where

half of the entries equal 1 and the other half equal 0. If one works with PGL.Qp/

instead, we have KŒ���K D KŒ����1K, where K is the image of GLn.Zp/ in

PGLn.Qp/. It would be possible to then use similar methods as above to prove,

for the prime number 3, that PGLn.Q3/ is not Hermitian (hence, GLn.Q3/ is not

Hermitian) for various choices of n as an even number.

We think therefore that it is reasonable to conjecture that the groups GLn.Qp/

are not Hermitian for all n � 2 and all primes p.

3.5. Special linear groups SLn.Qp/. �e argument we presented in the previous

subsection to prove that GLn.Qp/ is not Hermitian works as well for the special

linear groups SLn.Qp/.

Proposition 3.12. For any n � 2 and any prime p � 5, the group SLn.Qp/ is not

Hermitian in its totally disconnected topology.

Proof. Let � and Q� be the normalized Haar measures of SLn.Qp/ and GLn.Qp/,

respectively, for which the compact open subgroups

K WD SLn.Zp/ and zK WD GLn.Zp/

have measure 1. We claim that if g 2 SLn.Qp/ � GLn.Qp/, then

�.KgK/ D Q�. zKg zK/: (10)

To prove this, we start by noticing that, since K is a compact open subgroup,

�.KgK/ is equal to the total number of left cosets inside KgK. Similarly, Q�. zKg zK/

is equal to the total number of left cosets inside zKg zK, so that we only need to prove

that these numbers are the same.
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Let KgK=K and zKg zK= zK be the sets of left cosets inside KgK and zKg zK,

respectively. We consider the following map:

KgK=K �! zKg zK= zK;

hK 7�! h zK:
(11)

�is map is easily seen to be well-de�ned. We claim that it is surjective. Let

kg zK 2 zKg zK= zK, with k 2 zK. We have .det.k/�1k/gK 2 KgK=K, and the

image of this element via the map (11) is precisely kg zK because

.det.k/�1k/g zK D .det.k/�1k/g.det.k/k�1/ zK D kgk�1 zK D kg zK:

�is proves that the map (11) is surjective. Let us now prove that it is injective.

Let k1gK and k2gK be two left cosets inside KgK, with k1; k2 2 K. Suppose

k1g zK D k2g zK. �en, we have g�1k�1
2 k1g 2 zK. Since det.g�1k�1

2 k1g/ D 1 we

must have g�1k�1
2 k1g 2 K, and therefore k1gK D k2gK. �us, injectivity of the

map (11) is proven, and this yields equality (10).

Given that the measures �.KgK/ and Q�. zKg zK/ are the same, the argument in

the proof of Proposition 3.9 used for showing that GLn.Q/ is not Hermitian can

also be applied to the group SLn.Qp/, because the matrix �� we start with (as

well as its powers) is in SLn.Qp/.

3.6. Some questions. 1) Is the p-adic “ax C b” group Qp Ì Q�
p Hermitian as a

totally disconnected group?

It is known that RÌR� is Hermitian as a connected Lie group [11], and QÌQ�

is not Hermitian as a discrete group (it has free sub-semigroups). When trying to

use the methods developed in this article to tackle the problem for Qp Ì Q�
p , we

have only been able to obtain expression (6) as an equality, which is not su�cient

to assure the group is not Hermitian.

2) Suppose G is a totally disconnected locally compact group, H � G is a

compact open subgroup and ˛ an automorphism of G such that ˛.H/ ¨ H and

G D
S

n2Z ˛n.H/. Is the semi-direct product G Ì˛ Z Hermitian?

An easy example of such a group is Qp ÌZ, where the automorphism is given

by multiplication by p. Similarly to the group in question 1/, we could only obtain

expression (6) as an equality, which is insu�cient to prove that G Ì˛ Z is not

Hermitian.

3) Are there totally disconnected Hermitian groups of exponential growth?

Can such examples be found among discrete groups?
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�ese questions have already been asked by the author in [14], and the groups

in questions 1/ and 2/ are natural to be considered in this regard. A negative

answer to this question would imply that all Hermitian totally disconnected groups

are amenable, which would give more evidence to the following long standing

conjecture (see [15]).

4) Are all Hermitian groups amenable?

�is conjecture was answered a�rmatively for connected groups by Palmer

(see [15, �eorem 12.5.18 (e)]), but remains open in general, even for discrete

groups.

5) Suppose G is a �nitely generated group, with S being a symmetric �nite set

of generators. We know that the growth rate of S lies in between 1 and the growth

rate of a free group in jS j generators, i.e. 1 � !G.S/ � jS j � 1.

Let us now normalize this value so that it becomes independent of the number

of generators, i.e. let us consider the number �G.S/ de�ned by

�G.S/ WD !G.S/ � 1

jS j � 2
2 Œ0; 1�:

What can we say about supS �G.S/, where the supremum runs over all �nite sym-

metric sets S of generators?

If �G.S/ D 0, then G has subexponential growth, while if �G.S/ D 1 then

G is necessarily a free group. �e value of infS �G.S/ (without our normaliza-

tion) has been widely studied, and is behind what is known as uniform exponential

growth. Understanding the supremum supS �G.S/ would give valuable informa-

tion regarding the Hermitianess of G, as our Corollary 2.2 shows.
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