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Graphs and two-step nilpotent Lie algebras

Meera G. Mainkar

Abstract. We consider a method popular in the literature of associating a two-step nilpotent

Lie algebra with a �nite simple graph. We prove that the two-step nilpotent Lie algebras

associated with two graphs are Lie isomorphic if and only if the graphs from which they

arise are isomorphic.
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1. Introduction

Recently in connection with the study of some very interesting geometrical and

dynamical properties of nilmanifolds, the simply connected nilpotent Lie groups

or equivalently their Lie algebras have received the attention of many researchers.

Among these nilpotent Lie algebras, the two-step ones are the simplest (after the

abelian ones) and most widely studied [1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 17, 18,

19, 20].

Let k be a �eld with characteristic not equal to 2. We recall that a non-abelian

�nite dimensional Lie algebra n over k is said to be a two-step nilpotent Lie algebra
if Œn; Œn; n�� D ¹0º. Every two-step nilpotent Lie algebra n over k can be realized

as a vector space direct sum V ˚ .
V2

V /=W , where V is a �nite dimensional

k-vector space and W is a subspace of the exterior power
V2

V . �e Lie bracket

structure on n is given by

(1) Œv1; v2� D v1 ^ v2 mod W for v1; v2 2 V; and

(2) Œx; y� D 0 for x 2 n and y 2 .
V2

V /=W

A combinatorial approach for construction of two-step nilpotent Lie algebras

was described in [1]. Subsequently this construction has been used by many au-

thors [12, 13, 20, 18]. We recall the construction. Let .S; E/ be a �nite simple
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graph, where S is the set of vertices and E is the set of edges, where it is assumed

that there are no loops and no multiple edges connecting the same pair of vertices.

We associate with .S; E/ a two-step nilpotent Lie algebra n D n.S; E/ over k in

the following way. �e underlying vector space of n is V ˚ .
V2

V /=W , where

V is the k-vector space consisting of formal k-linear combinations of elements of

S (so that S is a basis of V ), and W is the subspace of the exterior power
V2

V

spanned by the vectors ˛ ^ ˇ, where ˛ˇ … E. �e Lie bracket structure on n is

de�ned as above. We note that the space .
V2

V /=W has dimension jEj. In fact

it is spanned by ¹˛ ^ ˇ mod W j ˛ˇ 2 Eº. Consequently n.S; E/ has dimension

jS j C jEj.

Note that the construction of n.S; E/ form the graph .S; E/ is functorial in the

sense that if f W .S; E/ ! .S 0; E 0/ is an isomorphism of graphs, then we obtain

an isomorphism f� W n.S; E/ ! n.S 0; E 0/ in the natural way: f�.˛/ D f .˛/ for

each ˛ 2 S and for each edge ˛ˇ 2 E, f�.˛ ^ ˇ/ D f .˛/ ^ f .ˇ/. It is easy to see

that f� extends linearly to a Lie algebra isomorphism from n.S; E/ to n.S 0; E 0/.

In this note, we consider the converse question and prove the following:

�eorem 1.1. Let .S; E/ and .S 0; E 0/ be �nite simple graphs. If the two Lie al-
gebras n.S; E/ and n.S 0; E 0/ are isomorphic then the graphs .S; E/ and .S 0; E 0/

are also isomorphic.

�is result has already found use in some recent investigations [18, 20]. In [18],

the authors provide a method to construct Einstein solvmanifolds by using the Lie

algebras n.S; E/. Using our main theorem, these solvmanifolds are isometric if

and only if the graphs are isomorphic, which gives us examples of nonisometric

Einstein solvmanifolds.

In [20], the authors construct symplectic two-step nilpotent Lie algebras as-

sociated with graphs. In this case our main result implies that there are exactly
�ve non-isomorphic two-step nilpotent Lie algebras of dimension six associated
with graphs in the above manner. Indeed, there are �ve non-isomorphic graphs

.S; E/ such that jS j C jEj D 6. Now, dim n.S; E/ D jS j C jEj. Hence using our

�eorem 1.1, there are exactly �ve non-isomorphic two-step nilpotent Lie algebras

of dimension six associated with graphs. �is fact was used in [20, Remark 1].

�e group of Lie automorphisms of n.S; E/ was determined in terms of the

graph .S; E/ in [1]. Also, Anosov and ergodic automorphisms on corresponding

nilmanifolds were studied. In [18], explicit examples and non-examples of Einstein

solvmanifolds were constructed using the Lie algebras n.S; E/ (see also [12]). A

combinatorial construction of the �rst and second cohomology groups of n.S; E/

was given in [20], and was used to construct symplectic and contact nilmanifolds.
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Remark 1.2. Suppose the underlying �eld k D R. Let N.S; E/ denote the unique

simply connected nilpotent Lie group corresponding to the Lie algebra n.S; E/.

�en the Lie group exponential map exp W n.S; E/ ! N.S; E/ is a di�eomor-

phism (see [21], p. 6). We note that the Baker-Campbell-Hausdor� formula ([23],

p. 119)) gives the multiplication law in N.S; E/ as follows:

exp.x/ exp.y/ D exp
�

x C y C
1

2
Œx; y�

�

for all x; y 2 n.S; E/.

More precisely, we can realize N.S; E/ as n.S; E/ (via the exponential map)

with the multiplication de�ned by

.v1; x1/:.v2; x2/ D
�

v1 C v2; x1 C x2 C
1

2
Œv1; v2�

�

for all v1; v2 2 V and x1; x2 2 .
V2

V /=W .

�en our �eorem 1.1 implies that the simply connected Lie groups N.S; E/

and N.S 0; E 0/ are Lie isomorphic if and only if the graphs .S; E/ and .S 0; E 0/

are isomorphic. �is can been seen by using the fact that the simply connected

Lie groups are Lie isomorphic if and only if their Lie algebras are Lie isomorphic

(see [24], p. 101).

Remark 1.3. �ere have been some other constructions of algebraic structures

associated with a simple graph. Some, though not all of these are related with the

construction considered here. In [16], the authors consider the K-algebra asso-

ciated with a simple graph .S; E/ over a �eld K generated by the set of vertices

S and with relations ˛ˇ D ˇ˛ if and only if ˛ˇ … E. �ey proved that these

K-algebras are isomorphic if and only the corresponding graphs are isomorphic.

�is result was further used to prove an analogous result for graph groups in [7].

In [7], the author considers the group associated with graph .S; E/ which is de-

�ned as the group generated by the set S and with relations ˛ˇ D ˇ˛ if and only if

˛ˇ 2 E. Here we remark that the simply connected nilpotent Lie group N.S; E/

(as in Remark 1.2) is not �nitely generated.

Later in [8], the authors introduce the free partially commutative Lie algebra

l.S; E/ associated with .S; E/ which is the quotient of the free Lie algebra on the

set S modulo the Lie ideal generated by ¹Œ˛; ˇ� j ˛ˇ … Eº. In fact, the authors

study these structures in more generality but we will not go into the details here.

Following [7, 9, 16], it can be shown that these free partially commutative Lie

algebras are Lie isomorphic if and only if the corresponding graphs are isomorphic

(see �eorem 1 in [7] for example). Here we note that the quotient of l.S; E/
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by the Lie ideal l3 generated by the set ¹Œx; Œy; z�� j x; y; z 2 l.S; E/º, is Lie

isomorphic to our two-step nilpotent Lie algebra n.S; E/. �e isomorphism result

for the free partially commutative Lie algebras can be recaptured by using our

�eorem 1.1 (if the characteristic of the �eld K is not equal to 2) as follows. Let

l D l.S; E/ and l
0 D l.S 0; E 0/ be Lie isomorphic free partially commutative Lie

algebras associated with graphs .S; E/ and .S 0; E 0/ respectively. �en the quotient

Lie algebras l=l3 and l
0=l03 are Lie isomorphic. �at means the two-step nilpotent

Lie algebras n.S; E/ and n.S 0; E 0/ are isomorphic and our �eorem 1.1 implies

that the graphs .S; E/ and .S 0; E 0/ are isomorphic.

2. Some Preliminaries

Before we prove �eorem 1.1, we need a few facts regarding the structure of the

automorphism group of n D n.S; E/. We denote by Aut.n/ the group of Lie

automorphisms of n and T the set of automorphisms � 2 Aut.n/ such that �.V / D

V , where we recall that V is the k-vector space with basis S , and n D V ˚

.
V2

V /=W . We denote by G the subgroup of GL.V / consisting of the linear

automorphisms � jV , where � 2 T .

Next we see that the group G consists of g 2 GL.V / such that the subspace

W �
V2

V is invariant under the induced natural action ^2g of g on
V2

V .

Indeed, if g 2 G ( i.e. if g D � jV for some � 2 T ) and if ˛ˇ … E, then

g.˛/ ^ g.ˇ/ mod W D Œ�.˛/; �.ˇ/�

D �Œ˛; ˇ�

D 0;

since � is an automorphism of n and Œ˛; ˇ� D 0 in n. Conversely if g 2 GL.V /

such that g.˛/ ^ g.ˇ/ 2 W for all ˛ˇ … E, then � D g ˚ ^2g de�nes a Lie

automorphism of n such that �.V / D V and hence g 2 G. Since the condition

that an element of G stabilizes W under the natural action on
V2

V is represented

by polynomial equations, we have therefore the following:

Lemma 2.1. G is an algebraic group.

In fact, for any two-step nilpotent Lie algebra m D V ˚ .
V2

V /=W one can

analogously de�ne the subgroup G of GL.V / consisting of the restrictions of au-

tomorphisms of m �xing V . A similar argument shows that G is an algebraic

group. However our next lemma holds only for two-step nilpotent Lie algebras

arising from graphs. We prove that all linear automorphisms of V which can be
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represented as diagonal matrices with respect to the basis S can be extended to

Lie automorphisms of n.S; E/.

Lemma 2.2. Let DS denote the subgroup of GL.V / consisting of all elements
which can be represented as diagonal matrices with respect to the basis S of V .
�en DS � G.

Proof. We recall that G is a subgroup of GL.V / consisting of those linear auto-

morphisms of V whose induced action on
V2

V leaves the subspace W invariant,

where W �
V2

V spanned by elements ˛ ^ ˇ such that ˛ˇ … E. Let d 2 DS , say

d.˛/ D d˛˛ for some nonzero d˛’s in k and for all ˛ 2 S . �en if ˛ˇ … E, we

have d.˛/ ^ d.ˇ/ D d˛dˇ .˛ ^ ˇ/ 2 W . Hence d 2 G and DS � G. �

3. Proof of �eorem 1.1

Let Nk denote the algebraic closure of k. First we note that if F is an isomorphism

from the Lie algebra n D n.S; E/ to n
0 D n.S 0; E 0/, then xF D F ˝k id Nk is an

isomorphism of Nk-Lie algebras Nn D n ˝k
Nk and xn0 D n

0 ˝k
Nk. To see this, recall

that the Lie bracket in Nn is de�ned by

Œx ˝ a; y ˝ b� D Œx; y� ˝ ab for all x; y 2 n and a; b 2 Nk:

Also xF is de�ned by

xF
�

X

i

xi ˝ ai

�

D
X

i

F.xi / ˝ ai for all xi 2 n and ai 2 Nk:

�en xF is a Nk-vector space isomorphism which follows from the fact that F is a

k-vector space isomorphism. Furthermore, for x; y 2 n and a; b 2 Nk we have

xF Œx ˝ a; y ˝ b� D xF .Œx; y� ˝ ab/

D .F Œx; y� ˝ ab/

D ŒF.x/; F.x/� ˝ ab since F is a Lie algebra isomorphism.

D ŒF.x/ ˝ a; F.x/ ˝ b� D Œ xF .x ˝ a/; xF .y ˝ b/�:

Now without loss of generality we can assume that the �eld k is algebraically

closed. Indeed if k is not already algebraically closed, and F is an isomorphism

from the Lie algebra n D n.S; E/ to n
0 D n.S 0; E 0/, we can replace n by Nn, n0 by

xn0 and F by NF . �en the new F is an isomorphism of Nk-Lie algebras n and n
0 as
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discussed above. We need to show that the graphs .S; E/ and .S 0; E 0/ de�ning the

Lie algebras n and n
0 are isomorphic.

We recall that

n D V ˚ .
V2

V /=W;

where V is the k-vector space with basis S and W �
V2

V is as de�ned in the

previous section. Similarly

n
0 D V 0 ˚ .

V2
V 0/=W 0;

where V 0 is the k-vector space with basis S 0.

�e proof will be in three steps. First we construct a new graph .S 00; E 00/ iso-

morphic to the graph .S; E/. �e set of vertices S 00 will be a basis of the vector

space V 0. �en in the next step we look a group DS 00 analogous to the group DS

considered in Lemma 2.2. �e theorem will follow from the relation between DS 00

and DS 0 to be explained in the third step.

We begin by constructing a new graph .S 00; E 00/ isomorphic to the graph .S; E/

in the following way. Recall that V 0 denote the k-vector space with S 0 as basis

and let W 0 denote the subspace of
V2

V 0 spanned by the wedge products ˛ ^ ˇ,

where ˛ and ˇ are vertices in S 0 not connected by an edge in E 0. Let � W n0 ! V 0

denote the canonical linear projection with respect to the decomposition n0 D V 0˚

.
V2

V 0/=W 0. We de�ne S 00 denote the subset of V 0 given by ¹�.F.˛// j ˛ 2 Sº

and E 00 denote the set of unordered pairs �.F.˛//�.F.ˇ// such that ˛ˇ 2 E,

where, recall that F is the isomorphism given between n and n
0.

It follows that S 00 is a basis of V 0. Indeed, if
Pn

iD1 ai�.F.˛i // D 0 for ai ’s

2 R and ˛i ’s 2 S , then F.
Pn

iD1 ai˛i / 2 Œn0; n0�. Since F is a Lie algebra isomor-

phism, we can see that
Pn

iD1 ai˛i 2 Œn; n�. On the other hand each ˛i is in S so
Pn

iD1 ai˛i 2 V \ Œn; n�, so that
Pn

iD1 ai˛i D 0. By the linear independence of

S , each ai D 0. Now the derived algebras Œn; n� and Œn0; n0� have the same dimen-

sion since n and n
0 are isomorphic. Hence jEj D jE 0j since jEj D dimŒn; n� and

jE 0j D dimŒn0; n0�. Hence jS j D jS 0j because n is of dimension jS j C jEj and n
0

is of dimension jS 0j C jE 0j, and n and n
0 are isomorphic. �us the sets S 0 and S 00

have exactly the same number of elements and hence S 00 is a basis of V 0 since S 0

is a basis of V 0.

Since the graph .S 00; E 00/ as constructed above is isomorphic to the graph

.S; E/, to prove the theorem, it is enough to show that there exists an isomor-

phism of graphs f W .S 0; E 0/ ! .S 00; E 00/.
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Now as in Lemma 2.2, DS 0 denote the subgroup of GL.V 0/ consisting of all

elements which can be represented as diagonal matrices with respect to the basis

S 0 of V 0. By Lemma 2.2, we have DS 0 � G0. Similarly let DS 00 denote the sub-

group of GL.V 0/ consisting of all elements which can be represented as diagonal

matrices with respect to the basis S 00 D ¹�.F.˛// j ˛ 2 Sº of V 0.

We claim that DS 00 � G0 as well. To see this, let d 2 DS 00 and d.�.F.˛// D

d˛�.F.˛/ for all ˛ 2 S and for some nonzero d˛’s in k. It su�ces to show that if

 and ı are vertices in S 0 not connected by an edge in E 0, then d./ ^ d.ı/ 2 W 0

(i.e. Œd./; d.ı/� D 0 in n
0.) Now since ; ı 2 V 0 and S 00 is a basis for V 0, we

represent

 D
X

˛2S

a˛�.F.˛// and ı D
X

ˇ2S

bˇ �.F.ˇ//;

where each a˛, bˇ is in k. Since Œ; ı� D 0, we have

h

�
�

F
�

X

˛2S

a˛˛
��

; �
�

F
�

X

ˇ2S

bˇ ˇ
��i

D 0:

�is means that
h

F
�

X

˛2S

a˛˛
�

; F
�

X

ˇ2S

bˇ ˇ
�i

D 0;

because in n
0, Œv C w; v0 C w0� D 0 if and only if Œv; v0� D 0 for v; v0 2 V 0 and

w; w0 2 .
V2

V 0/=W 0. Hence

h

X

˛2S

a˛˛;
X

ˇ2S

bˇ ˇ
i

D 0

in n since F is an isomorphism. Now we de�ne � , an element of GL.V / by

�.˛/ D d˛˛ for each ˛ 2 S . �en � 2 DS , where DS is the subgroup of GL.V /

consisting of diagonal automorphisms of V with respect to S and hence � 2 G

by Lemma 2.2. So
h

X

˛2S

a˛�.˛/;
X

ˇ2S

bˇ �.ˇ/
i

D 0

in n which means that
h

X

˛2S

a˛d˛˛;
X

ˇ2S

bˇ dˇ ˇ
i

D 0:

Since F is an isomorphism,

h

X

˛2S

a˛d˛F.˛/;
X

ˇ2S

bˇ dˇ F.ˇ/
i

D 0
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in n
0 and hence

h

X

˛2S

a˛d˛�.F.˛//;
X

ˇ2S

bˇ dˇ �.F.ˇ//
i

D 0:

�us Œd./; d.ı/� D 0 in n
0 as we wanted to show.

By Lemma 2.1, G0 is an algebraic group. Moreover, DS 0 and DS 00 are maximal

tori in the connected component in Zariski topology of identity of G0 . But maxi-

mal tori in a connected algebraic group over an algebraically closed �eld (such as

our k) are conjugate (see [22], p. 108), and hence there exists g 2 G0 such that

DS 0 D g .DS 00/ g�1:

To de�ne an isomorphism of graphs f W S 0 ! S 00, we construct a special ele-

ment of DS 0 . For each ˛ 2 S 0, choose a nonzero d 0

˛ 2 k such that unless the set

¹˛; ˇº equals the set ¹; ıº we have d 0

˛d 0

ˇ
¤ d 0

d 0

ı
. Since by hypothesis the �eld

k is algebraically closed, it is in particular in�nite, and such d˛’s may be chosen.

De�ne d 0 2 DS 0 be the element whose matrix representation with respect to S 0

given by d 0.˛/ D d 0

˛˛. As note above, there exists d 00 2 DS 00 such that

d 0 D gd 00g�1:

Since d 0 and d 00 are similar, they have the same eigenvalues. Further since d 0

is diagonal with respect to S 0 and d 00 is diagonal with respect to S 00, it follows

that these diagonal entries are the same up to a permutation. Hence there exists a

bijection f of S 0 with S 00 such that

d 00.f .˛// D d 0

˛f .˛/ for all ˛ 2 S 0:

We claim that f is in fact an isomorphism of the graph .S 0; E 0/ with the graph

.S 00; E 00/. Establishing this claim will conclude the proof of our theorem.

It su�ces now to show that ˛ˇ 2 E 0 if and only if f .˛/f .ˇ/ 2 E 00. Now

˛ˇ 2 E 0 if and only if Œ˛; ˇ� ¤ 0 in n
0. Also f .˛/f .ˇ/ 2 E 00 if and only

if Œf .˛/; f .ˇ/� ¤ 0 in n
0. �is follows from the de�nition of E 00 and using

that F is an isomorphism. Indeed f .˛/ D �.F.˛0// and f .ˇ/ D �.F.ˇ0//

for some ˛0; ˇ0 2 S . Hence f .˛/f .ˇ/ 2 E 00 if and only if ˛0ˇ0 2 E. Since

F is an isomorphism, ˛0ˇ0 2 E if and only if ŒF.˛0/; F.ˇ0/� ¤ 0 in n
0 i.e.

Œ�.F.˛0//; �.F.ˇ0//� ¤ 0 in n
0.

We will show that for ˛; ˇ 2 S 0, Œ˛; ˇ� ¤ 0 if and only if Œf .˛/; f .ˇ/� ¤ 0.

Since the diagonal entries of the chosen element d 0 2 DS 0 (de�ned as above)

are such that the pairwise products of the diagonal entries are distinct, d 0
˛d 0

ˇ
is

an eigenvalue of an extended automorphism d 0 of n0 if and only if Œ˛; ˇ� ¤ 0.
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Similarly d 0

˛d 0

ˇ
is an eigenvalue of an extended automorphism d 00 of n0 if and only

if Œf .˛/; f .ˇ/� ¤ 0. Now we note that

Œg�1.d 0.˛//; g�1.d 0.ˇ//� D d 0

˛d 0

ˇ Œg�1.˛/; g�1.ˇ/�:

On the other hand, we have

Œg�1.d 0.˛//; g�1.d.0ˇ//� D d 00Œg�1.˛/; g�1.ˇ/�; since g�1d 0 D d 00g�1:

Since g 2 G0, Œg�1.˛/; g�1.ˇ/� ¤ 0 if and only if Œ˛; ˇ� ¤ 0. Hence d 0
˛d 0

ˇ
is an

eigenvalue of d 00 if and only if d 0
˛d 0

ˇ
is an eigenvalue of d 00. �us ˛ˇ 2 E 0 if and

only if f .˛/f .ˇ/ 2 E 00. Hence f W .S 0; E 0/ ! .S 00; E 00/ is an isomorphism of

graphs, this complete the proof of �eorem 1.1.
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