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1. Introduction

1.1. Geometric superrigity. In the nineteen seventies, Margulis proved his fa-

mous superrigidity theorem to show that irreducible lattices in higher rank semisim-

ple Lie groups and algebraic groups are arithmetic.

�eorem 1.1 ([24]). Let G; H be semisimple algebraic groups over local �elds
without center nor compact factors. Assume that the real rank of G is at least 2

and let � be an irreducible lattice of G.
Any homomorphism � ! H with unbounded and Zariski dense image extends

to a homomorphism G ! H .

Using the dictionary between semisimple algebraic groups over local �elds and

symmetric spaces of noncompact type (in the Archimedean case) and Euclidean

buildings (in the non-Archimedean case), �eorem 1.1 can be interpreted in a geo-

metric way. �is is the subject of the so-called geometric superrigidity, see [29]

for a survey in French or the older [10]. Using this geometric interpretation, Cor-

lette [5] (in the Archimedean case) and later Gromov and Schoen [12] extended

1 �e author was supported by a postdoctoral fellowship of the Swiss National Science Foun-

dation.
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Margulis superridigity theorem in the case where G is a simple Lie group of rank 1

that is the isometry group of a quaternionic hyperbolic space or the isometry group

of the Cayley hyperbolic plane. �e main tool in these two former results are har-

monic maps. Some time later, harmonic maps allowed Mok, Siu and Yeung to

give a very general statement [27] of geometric superrigidity in the Archimedean

case. A similar result was also obtained by Jost and Yau in [15].

�e framework of geometric superrigidity was extended [25, 9] to nonposi-

tively curved metric spaces, which may be not locally compact, in the particular

higher rank case where � is a lattice in a product.

In [11, 6.A], Gromov invited geometers to study some “cute and sexy” in�nite

dimensional symmetric spaces of nonpositive curvature and �nite rank. �ese

spaces are

Xp.R/ D O.p; 1/=.O.p/ � O.1//:

�ey have analogs, denoted by Xp.K/, over the �eld K of complex or quaternionic

numbers. �eir geometry was studied in [8]. Gromov also conjectured that actions

of lattices in semisimple Lie groups on some Xp.R/ should be subject to geomet-

ric superrigidity.

In this article, a Riemannian manifold will be a connected smooth manifold

modeled on a separable Hilbert space and endowed with a smooth Riemannian

metric. In particular, such a manifold may have in�nite dimension. See [17] or [22]

for an accurate de�nition.

�e main result of this paper is the following theorem.

�eorem 1.2. Let � be an irreducible torsion free uniform lattice in a connected
higher rank semisimple Lie group with �nite center and no compact factor G. Let
N be a simply connected complete Riemannian manifold of nonpositive sectional
curvature and �nite telescopic dimension.

If � acts by isometries on N without �xed point in N [ @N then there exists
a �-equivariant isometric totally geodesic embedding of a product of irreducible
factors of the symmetric space of G in N .

In the unpublished paper [20], Korevaar and Schoen introduced the notion

of FR-spaces (Finite Rank spaces). Later, Caprace and Lytchak introduced the

notion of spaces of �nite telescopic dimension in [2], without knowing [20]. �e

two notions are the same for complete CAT(0) spaces and can be de�ned by an
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inequality at large scale inspired by Jung inequality. For any bounded subset Y �

R
n, Jung proved that

rad.Y / �

r

n

2.n C 1/
diam.Y /;

see [23] and references therein. So, a complete CAT(0) space X has telescopic
dimension less than n if for any ı > 0 there exists D > 0 such that for any bounded

subset Y � X of diameter larger than D, we have

rad.Y / �

�

ı C

r

n

2.n C 1/

�

diam.Y /:

�eorem 1.2 applies to the particular case where N is a symmetric space of

noncompact type and �nite rank (see [7] for the meaning of noncompact type

in in�nite dimension). �e fact that symmetric spaces of noncompact type and

�nite rank have �nite telescopic dimension was expected in [20] and proved in

Corollary 1.8 of [7]. Actually, it is proved that a symmetric space of noncompact

type is a �nite product of irreducible symmetric spaces of noncompact type and

that irreducible factors of in�nite dimension are some Xp.K/.

�is theorem implies that there is no geometrically Zariski-dense (see

[26, 5.B]) action of a uniform lattice as in �eorem 1.2, on a symmetric space

of noncompact type, in�nite dimension and �nite rank. In rank 1, it was shown

that the isometry group of the real hyperbolic space Hn has geometrically Zariski-

dense actions on the in�nite dimensional hyperbolic H1, see [26].

�e strategy to prove �eorem 1.2 goes as follows. First, there is a harmonic

map when the target is considered to be only a CAT(0) space. When the target is

moreover a Riemannian manifold, the unique harmonic map is smooth. �e fact

that the harmonic map is totally geodesic �nishes the proof.

Remark 1.3. �eorem 1.2 extends to the case where G is the connected compo-

nent of the isometry group of a quaternionic hyperbolic space or of the Cayley

hyperbolic plane and N has nonpositive complexi�ed sectional curvature. �is

last condition is satis�ed when N is a symmetric space of noncompact type.

1.2. A �at torus theorem for parabolic isometries. In the last section, we in-

clude an extension for parabolic isometries of the well-known �at torus theorem

[1, Chapter II.7]. �is extension allows us to obtain a rigidity statement easily.
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Let 
 be an isometry of a CAT(0) space X . �e translation length of 
 is the

number j
 j D infx2X d.
x; x/; 
 is said to be ballistic if j
 j > 0 and neutral oth-

erwise. Since the in�mum in the de�nition of j
 j may or may not be achieved, it

is usual to distinguish between semisimple isometries, for which the in�mum is a

minimum, and parabolic isometries, for which the in�mum is not a minimum. Let

' W G !Isom.X/ be a homomorphism. We say that G acts by ballistic isometries
on X if '.g/ is a ballistic isometry for any g ¤ e.

A CAT(0) space X is said to be �-visible if any points �; � 2 @X that satisfy

†.�; �/ D � are extremities of a geodesic line. For example, Hilbert spaces,

Euclidean buildings and symmetric spaces of noncompact type are �-visible. Let

H be a subset of Isom.X/, we denote by ZIsom.X/.H/ the centralizer of H , that is

the set of elements in Isom.X/ that commute with all elements in H .

�eorem 1.4. Let X be a complete �-visible CAT(0) space and let A be an abelian
free group of rank n acting by ballistic isometries on X .

�en there exists a A-invariant closed convex subspace Y � X . �e space Y

decomposes as Z � R
n, ZIsom.X/.A/ preserves this decomposition and the action

ZIsom.X/.A/ Õ Y is diagonal.
Moreover, the action A Õ R

n is given by a lattice of Rn acting by translations
and for any a 2 A, the action of a on Z is neutral.

Corollary 1.5. Let � be a lattice in a semisimple Lie group of real rank r . If �

acts by ballistic isometries on a symmetric space of nonpositive curvature X then
r � rank.X/.

Acknowledgments. �e author thanks Pierre Pansu for suggesting this approach

to superrigidity in in�nite dimension and thanks Pierre Py for pleasant and useful

discussions about regularity of harmonic maps in in�nite dimension.

2. Harmonic maps

In this section, we recall the standard notions of totally geodesic maps and har-

monic maps between Riemannian manifolds (maybe of in�nite dimension). We re-

fer to [28], among others, for an introduction to these notions in �nite dimension.

Let .M; g/ be a smooth Riemannian manifold with Levi-Civita connection r.

Let u be a chart from an open subset U � M to an open subset V of a Hilbert

space H. �e restriction to U of any vector �eld X 2 �.TM/ can be thought as
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a smooth map V ! H and thus we can consider the di�erential DX of X as a

linear map from H to itself. �e Christo�el symbol of r, �.u/ with respect to u,

is de�ned by the relation

rY X D DY X C �.u/.X; Y /;

see [17, 1.5]. Let f be a smooth map between Riemannian manifolds .M; g/ and

.N; h/ with Levi-Civita connections M r and N r. �e vector bundle f �1TN ,

which is the vector bundle over M with �bers Tf .x/N for x 2 N , is endowed

with the connection induced from N r, which we denote also by N r. In charts

.u; U /; .v; V / of M such that f .U / � V , this connection is given by the formula

N rXY D Ddf XY C �.v/.dfX; Y /

for X 2 �.TM/ and Y 2 �.f �1TN /. �e vector bundle TM � is also endowed

with a connection M r� induced from M r. For ! 2 �.TM �/ and X; Y 2 �.TM/,

M r�
X !.Y / D X � !.Y / � !.rXY /:

�e vector bundle f �1TN ˝ TM is endowed with the connection

r W �.TM � ˝ f �1TN / �! �.TM � ˝ TM � ˝ f �1TN /

induced by M r� and N r. �is connection is de�ned by the formula

rX.! ˝ V / DM r�
X! ˝ V C ! ˝N rXV

for X 2 �.TM/, ! 2 �.TM �/ and V 2 �.f �1TN /.

�e di�erential df of a smooth map f is a section of TM � ˝f �1TN and f is

called totally geodesic if rdf D 0. One can think of this property in two equiva-

lent ways. A map f is totally geodesic if and only if it preserves the connections,

that is N rX df Y D df .M rXY / for X; Y 2 �.TM/. And f is totally geodesic if

and only if it maps geodesics to geodesics.

When M is �nite dimensional, there is a more general notion. Let �.f / be the

trace of rdf . It is a section of the vector bundle TM � ˝ TM � ˝ f �1TN de�ned

by

�.f / D
X

i

rdf .ei ; ei /

for any orthonormal base .ei / of TxM . �e map f is harmonic if �.f / D 0.

Harmonic maps are also solutions of a variational problem. Let k k be the norm
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associated to the Riemannian metric g˝h on TM �˝f �1TN . Actually for x 2 M ,

kdxf k is the Hilbert-Schmidt norm of the linear map dxf W TxN ! Tf .x/N . �is

norm is well de�ned because TxM is �nite dimensional. If M is complete and

has �nite Riemannian volume, the energy of f is

E.f / D

Z

M

kdf k2:

Harmonic maps are exactly critical points of the energy. �ere exists an equi-

variant version of this variational problem. Let � be the fundamental group of

a compact Riemannian manifold M acting by isometries on N and let f be a

�-equivariant map f W zM ! N where zM is the universal covering of M�. Since

kdf k2 is �-invariant, one can de�ne the energy of f by E.f / D
R

M kdf k2: In

the case where N is �nite dimensional and non positively curved, the existence of

equivariant harmonic maps was obtained in [4, 21].

3. Harmonic maps for metric spaces targets

In [18, 19], Korevaar and Schoen developed a theory of harmonic maps with met-

ric spaces targets (Jost developed also a similar theory, see [13], [16] or [14, 8.2]).

We recall the de�nitions (not in full generality but in a framework convenient to

our purpose) and refer to the original papers for details.

Let .�; �/ be a standard measure space with �nite measure and let .X; d/ be

a complete separable metric space with base point x0. �e space Lp.�; X/ for

1 � p � 1 is the space of measurable maps u W � ! X such that the inte-

gral
R

� d .u.!/; x0/p d�.!/ is �nite. �is space is a complete metric space with

distance satisfying

d.u; v/p D

Z

�

d .u.!/; v.!//p d�.!/

and if .X; d/ is CAT(0) then so is L2 .�; X/.

Let � be the fundamental group of a compact Riemannian manifold .M; g/

and let � W � !Isom.X/ be a representation of �. �e group � acts by deck

transformations on the universal covering zM of M . We denote by L
p
� . zM; X/

the space of measurable equivariant maps u W zM ! X such that the restriction

of u to a compact fundamental domain K � zM is in Lp.K; X/. For two maps

u; v 2 L
p
� . zM ; X/, the function x 7! d.u.x/; v.x// is �-invariant and thus can be
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thought as a function on M . �e distance on L
p
� . zM ; X/ is given by the relation

d.u; v/p D
R

M d.u.x/; v.x//pd�.x/ where � is the measure associated to the

Riemannian metric g.

For u 2 L
p
� . zM; X/ and " > 0 the "-approximate energy at x 2 zM is de�ned

by

e".x/ D

Z

S.x;"/

d.u.x/; u.y//p

"p
d�.y/

where S.x; "/ is the "-sphere around x and d� is the measure induced by g on

S.x; "/, divided by ".dim.M /�1/. Now u is said to have �nite energy if e" converges

weakly to a density energy e, which is absolutely continuous with respect to d�

and has �nite L1-norm, when " goes to 0. In this case, the energy of u is E.u/ D
R

M e.x/d�.x/. A minimizer of the energy functional is called a harmonic map.

In [19, �eorem 2.3.1], Korevaar and Schoen proved the existence of an equi-

variant harmonic map when the target is a CAT(-1) space under the assumption

there is no �xed point at in�nity. Actually, a Gromov-hyperbolic metric space, for

example a CAT(-1) space, is nothing else than a metric space of telescopic dimen-

sion, or rank, at most 1 [2, Introduction]. In the unpublished paper [20], the analog

in the higher rank (but �nite !) case is proved. We include the original argument.

�eorem 3.1 ([20, �eorem 1]). Let � be the fundamental group of a compact Rie-
mannian manifold M with universal covering zM and let X be a complete CAT.0/

space of �nite telescopic dimension. If � acts by isometries on X without �xed
point at in�nity then there exists a unique equivariant harmonic map f W zM ! X .
Moreover, this harmonic map is Lipschitz.

Proof. For L > 0, let CL be the set of �-equivariant maps from zM to X that are

L-Lipschitz. �anks to �eorem 2.6.4 in [18], we �x L > 0 such that CL is not

empty and one can �nd a minimizing sequence of the energy in CL. We claim that

CL is a closed convex subset of L2
�. zM; X/. Let u; v 2 L2

�. zM; X/ and let t 7! ut

be the geodesic segment with endpoints u and v. If u; v are L-Lipschitz, then the

convexity of distance function on X [1, Proposition II.2.2] shows that ut is also

L-Lipschitz for any t . Now, the L2-convergence of a sequence with a common

Lipschitz bound implies the uniform convergence of this sequence and since a

uniform limit of a sequence of L-Lipschitz maps is also L-Lipschitz, we obtain

that CL is a closed convex subset of L2
�. zM; X/.

Let x0 2 zM and let X 0 D ¹x 2 X j u.x0/ D x; u 2 CLº. �e convexity of CL

implies that X 0 is a convex subset of X . We want to show that for any x 2 X 0,



140 B. Duchesne

there exists a unique map u 2 CL that minimizes the energy among maps in CL

such that u.x0/ D x. Let u; v 2 CL such that u.x0/ D v.x0/ D x 2 X0 then we

have
Z

M

d.u; v/2 �
.PI/

C

Z

M

krd.u; v/k2 �
.CI/

C
h1

2
.E.u/ C E.v// � E.m/

i

(3.1)

where C is some positive number and m is the midpoint of the segment Œu; v�.

Actually, inequality (PI) is a Poincaré inequality (Lemma 3.2) for the function

d.u; v/, which is 2L-Lipschitz and vanishes at x0, and inequality (CI) is [18, in-

equality (2.6ii)]. inequality (3.1) shows that an energy minimizing sequence .un/

with un.x0/ D x for any n is Cauchy. �erefore, an energy minimizing map in

¹u 2 Cl j u.x0/ D xº exists and is unique. Let us denote by fx this map.

We de�ne I.x/ to be E.fx/. Now, we aim to show that I W X 0 ! R
C is a

convex lower semicontinuous function. Assume this is the case, since I is �-in-

variant and lower semicontinuous, its lower levelsets Xr WD ¹x 2 X 0 j I.x/ � rº

are �-invariant closed convex subsets of X . Proposition 4.4 in [8] implies that the

intersection \r>inf I Ir is non empty otherwise the center of directions associated

to ¹Irºr>inf I would be a �-�xed point at in�nity. Since \r>inf I Ir ¤ ;, there is an

energy minimizing �-equivariant map, which is unique thanks to inequality (3.1).

From the convexity of E, it is clear that I is also convex. Let r > inf I and let

x 2 X be a limit point of a sequence .xn/ in Xr . It su�ces to show that fn WD fxn

is a Cauchy sequence in CL to obtain that Ir is closed. Let In D infX 0\B.x;1=n/ I .

We may assume that xn 2 X 0 \B.x; 1=n/ and E.fn/ � In C1=n. Now, inequality

(CI) in (3.1) implies that

Z

M

jrd.fn; fm/j2 ������!
n;m!1

0

and Lemma 3.2 applied to the function d.fn; fm/ � d.fn.x0/; fm.x0// allows us

conclude that .fn/ is a Cauchy sequence.

Lemma 3.2. If f W M ! R is a L-Lipschitz function that vanishes at some point
x0 2 M then there exists C > 0 which depends only on M and L, such that

Z

M

f 2 � C

Z

M

krf k2:

Proof. Let R be the diameter of M . By an abuse of notation, we also denote

by f the function f ı exp W Tx0
M ! R. We denote by � the pull-back, by the
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exponential map, of the measure associated to the Riemannian metric on M and

we denote by dx the Lebesgue measure on Tx0
M . �e measure � is absolutely

continuous with respect to dx, thus there is a positive number C1 such that the

density � of � satis�es �.x/ < C1 for any x in the R-ball around the origin in

Tx0
M . We have

Z

M

f 2 �

Z

B.0;R/

f 2.x/d�.x/ � C1

Z

B.0;R/

f .x/2dx:

Moreover,

Z

B.0;R/

f .x/2dx D

Z

B.0;R/

Z kxk

0

d

du

ˇ

ˇ

ˇ

ˇ

uDt

f .ux=kxk/2 dt dx

�

Z

B.0;R/

Z R

0

2f .tx=kxk/r tx

kxk
f �

x

kxk
dt dx:

Now, let n be the dimension of M and let � be the Lebesgue measure on Sn�1.

Using polar coordinates, the fact that krf k � L and Hölder inequality, we have

for some C2 > 0

Z

M

f 2 � 2C1L

Z R

0

Z

Sn�1

Z R

0

t krtvf k dt d�.v/rn�1dr

� C2

Z

Sn�1

Z R

0

krtvf kn�1tn�1dt d�.v/ D C2

Z

B.0;R/

krxf kn�1dx:

Once again, using Hölder inequality and the fact that the exponential map is �nite

to one on B.x0; R/, we have for some C3; C > 0,

Z

M

f 2 � C3

Z

B.x0;R/

krxf k2dx � C

Z

M

krf k2:

4. Smoothness

It is a standard fact that the most di�cult part to obtain smoothness of weak har-

monic maps is the �rst regularity step, which is the continuity of the harmonic

map (see for example [14, 8.4]). In our situation, we already know that the har-

monic map is Lipschitz and we can easily adapt the argument given in [6], where

the target is the in�nite dimensional hyperbolic space.
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Proposition 4.1. Let � be the fundamental group of a compact Riemannian man-
ifold M with universal covering zM and let N be a simply connected complete
Riemannian manifold of nonpositive sectional curvature. If � acts by isometries
on N and f W zM ! N is a �-equivariant harmonic map in the sense of Korevaar
and Schoen then f is a smooth harmonic map.

Proof. We only sketch the proof with the slight modi�cations to adapt [6, Propo-

sition 7]. We already know that f is Lipschitz. Choose a point x 2 N . Since N

is a simply connected Riemannian manifold of nonpositive curvature, the Cartan-

Hadamard �eorem [22, IX.3.8] implies that the exponential map at x is a dif-

feomorphism from the tangent space TxN to N . �is gives us a global chart and

we can think of N as a Hilbert space .H; h ; i/ WD .TxN; hx/ with a non constant

Riemannian metric h. Moreover, since N has nonpositive sectional curvature, for

any v 2 H and any point y 2 N ,

hy.v; v/ � hv; vi; (4.1)

see [22, �eorem IX.3.6]. In this chart, the covariant derivative can be expressed

by

rY X D DY X C �.exp/.X; Y /

where �.exp/ is the Christo�el symbol of this chart. Let B be a ball in zM of radius

less than the injectivity radius of M . �is way, the projection zM ! M identi�es

B with a ball in M . Consider f as a map from zM to H. inequality (4.1) shows that

f jB , which has �nite energy for the distance induced by h, has �nite energy for

the one induced by h ; i, too. �us, f jB is in the usual Sobolev space (for vector

valued maps) W 1;2.B;H/. Since f is harmonic, it satis�es the equation

�hf C

dim.M /
X

i;j D1

hij �.exp/

�

@f

@xi

;
@f

@xj

�

D 0

weakly. An induction on k shows that f jB is in W k;p.B;H/ for any k 2 N and

p > 1. �is shows that f is actually smooth.

5. A vanishing theorem

Let zM be an irreducible symmetric space of noncompact type that is not the

real or complex hyperbolic space and let � be a uniform torsion free lattice of

Isom. zM /. In order to prove a geometric statement of superrigidity in the co-

compact Archimedean case, Mok, Siu and Yeung proved the existence [27] of
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a 4-tensor Q on zM that satis�es strong conditions and a Bochner-type formula,

Z

M

h.Q ı �2 4/ ˝ f �h�; rdf ˝ rdf i D 1=2

Z

M

hQ; f �RN i: (5.1)

�is formula [27, �eorem 3] holds for an equivariant map f W zM ! N where N

is a smooth Riemannian manifold of �nite dimension and Q ı �2 4.X; Y; Z; T / D

Q.X; T; Z; Y /. �e scalar products are those induced by the Riemannian met-

rics of M and N on .T �M/˝4 ˝ .f �1TN /˝2 and .T �M/˝4. Actually, the proof

of this formula goes through in the case where N has in�nite dimension, with-

out modi�cation. �e conditions satis�ed by Q imply that the right-hand side of

equation (5.1) is nonpositive and the harmonicity of f implies that the left-hand

side is positive unless rdf vanishes. �us f is totally geodesic.

Proof of �eorem 1.2. Let zM be the symmetric space associated to G. Since �

is a torsion free uniform lattice, the quotient space �n zM is a compact manifold.

Since zM has no �xed point at in�nity of N , there exists a equivariant harmonic

map f W zM ! N by �eorem 3.1. �anks to Proposition 4.1, we know that f is a

smooth equivariant harmonic map.

Assume �rst that G is simple, that is to say zM is irreducible. Now, Mok–Siu–

Yeung above argument implies that f is totally geodesic. Since � does not �x a

point in N , f .N / is not reduced to a point. Now, since M is irreducible, f is an

isometry up to rescaling the metric on M (see for example [31]).

Now, if zM ' zM1 � � � �� zMn with n � 2 then thanks to a Bochner formula [27,

11], it is proved that the restriction of f to any �ber x1 � � � � � xi�1 � zMi � xiC1 �

� � � � xn is harmonic. �e irreducibility of � allows the authors of [27] to prove

that f is actually totally geodesic and thus f factorizes through

zM
�

�!
Y

i2I

zMi

f 0

�! N

where I is a non empty subset of ¹1; : : : ; nº, � is the canonical projection and f 0 is

an isometry (after renormalization of the metric on each factor zMi for i 2 I ).

We now explain Remark 1.3. Let .N; h/ be a Riemannian manifold with Rie-

mann tensor R. Let X; Y be vectors in the complexi�ed tangent space TxN ˝ C

at x 2 N . We also denote by R and h the C-linear extensions of the Riemann

tensor and the metric to the complexi�cation of TxN . �e complexi�ed sectional
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curvature between X and Y is

SecC.X; Y / D
R.X; Y; xX; xY /

kX ^ Y k2
C

where k kC is the Hermitian norm on ^2.TxN ˝ C/ induced by the real scalar

product

hX ^ Y; Z ^ T ih D det

"

h.X; Z/ h.X; T /

h.Y; Z/ h.Y; T /

#

on ^2TxN . �e Riemannian manifold N is said to have nonpositive complexi�ed
sectional curvature if SecC.X; Y / � 0 for any X; Y 2 TxN ˝ C.

�e result of [27], which is the existence of a tensor Q that implies the vanish-

ing of rdf for a harmonic map f , is true when N has nonpositive complexi�ed

sectional curvature and G is the connected component of the isometry group of the

quaternionic hyperbolic space or the Cayley hyperbolic plane. �us �eorem 1.2

is also true in this case.

Assume that N is a symmetric space and let C be the curvature operator of N

as introduced in [7, 3.2]. We also denote by C its C-linear extension to TxN ˝C.

For X; Y 2 TxN ˝ C,

SecC.X; Y / D
hC.X ^ Y /; X ^ Y ih

kX ^ Y k2
C

:

In the case where N is a symmetric space of noncompact type, C is nonpositive

and thus, the complexi�ed sectional curvature is nonpositive.

6. A �at torus theorem for parabolic isometries

We start with some preliminary results.

Lemma 6.1. Let X be a �-visible complete CAT(0) space. If Y � X is closed
and convex then it is also �-visible.

Proof. Let �; � 2 @Y such that †.�; �/ D � . �ere exists a geodesic c W R ! X

such that c.1/ D � and c.�1/ D �. Let x be the projection of c.0/ on Y . We

de�ne cC (respectively c�) to be the geodesic ray from x toward � (respectively �).

By de�nition of the boundary, d.c.t/; cC.t // and d.c.�t /; c�.t // are bounded for
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t � 0. �e real function t 7! d.c.t/; Y / is convex bounded and thus constant

equal to some d0 � 0. Now let c0.t / be the projection of c.t/ on Y for t 2 R.

For s; t 2 R and x 2 Œc.t /; c.s/�, d.x; Œc0.t /; c0.s/�/ D d0. By the same argument

as above, for all x 2 Œc0.t /; c0.s/�, d.x; Œc.t /; c.s/�/ D d0 and we are in position

to apply the Sandwich Lemma [1, II.2.12.(2)], which shows that the convex hull

of c.t/; c.s/; c0.s/; c0.t / is a Euclidean rectangle. In particular, c0 W R ! Y is a

geodesic with c0.1/ D � and c0.�1/ D �.

We recall that a ballistic isometry 
 of a complete CAT(0) space X has two

canonical �xed points at in�nity, which we denote by !
 and !
�1 . �ey are limit

points at in�nity of 
nx and 
�nx for any x 2 X (see [3, 3.C], for example).

Proposition 6.2. Let X be a �-visible complete CAT(0) space and let 
 be a bal-
listic isometry of X . �en there exists a closed convex subspace Y � X that splits
as Z � R. Moreover, ZIsom.X/.
/ preserves Y and acts diagonally. In particular,

 jY acts as a translation of length j
 j along the factor R.

Proof. Let Y be the union of geodesics with endpoints !
 and !
�1 . Since X is

�-visible, Y is nonempty and 
-invariant. Moreover, Y is a closed subspace of X .

Let x 2 X be a limit point of a sequence .xn/ of points in Y . Let cn be the geodesic

such that cn.0/ D xn, cn.�1/ D !
�1 and cn.1/ D !
 . �anks to [1, Propo-

sition II.9.22], cn converges to a geodesic c such that c.0/ D x, c.�1/ D !
�1

and c.1/ D !
 .

Since Y is closed, convex and 
-invariant, j
 jY j D j
 j. �e subspace Y de-

composes as a product Y ' Z � R (see [1, �eorem II.2.14]) and 
 preserves this

decomposition. �us 
 jY can be written 
0 � 
1. A simple computation shows

that j
 j2 D j
0j2 C j
1j2. Assume for contradiction that j
0j > 0 then there ex-

ists !
0
2 @Z such that 
n

0 x0 ! !
0
for any x0 2 Z. �us, for any x 2 Y ,


nx ! .arccos.j
0j=j
1j/; !
0
; !
/ in the spherical join @Z � @R D @Y .

Lemma 6.3. Let A be an abelian group acting by isometries on a CAT(0) space X .
�e set N of neutral elements in A is a subgroup of A. Moreover, if A ' R

n and
the action is continuous then it is a linear subspace of A.

Proof. We recall that jaj D limn!1
d.nax;x/

n
for any x 2 X . �us

ja C bj D lim
n

d.n.a C b/x; x/

n
� lim

n

d.na.nbx/; nax/ C d.nax; x/

n
� jaj C jbj:

Moreover, jaj D j � aj and jnaj D njaj for any n 2 N. �us, if A ' R
n, by

continuity j�aj D j�j jaj for any � 2 R and a 2 A.
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We are ready to prove �eorem 1.4.

Proof of �eorem 1.4. We prove this theorem by induction on n. For n D 1, this

is Proposition 6.2. Now suppose n � 2 and choose a primitive element a 2

A and apply Proposition 6.2. We obtain an ZIsom.X/.a/-invariant closed convex

subspace Y1 ' Z1 �R and a acts as a translation of length jaj on the R-factor. �e

group ZIsom.X/.a/ acts also diagonally on Y1. Let N be the subset of A formed by

elements b D .b1; b2/ of A such that jb1j D 0. Lemma 6.3 shows N is a subgroup

of A. �e subgroup N acts properly on R and thus is cyclic. It contains a and

since a is primitive in A, N D aZ. Now let B be a free abelian group of rank

n � 1 such that A D N ˚ B . Observe that B acts by ballistic isometries on Z1.

We can now apply an induction for B Õ Z1 and we obtain Y2 ' Z � R
n�1 �

Z1. By induction Y2 is ZIsom.Z1/.B/-invariant and ZIsom.Z1/.B/ preserves this

decomposition. Moreover, for any 
 2 ZIsom.X/.A/, 
1 2 ZIsom.Z1/.B/ and thus


1 preserves Y2 and acts diagonally on it. In particular, a1 (which is neutral) has

a trivial part on R
n�1. Now if we set Y D Y2 � R ' Z � R

n � X , Y has the

desired properties.

Proof of Corollary 1.5. �anks to [30, Corollary 2.9], � contains an Abelian free

group of rank r . Since this Abelian free group acts also by ballistic isometries, it

su�ces to apply �eorem 1.4 to �nd a Euclidean subspace of Xp.K/ of dimension

r and thus p � r .
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