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Abstract. Let M be a twisted interval bundle over a closed nonorientable hyperbolizable

surface. Let X.M/ be the PSL.2;C/-character variety of �1.M/. We examine the dynam-

ics of the action of Out.�1.M// on X.M/; and in particular, we �nd an open set on which

the action is properly discontinuous that is strictly larger than the interior of the deforma-

tion space of marked hyperbolic 3-manifolds homotopy equivalent to M . Furthermore, we

identify which discrete and faithful representations can lie in a domain of discontinuity for

the action of Out.�1.M// on X.M/.
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1. Introduction

In this paper we use the deformation theory of hyperbolic 3-manifolds to study

the dynamics of Out.�1.M// on the PSL.2;C/-character variety of �1.M/ when

M is a hyperbolizable twisted I -bundle. �e deformation space AH.M/ is the

space of conjugacy classes of discrete and faithful representations of �1.M/ into

PSL.2;C/. It can also be thought of as the space of marked hyperbolic 3-manifolds

homotopy equivalent to a given compact 3-manifold with boundary M . It sits

inside the PSL.2;C/-character variety of �1.M/

X.M/ D Hom.�1.M/; PSL.2;C//== PSL.2;C/

the quotient of Hom.�1.M/; PSL.2;C// from geometric invariant theory. �e

outer automorphism group Out.�1.M// acts on X.M/ and on AH.M/ in the fol-

1 Partially supported by NSF RTG grant DMS 0602191.
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lowing way: an outer automorphism Œf � maps a representation Œ�� to Œ� ı f �1�.

Using the parametrization of the interior of AH.M/ (see [6] for more details on

this parametrization), it is well known that this action is properly discontinuous

on the interior of AH.M/. In this paper we �nd a larger domain of discontinuity

for the action of Out.�1.M// in the case where M is a twisted I -bundle over a

closed nonorientable hyperbolic surface. Namely, we prove the following.

�eorem 1. If M is a hyperbolizable twisted I -bundle over a closed nonori-

entable surface, then there exists an open, Out.�1.M//-invariant subset PS.M/,

called the set of primitive-stable representations, in X.M/ containing the interior

of AH.M/ as well as points on @ AH.M/ such that the action of Out.�1.M// is

properly discontinuous on PS.M/.

It is well known that in the case where M is a trivial I -bundle over an

orientable hyperbolic surface no point on the boundary of AH.M/ can lie in a

domain of discontinuity for the action of Out.�1.M// on X.M/ (see Section 3).

�eorem 1 shows that, surprisingly, the dynamics of the outer automorphisms of

a nonorientable surface group di�er from those of the outer automorphisms of an

orientable surface group.

Naturally, we would like to know whether PS.M/ is a maximal domain of dis-

continuity. Toward this end, we prove �eorem 2 that characterizes which points

in AH.M/ lie in PS.M/ and also characterizes which points in AH.M/ can lie

in a domain of discontinuity for the action of Out.�1.M//. So far, the only other

case in which the points of AH.M/ that can lie in a domain of discontinuity have

been characterized is the quasi-Fuchsian case.

�eorem 2. Let M be a hyperbolizable twisted I -bundle and let Œ�� be an element

of AH.M/. �en Œ�� lies in the complement of PS.M/ if and only if there exists a

primitive element g of �1.M/ such that �.g/ is parabolic. Moreover, if � lies in

AH.M/�PS.M/, then � does not lie in any domain of discontinuity for the action

of Out.�1.M// on X.M/.

A primitive element of �1.M/ is one which is associated to a simple closed

curve on the base surface. In particular, all purely hyperbolic points in AH.M/

lie in PS.M/.

�e notion of primitive-stable representations was �rst introduced by Minsky

in [15] where he proved a result analogous to �eorem 1 for handlebodies; namely,

if Hg is a genus g hyperbolizable handlebody, then the set of primitive-stable

representations, denoted PS.Hg/, is a domain of discontinuity for the action of
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Out.Fg/ strictly larger than the interior of AH.Hg/; where Fg is the free group

on g generators. In an upcoming paper ([11]), we extend the notion of primitive-

stability to compression bodies.

Canary and Storm ([7]) showed that when M is a compact, hyperbolizable

3-manifold with incompressible boundary and no toroidal boundary components

that is not an I -bundle, then there exists an Out.�1.M//-invariant open set W.M/

containing the interior of AH.M/ and containing points on @ AH.M/ on which

the action is properly discontinuous. Canary and Storm use a di�erent method

of constructing this set that involves the characteristic submanifold of M but the

set they construct W.M/ also contains all purely hyperbolic points. Combining

their results with �eorem 1 and the quasi-Fuchsian case (see Section 3) we can

conclude the following.

Corollary 3. Let M be a compact, orientable, hyperbolizable 3-manifold with

nonempty incompressible boundary and no toroidal boundary components. �en

there exists an open, Out.�1.M//-invariant set, containing the interior of AH.M/

and points on the boundary of AH.M/, on which Out.�1.M// acts properly dis-

continuously if and only if M is not a trivial I -bundle over an orientable hyper-

bolic surface. Moreover, in the case that M is not a trivial I -bundle, then this set

contains all purely hyperbolic points in AH.M/.

Corollary 3 suggests that when M is a trivial I -bundle over an orientable,

hyperbolic surface the dynamics of Out.�1.M// on X.M/ is an anomalous case.

In this case, it is an open question whether the interior of deformation space is the

largest domain of discontinuity for the action of Out.�1.M// on X.M/.

We conclude this introduction with a brief outline of the paper. In Section 2 we

de�ne the notion of primitive-stable representations and show that the collection

of primitive-stable representations PS.M/ forms an open Out.�1.M//-invariant

subset of X.M/ on which Out.�1.M// acts properly discontinuously. In Section 3

we break up the proof of �eorem 2 into two parts. In Proposition 15 we show that

an element Œ�� in AH.M/ lies in PS.M/ if and only if �.g/ is not parabolic for any

primitive element g of �1.M/. Minsky observed that if a representation Œ�� maps

the core curve of an essential annulus to a parabolic element, then Œ�� cannot lie

in any domain of discontinuity. Using this result and Proposition 15 it follows that

any point in AH.M/ outside of PS.M/ does not lie in a domain of discontinuity,

proving the second assertion of �eorem 2. We conclude with the observation

that Minsky’s result can also be applied to show that no element in the boundary

of quasi-Fuchsian space can lie in a domain of discontinuity.
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2. Primitive stability

�e goal of this section is to show that the set PS.M/ of primitive-stable repre-

sentations is an open, Out.�1.M//-invariant set on which the action is properly

discontinuous. We follow the argument given by Minsky in [15] for the case when

M is a handlebody. Let B be a closed nonorientable hyperbolic surface and let zB

be its orientable double cover. Let M be a twisted I -bundle over B , namely

M D zB � I=.x; t / � .�.x/; 1 � t /

where � is an orientation reversing, �xed-point free involution of zB such that
zB=h�i is homeomorphic to B . Let G be the fundamental group of M .

De�nition 4. We say an element g in G is primitive if it can be represented by a

simple closed curve on the base surface B .

As G is torsion free, every element of G acts with North-South dynamics on

CS .G/ the Cayley graph of G with �nite symmetric generating set S . If g� and gC

denote the repelling and attracting �xed points of g on @CS.G/, let L.g/ denote

the set of geodesics connecting g� and gC. Let P denote the set of geodesics l

such that l is contained in L.g/ for some primitive element g.

Given a representation � W G ! PSL2.C/ and a basepoint x in H
3; there exists

a unique �-equivariant map ��;x W CS .G/ ! H
3 taking the identity to x and edges

to geodesic segments.

De�nition 5. A representation � W G ! PSL2.C/ is called .K; A/-primitive-stable

if there exists a basepoint x in H
3 such that ��;x takes all geodesics of P to .K; A/-

quasi-geodesics. A representation � is primitive-stable if it is .K; A/-primitive-

stable for some .K; A/:

A .K; A/-quasi-geodesic is a .K; A/-quasi-isometric image of R: Here we take

the parametrization to be ��;x composed with the arclength parametrization in

CS .G/:

Primitive-stability is independent of the choice of basepoint in H
3 and the

choice of generators S , although the constants .K; A/ will change (see [12], Lem-

ma III.2).
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Remark 6. .K; A/-primitive-stability is invariant under conjugation by elements

of PSL.2;C/. Two irreducible representations in Hom.G; PSL.2;C// lie in the

same �ber of � W Hom.�1.M/; PSL.2;C// ! X.M/ if and only if they di�er

by conjugation (see [9]). As reducible representations are never primitive-stable,

primitive-stability is well de�ned on X.M/.

In light of Remark 6, let PS.M/ � X.M/ denote the set of primitive-stable

representations in X.M/:

We will begin by showing that PS.M/ is open and Out.�1.M//-invariant.

Openness will follow from the fact that quasi-geodesics remain quasi-geodesics

under small perturbations. �e Out.�1.M//-invariance will follow from the fact

that automorphisms of G preserve the set of primitive elements.

Lemma 7. PS.M/ is an open, Out.�1.M//-invariant subset of X.M/. Moreover

given any Œ�0� inPS there exists constants .K0; A0/ and a neighborhood UŒ�0� such

that any element Œ�� in UŒ�0� is .K0; A0/-primitive-stable.

Proof. We start by showing that PS.M/ is open. �e second statement will follow

as a consequence of the proof of openness. Let L be a geodesic in CS .G/, L0 the

image of L under ��;x, ¹viº the image of the vertex sequence of L, and Pj;i the

plane that perpendicularly bisects the geodesic segment Œvj i ; v.j C1/i �. We will

need the following characterization of quasi-geodesics due to Minsky (for proof

see [15] or [12]).

Lemma 8 (Minsky). Given .K; A/, there exists c > 0 and i 2 N such that if

L0 D ��;x.L/ is a .K; A/-quasi-geodesic, then Pj;i separates P.j C1/;i and P.j �1/;i

and d.Pj;i ; P.j C1/;i / > c. Conversely, given c > 0 and i 2 N there exists .K 0; A0/

such that if L0 D ��;x.L/ has the property that Pj;i separates P.j C1/;i and P.j �1/;i

and d.Pj;i ; P.j C1/;i / > c; then L0 is a .K 0; A0/-quasi-geodesic.

To show that PS.M/ is open, it su�ces to show the following:

Lemma 9. For any primitive-stable representation Œ�0� inX.M/, there exists UŒ�0�

a neighborhood of Œ�0� and constants c0 > 0, i 0 2 N such that for any Œ�� in

UŒ�0� and any geodesic l in P, the planes, Pj;i 0 corresponding to ��;x.l/ have the

property that Pj;i 0 separates P.j C1/;i 0 and P.j �1/;i 0 and d.Pj;i 0 ; P.j C1/;i 0/ > c0.

We outline the proof of Lemma 9 whose details can be found in [12]. Suppose

that Œ�0� is .K0; A0/-primitive-stable. Let i0 and c0 be the constants obtained from
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Lemma 8. Let i 0 D i0 and choose c0 < c0. Since the map

�g W Hom.G; PSL.2;C// �! H
3;

� 7�! �.g/ � x;

is continuous and geodesics segments vary continuously with respect to their end-

points, for any pair of vertices vj i0 and v.j C1/i0 the point in the unit tangent bun-

dle determining Pj;i0 will vary continuously over Hom.G; PSL.2;C//. As G acts

transitively and isometrically on CS .G/ it su�ces to check that the separation and

distance properties of the planes Pj;i0 hold for subpaths of elements of P begin-

ning at the identity of length 3i0. In particular we are only concerned with what

happens to a �nite number of group elements. So if we take a lift �0 of Œ�0� in

Hom.G; PSL.2;C//; then there exists an open neighborhood U�0
of �0 such that

Pj;i 0 separates P.j C1/;i 0 and P.j �1/;i 0 and d.Pj;i 0 ; P.j C1/;i 0/ > c0 whose image in

X.M/ is the desired neighborhood of Œ�0�. �is completes the proof of Lemma 9

and hence openness.

To see that PS.M/ is Out.�1.M//-invariant �rst observe that since homotopy

equivalences of closed surfaces are homotopic to homeomorphisms, any automor-

phism f of �1.M/ Š �1.B/ preserves the set of primitive elements. �e image

of ��ıf �1;x W Cf .S/.G/ ! H
3 coincides with the image of ��;x W CS .G/ ! H

3.

Since primitive-stability is independent of the choice of generators of G, � ı f �1

is also primitive-stable.

We �nish this section by showing that the action of Out.�1.M// on PS.M/ is

properly discontinuous. �e idea is that primitive-stability will imply that trans-

lation length of a primitive element in the Cayley graph is coarsely the same as

translation length of the corresponding isometry in H
3 (Lemma 10). To show

proper discontinuity of the Out.�1.M//-action it will su�ce to show that only

�nitely many automorphisms, up to conjugation, can change the translation length

of primitive elements in the Cayley graph by a bounded amount (Lemma 13).

Lemma 10. Let C be a compact subset ofPS.M/. Let l�.g/ denote the translation

length of �.g/ in H
3 and let kgk denote the translation length of g in CS .G/. �en,

there exist constants r and R such that

r �
l�.g/

kgk
� R

for all primitive elements g and all representations Œ�� in C .
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Proof. We will start by �nding the upper bound. Let R be the maximum of

¹d.x; �.s/x/º over s in S and Œ�� in C ; such a R exists as S is �nite and the map

X.M/ ! R that maps Œ�� to d.x; �.s/x/ for a �xed s and x is continuous. �en,

��;x is R-Lipschitz for all Œ�� in C and so

l�.g/ � Rkgk:

To see the lower bound we can �rst assume by Lemmata 8 and 9 that there exists

.K; A/ such that every element Œ�� in C is .K; A/-primitive-stable. We would

like to compare translation length of g along the geodesics in L.g/ with l�.g/.

Unfortunately, g need not act by translation on the elements of L.g/. Instead, there

exists uniform quasi-axes for g; meaning there exists a (not necessarily unique)

.K 0; A0/-quasi-geodesic l 0 invariant under the action of g such that d.z; gz/ D kgk

for any z in l 0 (see [12] Lemma II.6).

It will su�ce to consider the image of these quasi-axes by the following lemma

(see [12], Lemma II.9).

Lemma 11. Given .K; A/ and .K 0; A0/, there exists K 00 D K 00.K; K 0; A; A0/ and

A00 D A00.K; K 0; A; A0/ such that the following holds. If 
 is a geodesic in CS .G/

such that ��;x.
/ is a .K; A/-quasi-geodesic and 
 0 is a .K 0; A0/-quasi-geodesic in

CS .G/ with the same endpoints at in�nity as 
 , then ��;x.
 0/ is a .K 00; A00/-quasi-

geodesic.

By Lemma 11, if l 0 is a .K 0; A0/-quasi-axis for g, then ��;x.l 0/ is a .K 00; A00/-

quasi-geodesic in H
3. In particular, ��;x.l 0/ lies in a R00 D R00.K 00; A00/ neighbor-

hood of the axis for �.g/. Hence if we take y to lie on the image of a quasi-axis

for g, we have

l�.g/ � d.y; �.g/ � y/ � 2R00 �
kgk

K 00
� A00 � 2R00:

So,
l�.g/

kgk
�

1

K 00
�

A00

kgk
�

2R00

kgk
:

For kgk larger than 2.A00 C 2R00/K 00,

1

K 00
�

A00

kgk
�

2R00

kgk
>

1

2K 00
> 0:

Let Œg1�; : : : ; Œgm� be the conjugacy classes of elements of G such that kgik is

less than 2.A00 C 2R00/K 00. Since
l�.gi /

kgi k
varies continuously over X.M/ for each gi

there exists a minimum value ri for
l�.gi /

kgi k
over C . Take r to be the minimum of

¹r1; : : : ; rm; 1
2K00 º.
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Proposition 12. Out.�1.M// acts properly discontinuously on PS.M/.

Proof. Let C be a compact set inPS.M/: Suppose that Œf � is an element in Out.G/

such that f � C \ C ¤ ;. By Lemma 10, for any Œ�� in C and any primitive word

w,

kf �1.w/k �
1

r
l�.f �1.w// D

1

r
l�ıf �1.w/ �

R

r
kwk:

Let x1; : : : ; xn be a set of generators for G such that each xi is primitive and

xi xj where i ¤ j is primitive; the standard generators for �1.B/ will do. Let

W D ¹xi ; xixj j i ¤ j º. �e following lemma shows that there are only �nitely

many outer automorphisms Œf � satisfying the inequality above.

Lemma 13. For any N > 0, the set

A D ¹Œf � 2 Out.G/j kf .w/k � N kwkj for all w 2 Wº

is �nite.

Proof. Suppose that ¹Œfk�º is a sequence of in�nitely many distinct elements in

A. As G acts cocompactly on H2, there is a G-equivariant quasi-isometry

� 0 W CS .G/ �! H
2:

Fix the following notation: let g denote the isometry of H2 induced by the action

of g, l.g/ its translation length and Ax.g/ its invariant geodesic axis. As G acts

cocompactly on H
2, there exists r > 0 such that l.fk.xi // � r on H

2 for all i

and k. Since kfk.xixj /k � 2N , there exists R such that l.fk.xixj // � R all k

and all pairs i; j such that i ¤ j .

�is implies that there exists an upper bound D on the distance between

Ax.fk.xi // and Ax.fk.xj // for all k and all pairs i; j . If, on the contrary,

¹d.Ax.fk.xi //; Ax.fk.xj //º was unbounded, since l.fk.xi // and l.fk.xj // are

bounded from below by r , ¹l.fk.xi /fk.xj //º would also be unbounded, a contra-

diction.

�en, there also exists an upper bound D0 on the distance between Ax.fk.xi //,

a quasi-axis of fk.xi /, and Ax.fk.xj //, a quasi-axis of fk.xj /, for all i; j , and k.

Up to conjugation, we can assume that Ax.fk.xi // is a uniformly bounded dis-

tance D00 from the identity e for all k and i . If y is a point on Ax.fk.xi // closest

to e, then we can bound the distance between the identity and fk.xi / in the Cayley



Dynamics on the PSL.2;C/-character variety 195

graph as follows:

d.e; fk.xi // � D00 C d.y; fk.xi /y/ C D00

� 2D00 C kfk.xi /k

� 2D00 C N:

�is implies that up to conjugation, there are only �nitely many possibilities for

fk.xi /. Hence A must be �nite.

Since there are only �nitely many outer automorphisms Œf � such that

f � C \ C ¤ ;; the action is properly discontinuous on PS.M/:

To complete the proof of �eorem 1 it remains to show that PS.M/ is strictly

larger than the interior of AH.M/. �is will follow immediately from �eorem 2,

which will be proven in Section 3.

3. Primitive-stable points on the boundary of AH.M/

In this section we prove �eorem 2. We break up the proof into Propositions 15

and 17. We start by characterizing which points in AH.M/ lie in PS.M/. �e in-

terior of AH.M/ consists of convex cocompact representations (see [18]), namely

those representations whose associated hyperbolic manifold has a compact con-

vex core. We will show that Œ�� in AH.M/ lies in PS.M/ if and only if �.g/ is

hyperbolic for all primitive elements g of G. In particular, PS.M/ will contain

the interior of AH.M/ as well as all purely hyperbolic points on the boundary

of AH.M/. �is will complete the proof of �eorem 1. �en, to complete the

proof of �eorem 2 we will use an observation by Minsky that if Œ�� in AH.M 0/

maps a core curve of an essential annulus to a parabolic element of PSL.2;C/ then

Œ�� cannot lie in a domain of discontinuity of the action of Out.�1.M 0// onX.M 0/.

Finally we conclude with the result that no point on the boundary of quasi-Fuchsian

space can lie in a domain of discontinuity.

We start this section by reviewing some basic facts from hyperbolic geome-

try that we will need. �ere exists a constant �3 > 0 such that for any hyper-

bolic 3-manifold N Š H
3=�, where � a discrete subgroup of IsomC.H3/ and

any � < �3 each component of Nthin.�/ D ¹x 2 N j injN .x/ < �º is either a

metric neighborhood of a closed geodesic, called a Margulis tube, or a parabolic

cusp homeomorphic to either S1 � R � .0; 1/ or T � .0; 1/ where T is a torus

(see [1], Chapter D). Let N 0
� denote the complement of the non-compact portions

of Nthin.�/ in N . �e convex core C.N / of N is the smallest convex submanifold
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of N such that the inclusion of C.N / into N is a homotopy equivalence. A hyper-

bolic 3-manifold N is called convex cocompact if C.N / is compact. In general,

when �1.N / is �nitely generated, there exists a compact submanifold C , called the

compact core, whose inclusion induces a homotopy equivalence with N (see [17]).

Moreover, C can be chosen such that C intersects each parabolic cusp of the non-

compact portions of Nthin.�/ in a single incompressible annulus if the cusp is home-

omorphic to S1 �R� .0; 1/ or a torus if the cusp is homeomorphic to T � .0; 1/

(see [13]). A compact core of the latter type is called a relative compact core.

�e goal of this section is to prove the following.

�eorem 2. Let Œ�� be an element of AH.M/. �en, Œ�� lies in the complement of

PS.M/ if and only if there exists a primitive element g of �1.M/ such that �.g/

is parabolic. Moreover, if � lies in AH.M/ � PS.M/, then � does not lie in any

domain of discontinuity for the action of Out.�1.M// on X.M/.

We will use the following characterization of which discrete and faithful rep-

resentations mapping all primitive elements to hyperbolic elements of PSL.2;C/

are primitive-stable.

Lemma 14. Let � be a discrete and faithful representation of �1.M/ into PSL.2;C/

such that �.g/ is hyperbolic for any primitive element g. �en � is primitive-stable

if and only if there exists a compact subset � of N� D H
3=�.�1.M// such that the

set of geodesics corresponding to primitive elements of �1.M/ is contained in �.

Proof. Suppose there exists a compact set � such that all primitive geodesics of

N� are contained in �. Without loss of generality we can assume that � is a

compact core C of N� containing the image of CS .G/=�.G/ in N�. �is implies,

in particular, that z�, the preimage of � in H
3 is connected. For some .K; A/,

the orbit map ��;x W CS .G/ ! z� � H
3 is a .K; A/-quasi-isometry from CS .G/

to z� with the intrinsic metric. Any geodesic l in P connecting g� and gC, the

�xed points of g, maps to a .K; A/-quasi-geodesic in z�, with the intrinsic metric.

In particular, ��;x.l/ lies in a R D R�.K; A/-neighborhood of Ax.g/, a lift of the

geodesic representing g in N�. �en ��;x.l/ lies in a R neighborhood of Ax.g/

with the extrinsic metric on z�. If x; y lie on ��;x.l/ and if � denotes the closest

point projection onto Ax.g/ in z�, then

dz�.x; y/ � dz�.�.x/; �.y// C 2R D dH3.�.x/; �.y// C 2R � dH3.x; y/ C 4R

�is implies that ��;x.l/ is a .K; A C 4R/-quasi-geodesic in z� with the extrinsic

metric. Hence � is .K; A C 4R/-primitive-stable.
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Conversely, if � is .K; A/-primitive-stable then elements of P stay within a

bounded neighborhood of their corresponding geodesic axes in H
3. In particular,

geodesics representing primitive elements will stay in a bounded neighborhood of

the image of the Cayley graph in N�, which is a compact set.

We will start by proving the �rst assertion of �eorem 2.

Proposition 15. Let Œ�� be an element of AH.M/. �en Œ�� does not lie inPS.M/ if

and only if there exists a primitive element g of �1.M/ such that �.g/ is parabolic.

Proof. �e backwards direction is easy for if �.g/ is parabolic, then for any ge-

odesic l connecting the �xed points gC and g� on @CS.G/, ��;x.l/ is not quasi-

geodesic.

For the forward direction, if �.g/ is hyperbolic for every primitive g, then by

Lemma 14 it su�ces to check that closed geodesics corresponding to primitive

elements remain in a compact set. Let 
g denote the unique geodesic represen-

tative of �.g/ in N D H
3=�.�1.M//. �e representation � induces a homotopy

equivalence h� W M ! N . Precompose with the inclusion B ! M , to obtain an

incompressible map h0
� W B ! N . Let ˛g be a simple closed curve on B such that

h0
�.˛g / is freely homotopic to 
g . Fix a point x0 on ˛g . Extend ˛g and x0 to a

one vertex triangulation of B , meaning a collection of mutually nonisotopic arcs

ki with all endpoints at x0 and disjoint interiors such that B � Œ.[ki / [ ˛g � is a

collection of triangles.

�e map h0
� is homotopic to a map hg that maps ˛g to 
g , each arc ki to a

geodesic arc and each triangle to a totally geodesic triangle. If we endow B with

the pull-back metric, then B has a hyperbolic metric with one cone singularity at

x0. By construction, the sum of the angles of the sectors around x0 is at least 2� .

In particular, the area of B is bounded above by �2��.B/. We have constructed

a so-called simplicial hyperbolic surface (for more details see [2] §1.2).

Given � � �3; we claim that given any such simplicial hyperbolic surface,

h W B ! N , there is a uniform upper bound on how far its image can venture out

of N 0
� . Observe �rst that there exists a constant A depending only on the Euler

characteristic of B such that for any point x in B there exists a homotopically

nontrivial simple curve through x of length less than A. To produce such a curve

take a ball centered at x and blow it up until it intersects itself. Since the area of B

is bounded, there is a uniform upper bound on the area and radius of such a ball.

For any L > 2A, if h.B/\ .N �NL.N 0
� // ¤ ;; where NL.N 0

� / is the L-neigh-

borhood of N 0
� ; then there exists a homotopically non-trivial simple curve entirely

contained within a noncompact component of Nthin.�/. �is implies that the curve
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represents a parabolic element, a contradiction. So, there exists �0 such that sim-

plicial hyperbolic surfaces realizing primitive geodesics are contained in N 0
�0

: Fur-

thermore, we can choose �0 small enough such that the distance between any two

Margulis tubes is bounded away from zero, i.e. there exists ı > 0 such that for any

two Margulis tubes T1 and T2, the distance between them d.T1; T2/ is at least ı

(see [14] Lemma 6.1).

Now suppose to the contrary that ¹
iº is a sequence of primitive geodesics not

contained in any compact set. Let hi W B ! N denote a simplicial hyperbolic

surface containing 
i . We can lift hi to a map Qhi W S ! zN where S D @M and zN

is the double cover of N associated to the subgroup �1.S/. By construction, Qhi

satis�es Q� ı Qhi D Qhi ı � , where Q� is the nontrivial covering transformation of zN .

Moreover, the map Qhi is a simplicial hyperbolic surface containing 
i and Q�.
i /

where the associated triangulation is the preimage of the triangulation on B .

Fix C a compact core for N . �e preimage zC of C in zN is a compact core for
zN . As zC is homotopy equivalent to a �ber surface S which separates zN Š S �R;

its complement zN � zC has two components. Since zC covers C and C has only

one boundary component, Q� must exchange the two boundary components of zC ,

and hence Q� must exchange the two components of zN � zC .

Let Ci be the following set

¹x 2 N 0
�0

j there exists a path c in N 0
�0

from x to C with l.c \ Nthick.�0// � iº:

Since we chose �0 small enough so that the Margulis tubes are a de�nite dis-

tance apart, for each i there exists Ri such that Ci is contained in NRi
.C /; the Ri

neighborhood of C . In particular, each Ci is compact. As ¹
iº is not contained in

any compact set, we can assume, up to subsequence, that there exists a point xi

on 
i such that xi lies outside the compact set Ci :

As Q� interchanges the two components of zN � zC , the two lifts Qxi ; Qx0
i of xi lie in

di�erent components of zN � zC , but by the equivariance property of Qhi , they both

lie on Qhi .S/. Any path c on Qhi.S/ connecting Qxi and Qx0
i satis�es the condition

d.c \ zNthick.�0// � 2i , for if not, in N there would be a path c0 connecting xi

to C with d.c0 \ Nthick.�0// < i . For i large enough, this contradicts Bonahon’s

bounded diameter lemma ([2] Lemma 1.11) that states that the diameter of any

incompressible simplicial hyperbolic surface modulo the �0-thin part is bounded

above where the bound depends only on �0 and the topology of the surface.

�is completes the proof of the �rst assertion of �eorem 2. To see the second

assertion we will need the following observation due to Minsky.
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Lemma 16 (Minsky). Let M be a compact hyperbolizable manifold with no

toroidal boundary components. Let 
 be the core curve of an essential annulus

in M . Suppose that � W �1.M/ ! PSL2.C/ is a discrete and faithful representa-

tion such that �.
/ is parabolic. �en, any neighborhood of Œ�0� contains points

with in�nite stabilizers. In particular, Œ�� cannot lie in a domain of discontinuity

for the action of Out.�1.M// on X.M/.

Proof. Consider the map

tr2

 W X.M/ �! C

where Œ�� 7! tr.Œ�.
/�/2. As a neighborhood of AH.M/ is a smooth complex

manifold (see [10] Chapter 4) on which tr2

 is a holomorphic map, the map tr2 is

either constant or open on that neighborhood. As the interior of AH.M/ consists

of convex cocompact representations that are dense in AH.M/ (see [4] and [16]),

the image of tr2

 cannot be constant on all of AH.M/ and hence it must be an open

map on that neighborhood of AH.M/. Since isometries of H3 are determined, up

to conjugacy, by their trace and there are �nite order elliptic isometries with trace

arbitrarily close to 2 or �2, there exist representations �i approaching � such that

�i .
/ corresponds to a �nite order elliptic isometry. Let ni denote the order of

�i .
/. �en D
ni

 the Dehn twist of order ni about the annulus whose core curve

is 
 is an element in Out.�1.M// that �xes Œ�i �. Hence, elements arbitrarily close

to Œ�� have in�nite stabilizers.

Proposition 17. If � lies in AH.M/ � PS.M/, then � does not lie in any domain

of discontinuity for the action of Out.�1.M// on X.M/.

Proof. If Œ�� lies in the complement of PS.M/ in AH.M/, then there exists a

primitive element g such that �.g/ is parabolic. �en g is either the core curve of

an essential annulus or the core curve of an essential Mobius band. By Lemma 16

it su�ces to show that the latter is impossible. Suppose that 
 is a closed essential

curve in M mapping to a parabolic element in N� D H
3=�.G/. �en we claim

that 
 must be homotopic into @M . If C is a relative compact core for N�, consider

the map � W S D @M ! C in the homotopy class of �j�1.@M /. If zC is the cover

of C associated to the subgroup ��.�1.S// it is a compact manifold with �1. zC/ Š

�1.S/. �is implies that zC must be a trivial I -bundle over S ([8] �eorem 10.6).

�en the lift S ! zC can be homotoped into @ zC . Hence the map S ! C is also

homotopic into the boundary of C . �en, we can homotope the map M ! C to a

map that sends @M into @C . �is map is either homotopic to a homeomorphism

or is homotopic to a map M ! @C ([8] �eorem 13.6). �e latter cannot happen

as this would imply that @C is a nonorientable closed surface. Hence any curve
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in M mapping to a parabolic element in N� is homotopic into @M . As the core

curve of an essential Mobius band cannot be homotoped into @M , it cannot be

mapped to a parabolic element in N�.

�is completes the proof of �eorem 2. We end this section with an application

of Minsky’s observation in the quasi-Fuchsian case.

Proposition 18. Let F be an orientable hyperbolic surface. �en no point on

the boundary of AH.F � I / can lie in a domain of discontinuity for the action of

Out.�1.F � I // on X.F � I /.

Proof. Since geometrically �nite points are dense on the boundary of AH.F � I /

(see [3] and [5]) and since any simple closed curve on F is the core curve of an

essential annulus, the result follows from Lemma 16.
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