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Dynamics on the PSL (2, C)-character variety
of a twisted 7-bundle

Michelle Lee!

Abstract. Let M be a twisted interval bundle over a closed nonorientable hyperbolizable
surface. Let (M) be the PSL(2, C)-character variety of ; (M). We examine the dynam-
ics of the action of Out(ry(M)) on X(M ), and in particular, we find an open set on which
the action is properly discontinuous that is strictly larger than the interior of the deforma-
tion space of marked hyperbolic 3-manifolds homotopy equivalent to M. Furthermore, we
identify which discrete and faithful representations can lie in a domain of discontinuity for
the action of Out(r1(M)) on X(M).
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1. Introduction

In this paper we use the deformation theory of hyperbolic 3-manifolds to study
the dynamics of Out(zr;(M)) on the PSL(2, C)-character variety of 71 (M) when
M is a hyperbolizable twisted /-bundle. The deformation space AH(M) is the
space of conjugacy classes of discrete and faithful representations of 71 (M) into
PSL(2, C). It can also be thought of as the space of marked hyperbolic 3-manifolds
homotopy equivalent to a given compact 3-manifold with boundary M. It sits
inside the PSL(2, C)-character variety of 7 (M)

X(M) = Hom(rr; (M), PSL(2, C))/ PSL(2, C)

the quotient of Hom(wr; (M), PSL(2, C)) from geometric invariant theory. The
outer automorphism group Out(zr;(M)) acts on X (M) and on AH(M ) in the fol-
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lowing way: an outer automorphism [ f] maps a representation [p] to [p o f~!].
Using the parametrization of the interior of AH(M) (see [6] for more details on
this parametrization), it is well known that this action is properly discontinuous
on the interior of AH(M). In this paper we find a larger domain of discontinuity
for the action of Out(sr; (M)) in the case where M is a twisted /-bundle over a
closed nonorientable hyperbolic surface. Namely, we prove the following.

Theorem 1. If M is a hyperbolizable twisted I-bundle over a closed nonori-
entable surface, then there exists an open, Out(wy(M))-invariant subset PS(M ),
called the set of primitive-stable representations, in X(M) containing the interior
of AH(M) as well as points on d AH(M) such that the action of Out(w1(M)) is
properly discontinuous on PS(M).

It is well known that in the case where M is a trivial /-bundle over an
orientable hyperbolic surface no point on the boundary of AH(M) can lie in a
domain of discontinuity for the action of Out(s;(M)) on X(M) (see Section 3).
Theorem 1 shows that, surprisingly, the dynamics of the outer automorphisms of
a nonorientable surface group differ from those of the outer automorphisms of an
orientable surface group.

Naturally, we would like to know whether PS(M) is a maximal domain of dis-
continuity. Toward this end, we prove Theorem 2 that characterizes which points
in AH(M) lie in P§(M) and also characterizes which points in AH(M) can lie
in a domain of discontinuity for the action of Out(sr;(M)). So far, the only other
case in which the points of AH(M ) that can lie in a domain of discontinuity have
been characterized is the quasi-Fuchsian case.

Theorem 2. Let M be a hyperbolizable twisted I -bundle and let [p] be an element
of AH(M). Then [p] lies in the complement of PS(M) if and only if there exists a
primitive element g of w1 (M) such that p(g) is parabolic. Moreover, if p lies in
AH(M)—P8(M), then p does not lie in any domain of discontinuity for the action
of Out(r1(M)) on X(M).

A primitive element of 71(M) is one which is associated to a simple closed
curve on the base surface. In particular, all purely hyperbolic points in AH(M)
lie in PS(M).

The notion of primitive-stable representations was first introduced by Minsky
in [15] where he proved a result analogous to Theorem 1 for handlebodies; namely,
if Hg is a genus g hyperbolizable handlebody, then the set of primitive-stable
representations, denoted PS(Hy), is a domain of discontinuity for the action of
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Out(Fy) strictly larger than the interior of AH(H,), where F, is the free group
on g generators. In an upcoming paper ([11]), we extend the notion of primitive-
stability to compression bodies.

Canary and Storm ([7]) showed that when M is a compact, hyperbolizable
3-manifold with incompressible boundary and no toroidal boundary components
that is not an /-bundle, then there exists an Out(swr; (M ))-invariant open set W (M)
containing the interior of AH(M) and containing points on d AH(M) on which
the action is properly discontinuous. Canary and Storm use a different method
of constructing this set that involves the characteristic submanifold of M but the
set they construct W(M) also contains all purely hyperbolic points. Combining
their results with Theorem 1 and the quasi-Fuchsian case (see Section 3) we can
conclude the following.

Corollary 3. Let M be a compact, orientable, hyperbolizable 3-manifold with
nonempty incompressible boundary and no toroidal boundary components. Then
there exists an open, Out(;r (M))-invariant set, containing the interior of AH(M)
and points on the boundary of AH(M ), on which Out(rr1(M)) acts properly dis-
continuously if and only if M is not a trivial I-bundle over an orientable hyper-
bolic surface. Moreover, in the case that M is not a trivial I -bundle, then this set
contains all purely hyperbolic points in AH(M).

Corollary 3 suggests that when M is a trivial /-bundle over an orientable,
hyperbolic surface the dynamics of Out(sr;(M)) on X(M) is an anomalous case.
In this case, it is an open question whether the interior of deformation space is the
largest domain of discontinuity for the action of Out(z{(M)) on X(M).

We conclude this introduction with a brief outline of the paper. In Section 2 we
define the notion of primitive-stable representations and show that the collection
of primitive-stable representations PS(M ) forms an open Out(rr (M))-invariant
subset of X{(M ) on which Out(7r1 (M)) acts properly discontinuously. In Section 3
we break up the proof of Theorem 2 into two parts. In Proposition 15 we show that
an element [p] in AH(M) lies in PS(M ) if and only if p(g) is not parabolic for any
primitive element g of r;(M). Minsky observed that if a representation [o] maps
the core curve of an essential annulus to a parabolic element, then [o] cannot lie
in any domain of discontinuity. Using this result and Proposition 15 it follows that
any point in AH(M) outside of PS(M) does not lie in a domain of discontinuity,
proving the second assertion of Theorem 2. We conclude with the observation
that Minsky’s result can also be applied to show that no element in the boundary
of quasi-Fuchsian space can lie in a domain of discontinuity.
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2. Primitive stability

The goal of this section is to show that the set PS(M) of primitive-stable repre-
sentations is an open, Out(rr (M))-invariant set on which the action is properly
discontinuous. We follow the argument given by Minsky in [15] for the case when
M is a handlebody. Let B be a closed nonorientable hyperbolic surface and let B
be its orientable double cover. Let M be a twisted /-bundle over B, namely

M =B x1I/(x,t)~(0(x),1—1t)

where 6 is an orientation reversing, fixed-point free involution of B such that
B/(60) is homeomorphic to B. Let G be the fundamental group of M.

Definition 4. We say an element g in G is primitive if it can be represented by a
simple closed curve on the base surface B.

As G is torsion free, every element of G acts with North-South dynamics on
Cs (G) the Cayley graph of G with finite symmetric generating set S. If g_ and g
denote the repelling and attracting fixed points of g on dCs(G), let L(g) denote
the set of geodesics connecting g_ and g. Let P denote the set of geodesics /
such that / is contained in L(g) for some primitive element g.

Given a representation p: G — PSL,(C) and a basepoint x in IH3, there exists
a unique p-equivariant map 7, x : Cs(G) — H? taking the identity to x and edges
to geodesic segments.

Definition 5. A representation p: G — PSL,(C) is called (K, A)-primitive-stable
if there exists a basepoint x in H? such that 7, , takes all geodesics of P to (K, A)-
quasi-geodesics. A representation p is primitive-stable if it is (K, A)-primitive-
stable for some (K, A).

A (K, A)-quasi-geodesicis a (K, A)-quasi-isometric image of R. Here we take
the parametrization to be 7, , composed with the arclength parametrization in
Cs(G).

Primitive-stability is independent of the choice of basepoint in 3 and the
choice of generators S, although the constants (K, A) will change (see [12], Lem-
ma I11.2).
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Remark 6. (K, A)-primitive-stability is invariant under conjugation by elements
of PSL(2, C). Two irreducible representations in Hom(G, PSL(2, C)) lie in the
same fiber of 7: Hom(mw(M),PSL(2,C)) — X(M) if and only if they differ
by conjugation (see [9]). As reducible representations are never primitive-stable,
primitive-stability is well defined on X(M).

In light of Remark 6, let PS(M) C X (M) denote the set of primitive-stable
representations in (M ).

We will begin by showing that PS(M) is open and Out(sr; (M ))-invariant.
Openness will follow from the fact that quasi-geodesics remain quasi-geodesics
under small perturbations. The Out(x; (M ))-invariance will follow from the fact
that automorphisms of G preserve the set of primitive elements.

Lemma 7. PS(M) is an open, Out(wry (M ))-invariant subset of X(M). Moreover
given any [po) in PS there exists constants (Ko, Ag) and a neighborhood U, such
that any element [o] in Uy, is (Ko, Ao)-primitive-stable.

Proof. We start by showing that PS(M ) is open. The second statement will follow
as a consequence of the proof of openness. Let L be a geodesic in Cs(G), L’ the
image of L under 1, x, {v;} the image of the vertex sequence of L, and P;; the
plane that perpendicularly bisects the geodesic segment [v;;, v(j+1)i]. We will
need the following characterization of quasi-geodesics due to Minsky (for proof
see [15] or [12]).

Lemma 8 (Minsky). Given (K, A), there exists ¢ > 0 and i € N such that if
L' = 15 x(L) is a (K, A)-quasi-geodesic, then P;; separates Pj11); and Pj_1),;
and d(Pj;, P(j+1),;) > c. Conversely, given ¢ > 0 and i € N there exists (K', A")
suchthat if L' = 1, x (L) has the property that P;; separates P(j1); and P(j_1)
and d(Pj;, P(j+1),i) > ¢, then L" is a (K', A’)-quasi-geodesic.

To show that PS(M) is open, it suffices to show the following:

Lemma 9. For any primitive-stable representation [po] in X(M), there exists Uy
a neighborhood of [po] and constants ¢’ > 0, i’ € N such that for any [o] in
Ulpo) and any geodesic | in P, the planes, P; ;' corresponding to t4x(l) have the
property that P;;r separates P(jy1);» and P(j—1y,; and d(Pj;r, P(j+1),i’) > .

We outline the proof of Lemma 9 whose details can be found in [12]. Suppose
that [po] is (Ko, Ag)-primitive-stable. Let ip and ¢ be the constants obtained from
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Lemma 8. Let i’ = iy and choose ¢’ < ¢g. Since the map

$g : Hom(G, PSL(2, C)) —> T3,
pr—> p(g)-x,

is continuous and geodesics segments vary continuously with respect to their end-
points, for any pair of vertices vj;, and v(;+1);, the point in the unit tangent bun-
dle determining P;;, will vary continuously over Hom(G, PSL(2, C)). As G acts
transitively and isometrically on Cgs(G) it suffices to check that the separation and
distance properties of the planes P; ;, hold for subpaths of elements of P begin-
ning at the identity of length 3iy. In particular we are only concerned with what
happens to a finite number of group elements. So if we take a lift py of [pg] in
Hom(G, PSL(2, C)), then there exists an open neighborhood U, of po such that
Pj i separates P(j41), and P¢j_yy;» and d(Pj;’, P(j+1),i’) > ¢’ whose image in
X (M) is the desired neighborhood of [pg]. This completes the proof of Lemma 9
and hence openness.

To see that PS(M ) is Out(sr; (M ))-invariant first observe that since homotopy
equivalences of closed surfaces are homotopic to homeomorphisms, any automor-
phism f of 7;(M) = 71 (B) preserves the set of primitive elements. The image
of 70 -1 ¢ Cr(s)(G) — H? coincides with the image of 7, x: Cs(G) — H>.
Since primitive-stability is independent of the choice of generators of G, po f~!
is also primitive-stable. O

We finish this section by showing that the action of Out(z;(M)) on PS(M) is
properly discontinuous. The idea is that primitive-stability will imply that trans-
lation length of a primitive element in the Cayley graph is coarsely the same as
translation length of the corresponding isometry in H® (Lemma 10). To show
proper discontinuity of the Out(;r1 (M ))-action it will suffice to show that only
finitely many automorphisms, up to conjugation, can change the translation length
of primitive elements in the Cayley graph by a bounded amount (Lemma 13).

Lemma 10. Let C be a compact subset of PS(M). Let 1,(g) denote the translation
length of p(g) in H3 and let ||g|| denote the translation length of g in Cs(G). Then,
there exist constants r and R such that

< lp(g) <R
lgll
for all primitive elements g and all representations [p] in C.
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Proof. We will start by finding the upper bound. Let R be the maximum of
{d(x, p(s)x)} over s in S and [p] in C; such a R exists as S is finite and the map
X(M) — R that maps [p] to d(x, p(s)x) for a fixed s and x is continuous. Then,
7p,x is R-Lipschitz for all [p] in C and so

lo(8) = Rlgll.

To see the lower bound we can first assume by Lemmata 8 and 9 that there exists
(K, A) such that every element [p] in C is (K, A)-primitive-stable. We would
like to compare translation length of g along the geodesics in L(g) with /,(g).
Unfortunately, g need not act by translation on the elements of L(g). Instead, there
exists uniform quasi-axes for g, meaning there exists a (not necessarily unique)
(K’, A’)-quasi-geodesic [’ invariant under the action of g such thatd(z, gz) = ||g||
for any z in [’ (see [12] Lemma I1.6).

It will suffice to consider the image of these quasi-axes by the following lemma
(see [12], Lemma I1.9).

Lemma 11. Given (K, A) and (K', A’), there exists K = K"(K,K', A, A") and
A" = A"(K,K’', A, A) such that the following holds. If y is a geodesic in Cs(G)
such that t, x(y) is a (K, A)-quasi-geodesic and y' is a (K', A")-quasi-geodesic in
Cs (G) with the same endpoints at infinity as y, then t, x(y') is a (K", A”)-quasi-
geodesic.

By Lemma 11, if /" is a (K’, A’)-quasi-axis for g, then 7, (/') is a (K", A”)-
quasi-geodesic in H3. In particular, 7, (/') lies ina R” = R"(K", A”) neighbor-
hood of the axis for p(g). Hence if we take y to lie on the image of a quasi-axis
for g, we have

lo(g) = d(y,p(g)-y) —2R" = — —

So,
l,,(g)> 1 A" 2R"

lell — K7 gl Hg”
For || g|| larger than 2(A” + 2R")K”,

1 A" 2R 1

4 > //>0
K7 el gl 2K

Let [g1], ..., [gm] be the conjugacy classes of elements of G such that || g; || is
less than 2(A” +2R"”)K”. Since l‘”’gﬁ) varies continuously over X(M ) for each g;

. .. l : ..
there exists a minimum value r; for ﬁ;f"”) over C. Take r to be the minimum of
1

{rl,...,rm,ﬁ}. O
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Proposition 12. Out(rr;(M)) acts properly discontinuously on PS(M).

Proof. Let C be acompactsetin PS(M ). Suppose that [ /] is an element in Out(G)
such that f - C N C # @. By Lemma 10, for any [p] in C and any primitive word
w,

1 1 R
17 @ = o7 W) = o pr () < .

Let x1, ..., x, be a set of generators for G such that each x; is primitive and
xixj where i # j is primitive; the standard generators for 7 (B) will do. Let
W = {x;,x;xj| i # j}. The following lemma shows that there are only finitely
many outer automorphisms [ f] satisfying the inequality above.

Lemma 13. Forany N > 0, the set
A ={[f1€Out(G)| [ f(w)| = Nwll for all w € W}
is finite.

Proof. Suppose that {[ fx]} is a sequence of infinitely many distinct elements in
A. As G acts cocompactly on H?, there is a G-equivariant quasi-isometry

7’1 Cs(G) — H2.

Fix the following notation: let g denote the isometry of H? induced by the action
of g, [(g) its translation length and Ax(g) its invariant geodesic axis. As G acts
cocompactly on H?, there exists » > 0 such that /( f¢(x;)) > r on H? for all i
and k. Since || fx(x;ix;j)|| < 2N, there exists R such that /(fx(x;x;)) < R all k
and all pairs i, j such thati # j.

This implies that there exists an upper bound D on the distance between
AX(fx(x;)) and Ax(fx(x;)) for all k and all pairs i, j. If, on the contrary,
{d(AX(fx(xi)), AX(fr(x;))} was unbounded, since /( fx(x;)) and [( fx(x;)) are
bounded from below by r, {{( fx(x;) fx(x;))} would also be unbounded, a contra-
diction.

Then, there also exists an upper bound D’ on the distance between Ax( fx (x;)),
a quasi-axis of fz(x;), and Ax( fx(x;)), a quasi-axis of fi(x;), foralli, j, and k.
Up to conjugation, we can assume that Ax( fz(x;)) is a uniformly bounded dis-
tance D” from the identity e for all kK and i. If y is a point on Ax( fx(x;)) closest
to ¢, then we can bound the distance between the identity and f (x;) in the Cayley
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graph as follows:

d(e, fi(xi)) < D" +d(y. fi(xi)y) + D"
<2D" + || fie(xi)
<2D" + N.

This implies that up to conjugation, there are only finitely many possibilities for
Jfr(x;). Hence A must be finite. ]

Since there are only finitely many outer automorphisms [f] such that
f-C NC # @, the action is properly discontinuous on PS(M). U

To complete the proof of Theorem 1 it remains to show that PS(M) is strictly
larger than the interior of AH(M). This will follow immediately from Theorem 2,
which will be proven in Section 3.

3. Primitive-stable points on the boundary of AH(M)

In this section we prove Theorem 2. We break up the proof into Propositions 15
and 17. We start by characterizing which points in AH(M) lie in PS(M). The in-
terior of AH(M) consists of convex cocompact representations (see [18]), namely
those representations whose associated hyperbolic manifold has a compact con-
vex core. We will show that [p] in AH(M) lies in PS(M) if and only if p(g) is
hyperbolic for all primitive elements g of G. In particular, PS(M) will contain
the interior of AH(M) as well as all purely hyperbolic points on the boundary
of AH(M). This will complete the proof of Theorem 1. Then, to complete the
proof of Theorem 2 we will use an observation by Minsky that if [o] in AH(M’)
maps a core curve of an essential annulus to a parabolic element of PSL(2, C) then
[0] cannot lie in a domain of discontinuity of the action of Out(r1(M")) on X(M').
Finally we conclude with the result that no point on the boundary of quasi-Fuchsian
space can lie in a domain of discontinuity.

We start this section by reviewing some basic facts from hyperbolic geome-
try that we will need. There exists a constant 3 > 0 such that for any hyper-
bolic 3-manifold N =~ H3/T, where I' a discrete subgroup of Isom™ (H?) and
any € < pu3 each component of Npine) = {x € N | injy(x) < €} is either a
metric neighborhood of a closed geodesic, called a Margulis tube, or a parabolic
cusp homeomorphic to either S x R x (0, 00) or T x (0, o) where T is a torus
(see [1], Chapter D). Let N2 denote the complement of the non-compact portions
of Nihince) in N. The convex core C(N) of N is the smallest convex submanifold
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of N such that the inclusion of C(N) into N is a homotopy equivalence. A hyper-
bolic 3-manifold N is called convex cocompact if C(N) is compact. In general,
when 771 (N) is finitely generated, there exists a compact submanifold C, called the
compact core, whose inclusion induces a homotopy equivalence with N (see [17]).
Moreover, C can be chosen such that C intersects each parabolic cusp of the non-
compact portions of Nin(e) in a single incompressible annulus if the cusp is home-
omorphic to S x R x (0, oo) or a torus if the cusp is homeomorphic to 7' x (0, 0o)
(see [13]). A compact core of the latter type is called a relative compact core.
The goal of this section is to prove the following.

Theorem 2. Let [p] be an element of AH(M). Then, [p] lies in the complement of
PS(M) if and only if there exists a primitive element g of w1(M) such that p(g)
is parabolic. Moreover, if p lies in AH(M) — PS(M), then p does not lie in any
domain of discontinuity for the action of Out(sr1(M)) on X(M).

We will use the following characterization of which discrete and faithful rep-
resentations mapping all primitive elements to hyperbolic elements of PSL(2, C)
are primitive-stable.

Lemma 14. Let p be a discrete and faithful representation of w1 (M) into PSL(2,C)
such that p(g) is hyperbolic for any primitive element g. Then p is primitive-stable
if and only if there exists a compact subset Q2 of N, = H?/p(7r1(M)) such that the
set of geodesics corresponding to primitive elements of 7w1(M) is contained in 2.

Proof. Suppose there exists a compact set €2 such that all primitive geodesics of
N, are contained in Q. Without loss of generality we can assume that Q is a
compact core C of N, containing the image of Cs(G)/p(G) in N,. This implies,
in particular, that S~2, the preimage of Q in H3 is connected. For some (K, A),
the orbit map 7, x: Cs(G) — Q c H)isa (K, A)-quasi-isometry from Cgs(G)
to € with the intrinsic metric. Any geodesic / in P connecting g_ and g, the
fixed points of g, maps to a (K, A)-quasi-geodesic in Q, with the intrinsic metric.
In particular, 7, (/) liesin a R = Rq(K, A)-neighborhood of Ax(g), a lift of the
geodesic representing g in N,. Then 1, (/) lies in a R neighborhood of Ax(g)
with the extrinsic metric on €. If x, y lie on 7o,x(I) and if 7 denotes the closest
point projection onto Ax(g) in $, then

dg(x,y) <dg(m(x),m(y)) + 2R = dy3((x), w(y)) + 2R < dy3(x,y) + 4R

This implies that 7, x (/) is a (K, A + 4R)-quasi-geodesic in Q with the extrinsic
metric. Hence p is (K, A + 4R)-primitive-stable.
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Conversely, if p is (K, A)-primitive-stable then elements of P stay within a
bounded neighborhood of their corresponding geodesic axes in H3. In particular,
geodesics representing primitive elements will stay in a bounded neighborhood of
the image of the Cayley graph in N,, which is a compact set. U

We will start by proving the first assertion of Theorem 2.

Proposition 15. Let [p] be an element of AH(M). Then [p] does not lie in PS(M ) if
and only if there exists a primitive element g of w1 (M) such that p(g) is parabolic.

Proof. The backwards direction is easy for if p(g) is parabolic, then for any ge-
odesic / connecting the fixed points g4 and g_ on dCs(G), 7, x (/) is not quasi-
geodesic.

For the forward direction, if p(g) is hyperbolic for every primitive g, then by
Lemma 14 it suffices to check that closed geodesics corresponding to primitive
elements remain in a compact set. Let y; denote the unique geodesic represen-
tative of p(g) in N = H3/p(m;(M)). The representation p induces a homotopy
equivalence h,: M — N. Precompose with the inclusion B — M, to obtain an
incompressible map /),: B — N. Let o, be a simple closed curve on B such that
h,(erg) is freely homotopic to y,. Fix a point xp on ag. Extend g and xo to a
one vertex triangulation of B, meaning a collection of mutually nonisotopic arcs
k; with all endpoints at xo and disjoint interiors such that B — [(Uk;) U ag] is a
collection of triangles.

The map 4/, is homotopic to a map &, that maps &, to y,, each arc k; to a
geodesic arc and each triangle to a totally geodesic triangle. If we endow B with
the pull-back metric, then B has a hyperbolic metric with one cone singularity at
Xxo. By construction, the sum of the angles of the sectors around x is at least 2.
In particular, the area of B is bounded above by —2m y(B). We have constructed
a so-called simplicial hyperbolic surface (for more details see [2] §1.2).

Given € < uj3, we claim that given any such simplicial hyperbolic surface,
h: B — N, there is a uniform upper bound on how far its image can venture out
of N2. Observe first that there exists a constant A depending only on the Euler
characteristic of B such that for any point x in B there exists a homotopically
nontrivial simple curve through x of length less than A. To produce such a curve
take a ball centered at x and blow it up until it intersects itself. Since the area of B
is bounded, there is a uniform upper bound on the area and radius of such a ball.

Forany L > 2A,if h(B) N (N —=NL(N2)) # @, where N1 (N?) is the L-neigh-
borhood of N2, then there exists a homotopically non-trivial simple curve entirely
contained within a noncompact component of Niin(e). This implies that the curve
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represents a parabolic element, a contradiction. So, there exists € such that sim-
plicial hyperbolic surfaces realizing primitive geodesics are contained in N, 6%. Fur-
thermore, we can choose €p small enough such that the distance between any two
Margulis tubes is bounded away from zero, i.e. there exists § > 0 such that for any
two Margulis tubes 77 and 75, the distance between them d(7T7, T>) is at least §
(see [14] Lemma 6.1).

Now suppose to the contrary that {y;} is a sequence of primitive geodesics not
contained in any compact set. Let #;: B — N denote a simplicial hyperbolic
surface containing y;. We can lift s; to a map Ei S — N where S = M and N
is the double cover of N associated to the subgroup 71 (S). By construction, hi
satisfies 6 o Ei = Ei o 0, where 6 is the nontrivial covering transformation of N.
Moreover, the map hi is a simplicial hyperbolic surface containing y; and 6(y;)
where the associated triangulation is the preimage of the triangulation on B.

Fix C a compact core for N. The preimage C of C in N is a compact core for
N. As C is homotopy equivalent to a fiber surface S which separates N >~ S x R,
its complement N — C has two components. Since C covers C and C has only
one boundary component, 6 must exchange the two boundary components of C,
and hence 6 must exchange the two components of N — C.

Let C; be the following set

{x € NG% | there exists a path ¢ in Neo0 from x to C with /(¢ N Nick(ep)) < i}

Since we chose ¢p small enough so that the Margulis tubes are a definite dis-
tance apart, for each i there exists R; such that C; is contained in Ng, (C), the R;
neighborhood of C. In particular, each C; is compact. As {y;} is not contained in
any compact set, we can assume, up to subsequence, that there exists a point x;
on y; such that x; lies outside the compact set C;.

As 0 interchanges the two components of N —C, the two lifts %;, X of x; lie in
different components of N — C, but by the equivariance property of hi, they both
lie on /;(S). Any path ¢ on hi(S) connecting X; and X; satisfies the condition
d(c N ﬁthick(eo)) > 2i, for if not, in N there would be a path ¢’ connecting x;
to C with d(c¢’ N Niick(ey)) < i. For i large enough, this contradicts Bonahon’s
bounded diameter lemma ([2] Lemma 1.11) that states that the diameter of any
incompressible simplicial hyperbolic surface modulo the €y-thin part is bounded
above where the bound depends only on ¢, and the topology of the surface. [

This completes the proof of the first assertion of Theorem 2. To see the second
assertion we will need the following observation due to Minsky.



Dynamics on the PSL(2, C)-character variety 199

Lemma 16 (Minsky). Let M be a compact hyperbolizable manifold with no
toroidal boundary components. Let y be the core curve of an essential annulus
in M. Suppose that p: w1 (M) — PSL,(C) is a discrete and faithful representa-
tion such that p(y) is parabolic. Then, any neighborhood of [po] contains points
with infinite stabilizers. In particular, [p] cannot lie in a domain of discontinuity
for the action of Out(sr1(M)) on X(M).

Proof. Consider the map
trr: X(M) — C

where [p] — tr([o(y)])?. As a neighborhood of AH(M) is a smooth complex
manifold (see [10] Chapter 4) on which trf, is a holomorphic map, the map tr? is
either constant or open on that neighborhood. As the interior of AH(M) consists
of convex cocompact representations that are dense in AH(M ) (see [4] and [16]),
the image of trJZ, cannot be constant on all of AH(M ) and hence it must be an open
map on that neighborhood of AH(M). Since isometries of H* are determined, up
to conjugacy, by their trace and there are finite order elliptic isometries with trace
arbitrarily close to 2 or —2, there exist representations p; approaching p such that
pi(y) corresponds to a finite order elliptic isometry. Let n; denote the order of
pi(y). Then Dy’ the Dehn twist of order n; about the annulus whose core curve
is y is an element in Out(r1 (M)) that fixes [p;]. Hence, elements arbitrarily close
0 [p] have infinite stabilizers. O

Proposition 17. If p lies in AH(M) — PS(M), then p does not lie in any domain
of discontinuity for the action of Out(r1(M)) on X(M).

Proof. 1f [p] lies in the complement of PS(M) in AH(M), then there exists a
primitive element g such that p(g) is parabolic. Then g is either the core curve of
an essential annulus or the core curve of an essential Mobius band. By Lemma 16
it suffices to show that the latter is impossible. Suppose that y is a closed essential
curve in M mapping to a parabolic element in N, = H3/p(G). Then we claim
that y must be homotopic into dM . If C is a relative compact core for N, consider
the map ¢: S = dM — C in the homotopy class of p|, am). If C is the cover
of C associated to the subgroup ¢« (1 (S)) itis a compact manifold with ¢ (C) =~

m1(S). This 1rnphes that C must be a trivial I-bundle over S ([8] Theorem 10.6).
Then the lift § — C can be homotoped into dC. Hence the map S — C is also
homotopic into the boundary of C. Then, we can homotope the map M — C to a
map that sends dM into dC. This map is either homotopic to a homeomorphism
or is homotopic to a map M — dC ([8] Theorem 13.6). The latter cannot happen
as this would imply that dC is a nonorientable closed surface. Hence any curve
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in M mapping to a parabolic element in N, is homotopic into dM. As the core
curve of an essential Mobius band cannot be homotoped into dM, it cannot be
mapped to a parabolic element in N,. O

This completes the proof of Theorem 2. We end this section with an application
of Minsky’s observation in the quasi-Fuchsian case.

Proposition 18. Let F be an orientable hyperbolic surface. Then no point on
the boundary of AH(F x I) can lie in a domain of discontinuity for the action of
Out(m(F x I)) on X(F x I).

Proof. Since geometrically finite points are dense on the boundary of AH(F x [)
(see [3] and [5]) and since any simple closed curve on F is the core curve of an
essential annulus, the result follows from Lemma 16. Ol
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