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Abstract. We study the relative growth of �nitely generated subgroups in �nitely gen-

erated groups, and the corresponding distortion function of the embeddings. We explore

which functions are equivalent to the relative growth functions and distortion functions of

�nitely generated subgroups. We also study the connections between these two asymp-

totic invariants of group embeddings. We answer Gromov’s question on the relationship

between distortion and connectivity radius functions. We give conditions under which a

length function on a �nitely generated group can be extended to a length function on a

larger group.
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1. Introduction and background

We will use the notation that for a group G with �nite generating set X , and for an

element g 2 G, then jgjX represents the word length of the element g with respect

to the generating set X . For this paper, N D ¹1; 2; : : : ; º. For r 2 N we use the

notation that BG.r/ represents the ball in G centered at the identity with radius r .

�at is,

BG.r/ D ¹g 2 G W jgjX � rº:

De�nition 1.1. Let G be a group �nitely generated by a set X with any subset H .

�e growth function of H in G is

gG
H W N �! N W r 7�! #¹h 2 H W jhjX � rº D #.BG.r/ \ H/:

�e growth functions of subsets and other functions of this type become as-

ymptotic invariants independent of the choice of a �nite set X if one takes them

up to a certain equivalence � (see the de�nitions of �, �, � and � in Section 3.)

�e growth of a subgroup H with respect to a �nite set of generators of a bigger

group G is called the relative growth of H in G and denoted by gG
H . In particu-

lar, gG.r/ D gG
G .r/ is the usual growth function of the entire �nitely generated

group G.

�e relative growth of subgroups, as an asymptotic invariant independent on

the choice of generating sets, was studied by Osin in [15]. He provided a de-

scription of relative growth functions of cyclic subgroups in solvable groups, up

to a rougher (so called polynomial, based on inequalities of the form f .r/ �
�1.g.�2.r/// for some polynomials �1; �2 depending on the functions f and g)

equivalence relation than the ones we employ, � and �. He also provided a neg-

ative example to the following question attributed to A. Lubotzky by Grigorchuk

and De La Harpe ([5]). Is it true that the relative growth functions of subgroups in

solvable groups (linear groups) are either polynomial or exponential? However,

the relative growth of any �nitely generated subgroup of a free solvable groups

is either exponential or polynomial. Moreover, it was shown in [14] that the rela-

tive growth of any subgroup of a policyclic group is either exponential or at most

polynomial.

De�nition 1.2 (cf. [6]). Let H be a subgroup of a group G, where H and G are

generated by �nite sets Y and X , respectively. �en the distortion function of H

in G is de�ned as

�G
H W N �! N W r 7�! max¹jhjY W h 2 H; jhjX � rº:
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�e distortion function does not depend on the choice of �nite generating sets

X and Y , so long as it is considered only up to the equivalence of De�nition 3.1.

Moreover, if the subgroup H is in�nite, then the distortion function of H in G is

at least linear up to equivalence.

De�nition 1.3. �e �nitely generated subgroup H of the �nitely generated group

G is said to be undistorted if

�G
H .r/ � r:

If a subgroup H is not undistorted, then it is said to be distorted, and its dis-
tortion refers to the equivalence class of �G

H .r/.

Example 1.4 (cf. [6]). (1) Consider the three-dimensional Heisenberg group

H
3 D ha; b; c j c D Œa; b�; Œa; c� D Œb; c� D 1i:

Consider the cyclic subgroup H D hci1. �en H is distorted and has quadratic

distortion.

(2) Consider the Baumslag–Solitar Group

BS.1; 2/ D ha; b j bab�1 D a2i:

It has in�nite cyclic subgroup hai with exponential distortion.

2. Summary of main results

In Section 4 we prove the following result which classi�es which functions are

equivalent to relative growth functions of in�nite cyclic subgroups in �nitely gen-

erated groups.

Recall that for a function g W N ! N we say that g is superadditive if

g.r C s/ � g.r/ C g.s/;

and that g is subadditive if

g.r C s/ � g.r/ C g.s/;

for all r; s.
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�eorem 2.1. (1) If H is a non-locally-�nite subgroup of a �nitely generated
group G, then gG

H is �-equivalent to a superadditive function f W N ! N.

(2) If H is a countably in�nite and locally �nite group, then there is an em-
bedding of H into a �nitely generated group G so that gG

H is not equivalent to any
nonzero superadditive function.

(3) Let H be in�nite cyclic, and let f W N ! N be any non-zero superadditive
function of at most exponential growth; that is, f .r/ � 2r . �en there exists a
�nitely generated (solvable) group G and an embedding of H into G such that the
relative growth function of the embedding is equivalent to the function f .

Remark 2.2. One can observe a discrepancy between the conditions in the above

�eorem 2.1 and in �eorem 1 about polynomial equivalence from [15]. Moreover,

there are functions equivalent to superadditive ones, which do not satisfy condition

(a) of �eorem 1 in [15]. �e correction is easy. In [15], one should not require that

condition (a) holds for the function, but to say that the relative growth function is

� equivalent to a function satisfying condition (a). �is does not a�ect the other

results from [15].

It is worthwhile to note that �eorem 2.1, part (3), is false even for non-virtually

cyclic groups because we could not choose f to be linear. �erefore, we ask the

following question.

Question 2.3. Is it possible to �nd necessary and su�cient conditions for a func-
tion to be (up to equivalence) a relative growth function of an embedding of arbi-
trary �nitely generated (not necessarily cyclic) subgroup H of a �nitely generated
group? �e conditions we are asking about must depend on absolute (non-relative)
asymptotic invariant(s) of H .

We note that our �eorem 2.1 positively answers two more questions raised

in [5].

� Given an in�nite cyclic subgroup of a �nitely generated group, can one have

intermediate (neither polynomial nor exponential) relative growth?

� Does there exist a subgroup H of a �nitely generated group G having relative

growth function gH
G .r/ � rd where d 2 RC and d … N or even d … Q?

In Section 5 we investigate the following. �e paper [11] gives information

about how to obtain various distortions of in�nite cyclic subgroups. �e authors

were asked by Mark Sapir about what all possible distortions for the embeddings

of in�nite cyclic subgroups are.
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�eorem 2.4. (1) Let H be an in�nite, �nitely generated (solvable) group, and
let f be an increasing and superadditive function on N. �en there exists an
embedding of H into a �nitely generated (solvable) group G so that �G

H � f .

(2) Any distortion function of an in�nite cyclic group is equivalent to a super-
additive and increasing function.

(3) �ere is an embedding of a �nitely generated (solvable) group H into a
�nitely generated (solvable) group G so that the distortion function is not equiv-
alent to a superadditive function. Moreover, the distortion is not bounded by a
recursive function, but it is bounded by a linear function on an in�nite subset
of N.

(4) �ere is a �nitely presented group K with a distorted �nitely generated
subgroup H such that the distortion of H is bounded by a linear function on an
in�nite subset of N (and so nonequivalent to a superadditive function).

Statements (1) and (2) of �eorem 2.4 yield the answer to Sapir’s question:

Corollary 2.5. If H is an in�nite cyclic group, then all possible distortion func-
tions for the embeddings of H into �nitely generated (solvable) groups G are, up
to the equivalence � all the increasing superadditive functions f W N ! N.

It is interesting to compare this class of functions with another class of func-

tions. In [16], Corollary 2.4, Osin obtained the description of distortion functions

for subgroups in �nitely generated nilpotent groups: they can be only of the form

rq for some rational exponents q.

In Section 6, we recall the de�nition of the connectivity radius function, one

more asymptotic invariant of a group embedding given by Gromov, and then mod-

ify the proof of �eorem 2.4 to answer Question 4:A2 from [6].

We are able to make the following connections of distortion functions with the

relative growth functions of group embeddings.

�eorem 2.6. (1) Let f be an increasing, superadditive function on N. �e em-
bedding of H D Z into a �nitely generated group G having distortion function
equivalent to f given by �eorem 2.4 can be chosen so that the relative growth of
H in G is bounded up to equivalence � from above by 2

p
r .

(2) �e function 2
p

r in .1/ cannot be replaced by a function with less growth,
since if the distortion function of a �nitely generated subgroup is exponential, then
its relative growth is at least 2

p
r , up to equivalence.
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One of the motivations for studying recursive bounds on the distortion function

is because of connections with the computational complexity of the algorithmic

membership problem. It was observed in [7] and proved in [3] that for a �nitely

generated subgroup H of a �nitely generated group G with solvable word prob-

lem, the membership problem is solvable in H if and only if the distortion function

of H in G, �G
H .r/, is bounded by a recursive function.

�e next result will be also proved in Section 7. �e authors will recall the

de�nition of the little o notation, as well as explain the meaning of the e�ective

version of little o, denoted by oe , in Section 3. Although the statement of �eo-

rem 2.7, part (1), is well known, we include it for completeness.

�eorem 2.7. (1) If H be a �nitely generated subgroup of a �nitely generated
group G and gG

H .r/ is o.r2/, then H must be virtually cyclic.

(2) Let H be a �nitely generated subgroup of a �nitely generated group G. If
gG

H .r/ is oe.r2/, then �G
H .r/ is bounded above by a recursive function.

(3) One may not replace oe.r2/ by o.r2/ in the previous statement.

Remark 2.8. Of course o.r2/ � 2
p

r ; but �eorem 2.6, part (1), does not con-

tradict �eorem 2.7, part (3), because there are functions N ! N which are not

bounded by any recursive function from above and not bounded from below by

any exponential function.

In Section 3 we introduce another equivalence of functions on groups, ‚ equiv-

alence.

We recall the following result of Olshanskii (see [11]).

�eorem 2.9. Let H be a group and

l W H �! ¹0; 1; 2; : : :º

be a function satisfying:

(D1) l.h/ D l.h�1/; h 2 H I l.h/ D 0 if and only if h D 1;

(D2) l.h1h2/ � l.h1/ C l.h2/; h1; h2 2 H ;

(D3) there exists a > 0 such that #¹h 2 H W l.h/ � rº � ar for any r 2 N:

�en there exists a �nitely generated group G with generating set X and an em-
bedding of H into G such that the function

h 7�! jhjX ; h 2 H

is ‚-equivalent to the function l .
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We refer to conditions (D1), (D2), and (D3) as the (D) condition, and we often

refer to functions l W H ! ¹0; 1; 2; : : :º satisfying the (D) condition as length
functions.

In Section 8 we study conditions under which a length function on a �nitely

generated group H can be extended to a larger �nitely generated group G con-

taining H as a subgroup. �is is a natural thing to study, because the proofs of the

earlier �eorems were based on length functions, so we want to o�er in conclusion

some results on length functions themselves.

De�nition 2.10. Let H be a �nitely generated subgroup of a �nitely generated

group G and let l W H ! ¹0; 1; 2; : : :º satisfy the (D) condition. We say that a

function

L W G �! N

is an extension of l if

� L is a length function; that is, it satis�es the (D) condition and

� L is an extension of l up to ‚-equivalence: the function L, when restricted

to H , is ‚-equivalent to l on H .

De�nition 2.11. Let H be generated by a �nite set Y and consider a length func-

tion l on H . If there exists a subadditive nondecreasing function f such that for

any

l.h/ D ‚.f .jhjY //; h 2 H;

then we call the function l quasi-radial.

�eorem 2.12. (1) Let H be a �nitely generated undistorted subgroup of a �nitely
generated group G, and suppose that the length function l on H is quasi-radial.
�en there exists an extension L of l to G.

(2) Let H be a �nitely generated group, and let l W H ! ¹0; 1; 2; : : : º be any
function satisfying the (D) condition. If l is not quasi-radial in the sense of De�ni-
tion 2.11 then there exists an undistorted embedding of H into a �nitely generated
group G such that l does not extend to G.

(3) If H is a distorted subgroup of G, then there is a quasi-radial length func-
tion l on H admitting no extension to G.
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3. Embeddings and relative growth

In the de�nition of growth function, one should de�ne an equivalence to get rid

of the dependence on the choice of �nite generating set X . In case of growth

functions we need the following equivalence, �.

For two functions f; g W N ! N, say that f does not exceed g up to equivalence

if there exists a constant c so that for all r 2 N we have f .r/ � g.cr/, and that f

is equivalent to g (f � g) if both f does not exceed g and g does not exceed f ,

up to equivalence. If we de�ne the growth function to be the equivalence class of

gG
H above, then it becomes independent of the choice of �nite generating set. �is

is because if X and X 0 are two �nite generating sets for G, then for the constant

c D max¹jsjX 0 W s 2 Xº we have that ¹g 2 G W jgjX � rº � ¹g 2 G W jgjX 0 � crº.
For distortion functions of subgroups (see De�nition 1.2) one needs another

equivalence �.

De�nition 3.1. One says that for f; g W N ! N that f � g if there exists c > 0 so

that for all r , f .r/ � cg.cr/. Two such functions f and g are said to be equivalent

if f � g and g � f , and we write this as f � g.

�e relative growth of an in�nite �nitely generated subgroup is always super-

additive (up to �-equivalence, see �eorem 2.1) and so its � class coincides with

the � class. �is explains the preference for use of � in our paper.

We will also need another equivalence of functions on groups.

De�nition 3.2. Let G be a group, and let f; g W G ! N. We say that f and g

are ‚-equivalent, and write f D ‚.g/ if there exists c > 0 so that for all r 2 G,

f .r/ � cg.r/ and g.r/ � cf .r/.

We will use some remarkable results regarding the usual growth function. A

�nitely generated group G with �nite generating set X is said to have polynomial

growth if gG.r/ � rd for some d 2 N. A group G is said to have exponential

growth if for some d > 1, gG.r/ � d r . It was proved by Wolf in [17] that if G is a

�nitely generated nilpotent group, then G has polynomial growth. �e degree of

polynomial growth (up to �) in nilpotent groups is computed by Bass in [1] and

is given by the following explicit formula

d D
X

k�1

k � rk.Gk=GkC1/; (1)

where rk represents the torsion free rank of an abelian group, and Gk the terms of

the lower central series for G. �e famous theorem of Gromov says that a �nitely
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generated group G has polynomial growth only if it is virtually nilpotent (see [7]).

However, there are examples of groups of intermediate growth; that is, groups

whose growth function is neither polynomial nor exponential (see [4]).

In [13], Corollary 1.2, the following result was obtained.

�eorem 3.3. In the notation of �eorem 2.9, if H is solvable, then so is G. In
particular, if H is solvable with solvability length l , then the solvability length of
G is l C 4.

In �eorem 3.4, we establish notation for the often occurring special case of

�eorems 2.9 and 3.3.

�eorem 3.4. Let l W Z ! ¹0; 1; 2; : : : ; º be a function satisfying, for m; n 2 Z,

(C1) l.n/ D l.�n/; n 2 ZI l.n/ D 0 if and only if n D 0;

(C2) l.n C m/ � l.n/ C l.m/;

(C3) there exists a > 0 such that #¹i 2 Z W l.i/ � rº � ar for any r 2 N:

�en there exists a �nitely generated (solvable) group G with generating set X and
an element g 2 G such that

jgnjX D ‚.l.n//:

We refer to conditions (C1), (C2), and (C3) as the (C) condition.

Remark 3.5. We may translate the geometric group theoretic functions into dif-

ferent terms as follows. Suppose that l W H ! N satis�es the (D) condition, so

that we have an embedding H ! G with all notation as in �eorem 2.9. �en the

relative growth of the �nitely generated subgroup H in G is given by

gG
H .r/ � #¹h 2 H W l.h/ � rº;

and the distortion is

�G
H .r/ � max¹jhjH W h 2 H; l.h/ � rº:

�e relative growth function is an asymptotic invariant of the embedding H �
G into a �nitely generated group G and can be studied in contrast with the usual

growth functions of H (if H is also �nitely generated) and G de�ned respectively

as gH .r/ D #BH .r/ and gG.r/ D #BG.r/. It is clear that when H D G that

gG
H .r/ D gG.r/. Also, if K � H � G then there are two relative growth functions,
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gG
K .r/, the relative growth of K in G, and gG

H .r/, the relative growth of H in G.

In this case we have that gG
K .r/ � gG

H .r/.

Observe further that if H is a �nitely generated subgroup of a �nitely generated

group G, then we have that

gH .r/ � gG
H .r/ � gG.r/ � 2r : (2)

�is follows because BH .r/ � BG.cr/ \ H where c is a constant depending only

on the choice of �nite generating sets.Because of the fact that gG.r/ � .2#X C1/r ,

we see that the regular and relative growth functions are always at most exponen-

tial.

We recall a couple more elementary notions. We say that a function f .r/ is

o.g.r// if

lim
r!1

f .r/

g.r/
D 0:

�e e�ective limit of a function g.r/ is in�nity if there is an algorithm that given

an integer C computes N D N.C / such that g.r/ � C for every r > N . In fact,

the e�ective limit of a function can be any real number or ˙1; the e�ective limit

of f .r/ equals M if there is an algorithm that, given an integer n > 0, computes

N D N.n/ so that jf .r/ � M j < 1
n

for every r > N . We introduce the following

notation: we say that

f .r/ D oe.g.r//

if the e�ective limit of f .r/
g.r/

is 0. For example, .log log log r/�1 D oe.1/.

�e following facts are well-known and easily veri�ed, and will be used im-

plicitly throughout the text.

Lemma 3.6. Let G be a �nitely generated group, with �nitely generated sub-
group H .

� If K � H � G and ŒH W K� < 1, then

�G
H .r/ � �G

K.r/:

� If ŒG W H� < 1, then
gG.r/ � gH .r/:

� If �G
H .r/ � r , then

gG
H .r/ � gH .r/:

�erefore, we see that the relative growth e�ect appears only for distorted

�nitely generated subgroups. �e study of the relative growth function is already
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motivated by the fact that it is an asymptotic invariant. However, in light of the

above fact: that for undistorted subgroups the relative growth is �-equivalent to

the usual growth, we are naturally curious about the relationship between these

two functions. �is serves to further justify the questions we address regarding

the connections between the two asymptotic invariants.

Let the in�nite cyclic group Z D hai1 be embedded in a �nitely generated

group G and �G
a be the corresponding distortion function.

Lemma 3.7. �e function �G
a is equivalent to an increasing superadditive func-

tion.

Proof. Let a be included in the �nite generating set of G. Let �G
a .r/ D N and

�G
a .s/ D M . �en the ball BG.r/ of radius r in G has the element aN of Z.

Likewise aM 2 BG.s/, and so aM CN 2 BG.r C s/. It follows that �G
a .r C s/ �

M C N D �G
a .r/ C �G

a .s/. �erefore the distortion function is superadditive.

Moreover, �.1/ > 0, since the ball of radius 1 in G contains a. By superadditivity,

�.r C1/ � �.r/C�.1/ > �.r/; i.e. the distortion function strictly increases.

Now that we have explained all relevant terminology and notation relating to

embeddings and relative growth, we would like to introduce some of the elemen-

tary connections between the relative growth of a �nitely generated subgroup in a

�nitely generated group, and the corresponding distortion function of the embed-

ding.

Lemma 3.8. Suppose that K is an in�nite cyclic subgroup of a �nitely generated
group G. If K is distorted, then the relative growth function of K is not equivalent
to a linear function.

Proof. Let K be generated by an element a. �en by assumption that K is dis-

torted, we have that for any d there exists a r � 0 so that �G
K.r/ > dr . Letting

�G
K.r/ D max¹jmj W jamjG � rº D jm0j for some integer m0 D m0.r/ we have

that jam0 jG � r � jm0j
d

. Rephrasing, we may say that for every " > 0, we can �nd

am so that jamjG � "m. Let us �x m D m."/. Consider any ar . Write r D km C l

where 0 � l < m. Let c D c.m/ D max¹jal jG W 0 � l < mº. �en ar D .am/kal

and so jar jG � kjamjG C c � r" C c. Because r was arbitrary, it follows that the

relative growth function of K is at least "�1r C C for C D C."/. Because " was

arbitrarily small, the relative growth function is not bounded from above by any

linear function.
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Lemma 3.9. If H is a �nitely generated subgroup of a �nitely generated group
G, then gG

H .r/ � r implies that �G
H .r/ must also be equivalent to a linear func-

tion. �at is to say, if the embedding is distorted, then the relative growth is non-
equivalent to any linear function. Moreover, if gG

H .r/ is o.r2/, then H is virtually
in�nite cyclic.

Proof. By assumption, and by equation (2), gG
H .r/ � gH .r/, we have that gH .r/ is

equivalent to a linear function (respectively, bounded above by r2). �erefore, by

Gromov’s �eorem, we have that H is virtually (�nitely generated) nilpotent. So

H has a �nite index (�nitely generated) nilpotent subgroup M . M is embedded in

a direct product of a �nite and a (�nitely generated) torsion-free nilpotent group T ,

by [2]. �e growth functions of H , M and T are equivalent, by Lemma 3.6.

�us, by Bass’s formula, in the case where the relative growth is linear, we have

that 1 D rk.H=H 0/, which implies that H 0 is �nite and H is virtually cyclic:

there exists an in�nite cyclic subgroup K of H with �nite index. Suppose by

way of contradiction that the embedding of H to G is distorted. �en because

ŒH W K� < 1, the embedding of K to G is also distorted by Lemma 3.6. �is

implies that the function
�G

K
.r/

r
is unbounded. �erefore, because K is cyclic, it

follows from Lemma 3.8 the relative growth of K in G also has
gG

K
.r/

r
unbounded.

�is is a contradiction to the hypothesis that the relative growth of H in G is

equivalent to a linear function. Now, in the case where the relative growth is

o.r2/, we have by Bass’s formula, equation (1), and the fact that the growth rate

is 2, either T is free abelian of rank 1 or T is free abelian of rank 2. If T is free

abelian of rank 2, then the growth and relative growth of T and therefore of H

are at least quadratic, by equations (2) and (1), which is a contradiction to the

hypothesis. �erefore T is in�nite cyclic. In this case, M is also virtually Z and

so is H .

Lemma 3.10. Let G be a �nitely generated group, and let H be an in�nite cyclic
subgroup generated by an element a 2 G. �en

�G
H .r/ � gG

H .r/:

Proof. We have that

�G
H .r/ D max¹jak jH W jak jG � rº D max¹jkj W jak jG � rº D k0

for some integer k0 D k0.r/. �en if jamjG � r we have that jmj � k0; by the

de�nition of k0. �at is, if we consider the set

S D S.r/ D ¹1; a; a�1; a2; a�2; : : : ; ak0; a�k0º
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we have that ¹am 2 H W jamjG � rº � S . �erefore,

gG
H .r/ � #S D 2k0 C 1 � �G

H .r/

as required.

Note that for any in�nite subgroup H of a �nitely generated group G, where

H is not locally �nite, the relative growth function gG
H of the embedding is at least

linear up to equivalence, as we will prove in �eorem 2.1, part (1).

Combining Lemmas 3.8 and 3.10, we have proved the following.

Proposition 3.11. An in�nite cyclic subgroup of a �nitely generated group is
undistorted if and only if it has relative growth function equivalent to a linear
function.

Remark 3.12. Observe that Proposition 3.11 does not hold in a larger class of

groups than virtually in�nite cyclic. Indeed, it su�ces to let H be �nitely gen-

erated with growth function greater than linear, up to equivalence and consider

the identity embedding of H to itself. Moreover, the same example shows that

Lemma 3.10 cannot hold in a larger class of subgroups than virtually in�nite cyclic.

4. Relative growth functions for subgroups

In this section we will may make use of �eorems 2.9, and 3.4 to prove �eo-

rem 2.1, a result for classifying which functions are equivalent to relative growth

functions of cyclic subgroups in �nitely generated groups. We begin with proving

the necessary conditions.

Proof of �eorem 2.1, part (1). Let G be generated by a �nite set X and suppose

that H has an in�nite �nitely generated subgroup K. �en there exists c > 0 and

a sequence in K given by h0 D ¹h0
iº such that jh0

iC1jX � jh0
i jX � c for all i and

jh0
i jX ! 1.

Every function f W N ! N has a superadditive closure Nf given by the fol-

lowing formula. For r 2 N, consider a partition P of r D n1 C � � � C ns where

n1; : : : ; ns are positive integers. One de�nes

Nf .r/ D max
P

.f .n1/ C � � � C f .ns//;

where the maximum is taken over all such partitions P of r .

It su�ces to prove that the relative growth function g D gG
H of H in G is

�-equivalent to its superadditive closure Ng: �e inequality g.r/ � Ng.r/ is obvious.
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To obtain an upper bound for Ng.r/ we will estimate g.n1/ C � � � C g.ns/ for an

arbitrary partition of r D n1 C � � � C ns : Choose a �nite subsequence

¹h1 D 1; h2; : : : ; hsº

of h0 with

n1 C 2

i�1
X

kD2

nk C ni C .i � 2/c < jhi jX

� n1 C 2

i�1
X

kD2

nk C ni C .i � 1/c; for i � 2:

Let i 2 ¹1; : : : ; sº. Let Bi be the ball in G of center hi and radius ni . Note

that the distance in G between hi and hj is at least jhj jX � jhi jX > ni C nj if

1 � i < j � s; and so the balls B1; : : : ; Bs are pairwise disjoint. Every Bi has

exactly f .ni / elements from H since each of them is centered at an element of

H , and by de�nition of g as the relative growth function. Now let x 2 Bi . �en

jxjX � jh�1
i xjX C jhi jX � ni C n1 C 2

i�1
X

kD2

nk C ni C .i � 1/c:

�erefore all the balls B1; : : : ; Bs are contained in the ball B of radius

R D n1 C 2

s
X

kD2

ni C .s � 1/c < 2r C sc � .c C 2/r

centered at 1: Hence g.n1/ C � � � C g.ns/ � g..c C 2/r/: Since this is true for

arbitrary partition r D n1 C � � � C ns ; we have Ng.r/ � g.C r/; where C D c C 2

does not depend on r; and so Ng.r/ � g.r/:

Now we proceed with the proof of �eorem 2.1, part (2), which contrasts with

part (1) of the theorem in case the subgroup is locally �nite.

Proof of �eorem 2.1, part (2). Let F W N ! N be any nondecreasing function

with lim
r!1

F.r/ D 1. We will show that there exists an embedding of H into a

�nitely generated group G so that the relative growth function satis�es gG
H � F .

In particular, this implies that gG
H is not equivalent to any superadditive function,

else we would have a contradiction by choosing F.r/ D r , as any non-zero super-

additive function dominates a linear one.
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Because H is locally �nite and countably in�nite, we may write

H D
1
[

iD1

Hi ;

where for each i � 1, we have Hi D hh1; : : : ; hii for elements h1; : : : ; hi 2 H

with #Hi D ni < 1 and HiC1 > Hi .

We will de�ne a function l W H ! N so that l satis�es the (D) condition. First,

we assign a length
Ql.h˙1

i / D li

to every h˙1
i so that

min.li ; F.
p

li // > ni and liC1 > li :

�e set S D ¹h˙1
1 ; h˙1

2 ; : : : º generates H . �erefore, for h 2 H we have several

possible expressions of the form

h D hj1
� � � hjs

; where hj1
; : : : ; hjs

2 S (3)

For any expression P of this form, we de�ne

l.h; P / D lj1
C � � � C ljs

:

Finally, for h 2 H , we let

l.h/ D min
P

l.h; P /

where P ranges over all possible expressions (3). It is clear that l.hi / � li .

Because hi … Hi�1, arbitrary factorization P of hi must have a factor h˙1
j with

j � i whence l.hi ; P / � lj � li , so l.hi / � li as well. Hence l.hi / D li .

Conditions (D1) and (D2) follow from the de�nition of l . We will show that

condition (D3) holds. We must estimate #¹h 2 H W l.h/ � rº, for r > 0. We may

assume that li � r < liC1 for some i . �en if h 2 H has l.h/ � r , we have that h

belongs to Hi : Hence #¹h W l.h/ � rº � ni � li � r; and (D3) follows.

Now using �eorem 2.9 we may embed H in a �nitely generated group G with

l.h/ � C jhjG for some C � 1 and all h 2 H . Choosing C r 2 Œli ; liC1/ for some

i , we have by use of the fact that F is nondecreasing that

gG
H .r/ D #¹h 2 H W jhjG � rº

� #¹h 2 H W l.h/ � C rº

� ni < F.
p

li / � F.
p

C r/ � F.r/;

if i is large enough, i.e. gG
H � F.r/, as required.
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Finally, we can add that the necessary conditions are also su�cient, but only

for in�nite cyclic groups.

Proof of �eorem 2.1, part (3). De�ne a function l W Z ! ¹0; 1; 2; : : : ; º as fol-

lows. If r > 0 then l.r/ D m where m is the minimal number so that f .m/ � r: If

r < 0 let l.r/ D l.�r/. Finally, let l.0/ D 0. We will verify that l satis�es the (C)

condition of �eorem 3.4. �e symmetry condition (C1) is satis�ed by de�nition

of l . Next we show that l satis�es (C2); i.e. that it is subadditive. Let r; s 2 Z

and l.r C s/ D k. �en k is minimal such that f .k/ � jr C sj: Let l.r/ D R and

l.s/ D S , so f .R/ � jr j and f .S/ � jsj. Suppose by way of contradiction that

k > R C S . �en f .R C S/ < r C s. But f is superadditive, so f .R C S/ �
f .R/ C f .S/ � jr j C jsj � jr C sj, a contradiction. �e condition (C3) is satis�ed

because for n 2 N we have that #¹r 2 N W l.r/ � nº � f .n/. �is follows because

for r > 0, we have by the de�nition of l that f .n/ < r if and only if l.r/ > n.

�erefore, #¹r W r > 0; l.r/ � nº D #¹r W r > 0; r � f .n/º D f .n/: Also, we have

by hypothesis that f .n/ is at most equivalent to an exponential function 2n. �ere-

fore by �eorems 2.9 and 3.3 there exists a �nitely generated (solvable) group G

generated by a set T and an embedding of H into G so that the function l is ‚-

equivalent to the length function on G, g 7! jgjT , restricted to H . It remains to

observe that gG
H .r/ D #¹h 2 H W jhjT � rº � #¹h 2 H W l.h/ � rº � f .r/.

5. Possible distortion of in�nite �nitely generated groups

In this section we will prove �eorem 2.4.

To setup the proof of �eorem 2.4, part (1), let f be an increasing superadditive

function on N and H an in�nite group with �nite generating set Y . We will de�ne

an in�nite sequence of elements ¹hiº in H as well as sequences of natural numbers

¹liº and ¹ni D f .li /º. Let l1 D 2; so n1 D f .l1/. Inductively, we let liC1 be the

minimal number such that f .liC1/ � 2f .li / and so niC1 D f .liC1/ for i � 1.

Finally, we choose hi 2 H so that jhi jH D ni : �e sequence is de�ned since f

is increasing. Since f is superadditive , we have f .li C li / � 2f .li /; and so by

minimality li < liC1 � 2li . We assign a weight w.h˙1
i / D li :

Every element h 2 H has many factorizations P of the form h D x1 � � � xk,

where xi 2 Y ˙1 or xi D h˙1
j for some j . We de�ne a function l W H ! N by

setting, for any h 2 H ,

l.h/ D min
P

X

w.xi/ (4)

over all the factorizations of h where w.xi/ D 1 if xi 2 Y ˙1.
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Lemma 5.1. �e function l de�ned in equation (4) satis�es the (D) condition.

Proof. It is clear that l satis�es conditions (D1) and (D2). To show that l also

satis�es (D3), we will count the number of elements h 2 H which satisfy l.h/ D
R � r . To estimate, we partition each R � r as r1 C � � � C rk with the summands

either equal to 1 or of the form li , where i � 1. Assign to every summand ri ,

a label from Y ˙1 (if ri D 1/ or ˙ (if ri D lj /, the sign depending on whether

the factor is hj or h�1
j . �e number of partitions of R is bounded by ar , where

a D 1Cmax¹j W lj � rº. �us the number of di�erent labelings of a �xed partition

by the �nite alphabet is bounded by .2jY j C 2/r .

Since a labeled partition determines the product P (because all the numbers

l1; l2; : : : are di�erent and greater than one), the number of elements h with l.h/ �
r is bounded by

r
X

RD1

#¹h 2 H W l.h/ D Rº D rar.2jY j C 2/r � .a.2jY j C 2//2r :

�is proves that (D3) holds.

By �eorems 2.9 and 3.3, H embeds in a �nitely generated G (solvable if H

is solvable) such that l.h/ � jhjG for h 2 H and so that the distortion of H in G

is equivalent to d.r/ D max¹jhjH W l.h/ � rº.

Lemma 5.2. We have that d.r/ � f .r/.

Proof. Assume that r > 1. �en li � r < liC1 � 2li for some i . Let l.h/ � r ,

where h is chosen so that d.r/ D jhjY . Suppose that the minimal factorization P

of h has kj factors of length lj in H , for j 2 N. �en

r � l.h/ D ki li C � � � C k1l1 C k0;

and so

jhjH � kini C � � � C k1n1 C k0

D kif .li / C � � � C k1f .l1/ C k0

� f .ki li C � � � C k1l1 C k0/

� f .r/:

�erefore d.r/ � f .r/:

On the other hand, d.li / � jhi jH D ni D f .li / since l.hi / � li . �erefore

d.r/ � d.li / � f .li / � f .Œr=2 C 1�/: �erefore f .r/ � d.r/, as desired.



254 T. C. Davis and A. Yu. Olshanskii

Now �eorem 2.4, part (1), follows from Lemmas 5.1 and 5.2. �eorem 2.4,

part (2), follows by Lemma 3.7.

To setup the proof of �eorem 2.4, part (3), we will use one of Philip Hall’s

groups: in [8] it was proved that every countable abelian group C is isomorphic

to the center of a solvable (center-by-metabelian) group G with two generators.

We choose C to be the countable direct product of groups of order two. �at is,

we let H be a two-generated group with generating set Y with in�nitely generated

central subgroup C with generating set ¹ci W i 2 Zº so that the order of each ci is

2. Let g W N ! N be an increasing function.

By induction, we will de�ne a sequence of central elements ¹hiº of H depend-

ing on g, and an increasing sequence of positive integers ¹diº. Let h1 D c1 and

d1 D 1. �en set di D jh1jY C � � � C jhi�1jY , and let hi be an element of minimal

Y -length in C such that jhi jY � g.di /; so in particular, di � i .

To de�ne a length function l on H , we prescribe a weight di D w.hi/ to

each h˙1
i , and w.x1/ D 1 if xi 2 Y ˙1. �en for any h 2 H , we have many

factorizations P of h D x1 � � � xk where xi 2 Y ˙1 or xi D h˙1
j for some j .

We de�ne a length function on H as in (4): for any h 2 H ,

l.h/ D min
P

X

i

w.xi/: (5)

Lemma 5.3. �e function l de�ned in equation (5) satis�es the (D) condition.

Proof. Again conditions (D1) and (D2) are clearly satis�ed by l , and we want to

check (D3). Assume that l.h/ � r . Since the elements hi are all central and

have order 2, a minimal factorization of h has the form z1 : : : zsv, where each zi is

either hi or 1, and v is a word of length at most r in Y ˙1. �erefore the number of

possible v’s is bounded by 4r , and the number of products z1 : : : zs is at most 2s.

Here s < r since otherwise r � ds � s > r , a contradiction. �us the number of

elements h 2 H with l.h/ � r is at most 8r , which is su�cient for (D3).

By �eorems 2.9 and 3.3 we can embed the group H into a �nitely generated

(solvable if H is solvable) group G, such that the distortion is equivalent to the

function f .r/ D max¹jhjY W h 2 H; l.h/ � rº.

Lemma 5.4. If the function g is bounded by a linear function on some in�nite
sequence, but grows faster than any recursive function, then the distortion function
of H in G is not bounded by a recursive function, yet it is bounded by a linear
function on an in�nite subset of N.
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Proof. �e embedding is distorted since f .di / � g.di / for the increasing se-

quence d1; d2; : : : because l.hi / � di while jhi jY � g.di /. �e distortion is not

recursive if g grows faster than arbitrary recursive function.

It su�ces to show that the function f is bounded by a linear function on an

in�nite subset of N, since f � �G
H . For this goal we consider an element h 2 H

with l.h/ � di � 1 for a �xed i and its minimal factorization h D z1 : : : zsv as

above. It follows from the de�nition of weights, that none of z1; : : : ; zs belongs

to ¹hi ; hiC1; : : : º, and so jz1 : : : zsjY � jh1jY C � � � C jhi�1jY � di . Also we have

jvjY � di �1 since l.h/ � jvjY by the de�nition of l and v. Hence jhjY � 2di �1;

and so f .r/ � 2rC1 on the increasing in�nite sequence of the numbers r D di �1,

as desired.

Remark 5.5. If a function F on N is bounded by a linear function on an in�nite

subset of N and is equivalent to a superadditive function, then it is linear up to

equivalence.

Corollary 5.6. �e distortion function �G
H is not equivalent to a superadditive

function.

Lemma 5.7. �ere exists a �nitely presented group K containing the group H as
a distorted subgroup such that �K

H is bounded by a linear function on an in�nite
subset of N, but is not bounded by a linear function on the entire set N.

Proof. It is easy to see that the function l of equation (5) is computable on H if

g is recursive when H has algorithmically decidable word problem. To see that

H can be constructed to have solvable word problem, we will brie�y give the

explicit construction of the group H . First we de�ne a group B by generators and

relations:

B D hbi ; i 2 Z j b2
i D 1; ŒŒbi ; bj �; bk� D 1; i; j; k 2 Zi:

�e commutators cij D Œbi ; bj � (i < j ) generate a central subgroup in B and they

are linearly independent over Z=2Z. �erefore adding the relation cij D ckl for

all i; j; k; l with j � i D l � k, we obtain a group (we keep the same notation

B) whose central subgroup C is independently generated by the commutators cm,

m D 1; 2; : : : , where cm D ci;iCm D Œbi ; biCm� for every i 2 Z. By Dyck’s theo-

rem, the mapping bi 7! biC1 (i 2 Z/ extends to an automorphism ˛ of B leaving

�xed all the elements of C . Hence the extension H of B by this automorphism is

generated by two elements b0 and ˛ and has the in�nite central subgroup C gener-

ated by all cm-s, the elements of order 2. Assume now that g.x/ D x2, and so l is
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computable on H . By [12], one can choose a �nitely presented group K contain-

ing H such that l.h/ D ‚.jhjX /, where X is a �nite set of generators for K. �en

as in Lemma 5.4, we have that the distortion function of H in K is not bounded by

a linear function but bounded by a linear funtion on an in�nite subset of N.

�eorem 2.4, parts (3) and (4), follows from Lemmas 5.4, 5.7 and Corol-

lary 5.6.

6. Application to connectivity radii

Let a group G be generated by a �nite set X and let its subgroup H be generated by

a �nite set Y . Without loss of generality, one may assume that Y � X . For every

r > 0, there is a minimal R > 0 such that every element from BG.r/ \ H can be

connected with the identity by a path in the intersection of BG.R/ with the Cayley

graph of H with respect to the generating set Y . Hence we have a function R.r/.

Such connectivity radius functions were invented by Gromov (see [6], Section 4;

in fact, Gromov introduced k-connectivity for every non-negative integer k). It is

easy to see that up to � equivalence, the function R does not depend on the choice

of �nite X and Y , and so the equivalence class NR.r/ is an asymptotic invariant of

the embedding H � G.

h
H

BG.r/

BG.R/

1

Figure 1. �e Connectivity Radius
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Obviously, the connectivity radius grows at least linearly if H is in�nite. Gro-

mov noticed that on the one hand, the connectivity radii functions are linear for

undistorted embeddings and in many other cases, and on the other hand, they

cannot be linear if the embedding H � G has a superexponential distortion

(see 4:A1 in [6]). �is observation prompted him to ask the following question

(see [6], 4:A2).

Suppose the distortion of H in G is (at most) exponential. Does it follow that
the connectivity radius of this embedding grows linearly?

We answer in the negative in a stronger sense.

�eorem 6.1. Let H D hxi be an in�nite cyclic group and f an increasing su-
peradditive function which is not bounded from above by a linear function. �en
there is an embedding of H in a �nitely generated solvable group yG, where the
distortion satis�es

�
yG

H .r/ � f .r/

but the connectivity radius is not linear.

Proof. We want to modify the length function l on H constructed in Section 5.

For this goal, we select some in�nite subsequences ¹Oliº, ¹ Oniº, and ¹ Ohiº of the

sequences ¹liº, ¹niº, and ¹hiº as follows.

Let

Ol1 D l1 D 2;

On1 D n1;

and

Oh1 D h1 D xn1 :

�en we assume by induction that both ¹Oli�1º and ¹ Oni�1º, as well as ¹ Ohi�1º are

already de�ned. Denote

ci�1 D max
�

1; max
j �i�1

j Ohj j
Olj

�

:

Since the superadditive function f is not bounded by a linear one, for any c > 0,

we can �nd some lk in the sequence ¹liº such that

lk > max. Oli�1; Oni�1/ and f .lk/ > clk : (6)
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Let k D k.i/ be the �rst index satisfying (6) for the constant c D 3ici�1. By de�-

nition,

Oli D lk ;

Oni D nk D f .lk/ D f . Oli /;
and

Ohi D hk D xnk D x Oni :

�en we assign weights O!. Ohi / D Oli , and use hat-factorizations OP with factors

xi 2 Y ˙1 D ¹x˙1º or xi D Oh˙1
j for some j . We de�ne the function Ol.h/ on H

by the right-hand side of formula (4), that is Ol.h/ D min yP
P

w.xi /, where the

minimum is now taken on the hat-factorizations yP oh h only . Since every hat-

factorization is a factorization in the sense we used for (4), we have that Ol.h/ � l.h/

for every h 2 H . �is inequality implies (D3) for Ol since this condition holds for l

by Lemma 5.3. Again conditions (D1) and (D2) are obvious, and so Ol satis�es the

(D) condition.

Let an embedding of H into a solvable �nitely generated group yG be based on

�eorem 3.3 and on the length function Ol , i.e., for some constant C > 1, and every

h 2 H ,
Ol.h/

C
� jhj yG � C Ol.h/: (7)

For the corresponding distortion function, we have that the inequalities

�
yG

H .r/ � max.jhjH W Ol.h/ � r/ � max.jhjH W l.h/ � r/ � f .r/

hold by Lemma 5.2, i.e., �
yG

H .r/ � f .r/, as desired.

Now we take Oni � 2 and choose an integer m 2 Œ Oni=3; Oni=2�. �e minimal

hat-factorization yP of xm does not involve Ohj for j > i since

Ol.xm/ � m < Oni � OliC1 D O!. OhiC1/ < OliC2 D O!. OhiC2/ < : : :

Some factors of yP might be of the form hi D x˙ Oni ; but taking the exponents

modulo Oni , we see that yP must contain a minimal subfactorization without factors

h˙1
i , y D y1 : : : ys, where y D xm0

, m0 D m.mod Oni /, and so jyjH D jm0j � m.

�at is every yk is either x˙1 or Oh˙1
j.k/

for some j.k/ � i � 1. In particular,

Olj.k/

jyk jH
� c�1

i�1
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for every k by the choice of ci�1. It follows that

Ol.xm/ � Ol.y1 : : : ys/

D
X

k

O!.yk/ D
X

k

� Olj.k/

jykjH

�

jyk jH �

X

k

jyk jH

ci�1

� jyjH
ci�1

� Oni

3ci�1

:

�ese inequalities and formula (7) imply that

jxmj yG � Oni

3Cci�1

:

On the other hand by the de�nition of Oli and Oni , we obtain

Ol.x Oni / � O!. Ohi / D Oli <
f . Oli /

3ici�1

D Oni

3ici�1

;

and so, by (7),

jx Oni j yG � C Ol.x Oni / <
C Oni

3ici�1

;

i.e.

jx Oni j yG � ri ; for ri D Œ
C Oni

3ici�1

�:

Note that the Cayley graph of H with respect to Y is just a line, and one has

to pass via xm when connecting the identity and Ohi D x Oni . Hence for the values

of the connectivity radius function R.r/ of the embedding H � yG at the points

r D ri , we have that

R.ri/ � jxmj yG � Oni

3Cci�1

� iri

C 2
:

Since
i

C 2
�! 1

and also

ri D Œ
Cf . Oli/
3ici�1

� � ŒC Oli � �! 1;

by (6) with c D 3ici�1 and by the choice of Oli D lk , it follows that the function

R.r/ is not equivalent to a linear one, as required.
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7. Connections between relative growth and distortion

7.1. Proof of �eorem 2.6. Now we move on to prove �eorem 2.6.

To prove �eorem 2.6, part (1), let H D Z, and consider the function l de�ned

in (4). We have that the relative growth function of the induced embedding is by

de�nition #¹i 2 Z W ji jG � rº which is equivalent to #¹i 2 Z W l.i/ � rº.

Lemma 7.1. For any r � 0, the number of positive integers i with l.i/ � r is
bounded from above by a function equivalent to 2

p
r :

Proof. Let l.i/ � r where the value of l.i/ D li1 C � � � C lik C n arises from the

partition P of i D ˙ni1 ˙ � � � ˙ nik ˙ n. Consider the number of summands in

the expression l.i/ D li1 C � � � C lik C n.

It does not exceed the number rp.r/, where p.r/ is the number of partitions of

r in positive summands. By [9], p.r/ � 2
p

r , and so the number of expressions

i D ˙ni1 ˙ � � �˙ nik ˙ n with l.i/ � r is at most r2
p

r , up to equivalence. Finally,

r2
p

r � 2
p

r :

Now we estimate the number m of pairwise distinct summands in the expres-

sion i D ˙ni1 ˙ � � � ˙ nik ˙ n. Since one has 1 C 2 C � � � C m > r for m �
p

2r ,

we must have m <
p

2r . Hence the number of possible sign arrangements in

˙ni1 ˙ � � � ˙ nik ˙ n is less than 2
p

2r : �is implies that the number of positive

integers i with l.i/ � r is bounded (up to equivalence) by 2
p

r2
p

2r � 2
p

r :

Proof of �eorem 2.6, part (2). Assume that H is an in�nite, �nitely generated,

exponentially distorted subgroup of a �nitely generated group G. �en for every

k � 1 we can �nd, using the exponential distortion, elements gk 2 H , such that

3jgk�1jH < jgk jH but jgk jG � Dk for some D > 0. �en the ball of radius Dk2

in G contains all the products g
�k

k
� � � g�1

1 where each �j 2 ¹0; 1º because any such

product has length at most

jg�k

k
� � � g�1

1 jG � jgk jG C � � � C jg1jG � D
�k.k C 1/

2

�

:

Moreover, all these products are pairwise distinct.

To see this, suppose that we did have two equal expressions

g
�k

k
� � � g�1

1 D g
�0

k

k
� � � g�0

1

1 :

Without loss of generality, �k ; �0
k

¤ 0 and �k ¤ �0
k
.
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�en gk is expressible as a product of g˙1
1 ; : : : ; g˙1

k�1
, where each of gj occurs

at most twice. �erefore

jgk jH � 2jgk�1jH C � � � C 2jg1jH < jgk jH
�2

3
C 2

9
C � � � C 2

3k�1

�

< jgk jH ;

a contradiction.

�erefore, the products g
�k

k
� � � g�1

1 represent 2k distinct elements. �erefore for

the relative growth function of H in G, gG
H , we have inequalities gG

H .Dk2/ � 2k,

whence gG
H .r/ � 2

p
r .

7.2. Constructing length functions with prescribed data. We begin by intro-

ducing some lemmas that will be used in the proof of �eorem 2.7.

Lemma 7.2. �ere exist increasing sequences ¹aiºi2N; ¹niºi2N of natural num-
bers satisfying the following properties for all i � 2:

� a1 D n1 D 1;

� ai � 2iC2ni�1;

� ni > ni�1ai=ai�1;

� ni�1 j ni ;

� there does not exist a recursive function f such that ni � f .ai / for every i ;

� ai > ai�1.

Proof. We use that the set of recursive functions is countable. Denote it by ¹fiºi2N.

Suppose that ai�1 and ni�1 have been de�ned. Let ai D 2iC3ni�1 C 1. Let

ni D ni�1 max

²�

ni�1ai

ai�1

�

C 1; max
j �i

.fj .ai // C 1

³

:

De�ne a function l W Z ! ¹0; 1; 2; : : : ; º by the formula l.0/ D 0 and for

nonzero n 2 Z

l.n/ D min¹ai1 C � � � C ais jn D ˙ni1 ˙ � � � ˙ nis for some i1; : : : ; is 2 Nº (8)

We will show that the function l of equation (8) satis�es the (C) condition. �e

following auxiliary Lemmas will help us to prove that condition (C3) is satis�ed.

Let r be a natural number. We want to be able to compute #¹n 2 Z W l.n/ � rº:
Suppose that n is in this set, let

l.n/ D ai1 C � � � C ais

and consider the corresponding minimal presentation given by

n D ˙ni1 ˙ � � � ˙ nis :
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Lemma 7.3. �is expression has no summands with subscript greater than or
equal to j , where j is de�ned by the property aj �1 � r < aj .

Proof. �is is true, since otherwise l.n/ � aj > r; a contradiction.

�erefore, we may rewrite the expression as

n D k1n1 C � � � C kj �1nj �1;

for some integers k1; : : : ; kj �1. We may assume that j � 3 in the following, since

eventually we will let r become very large, and with it, so will j .

Remark 7.4. Observe that

jki j � r

ai

; for i � j � 1,

because otherwise

l.n/ � jki jai > r;

a contraddiction.

Lemma 7.5. For any 2 � i < j � 1 we have that

jki j <
niC1

ni

:

Proof. Suppose by way of contradiction that there is s � 0 such that

jki j D niC1

ni

C s:

�en

n D k1n1 C � � � ˙ jki jni C � � � C kj �1nj �1

D k1n1 C � � � ˙
�niC1

ni

�

ni ˙ sni C � � � C kj �1nj �1

D k1n1 C � � � ˙ sni C .kiC1 ˙ 1/niC1 � � � C kj �1nj �1:

�us we have two expressions for n as in equation (8). By hypothesis,

l.n/ D jk1ja1 C � � � C jkj �1jaj �1

and so since this is the minimum over all such expressions for n, we have that

jki jai C jkiC1jaiC1 � sai C jkiC1 ˙ 1jaiC1:
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By the triangle inequality,

sai C jkiC1 ˙ 1jaiC1 � sai C jkiC1jaiC1 C aiC1:

�us we have that

jki jai � sai C aiC1:

Using again that jki j D niC1

ni
C s we have that

niC1ai

ni

� aiC1;

contrary to the third bullet point of Lemma 7.2.

Lemma 7.6. �e function l de�ned in equation (8) satis�es the (C) condition of
�eorem 3.4. Moreover, #¹n W l.n/ � rº is o.r2/.

Proof. Observe that for each n 2 Z; n D n � 1 D n � n1, so the function is de�ned.

To see that condition (C1) is satis�ed, select n 2 Z. Without loss of generality,

n ¤ 0. Let l.n/ D ai1 C� � �Cais , so that there is an expression n D ˙ni1 ˙� � �˙nis :

�is implies that �n D �.˙ni1 ˙ � � �˙ nis/ and so by de�nition of l , we have that

l.�n/ � l.n/. Equality holds by symmetry. Condition (C2) is similarly easy:

let l.n/ D ai1 C � � � C ais and l.m/ D aj1
C � � � C ajt

: �en one expression

representing n C m is ˙ni1 ˙ � � � ˙ nis ˙ nj1
˙ � � � ˙ njt

which implies that

l.n C m/ � l.n/ C l.m/. Finally, we will show that condition (C3) is satis�ed by

showing that #¹n 2 Z W l.n/ � rº is o.r2/ (and using the fact that r2 � 2r ). Taking

into account the signs, we have by Remark 7.4 and Lemma 7.5 that the number of

values of n with l.n/ � r is at most the product over the number of values of kj ;

namely,

3r

aj �1

3r

aj �2

2nj �2

nj �3

2nj �3

nj �4

� � � 2n2

n1

<
9r22j �3nj �2

aj �1aj �2

<
r22j C1nj �2

aj �1aj �2

<
r2

aj �2

;

by the choice of ai in Lemma 7.2. Now we have that lim
r!1

aj �2 D 1 by the choice

of j D j.r/ as in Lemma 7.3. �erefore, #¹n W l.n/ � rº is o.r2/.

7.3. Producing bounds on relative growth. We now introduce some notation

and lemmas towards proving �eorem 2.7, part (2), in the case where the �nitely

generated subgroup H is cyclic.

�at is, we aim to prove the following Lemma.

Lemma 7.7. For any virtually in�nite cyclic subgroup H of a �nitely generated
group G such that gG

H .r/ is oe.r2/, we have that �G
H .r/ is bounded above by a

recursive function.
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Let H D hai � G where G is �nitely generated. Without loss of generality,

we may include a in the �nite set of generators of G. Consider the length function

corresponding to the embedding given by l W Z ! N W l.r/ D jar jG :

Lemma 7.8. Suppose that �.r/ is a function with e�ective limit in�nity, and that
the distortion function �G

H .r/ is not bounded from above by any recursive function.
�en we cannot have 20l.n/ � �.n/ for almost all n.

Proof. Suppose by way of contradiction that 20l.n/ � �.n/ for all n > N and

some N . �en the e�ective limit of l.n/ is also in�nity, and so given any C , one

can e�ectively compute N.C /, such that l.n/ > C for any n � N.C /. But this

means that the distortion function �G
H .r/ is bounded from above by the recursive

function N.r/ of r , a contradiction.

Remark 7.9. By Lemma 7.8, there exists an in�nite sequence

n1 D 1 < n2 < n3 < : : :

such that

20l.ni / < �.ni /:

In addition we may assume by choosing a subsequence that for all i > 1 we have

� ni > i2.n1 C � � � C ni�1/,

� niC1 > 6n2
i , and

� aiC1 � ai where aj D l.nj / for j D 1; 2; : : : .

Fix i 2 N. Let r D ni . Our current goal is to obtain a lower bound for the

number of integers n with l.n/ � r . In order to compute this, we will consider for

the moment only numbers n of the form

n D k1n1 C � � � C kini ;

where

0 � kj <
nj C1..j C 1/2 � 1/

nj .j C 1/2
; forj 2 ¹1; : : : ; iº: (9)

Lemma 7.10. Di�erent coe�cients satisfying the condition of equation (9) de�ne
di�erent sums k1n1 C � � � C kini .

Proof. �is is true because otherwise for some j � i and m > 0, we will have

mnj D mj �1nj �1 C � � � C m1n1;
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where

jms j < .1 � 1

.s C 1/2
/
nsC1

ns

; for each s � j ,

by the choice of coe�cients in equation (9). �en we have that

mnj < nj

�

1 � 1

j 2

�

C nj �1

�

1 � 1

.j � 1/2

�

C � � � C n2

�

1 � 1

.2/2

�

< nj

�

1 � 1

j 2

�

C nj

j 2

D nj ;

by the choice of nj , a contradiction.

Lemma 7.11. If we assume in addition to (9) that, for i > 1,

ki�1 <
ni

3ni�1

; ki � r

3ai

and r D ni ;

then we have that l.n/ � r .

Proof. Observe that the restrictions on ki�1 and ki in the statement of the Lemma

are stronger than the initial assumptions in (9). By the properties of l , the de�ni-

tion of ai , by inequality (9) and together with the additional assumptions stated in

Lemma 7.11, we have that

l.k1n1 C � � � C kini / � k1a1 C � � � C kiai

� a1n2

n1

C � � � C ai�2ni�1

ni�2

C ai�1ni

3ni�1

C air

3ai

:

We clearly have that
air

3ai

D r

3
:

Also, because a is a generator of H , we have that

aj D l.nj / D janj jG � nj ; for any j 2 ¹1; : : : ; iº:

Finally, observe that

aj �1nj

nj �1

� aj nj C1

6nj

; for each j � 2,
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by Remark 7.9 as well as the fact that aj �1 � aj for all j . �erefore,

a1n2

n1

C � � � C ai�2ni�1

ni�2

C ai�1ni

3ni�1

�
� 1

2i�2
C � � � C 1

2
C 1

�ai�1ni

3ni�1

< 2 � ni

3

D 2r

3
:

�erefore,

l.n/ � 2r

3
C r

3
D r:

We now proceed with the proof of Lemma 7.7.

Proof. Let r D ni be �xed. Lemmas 7.10 and 7.11 together with the choice of

k1; : : : ; ki imply that the number of n’s with l.n/ � r is at least

�

1 � 1

4

�n2

n1

�

1 � 1

9

�n3

n2

� � �
�

1 � 1

.i � 1/2

�ni�1

ni�2

�1

3

ni

ni�1

� ni

3ai

>

i�1
Y

j D2

�

1 � 1

j 2

� ni

3ai

ni

3

D
i�1
Y

j D2

�

1 � 1

j 2

� r2

9ai

>
r2

20ai

:

�is follows because r D ni and the product

1
Y

j D2

�

1 � 1

j 2

�

converges to 1
2
. Hence the value of the corresponding relative growth function of

Z at r D ni is at least
r2

20ai

D r2

20l.ni /
>

r2

�.ni /

by the choice of ni . �us this function gG
Z

.r/ is not bounded from above by any
r2

�.r/
where � is a function with e�ective limit in�nity, because the � we started

with was arbitrary, a contradiction.
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�eorem 2.7, part (1), follows by equation (2) together with Lemma 3.9. �e-

orem 2.7, part (2), follows by Lemma 7.7 in conjunction with Lemma 3.9.

Proof of �eorem 2.7, part (3). We will show that there exists a cyclic subgroup

H of a two generated group G such that �G
H .r/ is not bounded above by any

recursive function, yet gG
H .r/ is o.r2/.

Consider the function l of equation (8). Lemma 7.6 and �eorem 3.4 imply that

there is an embedding of a cyclic subgroup hai into a �nitely-generated (solvable)

group G with janjG D ‚.l.an//.

By the choice of the sequences ¹aiº; ¹niº the embedding has distortion function

which is not bounded by a recursive function. �is follows because �G
hai.ai / �

ni by de�nition, and by the construction from Lemma 7.2, there is no recursive

function satisfying this property.

To complete the proof, it su�ces to observe that the relative growth function

is equivalent to f .r/ D #¹n W l.n/ � rº is o.r2/, by Lemma 7.6.

8. Extending length functions

Let H � G, where G is generated by a �nite set X , and H is generated by a

�nite set Y . Suppose that we have an arbitrary function l W H ! ¹0; 1; 2; : : : ; º
satisfying the (D) condition. In this section we will explore the question of when

the function l can be extended to G.

Here we introduce the function which will serve as the desired extension. �e

details are similar to those in the proof of �eorem 2.1, part (2). Let g 2 G. �en

g may be written as a product g D x1 � � � xk , where xi is either an element of X˙1

or xi 2 H . For this factorization P of g, we de�ne

L.g; P / D w.x1/ C � � � C w.xk/;

where w.xi/ D 1 for the generators from X˙1 and w.xi / D l.xi / for xi 2 H:

Finally, let

L.g/ D min
P

L.g; P / where P varies over all such factorizations of g. (10)

First we will show that L de�ned in equation (10) is a length function. Let

g; h 2 G. �en for the speci�c factorizations P of g D x1 � � � xk and Q of h D
y1 � � � yr satisfying

L.g/ D L.g; P / and L.h/ D L.h; Q/;
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we have the factorization R of gh given by x1 � � � xky1 � � � yr . For this factorization

R we have

L.gh/ � L.gh; R/

D w.x1/ C � � � C w.xk/ C w.y1/ C � � � C w.yr/

D L.g; P / C L.h; Q/

D L.g/ C L.h/:

Now, given a factorization P of g D x1 � � � xk witnessing L.g/ D L.g; P / we

have the factorization Q of g�1 given by x�1
k

� � � x�1
1 . �en

L.g/ D w.x1/ C � � � C w.xk/

D w.x�1
1 / C � � � C w.x�1

k /

D L.g�1; Q/

� L.g�1/:

By symmetry, L.g/ D L.g�1/.

�e following auxiliary de�nition will be a tool to prove that condition (D3) is

satis�ed. Let r 2 N. We will compute #¹g 2 G W L.g/ � rº.

De�nition 8.1. Let g 2 G. Let L.g/ D L.g; P / where P is given by g D
x1 : : : xk . We de�ne the type �.P / of the product P as follows. One separates all

the factors x1; : : : ; xk by commas, preserves all the factors xi 2 X˙1, and replaces

every xi 2 H by the string $. . . $ of length l.xi /.

For example the product x1x2x3, where x1; x3 2 X˙1 and x2 2 H , should be

replaced by x1; $ � � �$; x2 with the number of $-s equal to l.x2/.

�us �.P / is a word over a �nite alphabet (which includes the comma sign).

Let a be the number of letters in this �nite alphabet. We will compute the number

of choices for g by multiplying the number of types �.P / arising from a factor-

ization P with L.g; P / � r by how many of each such type there are.

First, let us compute the number of types. Let �.P / be any type arising from a

factorization P of g with L.g; P / � r . �e length of the type �.P / is at most 2r ,

and so the number of types of the products P with r factors is bounded by a2r , a

function equivalent to 2r .

If the type is �xed, then to obtain a product P of this type, one must replace

the substrings $ : : : $ by elements of H . For a given string of length ni , we have

that there are at most #¹h 2 H W l.h/ � ni º � bni products of this type, for



Relative subgroup growth and subgroup distortion 269

some b arising from the hypothesis that l is a length function. Since
P

ni � r;

we have at most bn1bn2 � � � bnk � br products of the same type. Finally we note

that the product of two exponential functions is an exponential function, and so

condition (D3) is satis�ed for L.

Proof of �eorem 2.12, part (1). We will show that the length function L is in fact

an extension of l , where l is a length function on H , l is quasi-radial, and H � G

is undistorted. Let h 2 H . �en one factorization P is h D h, and so L.h; P / D
w.h/ D l.h/. �erefore, L.h/ � l.h/.

To obtain the reverse inequality, we will use that the embedding is undistorted

and that l is quasi-radial. Because the embedding is undistorted, there exists a

positive integer c so that for any h 2 H ,

jhjY � cjhjX : (11)

Let h 2 H and consider the partition P of h so that L.h; P / D L.h/, where

P is h D x1 : : : xk ; where for each i , either xi 2 X˙1 or xi 2 H . Because l is

quasi-radial, we have that there exists a function as in De�nition 2.11, so that for

h 2 H , l.h/ D ‚f .jhjY /: �at is, there exists a constant e so that l.h/ � ef .jhjY /.

By equation (11), f .jhjY / � f .cjhjX /; because f is nondecreasing. Because

f is subadditive, f .cjhjX / � cf .jhjX /: Using the given partition and that f is

subadditive and nondecreasing, we have that

cf .jhjX / � cf .jx1jX C � � � C jxk jX / � c.f .jx1jX / C � � � C f .jxk jX //:

For each i we have that f .jxi jX / � Dw.xi/ for some positive constant D. Indeed,

if xi 2 X˙1 then w.xi/ D jxi jX D 1 and so we choose a constant d so that

f .1/ � d . If xi 2 H , then by equation (11), and the properties of f , we have

f .jxi jX / � f .cjxi jY / � cf .jxi jY /:

Because l is quasi-radial, there is a constant k so that cf .jxi jY / � kcl.xi /. Finally,

since xi 2 H and by de�nition of w we have that kcl.xi / D kcw.xi /: Letting

D D max¹d; kcº we see that f .jxi jX / � Dw.xi/. Hence

l.h/ � ecD.w.x1/ C � � � C w.xk// D CL.P; h/ D CL.h/

where C D ecD does not depend on h, as required.

Lemma 8.2. Let H be a �nitely generated group and let l W H ! ¹0; 1; : : : º be a
length function that is not quasi-radial. �ere is an increasing sequence of integers
nk and pairs ak ; bk of elements in H such that jak jY D nk � 1, jbk jY � nk and

l.ak/ � k3l.bk/; k � 1:
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Proof. Consider two functions on the natural numbers de�ned as follows. Let

f1.r/ D max¹l.h/ W jhjY D rº and f2.r/ D min¹l.h/ W jhjY � rº:

If there exists a constant C so that for all r 2 N we have

f1.r/

f2.r/
� C;

then for h 2 H we have

f2.jhjY / � l.h/ � f1.jhjY / � Cf2.jhjY /

which implies that f2 �H D ‚.l �H /, contrary to our assumptions, since f2 is also

non-decreasing. �erefore, for any k3 we have nk so that f1.nk/ > k3f2.nk/. �us

for elements ak ; bk 2 H with jak jY D nk; jbk jY � nk , we have l.ak/ � k3l.bk/

by de�nition of f1.nk/ D l.ak/ and f2.nk/ D l.bk/.

Proof of �eorem 2.12, part (2). As before, let H be a �nitely generated group,

and let l W H ! ¹0; 1; 2; : : : ; º be any function satisfying the (D) condition. Sup-

pose that l is not quasi-radial.

We construct words in the alphabet ¹1; 2º

vk D
k

Y

iD1

.1i � 2/ D �k;1 : : : �k;mk
;

where

mk D k.k C 3/

2
and �k;j 2 ¹1; 2º:

We de�ne G as the factor-group of the free product H � hci over the normal

closure of the set R D ¹wkºk�40 where

wk D akc�k;1bkc�k;2bk : : : c�k;mk�1bkc�k;mk

and ak; bk are the elements constructed in Lemma 8.2.

Note that if j � i � 2k �2, then a subword c�k;i bkc�k;iC1bk : : : c�k;j of the nor-

mal form wk is not equal in H to a subword c�k0;i0 bk0c�k0;i0C1bk0 : : : c�k0;j 0 unless

.k; i; j / D .k0; i 0; j 0/. �is follows from the following observation. Any subword

occurring twice in vk is a subword of 1k�221k�1: In particular, every subword of

length 2k � 1 is unique in vk .



Relative subgroup growth and subgroup distortion 271

Hence the syllabic length of a piece (cf. [10, Chapter 5.9]) is at most 2.2k�2/ D
4k �4 while the syllabic length of wk is 2mk D k.k C3/: Since k � 40; it follows

that the presentation of G as a quotient of the free product H � hci satis�es the

condition C 0� 1
10

�

.

By the version of Greendlinger’s lemma for free products (cf. [10, Chapter 5,

�eorem 9.3]) every non-empty normal form of a word in H � hci equal 1 in G

must contain a subword of a cyclic shift of some w˙1
k

with syllabic length at least
�

1 � 3
10

�

k.k C 3/ (where k.k C 3/ is the syllabic length of wk). In particular such

a normal form must contain a non-trivial power of c: �erefore H is embedded

in G by the canonical epimorphism H � hci ! G:

Next we will show that this embedding is undistorted. Indeed, if a geodesic

word u in H is equal to a di�erent geodesic word u0 in the generators of H plus c,

then u0 must contain a subword w0, where w0w00 is a cyclic shift of some w˙1
k

and

the syllabic length of w0 is greater then 7
10

k.k C 3/. It follows from the form of

wk (1 � �k;j � 2, jak j; jbkj � k) that the length of w0 in the generators of H and

c is greater than the length of w00: Since w0 D w00�1 in G, u0 is not geodesic in G,

a contradiction.

Consider the undistorted embedding of H into the �nitely generated group G

created above. It remains to show that l does not extend to G.

Suppose by way of contradiction that there exists a function L extending the

function l from H to G (up to ‚ equivalence as in De�nition 3.2). Set L.c/ D ˛:

For the elements created in Lemma 8.2, we have by hypothesis that the function

is an extension that there exists a constant ˇ with L.bk/ � ˇl.bk/. �en for k � 40

we have

L.ak/ D L.c�k;1bkc�k;2bk : : : c�k;mk�1bkc�k;mk /

by de�nition of G. �en

L.c�k;1bkc�k;2bk : : : c�k;mk�1bkc�k;mk / �
mk
X

j D1

j�k;j j � L.c/ C .mk � 1/L.bk/

and by de�nition of �k;j ; mk and L.c/ as well as by Lemma 8.2 we have that

mk
X

j D1

j�k;j j � L.c/ C mkL.bk/ � 2mk˛ C mkˇl.bk/

� k.k C 3/
�

˛ C ˇl.ak/

2k3

�

� .˛ C ˇ/
l.ak/

k

�us L.ak/ D o.l.ak//, a contradiction.
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Proof of �eorem 2.12, part (3). Let H be distorted in G. Consider the function

l W H ! N; l.h/ D jhjY . �en l is quasi-radial, and l admits no extension to G.

�at is because if L were such an extension, then L D O.jgjX / on G. Indeed, take

a presentation of g as a shortest product of generators g D x1 � � � xk : �en

L.g/ D L.x1 � � � xk/ � L.x1/ C � � � C L.xk/ � ck D cjgjX ;

where c D max¹L.x/ W x 2 X˙1º. If l were equivalent to L on H , then H would

be undistorted, a contradiction.
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