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1. Introduction

We continue the investigation of the action of the outer automorphism group

Out.�1.M// of the fundamental group of a compact, orientable, hyperbolizable

3-manifoldM with non-abelian fundamental group on its relative PSL.2;C/-char-

acter variety

XT .M/ D HomT .�1.M/; PSL.2;C//==PSL.2;C/:

Here HomT .�1.M/; PSL.2;C// is the space of representations of �1.M/ into

PSL.2;C/ such that if an element of �1.M/ lies in a rank two free abelian sub-

group of �1.M/ then its image is either parabolic or the identity. �e set AH.M/

of (conjugacy classes of) discrete, faithful representations is a closed subset of

XT .M/ ([16, 22]). One may think of AH.M/ as the space of marked, hyper-

bolic 3-manifolds homotopy equivalent to M . �e classical deformation theory

of Kleinian groups implies that Out.�1.M// acts properly discontinuously on the

interior int.AH.M// of AH.M/. Our main theorem describes a domain of discon-

tinuity which is strictly larger than int.AH.M// in the case thatM has non-empty

incompressible boundary and is not an interval bundle. Moreover, we character-

ize when Out.�1.M// acts properly discontinuously on an open neighborhood of

AH.M/.

�eorem 1.1. Let M be a compact, orientable, hyperbolizable 3-manifold with

nonempty incompressible boundary, which is not an interval bundle. �ere exists

an open Out.�1.M//-invariant subset W.M/ of XT .M/ such that Out.�1.M//

acts properly discontinuously onW.M/, int.AH.M// is a proper subset ofW.M/,

and W.M/ intersects @AH.M/.

Our proof yields a domain of discontinuity which contains AH.M/ in the case

whereM contains no primitive essential annuli. We recall that a properly embed-

ded annulusA � M is essential if �1.A/ injects into �1.M// andA is not properly

homotopic into @M . An essential annulus A is primitive if �1.A/ is a maximal

abelian subgroup of �1.M/. One may apply results of Canary and Storm [15] to

show that if M does contain a primitive essential annulus, then no such domain

of discontinuity can exist.

Corollary 1.2. If M is a compact, orientable, hyperbolizable 3-manifold with

incompressible boundary and non-abelian fundamental group, then Out.�1.M//

acts properly discontinuously on an open Out.�1.M//-invariant neighborhood of

AH.M/ in XT .M/ if and only if M contains no primitive essential annuli.
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If there are no essential annuli with one boundary component contained in

a toroidal boundary component of M , then our main theorem can be extended

readily to the full character variety

X.M/ D Hom.�1.M/; PSL.2;C/==PSL.2;C/:

�eorem 1.3. Let M be a compact, orientable, hyperbolizable 3-manifold with

nonempty incompressible boundary, which is not an interval bundle. If M does

not contain an essential annulus with one boundary component contained in a

toroidal boundary component ofM , then there exists an open Out.�1.M//-invari-

ant subset yW .M/ of X.M/ such that Out.�1.M// acts properly discontinuously

on yW .M/ and

W.M/ D yW .M/ \ XT .M/:

In particular, yW .M/ intersects @AH.M/.

On the other hand, if M does contain an essential annulus with one boundary

component in a toroidal boundary component ofM , then no point in AH.M/ can

lie in a domain of discontinuity for the action of Out.�1.M//.

Proposition 1.4. Let M be a compact, orientable, hyperbolizable 3-manifold

with nonempty incompressible boundary and non-abelian fundamental group. If

M contains an essential annulus with one boundary component contained in

a toroidal boundary component of M , then every point in AH.M/ is a limit

of representations in X.M/ which are �xed points of in�nite order elements of

Out.�1.M//.

Corollary 1.2 then extends to:

Corollary 1.5. If M is a compact, orientable, hyperbolizable 3-manifold with

incompressible boundary and non-abelian fundamental group, then Out.�1.M//

acts properly discontinuously on an open, Out.�1.M//-invariant neighborhood of

AH.M/ in X.M/ if and only if M does not contain a primitive essential annulus

or an essential annulus with one boundary component contained in a toroidal

boundary component of M .

Historical overview. One may view the study of actions of outer automorphism

groups on character varieties as a natural generalization of the study of the action

of mapping class groups on Teichmüller spaces. When S is a closed, oriented,

hyperbolic surface, then the mapping class group Mod.S/ acts properly discon-

tinuously on Teichmüller space T.S/. Teichmüller space may be identi�ed with
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a component of the PSL.2;R/-character variety X2.S/ of �1.S/ and Mod.S/ is

identi�ed with an index two subgroup of Out.�1.S//. Goldman [18] showed that

X2.S/ has 4g � 3 components, one of which is identi�ed with T.S/ and another

of which is identi�ed with T. xS/, where xS is S given the opposite orientation. �e

representations in the other components are not discrete and faithful. �e mapping

class group preserves each component ofX2.S/ and acts properly discontinuously

on the components associated to T.S/ and T. xS/. Goldman has conjectured that

Mod.S/ acts ergodically on each of the remaining 4g�5 components. A resolution

of Goldman’s conjecture would give a very satisfying dynamical decomposition.

In this case when M D S � Œ0; 1� is an untwisted interval bundle, Out.�1.S//

acts properly discontinuously on the interior QF.S/ of AH.S � Œ0; 1�/. QF.S/

is the space of quasifuchsian representations, i.e. the convex cocompact represen-

tations. Goldman conjectured that the maximal domain of discontinuity for the

action of Out.�1.S// on X.S � Œ0; 1�/ is exactly QF.S/. For evidence in support

of Goldman’s conjectures see Bowditch [7], Lee [26], Souto and Storm [39], and

Tan, Wong, and Zhang [40]. In particular, it is known that no point in the boundary

of QF.S/ can lie in a domain of discontinuity for Out.�1.S// (see Lee [26]).

Minsky [33] studied the case where M is a handlebody Hg and exhibited a

domain of discontinuity PSg for Out.�1.Hg// D Out.Fg/ which is strictly larger

than the set of convex cocompact representations, and in fact contains representa-

tions which are neither discrete nor faithful. (Lee [27] has generalized Minsky’s

results in [33] to the more general case whereM is a compression body.) Gelander

and Minsky [17] showed that Out.Fg / acts ergodically on the set Rg of redundant

representations. It remains open whether or not Rg [ PSg has full measure in

X.Hg/.

If M is a twisted interval bundle, Lee [26] exhibits an explicit domain of dis-

continuity U.M/ for the action of Out.�1.M// on X.M/ which is strictly larger

than int.AH.M// and contains points in @AH.M/ and points in the complement

of AH.M/. Moreover, she shows that if � 2 AH.M/ � U.M/, then � cannot lie

in a domain of discontinuity for the action of Out.�1.M// on X.M/.

Canary and Storm [15] studied the case where M has non-empty incompress-

ible boundary and has no toroidal boundary components. If M is not an in-

terval bundle, they again exhibited a domain of discontinuity for the action of

Out.�1.M// which is strictly larger than the interior of AH.M/. Moreover, they

showed that there is a domain of discontinuity for the action of Out.�1.M//which

contains AH.M/ if and only if M contains no primitive essential annuli. Our

results build on their results. �e major new di�culties in our case result from

the facts that the characteristic submanifold can contain thickened tori and that
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that the mapping class group ofM need not have �nite index in Out.�1.M// (see

Canary and McCullough [14]). Our analysis of Out.�1.M// is necessarily much

more intricate than what was developed in [15].

Outline of argument. Our proof relies on exhibiting a �nite index subgroup of

Out.�1.M// which is built from groups of homotopy equivalences associated to

components of the characteristic submanifold†.M/ ofM . We then consider sub-

groups of �1.M/ which are preserved by these groups of homotopy equivalences

and study the action of the outer automorphism group of the subgroup of �1.M/

on its associated relative character variety. We can combine these separate analy-

ses to construct our domain of discontinuity for the action of Out.�1.M//.

IfM is a compact, orientable, hyperbolizable 3-manifold with incompressible

boundary, then its characteristic submanifold †.M/ consists of solid tori, thick-

ened tori and interval bundles. Johannson [21] showed that every homotopy equiv-

alence can be homotoped so that it preserves†.M/ and restricts to a homeomor-

phism of M � †.M/. He also showed that only �nitely many homotopy classes

of homeomorphisms of M � †.M/ arise, so one can restrict to a �nite index

subgroup of Out.�1.M// such that every automorphism is realized by a homeo-

morphism which restricts to the identity on M � †.M/. In Section 3, we build

on techniques developed by McCullough [31] and Canary and McCullough [14] to

construct a �nite index subgroup Out0.�1.M// of Out.�1.M// and a short exact

sequence

1 �! B ! Out0.�1.M//
ˆ

��! A �! 1

where A is a direct product of mapping class groups of base surfaces of interval

bundle components of †.M/ and cyclic subgroups generated by Dehn twists in

vertical annuli in thickened torus components of M and B is the direct product

of the free abelian groups generated by Dehn twists in frontier annuli of †.M/

and free abelian groups generated by “sweeps” in thickened torus components

of †.M/. Guirardel and Levitt [19] have recently developed a related short exact

sequence for outer automorphism groups of certain classes of relatively hyperbolic

groups.

In Section 4 we decompose the frontier of†.M/ into characteristic collections

of annuli each of which is either the entire frontier of a solid torus or thickened

torus component of †.M/ or is a single component of the frontier of an inter-

val bundle component of †.M/. If a characteristic collection of annuli C is the

frontier of a solid torus or a component of the frontier of the interval bundle,

we construct a class of free subgroups of �1.M/ which register C , in the sense

that the group generated by Dehn twists in C injects into the outer automorphism
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group of the free subgroup. If C is the frontier of a thickened torus component,

then our registering subgroups are the free product of the fundamental group of

the thickened torus component and a free group. One may use Klein’s combina-

tion theorem (i.e. the ping-pong lemma), to show that such registering subgroups

exist (see Section 5). �is entire analysis generalizes the analysis of the mapping

class group Mod.M/ of M used in Canary and Storm [15] in the case that M has

no toroidal boundary components.

In Section 6, we show that if H is a registering subgroup, then Out.H/ acts

properly discontinuously on the set GF.H/ of geometrically �nite, minimally

parabolic, discrete, faithful representations and that GF.H/ is an open subset of

XT .H/. Similarly, if † is an interval bundle component of †.M/, we �nd an

open subset GF.†; @1†/ of the appropriate relative character variety on which

Out.�1.M// acts properly discontinuously. Our region W.M/ � XT .M/ is de-

�ned to consist of representations � so that for every characteristic collection of

annuli there is a registering subgroup H such that �jH 2 GF.H/ and for every

interval bundle component † of †.M/, �j�1.†/ 2 GF.†; @1†/. Proposition 7.2

establishes that W.M/ is an open Out.�1.M//-invariant subset of XT .M/ which

contains all discrete, faithful, minimally parabolic representations. In particular,

int.AH.M// is a proper subset of W.M/ and W.M/ \ @AH.M/ ¤ ;.

We complete the proof of our main result with Proposition 8.1, which shows

that Out.�1.M// acts properly discontinuously on W.M/. In the proof we con-

sider a sequence ¹˛nº of distinct elements of Out0.�1.M//. We can restrict to

a subsequence so that either (1) there exists a thickened torus or interval bundle

component V of †.M/ so that ˛n gives rise to a sequence of distinct elements

of Out.�1.V //, or (2) there exists a �xed element  such that ˛n D ˇn ı  and

a characteristic collection of annuli C such that each ˇn preserves every register-

ing subgroup H for C and ¹ˇnº gives rise to a sequence of distinct elements of

Out.H/. Let D be a compact subset of W.M/. We then use the proper disconti-

nuity of the actions of Out.�1.V // and Out.H/ to show that ¹˛n.D/º leaves every

compact set. �is allows us to conclude that Out0.�1.M// and hence Out.�1.M//

acts properly discontinuously on W.M/.

Acknowledgements. �e �rst author would like to thank Peter Storm for very

instructive conversations which motivated this project. �e second author would

like to thank Ian Agol and Neil Strickland for helpful discussions on math over-

�ow.
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2. Background

2.1. Deformation spaces of hyperbolic 3-manifolds and character varieties.

Let M be a compact, orientable, hyperbolizable 3-manifold with incompress-

ible boundary. Recall that �urston (see Morgan [34]) proved that a compact,

orientable 3-manifold with non-empty boundary is hyperbolizable (i.e., its interior

admits a complete hyperbolic metric) if and only if it is atoroidal and irreducible.

We will assume throughout the remainder of the paper thatM has non-abelian fun-

damental group. Let @TM denote the non-toroidal boundary components of M .

�e action of Out.�1.M// on the character varietyX.M/ and the relative char-

acter variety XT .M/ is given by

˛.Œ��/ D Œ� ı ˛�1�

where ˛ 2 Out.�1.M// and Œ�� 2 X.M/. (See Kapovich [23, Chapter 4.3] for a

discussion of the character variety and the relative character variety.)

Sitting within XT .M/ is the space AH.M/ of (conjugacy classes of) discrete,

faithful representations. If � 2 AH.M/, then N� D H
3=�.�1.M// is a hyperbolic

3-manifold and there exists a homotopy equivalence h� W M ! N� in the homo-

topy class determined by �. One may thus think of AH.M/ as the space of marked

hyperbolic 3-manifolds homotopy equivalent to M .

�e interior int.AH.M// of AH.M/, as a subset of XT .M/, consists of dis-

crete, faithful representations which are geometrically �nite and minimally para-

bolic (see Sullivan [41]). A representation � 2 AH.M/ is geometrically �nite if

there is a convex, �nite-sided fundamental polyhedron for the action of �.�1.M//

on H
3. It is minimally parabolic if �.g/ is parabolic if and only if g is a non-trivial

element of a rank two free abelian subgroup of �1.M/.

�e components of int.AH.M// are in one-to-one correspondence with the

set A.M/ of marked, compact, oriented, hyperbolizable 3-manifolds homotopy

equivalent to M and each component is parameterized by an appropriate Teich-

müller space (see Bers [4] or Canary and McCullough [14, Chapter 7] for complete

discussions of this theory).

If � 2 AH.M/, then there is a compact core M� for N�, i.e. a compact sub-

manifold ofN� such that the inclusion is a homotopy equivalence (see Scott [38]).

We may assume that h�.M/ � M�, so that h W M ! M� is a homotopy equiva-

lence. Formally,A.M/ is the set of pairs .M 0; h0/whereM 0 is a compact, oriented,

hyperbolizable 3-manifold and h0 W M ! M 0 is a homotopy equivalence, where

.M1; h1/ is equivalent to .M2; h2/ if and only if there is an orientation-preserving

homeomorphism j W M1 ! M2 such that j ı h1 is homotopic to h2. �ere is a
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natural map

‚ W int.AH.M// �! A.M/

given by ‚.�/ D Œ.M�; h�/�. �urston’s Geometrization �eorem (see [34]) im-

plies that‚ is surjective, while Marden’s Isomorphism �eorem [28] implies that

the pre-image of any element of A.M/ is a component. �e work of Bers [3], Kra

[24] and Maskit [29], then implies that if .M 0; h0/ 2 A.M/, then

‚�1.M 0; h0/ Š T.@TM
0/

where T.@TM
0/ is the Teichmüller space of marked conformal structures on the

non-toroidal components of @M 0.

One may use this parameterization to show that Out.�1.M// acts properly

discontinuously on int.AH.M//.

Proposition 2.1. If M is a compact, orientable, hyperbolizable 3-manifold with

incompressible boundary, then Out.�1.M// acts properly discontinuously on the

interior int.AH.M// of AH.M/.

Proof. Note that Out.�1.M// preserves int.AH.M//. If Q is a component of

int.AH.M// and ‚.Q/ D .M 0; h0/, let

ModC.M
0; h0/ � Out.�1.M//

denote the set of outer automorphisms which preserve Q. An outer automor-

phism ˛ lies in ModC.M
0; h0/ if and only if .h0/� ı ˛ ı .h0/�1

� is realized by an

orientation-preserving homeomorphism ofM 0. �us, the action of ModC.M
0; h0/

onQ Š T.@TM
0/may be identi�ed with the action of a subgroup of Mod.@TM

0/

on T.@TM
0/. Since Mod.@TM

0/ acts properly discontinuously on T.@TM
0/,

ModC.M
0; h0/ acts properly discontinuously on Q. So, Out.�1.M// acts prop-

erly discontinuously on int.AH.M//.

Remark. Proposition 2.1 remains true when M has compressible boundary. �e

proof above must be altered to take into account that components of int.AH.M//

are identi�ed with quotients of the relevant Teichmüller spaces.

2.2. �e characteristic submanifold. If M is a compact, orientable, hyper-

bolizable 3-manifold with incompressible boundary, its characteristic submani-

fold †.M/ contains only interval bundles, solid tori and thickened tori and the

frontier Fr.†.M// consists entirely of essential annuli. �e result below recalls

the key properties of the characteristic submanifold in our setting. (�e general
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theory of the characteristic submanifold was developed by Jaco-Shalen [20] and

Johannson [21]). For a discussion of the characteristic submanifold in our hyper-

bolic setting see Morgan [34, Section 11] or Canary and McCullough [14, Chap-

ter 5]).

�eorem 2.2. Let M be a compact, orientable, hyperbolizable 3-manifold with

incompressible boundary. �ere exists a codimension zero submanifold †.M/ of

M with frontier

Fr.†.M// D @†.M/ � @M

satisfying the following properties.

(1) Each component†i of †.M/ is either

(i) an interval bundle over a compact surface with negative Euler charac-

teristic which intersects @M in its associated @I -bundle,

(ii) a thickened torus such that @M \†i contains a torus, or

(iii) a solid torus.

(2) �e frontier Fr.†.M// is a collection of essential annuli.

(3) Any essential annulus in M is properly isotopic into †.M/.

(4) If X is a component of M �†.M/, then either �1.X/ is non-abelian or

. xX; Fr.X// Š .S1 � Œ0; 1� � Œ0; 1�; S1 � Œ0; 1� � ¹0; 1º/

and X lies between an interval bundle component of †.M/ and a thickened

or solid torus component of †.M/. Moreover, the component of †.M/ [X

which contains X is not an interval bundle which intersects @M in its asso-

ciated @I -bundle.

A submanifold with these properties is unique up to isotopy, and is called the

characteristic submanifold of M .

Remark. In Johannson’s work, every toroidal boundary component is contained

in some component of the characteristic submanifold. We use Jaco and Shalen’s

de�nition which requires that no component of the frontier of the characteristic

submanifold be properly homotopic into the boundary. In our setting, one obtains

Jaco and Shalen’s characteristic submanifold from Johannson’s characteristic sub-

manifold by simply removing components which are regular neighborhoods of

toroidal boundary components.
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Johannson [21] proved that every homotopy equivalence between compact,

orientable, irreducible 3-manifolds with incompressible boundary may be homo-

toped so that it preserves the characteristic submanifold and is a homeomorphism

on its complement.

Johannson’s classi�cation theorem ([21, �eorem 24.2]). LetM andQ be com-

pact, orientable, irreducible 3-manifolds with incompressible boundary and let

h W M ! Q be a homotopy equivalence. �en h is homotopic to a map g W M ! Q

such that

(1) g�1.†.Q// D †.M/,

(2) gj†.M / W †.M/ ! †.Q/ is a homotopy equivalence, and

(3) gjM �†.M / W M �†.M/ ! Q �†.Q/ is a homeomorphism.

Moreover, if h is a homeomorphism, then g is a homeomorphism.

2.3. Ends of hyperbolic 3-manifolds and the covering theorem. In this sec-

tion, we recall the covering theorem which will be used to show that minimally

parabolic, discrete faithful representations lie in our domain of discontinuity (see

Proposition 7.2).

We �rst discuss the ends of the non-cuspidal portionN 0 of a hyperbolic 3-man-

ifold with �nitely generated fundamental group. Let N D H
3=� be a hyperbolic

3-manifold with �nitely generated fundamental group. A precisely invariant sys-

tem of horoballs H for � is a �-invariant collection of disjoint open horoballs

based at parabolic �xed points of �, such that there is a horoball based at every

parabolic �xed point. It is a consequence of the Margulis Lemma (see [2, �eo-

rems D.2.1, D.2.2] or [30, II.E.3, IV.J.17]) that every Kleinian group has a precisely

invariant system of horoballs. Let

N 0 D .H3 � H/=�:

Each component of @N 0 is either an incompressible torus or an incompressible

in�nite annulus. A relative compact core for N 0 is a compact submanifold R of

N 0 such that the inclusion ofR into N is a homotopy equivalence andR contains

every toroidal component of @N 0 and intersects every annular component of @N 0

in an incompressible annulus. (McCullough [31] and Kulkarni and Shalen [25]

established the existence of a relative compact core). �e ends of N 0 are in one-

to-one correspondence with the components of N 0 � R (see Bonahon [5, Propo-

sition 1.3]). An end E of N 0 is geometrically �nite if there exists a neighborhood

of E which does not contain any closed geodesics. Otherwise, the end is called
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geometrically in�nite. A hyperbolic 3-manifold N with �nitely generated funda-

mental group is geometrically �nite if and only if each end of N 0 is geometrically

�nite (see Bowditch [6] for the equivalence of the many de�nitions of geometric

�niteness for a hyperbolic 3-manifold).

�e covering theorem asserts that geometrically in�nite ends usually cover

�nite-to-one. (�e version of the covering theorem we state below incorporates

the Tameness �eorem of Agol [1] and Calegari-Gabai [11].)

Covering theorem (�urston [42], Canary [12]). Let N be a hyperbolic 3-man-

ifold with �nitely generated fundamental group which covers another hyperbolic

3-manifold yN by a local isometry � W N ! yN . If E is a geometrically in�nite end

of N 0, then either

a) E has a neighborhood U such that � is �nite-to-one on U , or

b) yN has �nite volume and has a �nite coverN 0 which �bers over the circle such

that, if NS denotes the cover of N 0 associated to the �ber subgroup, then N

is �nitely covered by NS .

3. �e outer automorphism group

In this section, we introduce a �nite index subgroup Out0.�1.M// of Out.�1.M//

and show that there exists a short exact sequence

1 �! K.M/˚ .
L

i Sw.Ti // �! Out0.�1.M//

�! .
L

i D.Ti//˚ .
L

j E.†j ; Fr.†j // �! 1/

where K.M/ is generated by Dehn twists in annuli of Fr.†.M//, each Sw.Ti / is

a free abelian group generated by sweeps supported on a thickened torus com-

ponent Ti of †.M/, each D.Ti/ is an in�nite cyclic group generated by a Dehn

twist in a vertical annulus in a thickened torus component Ti of †.M/, and each

E.†j ; Fr.†j // is identi�ed with the mapping class group of the base surface

of an interval bundle component †j of †.M/. Our proof combines work of

Johannson [21] and Canary and McCullough [14] with a new explicit analysis of

homotopy equivalences associated to thickened torus components of the charac-

teristic submanifold. A similar short exact sequence for a �nite index subgroup of

the mapping class group Mod.M/ was developed by McCullough [32] and used

in a crucial manner in [15]. Guirardel and Levitt [19] have developed a related

short exact sequence for �nite index subgroups of the outer automorphism groups

of torsion-free, one-ended relatively hyperbolic groups which are hyperbolic rel-

ative to families of free abelian subgroups.
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3.1. A �rst short exact sequence and K.M/. Let Out2.�1.M// denote the sub-

group of Out.�1.M// consisting of outer automorphisms which are realized by

homotopy equivalences which preserve †.M/ and restrict to the identity on

M �†.M/. Lemma 10.1.7 (see also �eorem 10.1.9) in [14] gives that Out2.�1.M//

has �nite index in Out.�1.M//.

If V is a component of†.M/, letE.V; Fr.V // be the group of path components

of the space of homotopy equivalences of V which restrict to homeomorphisms of

Fr.V /which are isotopic to the identity. Note that with this de�nition, a Dehn twist

about a frontier annulus of V is a trivial element ofE.V; Fr.V //. Proposition 10.1.4

in [14] guarantees that the obvious homomorphism

‰ W Out2.�1.M// �!
L

E.Vi ; Fr.Vi //

is well de�ned, where the sum is taken over all components of †.M/. Lem-

ma 10.1.8 in [14] implies that ‰ is surjective.

We next show that the kernel K.M/ of ‰ is generated by Dehn twists about

frontier annuli. �is generalizes Lemma 4.2.2 in McCullough [32].

Lemma 3.1. �e kernelK.M/ of‰ is generated by Dehn twists about the frontier

annuli of †.M/.

Proof. If ˛ lies in the kernel of ‰, then it has a representative which is trivial

on M � †.M/, preserves †.M/ and its restriction to †.M/ is homotopic to the

identity via a homotopy preserving Fr.†.M//. We may therefore choose the rep-

resentative h W M ! M to be the identity o� of a regular neighborhood N of

Fr.†.M//.

We may choose coordinates so that N Š Fr.†.M//� Œ�1; 1� and Fr.†.M/ �

M is identi�ed with Fr.†.M/ � ¹0º in these coordinates. We further choose a

Euclidean metric on Fr.†.M// so that each component is a straight cylinder with

geodesic boundary. We can then homotope h on N so that each arc of the form

¹xº� Œ�1; 1� is taken to a geodesic in the product Euclidean metric on N. It is easy

to check that the resulting map is a product of Dehn twists in the components of

Fr.†.M//.

We obtain a �rst approximation to our desired short exact sequence by consid-

ering:

1 �! K.M/ �! Out2.�1.M//
‰

��!
L

i E.Vi ; Fr.Vi // �! 1:
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3.2. �e analysis of E.V; Fr.V //. Our next goal is to understand E.V; Fr.V //

in the various cases. We �rst recall that E.V; Fr.V // is �nite when V is a solid

torus component of †.M/.

Lemma 3.2. ([14, Lemma 10.3.2]) Let M be a compact, orientable, hyperboliz-

able 3-manifold with incompressible boundary. If V is a solid torus component

of †.M/, then E.V; Fr.V // is �nite.

If† is an interval bundle component of†.M/with base surfaceF , then we say

† is tiny if its base surface is either a thrice-punctured sphere or a twice-punctured

projective plane.

�e following result combines Propositions 5.2.3 and 10.2.2 in [14], see also

the discussion in Section 5 in Canary and Storm [15].

Lemma 3.3. Let M be a compact, orientable, hyperbolizable 3-manifold with

incompressible boundary. Suppose † is an interval bundle component of †.M/

whose base surface F has negative Euler characteristic.

(1) E.†; Fr.†// is identi�ed with the group Mod0.F; @F / of (isotopy classes of)

homeomorphisms of F whose restriction to the boundary is isotopic to the

identity.

(2) E.†; Fr.†// injects into Out.�1.†//.

(3) E.†; Fr.†// is �nite if and only if † is tiny.

It remains to analyze the case when T is a thickened torus component of†.M/.

We view .T; Fr.T // as a S1-bundle over .B; b/ where B is an annulus and b is a

non-empty collection of arcs in one boundary component @1B of B , so that

.T; Fr.T // D .B � S1; b � S1/:

Let @0B denote the other boundary component. Let p1 W T ! B and p2 W T ! S1

be the projections onto the two factors and let

s W B �! T

be the section of p1 given by

s.b/ D .b; 1/:
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Proposition 10.2.2 in [14] guarantees that if

f W .T; Fr.T // �! .T; Fr.T //

is a homotopy equivalence, then it is homotopic, as a map of pairs, to a �bre-

preserving homotopy equivalence

Nf W .T; Fr.T // �! .T; Fr.T //:

Moreover, there is a homomorphism

P W E.T; Fr.T // �! E.B; b/

given by letting

P.Œf �/ D Œp1 ı Nf ı s�;

where E.B; b/ is the group of path components of the space of homotopy equiv-

alences of B which restrict to homeomorphisms of b which are isotopic to the

identity. We will analyze E.B; b/ and the kernel of P in order to understand

E.T; Fr.T //.

If  is an arc in B with boundary in @1B � b and ˇ is a loop based at a point

x on  , then one may de�ne a sweep

h.; ˇ/ W .B; b/ �! .B; b/

by requiring that h �xes the complement of a regular neighborhood N of  and

maps a transversal t of N through x to t1 � ˇ � t2 (where t D t1 � t2 and t1 and t2

intersect at x). See Figure 1. Since

.T; Fr.T // D .B; b/ � S1;

we may de�ne a sweep

H.; ˇ/ W .T; Fr.T // �! .T; Fr.T //;

where

H.; ˇ/ D h.; ˇ/� idS1 :

Sweeps are discussed more fully and in greater generality in section 10.2 of [14].
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@1B

@0B

b2

b3
b1

2

3
1

ˇ

b2

b3
b1

Figure 1. �e core curve of B is ˇ and b D ¹b1; b2; b3º are three arcs in @1B . On the right

is the image of a neighborhood of 2 after a sweep h.2; ˇ/.

Let b D ¹b1; : : : ; bnº where each bj is an arc and bj is adjacent to bj C1 on @B .

Let ˇ be a core curve ofB . Let j be an embedded arc inB joining the components

of @1B � b adjacent to bj which intersects ˇ at a single point xj .

LetE0.B; b/ denote the index two subgroup ofE.B; b/ consisting of elements

inducing the identity map on �1.B/.

Lemma 3.4. If B is an annulus and b D ¹b1; : : : ; bnº is a non-empty collection

of arcs in one component of @B , then E0.B; b/ is generated by ¹h.j ; ˇ/º
n�1
j D1.

Moreover, E0.B; b/ Š Z
n�1.

We will call ¹h.j ; ˇ/º
n�1
j D1 a generating system of sweeps for E0.B; b/.

Proof. We �x an identi�cation of B with S1 � Œ0; 1�. Choose a set ¹�1; : : : ; �nº

of disjoint radial arcs in B such that each �j D ¹aj º � Œ0; 1� where aj 2 bj . See

Figure 2.

Given an element ofE0.B; b/we can choose a representative homotopy equiv-

alence f which is the identity on b [ @0B . We may further choose f so that f

�xes each point on �n. Let p W S1 � Œ0; 1� ! S1 be projection. �en, for each j ,

.p ıf /�.�j / will be an element of �1.S
1; p.aj //. For each j , �x an identi�cation

of �1.S
1; p.aj // with Z. We de�ne a map

 W E0.B; b/ �! Z
n�1

by letting

 .Œf �/ D ..p ı f /�.�1/; : : : ; .p ı f /�.�n�1//:
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@1B

@0B

b2

b3
b1

�2

�1�3

Figure 2. �e annulus .B; b/ when n D 3. �e arcs �j divide B into disks.

We �rst show that  is well de�ned. Suppose that f1 W B ! B is another

choice of representative of Œf � 2 E0.B; b/ which is the identity on b [ @0B [ �n.

Since Œf � D Œf1� in E0.B; b/, there is a homotopy F W B � Œ0; 1� from f D f0

to f1, such that F.�; t / W @0B ! @0B is a homeomorphism isotopic to the identity

for all t . We may deformF to a new homotopy, still calledF, so thatF.¹xº�Œ0; 1�/

is a geodesic, in the product Euclidean metric onB , for all x 2 B . In particular, for

all t , F.�; t / W @0B ! @0B is a rotation. �e fact that .pıf1/�.�n/ D .pıf0/�.�n/

implies that F.�; t / W @0B ! @0B is the identity for all t , so that the homotopy is

constant on @0B . �erefore, .p ı f0/�.�j / D .p ı f1/�.�j / for j D 1; : : : ; n� 1,

and so  is well de�ned.

Note that if f and g are representatives of Œf � and Œg� in E0.B; b/ which are

the identity on b [ @0B [ �n, then f ı g is a representative of Œf �Œg� which is the

identity on b [ @0B [ �n, so  is a homomorphism.

One may easily check that  .h.j ; ˇ// D .0; : : : ;˙1; : : : 0/ for all j (where

the only non-zero entry is in the j th place. In particular,  is surjective.

�e proof will be completed by showing that  is injective. �e collection of

arcs ¹�j º divides B into n disks ¹D1; : : : ; Dnº. EachDi has the form Œaj ; aj C1��

Œ0; 1�where indices are taken modulo n. Suppose that  .f / D 0. We may assume

as above, that f is the identity on b [ @0B [ �n. Since  .f / D 0, we can further

homotope f , keeping it the identity on b[@0B[�n, so that f �xes �j for all j D

1; : : : ; n�1. Finally, we homotope f , keeping it the identity on b[@0B[�1[� � ��n,

so that for each j and each t 2 Œ0; 1�, f .Œaj ; aj C1� � ¹tº/ is a geodesic. �is �nal

map must be the identity map, so we have shown that Œf � D Œid � in E0.B; b/

which completes the proof.
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If a is an embedded arc in B joining the two boundary components of B such

that a \ b D ;, then A D p�1
1 .a/ is called a vertical essential annulus for T .

We see that Dehn twists about a vertical annulus generate the kernel of P .

Lemma 3.5. Let T be a thickened torus component of †.M/ and let A be a

vertical essential annulus in T . �en the kernel of P is generated by the Dehn

twist DA about A. In particular, ker.P / Š Z.

Proof. Let f W T ! T be a homotopy equivalence which restricts to a homeo-

morphism of Fr.T / which is isotopic to the identity and such that P.Œf �/ D Œid�.

Proposition 10.2.2 of [14] allows us to assume that f is �ber-preserving and that

p1f s D id. �en the homotopy class of f is determined by the homotopy class

of the map p2f s W B ! S1. However, every homotopy class of map from B to S1

occurs when we choose f D Dr
A for some r . �erefore, the kernel is generated

by DA.

Let

E0.T; Fr.T // D P�1.E0.B; b//:

�en E0.T; Fr.T // is an index two subgroup of E.T; Fr.T // and there is a short

exact sequence

1 �! ker.P / �! E0.T; Fr.T // �! E0.B; b/ �! 1:

Lemma 3.5 shows that

ker.P / Š hDAi Š Z;

while Lemma 3.4 shows thatE0.B; b/ Š Z
n�1 is generated by ¹h.j ; ˇ/º

n�1
j D1. One

may de�ne a section

� W E0.B; b/ �! E0.T; Fr.T //

by setting

�.h.j ; ˇ// D H.j ; ˇ/ for all j .

(Note that � is a homomorphism, since any homotopy between maps in E0.B; b/

extends, by simply taking the product with the identity map on S1, to a homotopy

between the corresponding maps in E0.T; Fr.T //.) Let

Sw0.T / D �.E0.B; b// Š Z
n�1:

For any sweep H D H.j ; ˇ/ in E0.T; Fr.T //, HDAH
�1 lies in the kernel

of P . Since H preserves level sets of p2, we see that

p2.HDAH
�1/s D p2.DA/s:
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One then sees that

HDAH
�1 D DA 2 E0.T; Fr.T //;

just as in the proof of Lemma 3.5. �erefore,E0.T; Fr.T // splits as a direct product

E0.T; Fr.T // D hDAi ˚ Sw0.T / Š Z ˚ Z
n�1 Š Z

n:

One may combine all of the above analysis to obtain:

Proposition 3.6. LetM be a compact, orientable, hyperbolizable 3-manifold with

incompressible boundary and let T be a thickened torus component of †.M/

with base surface .B; b/ and Fr.T / D ¹A1; : : : ; Anº. �en there is a subgroup

E0.T; Fr.T // of index two in E.T; Fr.T // which is a rank n free abelian group

freely generated by sweeps ¹H.j ; ˇ/º
n�1
j D1 (where ¹h.j ; ˇ/º

n�1
j D1 is a generating

set of sweeps for E0.B; b/) and a Dehn twist DA about a vertical essential annu-

lus A.

3.3. Assembling the sequence. We are now ready to de�ne Out0.�1.M//. If

V is a solid torus component of †.M/, we let E0.V; Fr.V // be the trivial group.

If V is an interval bundle component of †.M/, we let

E0.V; Fr.V // D E.V; Fr.V //:

We have already de�nedE0.V; Fr.V // when V is a thickened torus component of

†.M/. �en
L

i E0.Vi ; Fr.Vi // is a �nite index subgroup of
L

i E.Vi ; Fr.Vi //, so

Out0.�1.M// D ‰�1.
L

i E0.Vi ; Fr.Vi ///

is a �nite index subgroup of Out2.�1.M// and hence of Out.�1.M//.

If T is a thickened torus component of †.M/, then

E0.T; Fr.T // D D.T /˚ Sw0.T /

where D.T / is generated by a Dehn twist about a vertical essential annulus in T

and Sw0.T / is generated by sweeps ¹H.j ; ˇ/º
n�1
j D1. We may extend eachH.j ; ˇ/

to a homotopy equivalence yH.j ; ˇ/ ofM which is the identity on the complement

of T . Up to homotopy, we may assume that for all i ¤ j , the support of yH.i ; ˇ/

is disjoint from the support of yH.j ; ˇ/. Also, we may assume the support of
yH.i ; ˇ/ is disjoint from the image of supp. yH.j ; ˇ// under yH.j ; ˇ/. It follows

that yH.i ; ˇ/ and yH.j ; ˇ/ commute. (�e argument of Lemma 3.4 can also be

adapted to show that yH.i ; ˇ/ and yH.j ; ˇ/ commute.) One may thus de�ne a

homomorphism

sT W Sw0.T / �! Out0.�1.M//
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by letting

sT .H.j ; ˇ// D yH.j ; ˇ/ for all j .

Since ‰ ı sT is the identity map, sT is an isomorphism onto its image and we

de�ne

Sw.T / D sT .Sw0.T // Š Z
n�1:

We may similarly note that elements of Sw.T / and K.M/ commute since one

can choose representatives so that the supports and the images of the supports

are disjoint. (However, we note that sT cannot be extended to a homomorphism

de�ned on all of E0.T; Fr.T //, since the commutator in Out.�1.M// of a Dehn

twist in a vertical annulus and a sweep is a Dehn twist in a frontier annulus.)

If we let ¹Tiº be the set of thickened torus components of †.M/ and ¹†j º

denote the collection of interval bundle components of †.M/, then there is an

obvious projection map

p W
L

k E0.Vk; Fr.Vk// �! .
L

i D.Ti//˚ .
L

j E.†j ; Fr.†j ///:

�en we consider the map

ˆ D p ı‰ W Out0.�1.M// �! .
L

i D.Ti//˚ .
L

j E.†j ; Fr.†j ///

which has kernel K.M/˚ .
L

i Sw.Ti//.

We summarize the above discussion in the following proposition.

Proposition 3.7. LetM be a compact, orientable, hyperbolizable 3-manifold with

incompressible boundary. �en there exists a �nite index subgroup Out0.�1.M//

of Out.�1.M// and a short exact sequence

1 �! K.M/˚ .
L

i Sw.Ti// �! Out0.�1.M//

ˆ
��! .

L

i D.Ti//˚ .
L

j E.†j ; Fr.†j /// �! 1:

4. Characteristic collections of annuli and registering subgroups

We will divide the annuli in Fr.†.M// into collections, called characteristic col-

lections of annuli. Each isotopy class of annulus in Fr.†.M// will appear in

exactly one collection. A characteristic collection of annuli C for †.M/ is either
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(1) the collection of frontier annuli in a solid torus component of †.M/,

(2) a component of the frontier of an interval bundle component of†.M/which

is not isotopic into either a solid torus or thickened torus component of†.M/,

or

(3) the collection of frontier annuli in a thickened torus component of †.M/.

Let ¹C1; : : : ; Cmº denote the collections of characteristic annuli for M . Let

K.Cj / be the subgroup ofK.M/ generated by Dehn twists about the annuli in Cj .

Note that

K.M/ Š ˚K.Cj /:

We extend this decomposition of K.M/ into a decomposition of ker.ˆ/. If C

is the collection of frontier annuli of a thickened torus T , we de�ne

yK.C/ D K.C/˚ Sw.T /:

Otherwise, we de�ne
yK.C/ D K.C/:

With this convention,

ker.ˆ/ D K.M/˚ .
L

i Sw.Ti// D
L

j
yK.Cj /:

If C is a characteristic collection of annuli, then we may de�ne the projection map

qC W ker.ˆ/ �! yK.C/:

We next de�ne subgroups of �1.M/ which “register” the action of yK.C/ on

�1.M/, in the sense that the subgroup is preserved by any element of yK.C/ and
yK.C/ injects into the outer automorphism group of the subgroup.

Let

MC D M � N.C1 [ C2 [ : : : [ Cm/

be the complement of a regular neighborhood of the characteristic collections of

annuli. If X is a component of MC , then X is either properly isotopic to a com-

ponent of †.M/ or to a component of M �†.M/. In particular, �1.X/ is non-

abelian if it is not properly isotopic to a solid torus or thickened torus component

of†.M/. Moreover, no two adjacent components ofMC have abelian fundamen-

tal group.

First suppose that C D Fr.V / D ¹A1; : : : ; Alº where V is a solid torus com-

ponent of †.M/. For each i D 1; : : : ; l, let Xi be the component of MC � V

abutting Ai . Let a be a core curve for V and let x0 be a point on a. We say that
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a subgroupH of �1.M; x0/ is C -registering if there exist, for each i D 1; : : : ; l, a

loop gi in V \Xi based at x0 intersecting Ai exactly twice, such that

H D hai � hg1i � � � � � hgli Š FlC1:

Now suppose that C D ¹Aº is a component of Fr.†/ where † is an interval

bundle component of †.M/. Let a be a core curve for A and let x0 be a point

on a. We say that a subgroup H of �1.M; x0/ is C -registering if there exist two

loops g1 and g2 based at x0 each of whose interiors misses A, and which lie in the

two distinct components of MC abutting A, such that

H D hai � hg1i � hg2i Š F3

Finally, suppose that C D Fr.T / D ¹A1; : : : ; Alº where T is a thickened torus

component of †.M/. For each i D 1; : : : ; l , let Xi be the component of MC � T

abuttingAi . Pick x0 2 T . We say that a subgroupH of �1.M; x0/ isC -registering

if there exist, for each i D 1; : : : ; l , a homotopically non-trivial loop gi in T [Xi

based at x0 intersecting Ai exactly twice, such that

H D �1.T; x0/ � hg1i � � � � � hgl i Š .Z ˚ Z/ � Fl

If H is a subgroup of �1.M/, then there is an obvious map

rH W X.M/ �! X.H/ D Hom.H; PSL.2;C//==PSL.2;C/

given by taking � to �jH .

�e following lemma records the key properties of registering subgroups.

Lemma 4.1. Let M be a compact, orientable, hyperbolizable 3-manifold with

incompressible boundary. If C is a characteristic collection of annuli for M and

H is a C -registering subgroup of �1.M/, thenH is preserved by each element of
yK.C/ and there is a natural injective homomorphism

sH W yK.C/ �! Out.H/:

Moreover, if � 2 ker.ˆ/ D K.M/˚ .
L

i Sw.Ti//, then

rH .� ı �/ D rH .�/ ı sH .qC .�//

for all � 2 X.M/, where qC W ker.ˆ/ ! yK.C/ is the projection map.
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Proof. If C lies in the frontier of a solid torus or interval bundle component of

†.M/, this was established as Lemma 6.1 in [15].

Now suppose that C D Fr.T / D ¹A1; : : : ; Anº where T is a thickened torus

component of†.M/ and thatH is a C -registering subgroup of �1.M; x0/ (where

x0 2 int.T /) generated by �1.T; x0/ and ¹g1; : : : ; gnº. �en K.C/ Š Z
n�1 and

is generated by the Dehn twists ¹DA1
; : : : ; DAn�1

º and Sw.T / Š Z
n�1 and is

generated by sweeps ¹ yH.1; ˇ/; � � � ; yH.n�1; ˇ/º. We choose generators a and b

for �1.T; x0/ so that a is homotopic to the core curve of A1 and b is the core curve

ˇ of the annulusB (here we adapt the notation of Proposition 3.6). One may check

that each .DAk
/� preservesH , �xes �1.T; x0/ and each gi where i ¤ k, and maps

gk to agka
�1. Similarly, each . yH.k; ˇ//� preserves H and �xes �1.T; x0/ and

each gi where i ¤ k and takes gk to bgkb
�1.

�is explicit description of each generator allows one to immediately check

that yK.C/ preservesH and injects into Out.H/.

5. �e existence of registering subgroups

In this section, we prove that every characteristic collection of annuli admits a

registering subgroup. We will make use of the existence of minimally parabolic

hyperbolic structures on M to do so.

In the case that the characteristic collection of annuli lies in the frontier of a

solid torus or interval bundle component of†.M/, the proof of Lemma 8.3 in [15]

immediately yields:

Lemma 5.1. Suppose thatM is a compact, orientable, hyperbolizable 3-manifold

with incompressible boundary and C is a characteristic collection of annuli for

M such that either (1) C D Fr.V / for a solid torus component V of †.M/ or

(2) C is a component of the frontier of an interval bundle component of †.M/.

If � 2 AH.M/ and �.�1.C // is purely hyperbolic, then there exists aC -registering

subgroup H of �1.M/ such that �jH is discrete, faithful, geometrically �nite and

purely hyperbolic (and therefore Schottky).

We may give a variation on the argument in [15] to prove:

Lemma 5.2. Suppose thatM is a compact, orientable, hyperbolizable 3-manifold

with incompressible boundary andC is a characteristic collection of annuli forM

such that C D Fr.T / for a thickened torus component T of†.M/. If � 2 AH.M/,

then there exists a C -registering subgroupH of �1.M/ such that �jH is discrete,

faithful, geometrically �nite and minimally parabolic.
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Proof. Let � 2 AH.M/ and let C D ¹A1; : : : ; Alº. Let Xi be the component

of MC abutting Ai . Pick x0 2 T and, in order to be precise, let �1.T / denote

�1.T; x0/ � �1.M; x0/. Since � 2 AH.M/, �.�1.T // consists of parabolic ele-

ments �xing a common �xed point p 2 yC. We may assume that p D 1 and pick

a fundamental domain F for the action of �.�1.T // on C which is a quadrilateral.

Since �1.Xi [ T; x0/ is not abelian, we can �nd i 2 �.�1.Xi \ T; x0// such that

i is a hyperbolic element with both �xed points contained in the interior of F .

If i ¤ j , then �1.Xi [ T; x0/ \ �1.Xj [ T; x0/ D �1.T; x0/, so i and j have

distinct �xed points. One may then �nd a collection ¹D˙
1 ; : : : ; D

˙

l
º of 2l disjoint

disks in the interior of F and integers ¹s1; : : : ; slº, so that, for each i , 
si

i takes the

interior ofD�
i homeomorphically onto the exterior ofDC

i . For each i , let gi be a

curve in Xi [ T which intersects Ai exactly twice and represents ��1.
si

i /. Let

H D h�1.T /; g1; : : : ; gli � �1.M/:

Klein’s Combination �eorem (see [30, �eorem A.13, �eorem C.2]) then im-

plies that �jH is geometrically �nite and minimally parabolic and that

�.H/ Š �.�1.T // � h
s1

1 i � � � � � h
sl

l
i:

�erefore, H is a registering subgroup with the desired properties.

�urston’s hyperbolization theorem, see Morgan [34], implies that there exists

a geometrically �nite, minimally parabolic element � 2 AH.M/. If C is a char-

acteristic collection of annuli contained in the frontier of a solid torus or interval

bundle component of †.M/, then no annulus in C is homotopic into a toroidal

boundary component of M , so �.�1.C // is purely hyperbolic. In these cases,

Lemma 5.1 implies the existence of a registering subgroup for C . Otherwise, C is

the frontier of a thickened torus component of †.M/ and Lemma 5.2 guarantees

the existence of a registering subgroup for C . �erefore, we have established:

Proposition 5.3. Suppose thatM is a compact, orientable, hyperbolizable 3-man-

ifold with incompressible boundary and C is a characteristic collection of annuli

for M , then there exists a C -registering subgroup of �1.M/.

6. Registering subgroups and relative deformation spaces

If H is a C -registering subgroup for a characteristic collection of annuli C , then

we de�ne GF.H/ to be the set of conjugacy classes of discrete, faithful, geomet-

rically �nite, minimally parabolic representations. (If H is a free group, GF.H/
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is the space of Schottky representations.) GF.H/ naturally sits inside

XT .H/ D HomT .H; PSL.2;C//==PSL.2;C/

where HomT .H; PSL.2;C// denotes the set of representations ofH into PSL.2;C/

such that if an element of H lies in a rank two free abelian subgroup of H then

its image is either parabolic or the identity. In turn, XT .H/ is a subvariety of the

full character variety X.H/.

Lemma 6.1. Let M be a compact, orientable, hyperbolizable 3-manifold with

non-empty incompressible boundary. If H is a registering subgroup for some

characteristic collection of annuli, then

(1) GF.H/ is an open subset of XT .H/;

(2) if ¹˛nº is a sequence of distinct elements in Out.H/ and D is a compact

subset of GF.H/, then ¹˛n.D/º exits every compact subset of XT .H/.

Proof. �eorem 10.1 in Marden [28] implies that GF.H/ is an open subset of

XT .H/, which establishes (1).

If (2) fails, there exists a sequence ¹˛nº of distinct elements of Out.H/ and a

compact subsetD of GF.H/ such that ˛n.D/ intersects a �xed compact subset of

XT .H/ for all n.

We will call an element of H toroidal if it lies in a rank two free abelian sub-

group. Given � 2 GF.H/ and g 2 G, let l�.g/ denote the translation distance of

�.g/.

Fix, for the moment, an element � 2 D. �en, given any P > 0 there ex-

ists �nitely many conjugacy classes of non-toroidal elements g in H such that

l� .g/ < P . Moreover, there exists a positive lower bound on the translation dis-

tance l� .g/ whenever g is non-toroidal. Let ¹h1; : : : ; hrº be a generating set forH

consisting of non-toroidal elements. If ¹˛nº is a sequence of distinct elements of

Out.H/, then we may pass to a subsequence ¹ j̨ º such that either

(1) there exists a generator hk such that l� .˛
�1
j .hk// ! 1, or

(2) there exist generators hi and hk such that the distance between the axes of

�.˛�1
j .hi // and �.˛�1

j .hk// goes to in�nity.

In the second case l� .˛
�1
j .hihk// ! 1. �erefore, ¹ j̨ .�/º leaves every compact

subset of XT .H/.

Without loss of generality, we may assume that D is contained in a single

component of GF.H/. Since all elements in a component of GF.H/ are quasi-

conformally conjugate (see, e.g. [14, Section 7.3]) and D is compact, there exists
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L such that all the representations inD are L-quasiconformally conjugate. �ere-

fore, there existsK > 0 such that all the actions on H
3 areK-bilipschitz conjugate

([14, Proposition 7.2.6]). In particular, if � 2 D and g 2 H , then

l�.g/ �
1

K
l� .g/:

It follows that ¹ j̨ .D/º exits every compact subset of XT .H/, which contradicts

our assumption and completes the proof of (2).

If † is an interval bundle component of †.M/, let @1† denote the collection

of components of Fr.†/ which are homotopic into toroidal boundary components

of M . Let GF.†; @1†/ denote the set of conjugacy classes of discrete, faithful,

geometrically �nite representations such that the image of a non-trivial element

is parabolic if and only if it is conjugate into �1.@1†/. GF.†; @1†/ naturally sits

inside

X.†; @1†/ D Hom.†; @1†; PSL.2;C//==PSL.2;C/

where Hom.†; @1†; PSL.2;C// denotes the representations such that �.g/ is par-

abolic or trivial if g is conjugate into �1.@1†/. X.†; @1†/ is a subvariety ofX.†/.

We may use the same argument as in the proof of Lemma 6.1, replacing non-

toroidal elements with elements not conjugate into �1.@1†/, to establish:

Lemma 6.2. Let M be a compact, orientable, hyperbolizable 3-manifold with

non-empty incompressible boundary. Let † be an interval bundle component of

†.M/, then

(1) GF.†; @1†/ is an open subset of X.†; @1†/;

(2) ifD is a compact subset of GF.†; @1†/ and ¹˛nº is a sequence of distinct ele-

ments ofE.†; Fr.†//, then ¹˛n.D/º exits every compact subset ofX.†; @1†/.

7. �e domains of discontinuity

We are now ready to de�ne the domains of discontinuity which occur in the state-

ments of �eorems 1.1 and 1.3. We �rst de�neW.M/ � XT .M/.

De�nition 7.1. A representation � 2 XT .M/ lies in W.M/ if and only if the

following hold:

(a) if C is a characteristic collection of annuli for M , then there exists a C -reg-

istering subgroup H such that �jH 2 GF.H/, i.e. �jH is discrete, faithful,

geometrically �nite and minimally parabolic, and
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(b) if† is an interval bundle component of†.M/ which is not tiny, then �j�1.†/

is in GF.†; @1†/, i.e. �j�1.†/ is discrete, faithful, geometrically �nite and

�j�1.†/.g/ is parabolic if and only if g is conjugate to a non-trivial element

of �1.@1†/.

Proposition 7.2. LetM be a compact, orientable, hyperbolizable 3-manifold with

non-empty incompressible boundary which is not an interval bundle.

(1) W.M/ is an Out.�1.M//-invariant open subset of XT .M/.

(2) �e interior of AH.M/ is a proper subset of W.M/.

(3) Every minimally parabolic representation in AH.M/ lies in W.M/. In par-

ticular, W.M/ contains a dense subset of @AH.M/.

(4) AH.M/ � W.M/ if and only if M contains no primitive essential annuli.

Proof. We �rst show that W.M/ is open in XT .M/.

Recall that if H is a registering subgroup for a characteristic collection of an-

nuli, then

rH W XT .M/ �! XT .H/

is continuous. Since GF.H/ is an open subset of XT .H/ (see Lemma 6.1), the

space r�1
H .GF.H// is an open subset of XT .M/. �erefore, the set of representa-

tions satisfying condition (a) in the de�nition of W.M/ is open.

If † is an interval bundle component of †.M/, then the map

r† W XT .M/ �! X.†; @1†/

obtained by restriction is continuous. Since GF.†; @1†/ is an open subset of

X.†; @1†/ (see Lemma 6.2), r�1
† .GF.†; @1†// is an open subset of XT .M/. It

follows that the set of representations satisfying condition (b) in the de�nition of

W.M/ is open. �erefore, W.M/ is open in XT .M/.

Johannson’s Classi�cation �eorem implies that every homotopy equivalence

h ofM is homotopic to one which preserves†.M/ andM �†.M/. In particular,

we may assume that h takes every interval bundle component of †.M/ to an in-

terval bundle component of M and takes each characteristic collection of annuli

to a characteristic collection of annuli. Moreover, if H is a registering subgroup

for C , we see that h�.H/ is a registering subgroup for h.C /. Since every outer au-

tomorphism of �1.M/ is realized by a homotopy equivalence, one easily veri�es

that W.M/ is invariant under Out.�1.M//. �is completes the proof of (1).

Since all representations in int.AH.M// are minimally parabolic, (2) follows

from (3). We now turn to the proof of (3).
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Suppose that � 2 AH.M/ is minimally parabolic. Lemmas 5.1 and 5.2 im-

ply that if C is a characteristic collection of annuli, then there is a C -registering

subgroupH such that �jH is discrete, faithful, geometrically �nite and minimally

parabolic. �erefore, � satis�es condition (a) in the de�nition of W.M/.

Now suppose that † is an interval bundle component of †.M/ which is not

tiny. Let M� be a relative compact core for N 0
� and let h W M ! M� be a homo-

topy equivalence in the homotopy class of �. Johannson’s Classi�cation �eorem

implies that we may assume that h.†/ D †� is an interval bundle component

of †.M�/ and that h restricts to a homeomorphism from Fr.†/ to Fr.†�/. Let

@1†� D h.@1†/. Since � is minimally parabolic, r†.�/.g/ is parabolic if and only

if g is conjugate to a non-trivial element of �1.@1†/.

�e interval bundle†� lifts to a compact core for the coverN† ofN� associated

to �.�1.†// D �1.†�/. However, the lift need not be a relative compact core,

since it need not intersect every component of N 0
† in an incompressible annulus.

(Here we choose the invariant system of horoballs for �.�1.†// to be a subset

of the precisely invariant system of horoballs for �.�1.M//, so the covering map

from N† to N� restricts to a covering map from @N 0
† to its image in @N 0

� .) In

order to extend †� to a submanifold which does lift to a relative compact core,

we construct a submanifold Y� ofM� which is homeomorphic to @1†� � Œ0; 1� by

a homeomorphism identifying @1†� with @1†� � ¹0º, so that Y� \ †� D @1†�

and Y� \ @N 0
� is a collection of incompressible annuli which is identi�ed with

@1†� � ¹1º. If we let

†C
� D †� [ Y�

then †C
� does lift to a relative compact core for @N 0

†. Moreover, the lift of †C
�

intersects N 0
† exactly in the lift of †C

� \ @N 0
� . �e ends of N 0

† are in one-to-one

correspondence with the components of @†C
� � .@†C

� \ @N 0
� /, each of which is

homotopic to a component of @†� � @1†�. In particular, N 0
† has one or two ends.

If the manifold N 0
† has only one end, then the covering map N† ! N� is

in�nite-to-one on this end. �e covering theorem implies that the single end ofN 0
†

is geometrically �nite, so N† is geometrically �nite. If the manifold N 0
† has two

ends, then Fr.†�/ D @1†�, so each component of @†� � @1†� is identi�ed with a

proper subsurface of a component of @M�: Again N† ! N� is in�nite-to-one on

each end of N 0
† and the covering theorem may be used to show that N† is geo-

metrically �nite. �us, in all cases, �j�1.†/ 2 GF.†; @1†/, so � satis�es condition

(b) in the de�nition of W.M/. �erefore, minimally parabolic representations in

AH.M/ lie in W.M/.

Since minimally parabolic representations are dense in the boundary of the

space AH.M/, W.M/ contains a dense subset of @AH.M/. (�e density of min-
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imally parabolic representations in @AH.M/ follows from Lemma 4.2 in [13],

which shows that minimally parabolic representations are dense in the boundary

of any component of int.AH.M// and the Density �eorem, see Brock, Canary,

and Minsky [8], Bromberg and Souto [10], Namazi and Souto [35] or Ohshika [37],

which asserts that AH.M/ is the closure of its interior.) �is completes the proof

of (3).

Suppose thatM contains no primitive essential annuli. �en†.M/ contains no

interval bundle components which are not tiny, since otherwise a non-peripheral

essential annulus in the interval bundle would be a primitive essential annulus

(see [15, Lemma 7.3]). Similarly, every component of the frontier of a tiny inter-

val bundle component is isotopic into a solid torus or thickened torus component

of †.M/; since otherwise it would be a primitive essential annulus (see Johann-

son [21, Lemma 32.1]). �erefore, every characteristic collection of annuli is the

frontier of either a solid torus or thickened torus component of †.M/. More-

over, the core curve of each solid torus component V of †.M/ is non-peripheral,

since otherwise its frontier annuli would be primitive essential annuli (again see

Johannson [21, Lemma 32.1]). �erefore, just as in the proof of Lemma 8.1 in [15],

�.�1.V // is purely hyperbolic if � 2 AH.M/ and V is a solid torus component

of †.M/. �erefore, if � 2 AH.M/ and C is any characteristic collection of an-

nuli for M , then Lemma 5.1 or 5.2 guarantees that there exists a C -registering

subgroupH such that �jH is discrete, faithful, geometrically �nite and minimally

parabolic. Since every interval bundle is tiny, it follows that AH.M/ � W.M/.

On the other hand, if M contains a primitive essential annulus A, then there

exists � 2 AH.M/ such that �.�1.A// is purely parabolic (see Ohshika [36]).

Since A is either isotopic to a component of a characteristic collection of annuli

or isotopic into an interval bundle component of †.M/, � does not lie in W.M/.

In particular, AH.M/ is not a subset of W.M/. �erefore, AH.M/ � W.M/ if

and only if M contains no primitive essential annuli.

IfM does not contain an essential annulus which intersects a toroidal boundary

component of M , then we de�ne yW .M/ � X.M/. Note that M contains an

essential annulus with one boundary component contained in a toroidal boundary

component of M if and only if †.M/ has a thickened torus component.

De�nition 7.3. We say that � 2 X.M/ lies in yW .M/ if and only if the following

hold:

(a) if C is a characteristic collection of annuli for M , then there exists a C -reg-

istering subgroup H such that �jH 2 GF.H/, and
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(b) if † is an interval bundle component of †.M/ with base surface F , which

is not tiny, then �j�1.†/ 2 GF.†; ;/, i.e. �j�1.†/ is discrete, faithful, geomet-

rically �nite and purely hyperbolic.

We obtain the following analogue of Proposition 7.2 whenever yW .M/ is de-

�ned.

Proposition 7.4. LetM be a compact, orientable, hyperbolizable 3-manifold with

non-empty incompressible boundary which is not an interval bundle and so that

M contains no essential annuli which intersects a toroidal boundary component.

�en

(1) yW .M/ is an Out.�1.M//-invariant open subset of X.M/;

(2) yW .M/ \XT .M/ D W.M/;

(3) AH.M/ � yW .M/ if and only if M contains no primitive essential annuli.

Sketch of proof. Since †.M/ does not contain any thickened torus components,

every characteristic collection of annuli is either the frontier of a solid torus com-

ponent of †.M/ or a component of the frontier of an interval bundle component

of †.M/. Moreover, every registering subgroup H is a free group and @1† is

empty for every interval bundle component of†.M/. �e proof of (1) mimics the

proof of Proposition 7.2. If H is a registering subgroup for some characteristic

collection of annuli, then we can de�ne rH W X.M/ ! X.H/, and r�1
H .GF.H// is

an open subset of X.M/. In the case that † is an interval bundle component of

†.M/, we de�ne r† W X.M/ ! X.†/ and GF.†; ;/ is an open subset of X.†/,

so r�1
† .GF.†; ;// is open in X.M/. �erefore, as in the proof of property (1) in

Proposition 7.2, W.M/ is an open subset of X.M/. �e Out.�1.M//-invariance

of yW .M/ follows from Johannson’s Classi�cation �eorem, much as in the proof

of Proposition 7.2.

Property (2) follows immediately from the de�nitions of W.M/ and yW .M/

and the restrictions on the characteristic submanifold of M discussed in the pre-

vious paragraph. Property (3) follows from property (2) and part (4) of �eo-

rem 7.2.

Remark. If one, more generally, allowed �jH and �j�1.†/ to be primitive-stable

(see Minsky [33]) in the de�nition of yW .M/, then yW .M/ would agree with the

domain of discontinuity obtained in [15] in the case thatM has no toroidal bound-

ary components.
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8. Proof of Main �eorem

We are now prepared to complete the proof of our main theorem, which we recall

below:

�eorem 1.1. Let M be a compact, orientable, hyperbolizable 3-manifold with

nonempty incompressible boundary, which is not an interval bundle. �ere exists

an open Out.�1.M//-invariant subset W.M/ of XT .M/ such that Out.�1.M//

acts properly discontinuously onW.M/, int.AH.M// is a proper subset ofW.M/,

and W.M/ intersects @AH.M/.

�eorem 1.1 follows immediately from Proposition 7.2, which gives the key

properties of W.M/, and the following proposition which establishes the proper

discontinuity of the action of Out.�1.M// on W.M/.

Proposition 8.1. If M is a compact, orientable, hyperbolizable 3-manifold with

non-empty incompressible boundary which is not an interval bundle, then the

action of Out.�1.M// is properly discontinuous on W.M/.

Proof. Since Out0.�1.M// has �nite index in Out.�1.M//, it su�ces to prove

that Out0.�1.M// acts properly discontinuously on W.M/.

Suppose that Out0.�1.M// does not act properly discontinuously on W.M/.

�en there exists a compact subset R of W.M/ and a sequence ¹˛nº of distinct

elements in Out0.�1.M// such that ˛n.R/ \ R is non-empty for all n. We may

pass to a subsequence so that ¹ˆ.˛n/º is either

(1) a sequence of distinct elements of .˚iD.Ti//˚
�

j̊E.†j ; F r.†j /
�

, or

(2) a constant sequence.

In case (1) we may pass to a further subsequence, still called ¹˛nº, so that either

(a) there exists an interval bundle component† of †.M/ so that ¹p†.ˆ.˛n/º is

a sequence of distinct elements of E.†; Fr.†// where

p† W .
L

i D.Ti//˚ .
L

j E.†j ; Fr.†j /// �! E.†; Fr.†//;

is the obvious projection map onto E.†; Fr.†/, or

(b) there exists a thickened torus component T of †.M/ so that ¹pT .ˆ.˛n//º is

a sequence of distinct elements of D.T / where

pT W .
L

i D.Ti//˚ .
L

j E.†j ; Fr.†j /// �! D.T /

is the obvious projection map onto D.T /.
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In case (1a), r†.R/ is a compact subset of GF.†; @1†/ and ¹p†.ˆ.˛n/º is

a sequence of distinct elements of E.†; Fr.†//. Recall, see Lemma 3.3, that

E.†; Fr.†// is identi�ed with a subgroup of Out.�1.†//. Note that, by construc-

tion,

r†.˛.�// D p†.ˆ.˛//.r†.�//:

or stated di�erently,

r†.� ı ˛�1/ D r†.�/ ı p†.ˆ.˛//
�1

for all � 2 W.M/ and all ˛ 2 Out0.�1.M//. �erefore, p†.‰.˛n//.r†.R// \

r†.R/ is non-empty for all n. Since r†.R/ is a compact subset of GF.†; @1†/, this

contradicts the proper discontinuity of the action of E.†; Fr.†// on GF.†; @1†/,

see Lemma 6.2. �is contradiction rules out case (1a).

In case (1b), notice that if � 2 W.M/, then

�j�1.T / W �1.T / �! PSL.2;C/

is discrete and faithful. �erefore, there exists a continuous restriction map

rT W W.M/ �! AH.Z2/;

where AH.Z2/ is the space of conjugacy classes of discrete faithful representa-

tions from �1.T / into PSL.2;C/. �ere is a natural identi�cation of D.T / with

a subgroup of Out.�1.T //. Since all the elements of ker.pT ı ˆ/ act trivially on

�1.T /,

rT .˛.�// D pT .ˆ.˛//.rT .�//:

for all � 2 W.M/ and ˛ 2 Out0.�1.M//. �erefore, pT .ˆ.˛n//.rT .R// \ rT .R/

is non-empty for all n. It is easy to check that Out.�1.T // acts properly discon-

tinuously on AH.Z2/. (One may identify AH.Z2/ with CnR and the action of

Out.�1.T // is identi�ed with the action of GL.2;Z/ as a group of conformal and

anti-conformal automorphisms of CnR, which is well known to act properly dis-

continuously on CnR.) So, we have again obtained a contradiction and case (1b)

cannot occur.

In case (2), there exists  2 Out0.�1.M// and a sequence ˇn 2 ker.ˆ/ such

that ˛n D ˇn ı  for all n. Since  induces a homeomorphism of XT .M/ which

preserves W.M/, .R/ is a compact subset of W.M/ and ˇn..R// \ R is non-

empty for all n. Recall that ker.ˆ/ D
L

yK.Cj /. �erefore, after passing to a

further subsequence, we may �nd a characteristic collection of annuli C so that

qC .ˇn/ is a sequence of distinct elements of yK.C/ (where qC is the projection

of ker.ˆ/ onto yK.C/). Since XT .M/ is locally compact, for each x 2 W.M/,



180 R. D. Canary and A. D. Magid

there exists an open neighborhood Ux of x and a C -registering subgroupHx such

that the closure xUx is a compact subset of W.M/ and rHx
. xUx/ � GF.Hx/. Since

.R/ is compact, there exists a �nite collection of points ¹x1; : : : ; xrº such that

.R/ � Ux1
[ � � � [ Uxr

. �erefore, again passing to subsequence if necessary,

there must exist xi such that ˇn.Uxi
/ \R is non-empty for all n. Let U D Uxi

and H D Hxi
. Lemma 4.1 implies that ¹sH .qC .ˇn//º is a sequence of distinct

elements of Out.H/ and that

sH .qC .ˇn//.rH . xU// D rH .ˇn. xU//:

Lemma 6.1 then implies that

¹sH .qC .ˇn//.rH . xU//º D ¹rH .ˇn. xU//º

exits every compact subset of XT .H/. �erefore, ¹ˇn.U /º exits every compact

subset of XT .M/ which is again a contradiction. �erefore, case (2) cannot occur

and we have completed the proof.

Corollary 1.2, which we restate here, follows readily from �eorem 1.1, Propo-

sition 7.2 and �eorem 1.2 from [15].

Corollary 1.2: If M is a compact, orientable, hyperbolizable 3-manifold with

incompressible boundary and non-abelian fundamental group, then Out.�1.M//

acts properly discontinuously on an open Out.�1.M//-invariant neighborhood of

AH.M/ in XT .M/ if and only if M contains no primitive essential annuli.

Proof of Corollary 1.2. Proposition 8.1 shows that Out.�1.M// acts properly dis-

continuously onW.M/, and Proposition 7.2 implies thatW.M/ is an open neigh-

borhood of AH.M/ when M contains no primitive essential annuli.

If M contains a primitive essential annulus, then �eorem 1.2 of [15] asserts

that Out.�1.M// does not act properly discontinuously on AH.M/, so Out.�1.M//

cannot act properly discontinuously on any Out.�1.M//-invariant neighborhood

of AH.M/ in XT .M/.

Remark. One could also prove that Out.�1.M// cannot act properly discontinu-

ously on an open neighborhood of AH.M/ whenM contains a primitive essential

annulus using the technique of Lemma 15 in Lee [26].
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9. Dynamics in the absolute character variety

In this section, we study the action of Out.�1.M// on the full character variety

X.M/. We begin by showing that Out.�1.M// acts properly discontinuously on
yW .M/, which is a nearly immediate generalization of Proposition 8.1.

Proposition 9.1. If M is a compact, orientable, hyperbolizable 3-manifold with

non-empty incompressible boundary which is not an interval bundle, and no es-

sential annulus inM has a boundary component contained in a toroidal boundary

component of M , then Out.�1.M// acts properly discontinuously on yW .M/.

Sketch of proof. Again, it su�ces to prove that Out0.�1.M// acts properly dis-

continuously on yW .M/. If Out0.�1.M// does not act properly discontinuously

on yW .M/, then there exists a compact subset R of yW .M/ and a sequence ¹˛nº

of distinct elements in Out0.�1.M// such that ˛n.R/ \ R is non-empty for all n.

We may again pass to a subsequence so that either (1) ¹ˆ.˛n/º is a sequence of

distinct elements or (2) ¹ˆ.˛n/º is a constant sequence. Since †.M/ contains no

thickened torus components, in case (1) we can assume that there exists an interval

bundle component † of †.M/ such that ¹p†.˛n/º is a sequence of distinct ele-

ments of E.†; Fr.†//. We then proceed, exactly as in the consideration of cases

(1)(a) and (2) in the proof of Proposition 8.1, to obtain a contradiction.

Propositions 7.4 and 9.1 immediately imply �eorem 1.3.

�eorem 1.3: Let M be a compact, orientable, hyperbolizable 3-manifold with

nonempty incompressible boundary, which is not an interval bundle. If M does

not contain an essential annulus with one boundary component contained in a

toroidal boundary component ofM , then there exists an open Out.�1.M//-invari-

ant subset yW .M/ ofXT .M/ such that Out.�1.M// acts properly discontinuously

on yW .M/ and

W.M/ D yW .M/ \ XT .M/:

In particular, yW .M/ intersects @AH.M/.

We next adapt the proof of Lemma 15 in Lee [26] to establish Proposition 1.4:

Proposition 1.4: Let M be a compact, orientable, hyperbolizable 3-manifold

with nonempty incompressible boundary and non-abelian fundamental group. If

M contains an essential annulus with one boundary component contained in a

toroidal boundary component, then every point in AH.M/ is a limit of represen-

tations in X.M/ which are �xed points of in�nite order elements of Out.�1.M//.
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Proof. Let A be an essential annulus in M with one boundary component con-

tained in a toroidal boundary component of M and let a be the core curve of A.

First suppose that � 2 int.AH.M//. �eorem 5.7 in Bromberg [9] implies

that there exists a neighborhood U of � 2 X.M/ and an open holomorphic map

Tra W U ! C such that if �0 2 U , then the trace of �0.a/ is given by ˙ Tra.�
0/.

(Recall that the trace of a representation into PSL.2;C/ is only well de�ned up to

sign.) �erefore, there exists a sequence ¹�nº � X.M/ such that ¹�nº converges

to � and �n.a/
n D Id for all large enough n. (Simply choose a sequence of

representations ¹�nº converging to � such that Tra.�n/ D ˙2 cos.�
n
/.) For each

n, �n is �xed by the in�nite order element .DA/
n
� 2 Out.�1.M// where DA is the

Dehn twist aboutA. �erefore, � is a limit of �xed points of in�nite order elements

of Out.�1.M//.

�e Density �eorem ([8, 10, 35, 37]) assures us that AH.M/ is the closure of

its interior, so, by diagonalization, every representation in AH.M/ is also a limit

of �xed points of in�nite order elements of Out.�1.M//.

One may combine Proposition 1.4 with Proposition 7.4, �eorem 1.3 and �e-

orem 1.2 from [15] to prove Corollary 1.5.

Corollary 1.5: If M is a compact, orientable, hyperbolizable 3-manifold with

incompressible boundary and non-abelian fundamental group, then Out.�1.M//

acts properly discontinuously on an open, Out.�1.M//-invariant neighborhood of

AH.M/ in X.M/ if and only if M does not contain a primitive essential annulus

or an essential annulus with one boundary component contained in a toroidal

boundary component of M .

Proof. Suppose that M does not contain a primitive essential annulus or an es-

sential annulus with one boundary component contained in a toroidal boundary

component of M . �eorem 1.3 implies that Out.�1.M// acts properly discontin-

uously on W.M/, while Proposition 7.4 implies that AH.M/ � W.M/ and that

W.M/ is open in X.M/. �erefore, Out.�1.M// acts properly discontinuously on

an open neighborhood of AH.M/ in X.M/.

If M contains a primitive essential annulus, then Out.�1.M// does not act

properly discontinuously on AH.M/, by �eorem 1.2 of [15], so it cannot act prop-

erly discontinuously on an open Out.�1.M//-invariant neighborhood of AH.M/.

If M contains an essential annulus with a boundary component contained in a

toroidal boundary component ofM , Proposition 1.4 shows that no point in AH.M/

can be contained in a domain of discontinuity for the action of X.M/ on W.M/.

�e consideration of these two cases completes the proof of Corollary 1.5.
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