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Abstract. We construct quasi-isometric embeddings from right-angled Artin groups into

the outer automorphism group of a free group. �ese homomorphisms are modeled on

the homomorphisms into the mapping class group constructed by Clay, Leininger, and

Mangahas. Toward this goal, we develop tools in the free group setting that mirror those

for surface groups and discuss various analogs of subsurface projection.
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1. Introduction

For a �nite simplicial graph � with vertex set �0, the right-angled Artin group

A.�/ is the group presented with generators si 2 �
0 and relators Œsi ; sj � D 1when-

ever si and sj are joined by an edge in �. Although they are simple to de�ne, right-

angled Artin groups have been at the center of recent developments in geometric

group theory and low-dimensional topology. �is interest is, in part, because many

geometrically signi�cant groups contain right-angled Artin subgroups. For exam-

ple, Wang constructed injective homomorphisms from certain right-angled Artin

groups into SLn.Z/, for n � 5; see [28]. In [18], Kapovich proved that for any

�nite simplicial graph � and any symplectic manifold .M; !/, A.�/ embeds into

the group of Hamiltonian symplectomorphisms of .M; !/. Turning our attention

to the mapping class group of a surface, Koberda showed that under general con-

ditions the subgroup generated by su�ciently high powers of �nitely many map-

ping classes is a right-angled Artin subgroup of Mod.S/; see [19]. In [7], Clay,

Leininger, and Mangahas constructed quasi-isometric embeddings of right-angled

Artin groups into mapping class groups using partial pseudo-Anosov mapping

classes. Speci�cally, they prove the following:

�eorem 1.1 (�eorem 1.1 of [7]). Suppose that f1; : : : ; fn 2 Mod.S/ are fully

supported on disjoint or overlapping non-annular subsurfaces. �en after raising

to su�ciently high powers, the elements generate a quasi-isometrically embedded

right-angled Artin subgroup of Mod.S/. Furthermore, the orbit map to Teich-

müller space is a quasi-isometric embedding.

Corollary 1.2 (Corollary 1.2 of [7]). Any right-angled Artin group admits a ho-

momorphism to some mapping class group which is a quasi-isometric embedding,

and for which the orbit map to Teichmüller space is a quasi-isometric embedding.

In this paper, we develop the theory necessary to quasi-isometrically embed

right-angled Artin groups into Out.Fn/. Here, we show the following (see Sec-

tion 4 for de�nitions and a more general statement):

�eorem 1.3. Suppose that f1; : : : ; fn 2 Out.Fn/ are fully supported on an ad-

missible collection of free factors. �en after raising to su�ciently high pow-

ers, the elements generate a quasi-isometrically embedded right-angled Artin sub-

group of Out.Fn/.

�e admissible collection condition on the set of free factors in �eorem 1.3 is

meant to mimic the situation in �eorem 1.1, where the subsurfaces considered are
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either disjoint or overlapping. We note that if � is the “coincidence graph” for the

involved free factors, then the right-angled Artin group generated in �eorem 1.3

is A.�/. �is is made precise in Section 4. We also obtain

Corollary 1.4. Any right-angled Artin group admits a homomorphism to Out.Fn/,

for some n, which is a quasi-isometric embedding.

Although much of the inspiration for this paper is drawn from [7], there are

several signi�cant points of departure. First, the methods of [7] rely heavily on

subsurface projections for Mod.S/, which were introduced by Masur and Minsky

in [24]. When working in Out.Fn/, however, there are di�erent possible projec-

tions that one could employ. In [4], Bestvina and Feighn begin with free factors A

andB ofFn that are in “general position,” and they de�ne the projection ofA to the

free splitting complex of B . �ese projections, though powerful in other settings,

are not delicate enough for our application. In particular, the presence of commut-

ing outer automorphisms in our construction precludes the free factors from satis-

fying the conditions for �nite diameter Bestvina–Feighn projections. See [27] for

recent work that extends the Bestvina–Feighn projections to a larger class of free

factors. In [26], a di�erent sort of projection is developed. Sabalka and Savchuk

consider a topologically de�ned projection using sphere systems inMn, the double

of the handlebody of genus n. Although these projections are interesting in their

own right, they do not always give free splittings of free factors and so they cannot

be used in this paper. �ese di�culties are discussed in detail in Section 5.3. To

resolve these issues, we develop our own projections which are tailored for the ap-

plications in this paper. In the process, we demonstrate the relationship between

the projections of [4] and [26], answering a question that appears in both papers.

Second, the authors of [7] use the Masur–Minsky distance formulas for Mod.S/

to verify that the homomorphisms they construct are quasi-isometric embeddings.

For Out.Fn/, however, there are no general distance formulas available. Instead,

in Section 10 we address this issue by using the partial ordering on the syllables of

g 2 A.�/. �is partial ordering allows us to control distance in Out.Fn/ by using

the projections that are de�ned in Section 3.2. �is su�ces for proving the lower

bounds on Out.Fn/-distance that is needed in our main theorem.

Finally, we note that there is another method to construct quasi-isometrically

embedded right-angled Artin subgroups of Out.F2g /. One could start with a

once-punctured genus g surface PS and use the methods of [7] to build a quasi-

isometric embedding from A.�/ into Mod. PS/. In [11], the authors show that the

injective homomorphism Mod. PS/! Out.F2g/ induced by the action of Mod. PS/

on �1. PS/ D F2g , is itself a quasi-isometric embedding. Composing two such
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maps then gives a quasi-isometric embedding from A.�/ into Out.F2g/. �ese

homomorphisms have the property that they factor through mapping class groups

and, hence, �x the conjugacy class in F2g corresponding to the puncture. In our

approach, however, homomorphisms into Out.Fn/ do not factor through mapping

class groups.

1.1. Outline of the paper and its sequel. �e paper is organized as follows: Sec-

tion 2 covers basic background material. Section 3 de�nes the subfactor projec-

tions that we use, gives their basic properties, and relates them to the projections

of [4]. Section 4 de�nes the homomorphisms from right-angled Artin groups into

Out.Fn/ that are of interest, gives a precise statement of our main theorem, and

provides a few examples.

In order to control distance in Out.Fn/ for the proof of our main theorem, we

require a version of Behrstock’s inequality, which is an important tool for study-

ing subsurface projections. To prove this, we work with a topological model of

the projections that is developed in Section 5. �is approach has the additional

advantage that it can be used to relate the various notions of projection that are

discussed above. In Section 6, we prove the version of Behrstock’s inequality that

is needed. �is is followed by Sections 7 and 8 which give related partial order-

ings for both free factors and syllables of g 2 A.�/. Section 9 closely follows the

arguments of [7] and gives conditions when normal form words in A.�/ provide

large projection distances.

Having arranged large projection distances, the last step is to argue that for

“non-disjoint” free factors these distances independently contribute to distance in

Out.Fn/; this is done in Section 10. �is section can be thought of as making

up for the lack of lower bounds coming from Masur–Minsky type formulas. �e

proof that our homomorphisms are quasi-isometric embeddings into Out.Fn/ is

then concluded in Section 11.

In the sequel to this paper, we answer the following question. Fix a quasi-

isometric embedding � W A.�/ ! Out.Fn/, as constructed in this paper. What

conditions on g 2 A.�/ guarantee that �.g/ is a fully irreducible outer automor-

phism of Out.Fn/? To answer this question, we use the extension of the Bestvina–

Feighn subfactor projections obtained in [27].

1.2. Acknowledgments. �e author is grateful to Patrick Reynolds, Chris White,

and Nick Zufelt for helpful conversation. �anks are also due to Je�rey Hatley,

Chris Leininger and Chris Westenberger, who made constructive comments on

an earlier version of this paper. Most importantly, the author is indebted to his
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advisor Alan Reid as well as Hossein Namazi for their encouragement, advice,

and continuous feedback throughout this project.

2. Background

2.1. Quasi-isometries. Let .X; dX/ and .Y; dY / be metric spaces. f W X ! Y is

a .K; L/-quasi-isometric embedding if for all x1; x2 2 X

1

K
dX .x1; x2/ � L � dY .f .x1/; f .x2// � KdX .x1; x2/C L:

If, in addition, every point of Y is within distance L from the image f .X/, then f

is a quasi-isometry and X and Y are said to be quasi-isometric. In this paper, the

metric spaces of interest arise from �nite dimensional simplicial complexes. For

a particular complex, the metric is induced by giving each simplex the structure

of a standard Euclidean simplex. Recall that ifK is a �nite dimensional simplicial

complex, then this piecewise Euclidean metric onK is quasi-isometric to K1, the

1-skeleton of K, with its standard graph metric (see [5] for details). Since we are

interested in the coarse geometry of such complexes, i.e. their metric structure

up to quasi-isometry, this justi�es our convention of when working with a com-

plex K to consider only the graph metric on K1. Here, and below, a graph is a

1-dimensional CW complex and a simply connected graph is a tree.

2.2. Out.F/ basics. Fix n � 2 and let Fn denote the free group of rank n with

outer automorphism group Out.Fn/. When it is clear from context, the subscript n

will be dropped from the notation. In this section, we recall some basic facts about

Out.Fn/ that we will need throughout the paper. First, a splitting ofF is a minimal,

simplicial action F Õ T on a non-trivial simplicial tree. �e action is determined

by a homomorphism  W F ! Aut.T / into the simplicial automorphisms of T .

An action on a tree is minimal if there is no proper invariant subtree. By a free

splitting, we mean a splitting with trivial edge stabilizers and refer to a k-edge

splitting as a free splitting with k natural edge orbits. Here, natural edges are the

edges of the cell structure on T whose vertices all have valence � 3. From Bass-

Serre theory, k-edge splittings correspond to graph of groups decompositions of

F with k edges, each edge with trivial edge group. Two actions F Õ T and

F Õ T 0 are conjugate if there is a F-equivariant homeomorphism � W T ! T 0,

and the conjugacy class of an action is denoted by ŒF Õ T �. We will usually drop

the action symbol from the notation and refer to the splitting by T . Finally, an

equivariant surjection c W T ! T 0 between F-trees is a collapse map if all point

preimages are connected. In this case, T is said to be a re�nement of T 0.



280 S. J. Taylor

�e free splitting complex Sn of the free group Fn is the simplicial complex

de�ned as follows (see [14] for details). �e vertex set S0
n is the set of conjugacy

classes of 1-edge splittings of Fn, and kC 1 vertices ŒT0�; : : : ; ŒTk� determine a k-

simplex of Sn if there is a .kC1/-edge splitting T and collapse maps ci W T ! Ti ,

for each i D 0; : : : ; k. �at is, a collection of vertices span a simplex in Sn if they

have a common re�nement. We will mostly work with the barycentric subdivision

of the free splitting complex, denoted by S0
n. �e vertices of S0

n are conjugacy

classes of free splittings of Fn and two vertices are joined by an edge if, up to

conjugacy, one re�nes the other. Higher dimensional simplicies are determined

similarly.

For n � 3, the free factor complex FFn of Fn is the simplicial complex de�ned

as follows (see [17] or [3] for details). �e vertices are conjugacy classes of free

factors of Fn and kC 1 conjugacy classes ŒA0�; : : : ; ŒAk� span a k-simplex if there

are representative free factors in these conjugacy classes with A0 � A1 � � � � �

Ak . When n D 2, the de�nition is modi�ed so that FF2 is the standard Farey

graph. In this case, vertices of FF2 are conjugacy classes of rank 1 free factors and

two vertices are jointed by an edge if there are representatives in these conjugacy

classes that form a basis for F2.

Out.Fn/ acts simplicially on these complexes. For FF, if f 2 Out.F/ is rep-

resented by an automorphism �, we de�ne f ŒA� D Œ�A�. It is clear that this is

independent of choice of � and that the action extends to a simplicial action on all

of FF. For S the action is de�ned as follows: with f and � as above and ŒT � 2 S0,

suppose that the action on T is given by the homomorphism  W F ! Aut.T /.

�en f ŒT � is the conjugacy class of F-tree determined by  ı��1 W F! Aut.T /:

�at is, the underlying tree is unchanged and the action is precomposed with the

inverse of a representative automorphism for f . Again, checking that this is a well-

de�ned action that extends to all of S (or S0) is an easy exercise. �ese de�nitions

have the convenient property that if ŒT � is a conjugacy class of free splitting with

vertex stabilizers ŒA1�; : : : ; ŒAl �, then f ŒT � has vertex stabilizers f ŒA1�; : : : ; f ŒAl �,

for any f 2 Out.F/.

�ere is a natural, coarsely de�ned map � W S0 ! FF. For T 2 .S0/0, we

set �.T / equal to the set of free factors that arise as a vertex group of a 1-edge

collapse of T . �at is, A 2 �.T / if and only if there is a tree T0 2 S0, T re�nes

T0, and A is a vertex group of T0. Letting dFF denote distance in FF and setting

dFF.�.T /; �.T
0// D diamFF.�.T /[�.T

0//, it is easily veri�ed that � is coarsely

4-Lipschitz [3]. Note that here, and throughout the paper, the brackets that denote

conjugacy classes of trees and free factors will often be suppressed when it should

cause no confusion to do so.
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Recent e�orts to understand the free splitting and free factor complex have fo-

cused on their metric properties along with their similarity to the curve complex of

a surface. In particular, both complexes are now known to be Gromov-hyperbolic.

Hyperbolicity of the free factor complex was proven by Bestvina and Feighn in [3],

and hyperbolicity of the free splitting complex was proven by Handel and Mosher

in [14]. See [20] and [12] for alternative proofs and perspectives. Although these

results represent signi�cant progress in understanding the geometry of FF and S,

they are not directly used in this paper.

We remark that the action Out.Fn/ Õ Sn is far from proper; all vertices have

in�nite stabilizers. �ere is, however, an invariant subcomplex of S0
n that is locally

�nite, and the inherited action is proper. �is is the spine of Outer space and we

refer the reader to [8] or [15] for details beyond what is discussed here. Also,

see [10] or [1] for an alternative perspective.

�e spine of Outer space Kn is the subcomplex of S0
n spanned by vertices that

correspond to proper splittings of Fn. Recall that a splitting T is proper if no

element of Fn �xes a vertex in T . Hence, T 2 S0
n is proper if and only if T=Fn

is a graph with fundamental group isomorphic to Fn. Observe that since Out.Fn/

preserves the vertices of S0
n corresponding to proper splittings there is an induced

simplicial action Out.Fn/ Õ Kn.

It is well-known that Kn is a locally �nite, connected complex and that the

action Out.Fn/ Õ Kn is proper and cocompact (see [8]). Hence, for any tree

T 2 K0
n, the orbit map g 7! gT de�nes a quasi-isometry from Out.Fn/ to Kn by

the S̆varc-Milnor lemma [5]. As remarked above, the metric considered here is

the standard graph metric on K1
n, the 1-skeleton of the spine of Outer space. �is

metric on K1
n will serve as our geometric model for Out.Fn/.

2.3. �e sphere complex. We recall the Out.Fn/-equivalent identi�cation be-

tween the free splitting complex and the sphere complex. See [1] for details. Take

Mn D #n.S
1�S2/, or equivalently, the double of the handlebody of genus n. Let

Mn;s be Mn with s open 3-balls removed. Note that �1Mn is isomorphic to Fn

and, once and for all, �x such an isomorphism. A sphere S in Mn;s is essential if

it is not boundary parallel and does not bound a 3-ball. A collection of disjoint,

essential, pairwise non-isotopic spheres in Mn is called a sphere system. By [21],

spheres S1 and S2 are homotopic in Mn if and only if they are isotopic.

�e sphere complex S.Mn/ is the simplicial complex whose vertices are iso-

topy classes of essential spheres and vertices ŒS0�; : : : ; ŒSk� span a k-simplex if

there are representatives in these isotopy classes that are disjoint in Mn. It is a



282 S. J. Taylor

theorem of [21] that with Mod.Mn/ D �0(Di�Mn) there is an exact sequence

1 �! K �!Mod.Mn/ �! Out.Fn/ �! 1;

where K is a �nite group generated by “Dehn twists” about essential spheres.

Since elements of K act trivially on S.Mn/, we have a well-de�ned action

Out.Fn/ Õ S.Mn/. �e following proposition of Aramayona and Souto identi�es

Sn and S.Mn/. See Section 5.1 for how one constructs splittings from essential

spheres.

Proposition 2.1 ([1]). For n � 2, Sn and S.Mn/ are Out.Fn/-equivariantly iso-

morphic.

2.4. Translation length in FFn. An outer automorphism f 2 Out.Fn/ is fully

irreducible if no positive power of f �xes a conjugacy class of a free factor. �at

is, for any A 2 FF
0
n, f n.A/ D A implies that n D 0. Recall that the (stable)

translation length of an outer automorphism f 2 Out.Fn/ on FFn is de�ned as

`FF.f / D lim
k!1

dFF.A; f
kA/

k

where A 2 FF
0
n. It is not di�cult to verify that `FF.f / is well-de�ned and in-

dependent of A 2 FF
0
n. It also satis�es the property `FF.f

n/ D n � `FF.f / for

n � 0. Further, `FF.f / � c if and only if for all A 2 FF
0
n, dFF.A; f

nA/ � cjnj.

�e following proposition of Bestvina and Feighn characterizes those outer auto-

morphisms with positive translation length on FFn.

Proposition 2.2 ([3]). Let f 2 Out.Fn/, f is fully irreducible if and only if

`FF.f / > 0.

It appears to be an open question whether there is a uniform lower bound on

translation length for fully irreducible outer automorphisms of Out.Fn/. In the

mapping class group situation, this is indeed the case. �at is, for a �xed surface S

there is an � > 0 so that if f 2 Mod.S/ is pseudo-Anosov then the curve complex

translation length of f is greater than or equal to � [23]. It is worthwhile to note

that when n D 2, Proposition 2.2 reduces to the following statement: if an outer

automorphism is in�nite order and does not �x a conjugacy class of a primitive

element in F2, then it acts with positive translation length on FF2, which as noted

above is the Farey graph.
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3. Projections to free factor complexes

For a �nitely generated subgroup H � F, let S.H/ and F.H/ denote the free

splitting complex and free factor complex of H , respectively. A subgroup H is

self-normalizing if N.H/ D H , where N.H/ is the normalizer of H in F. When

H is self-normalizing the complexes S.H/ and F.H/ depend only on the conju-

gacy class of H in F. More precisely, if H 0 D gHg�1 for g 2 F, then g induces

an isomorphism between S.H/ and S.H 0/ (and between F.H/ and F.H 0/) via

conjugation. For any other x 2 F with H 0 D xHx�1 we see that x�1g normal-

izes H and so x�1g 2 H . In this case, gH D xH and it is easily veri�ed that g

and x induce identical isomorphisms between S.H/ and S.H 0/. Hence, when H

is self-normalizing we obtain a canonical identi�cation between the free splitting

complex of H and the free splitting complex of each of its conjugates. �e same

holds for the free factor complex of H . �is allows us to unambiguously refer to

the free splitting complex or free factor complex for the conjugacy class ŒH �. Fi-

nally, recall that a subgroupC � F is malnormal if xCx�1\C ¤ ¹1º implies that

x 2 C . For example, free factors of F are malnormal and malnormal subgroups

are self-normalizing.

3.1. Projecting trees. Given a free splitting T 2 S0 and a �nitely generated sub-

group H � F denote by TH the minimal H -subtree of T . �is is the unique

minimal H -invariant subtree of the restricted action H Õ T . For any such

H , TH is either trivial, in which case H �xes a unique vertex in T , or TH is

the union of axes of elements in H that act hyperbolically on T . When TH is

not trivial, we de�ne the projection of T to the free splitting complex of H as

�S.H/.T / D ŒH Õ TH �, where the brackets denote conjugacy of H -trees. Note

that this projection is a well-de�ned vertex of S0.H/ and it depends only on the

conjugacy class of T . To see this, note that any conjugacy between F-trees will

induce a conjugacy between their minimalH -subtrees. Further de�ne the projec-

tion to the free factor complex ofH to be the composition�H .T / D �.�S.H/.T //,

where � W S.H/ ! F.H/ is the 4-Lipschitz map de�ned in Section 2.2. Hence,

�H .T / � F.H/ is the collection of free factors ofH that arise as a vertex group of

a one-edge collapse of the splitting H Õ TH . When H is also self-normalizing,

e.g. a free factor, these projections are independent of the choice of H within its

conjugacy class. �e following lemma veri�es that such projections are coarsely

Lipschitz.
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Lemma 3.1. Let Fn Õ T be a free splitting andH � Fn a �nitely generated sub-

group with TH non-trivial. Let T0 be a re�nement of T with equivariant collapse

map c W T0 ! T . �en there is an induced collapse map cH W T
H
0 ! TH . Hence,

TH
0 is a re�nement of TH .

Proof. Since c.TH
0 / � T is an invariant H -tree, it contains TH . Also, the axis

in T0 of any hyperbolic h 2 H is mapped by c to either h’s axis in T or a singe

vertex stabilized by h; each of which is contained in TH . Since TH
0 is the union of

such axes, we see that c.TH
0 / D TH . Hence the map cH described in the lemma

is given by restriction. It remains to show that cH is a collapse map. �is is the

case since for any p 2 TH ,

c�1
H .p/ D TH

0 \ c
�1.p/

is the intersection of two subtrees of T0 and is, therefore, connected.

For a free factor A of F we use the symbol dA to denote distance in F.A/ and

for Fn-trees T1; T2 we use the shorthand

dA.T1; T2/ WD dA.�A.T1/; �A.T2// D diamA.�A.T1/ [ �A.T2//

when both projections are de�ned. �e following proposition follows immediately

from the de�nitions in this section and Lemma 3.1.

Proposition 3.2 (Basic properties I). Let T1; T2 be adjacent vertices in Kn, A 2

FFn, and H a �nitely generated and self-normalizing subgroup of Fn containing

A, up to conjugacy. �en we have the following:

(1) diamF.A/.�A.T // � 4;

(2) dA.T1; T2/ � 4;

(3) �A.T1/ D �A.�S.H/.T1// and so dA.T1; T2/ D dA.�S.H/.T1/; �S.H/.T2//.

3.2. Projecting factors. Let A and B be rank � 2 free factors of Fn. De�ne

A and B to be disjoint if they are nonconjugate vertex groups of a free splitting

of Fn. Disjoint free factors are those that will support commuting outer automor-

phisms in our construction. De�neA andB to meet if there exist representatives in

their conjugacy classes whose intersection is nontrivial and proper in each factor.

In this section, we show that this intersection provides a well-de�ned projection

of ŒB� to F.A/, the free factor complex of A. Note that if A and B meet, then

dFF.ŒA�; ŒB�/ D 2.
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Fix free factors A and B in Fn. De�ne the projection of B into F.A/ to be

�A.B/ D ¹ŒA \ gBg
�1� W g 2 Fnº n ¹Œ1�; ŒA�º;

where conjugacy is taken in A. Observe thatA andB meet exactly when �A.B/ ¤

; ¤ �B.A/. We show that members of �A.B/ are vertex groups of a single (non-

unique) free splitting of A and so �A.B/ has diameter less than or equal to 4

in F.A/. Since the projection is independent of the conjugacy class of B , this

provides the desired projection from ŒB� to the free factor complex of A.

Lemma 3.3. Suppose the free factors A and B meet. �en diamF.A/�A.B/ � 4.

Proof. First, observe that g uniquely determines the class ŒA \ gBg�1� 2 �A.B/

up to double coset in F. Precisely, ŒA \ gBg�1� D ŒA \ hBh�1� ¤ 1 if and

only if AgB D AhB; this follows from the fact that free factors are malnormal.

Now choose any marked graph G which contains a subgraph GB whose funda-

mental group represents B up to conjugacy. Let pA W zGA ! G be the cover of

G corresponding to free factor A and let GA denote the core of zGA. By covering

space theory, the components of p�1.GB/ are in bijective correspondence with

the double cosets ¹AgB W g 2 Fº. Also, the fundamental group of the component

corresponding toAgB isA\gBg�1. Since the core carries the fundamental group

of zGA, all nontrivial subgroupsA\gBg�1 correspond to double cosets represent-

ing components of p�1.GB/ in the core GA. Hence, GA is a marked A-graph that

contains disjoint subgraphs whose fundamental groups (up to conjugacy in A) are

the subgroups of �A.B/. �is completes the proof.

If A 2 FF
0
n and f 2 Out.Fn/ stabilizes A, then f induces an outer auto-

morphism of A, denoted f jA 2 Out.A/. In this case, let `A.f / represent the

translation length of f jA on F.A/. By Proposition 2.2, if f jA is fully irreducible

in Out.A/, then `A.f / > 0. �e following proposition provides the additional

properties of the projections that will be needed throughout the paper. Its proof is

a straightforward exercise in working through the de�nitions of this section.

Proposition 3.4 (Basic properties II). Let A;B; C 2 FF
0
n so that A and B meet

and A and C are disjoint. Let c 2 Out.F/ stabilize the free factors A and C with

cjA D 1 in Out.A/. Finally, let T 2 K0 and f 2 Out.F/ be arbitrary. �en f

induces an isomorphism

f W F.A/ �! F.fA/

and we have the following:



286 S. J. Taylor

(1) f .A/ and f .B/ meet and �fA.fB/ D f .�A.B// � F.fA/;

(2) �fA.f T / D f .�A.T // � F.fA/;

(3) �A.cB/ D �A.B/ � F.A/;

(4) �A.cT / D �A.T / � F.A/.

For the applications in this paper, a slightly stronger condition than meeting

is necessary on the free factors A and B . In particular, we need their meeting

representatives to generate the “correct” subgroup of F. More precisely, say that

two free factorsA andB ofF overlap if there are representatives in their conjugacy

classes, still denoted A and B , so that A \ B D x ¤ ¹1º is proper in both A and

B and the subgroup generated by these representatives hA;Bi � F is isomorphic

to A �x B . Note that the �rst condition here is exactly that A and B meet.

Example 1. Here is an example of free factors that meet but do not overlap. Let

F6 D ha; b; c; d; e; f i and consider the free factors A D ha; b; c; d; f i and B D

haec; bed; f i. It is quickly veri�ed thatA\B D hf i, soA andB meet. However,

hA;Bi D F6 is not isomorphic to A �hf i B D ha; b; c; d i � B , which has rank 7.

Remark 3.5. Suppose the free factors ŒA�; ŒB� 2 FF overlap and select represen-

tatives in their conjugacy classes so thatA\B D x is nontrivial and proper in both

A and B . Note that as in Lemma 3.3 the free factor x is not necessarily unique up

to conjugacy, but once the conjugacy class of x is �xed the subgroupH D hA;Bi

generated by these conjugacy class representatives is itself determined up to con-

jugacy in F. Since A and B overlap, x can be chosen so that H Š A �x B and it

is not di�cult to verify that H is �nitely generated and self-normalizing. So, for

example, if T 2 S 0, then �A.T / D �A.�S.H//.T / by Lemma 3.2. Projections of

meetings factors, however, may slightly change. In particular, A and B are free

factors of H that overlap but, now as subgroups of H , x is their unique intersec-

tion up to conjugacy. In general, we use the notation �A.B � H/ to denote the

projection of B to the free factor complex of A when B is considered as a free

factor of H . Note that in this case �A.B � H/ D ¹Œx�º � �A.B/ � F.A/ and so

although the choice of x and, hence, H is not uniquely determined by the over-

lapping free factors A and B , this ambiguity is not signi�cant when considering

projections.

3.3. �e Bestvina–Feighn Projections. In [4], the authors show that there is a

�nite coloring of the vertices of the free factor complex FFn so that if A and B

are free factors of Fn with either
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(1) A and B have the same color, or

(2) dFF.A; B/ > 4,

then there is a well-de�ned projection �BF
S.A/

.B/ � S.A/ with uniformly bounded

diameter. Moreover, these projections have properties similar to those of sub-

surface projections. �e Bestvina–Feighn projection is de�ned as follows: �rst

choose T 2 K0
n with the property that the marked graph T=Fn contains an em-

bedded subgraph whose fundamental group representsB , then de�ne �BF
S.A/

.B/ D

�S.A/.T / � S.A/: It is shown that whenA andB satisfy the stated conditions, this

projection is coarsely independent of the choice of T . See [4] for details.

Free factors that meet, however, do not satisfy the conditions stated above, and

it is easy to construct examples where A and B meet but the projection �BF
S.A/

.B/

does not have �nite diameter in S.A/ (as the choice of T is varied). Despite this,

Lemma 3.3 shows that if we further project to the free factor complex of A we

obtain a set with �nite diameter. �is shows that when the free factors A and B

meet, the projection �A.B/ de�ned in this paper agrees coarsely with the projec-

tion �.�BF
S.A/

.B// � F.A/. See [27] for further discussion. In Section 5.3, we

relate the projections discussed here with those of [26].

4. �e homomorphisms A.�/ ! Out.Fn/

In this section, we present the most general version of our theorem. Technical con-

ditions are unavoidable since, unlike the surface case, free factors do not uniquely

determine splittings. Also, some care must be taken when de�ning the support of

an outer automorphism. After presenting the general conditions, we also give a

speci�c construction for applying the main theorem. �e idea is to replace the sur-

face in the mapping class group situation with a graph of groups decomposition

of F.

4.1. Admissible systems. Let A D ¹A1; : : : ; Anº � FF
0 be a collection of (con-

jugacy classes of) rank � 2 free factors of F such that for i ¤ j either

(1) Ai and Aj are disjoint, that is they are vertex groups of a common splitting,

or

(2) Ai and Aj overlap, so in particular �Ai
.Aj / ¤ ; ¤ �Aj

.Ai /.

�en we say that A is an admissible collection of free factors of F. Let � D �A

be the coincidence graph for A. �is is the graph with a vertex vi for each Ai and

an edge connecting vi and vj whenever the free factors Ai and Aj are disjoint.
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An outer automorphism fi 2 Out.F/ is said to be supported on the factor Ai

if fi .Aj / D Aj for each vj in the star of vi 2 �
0 and fi jAj

D 1 2 Out.Aj /

for each vj in the link of vi 2 �
0. Informally, fi is required to stabilize and act

trivially on each free factor in A that is disjoint from Ai as well as stabilize Ai

itself. We say that fi is fully supported on Ai if, in addition, fi jAi
2 Out.Ai/ is

fully irreducible. Finally, we call the pair S D .A; ¹fiº/ an admissible system if

the fi are fully supported on the collection of free factors A and for each vi ; vj

joined by an edge in �, fi and fj commute in Out.F/ (this condition is made

unnecessary in the construction of the next section).

Given an admissible system S D .A; ¹fiº/, we have the induced homomor-

phism

� D �S W A.�/ �! Out.Fn/

de�ned by mapping vi 7! fi : Our main theorem is the following:

�eorem 4.1. Given an admissible collection A of free factors for F with coinci-

dence graph � there is a C � 0 so that if outer automorphisms ¹fiº are chosen

to make S D .A; ¹fiº/ an admissible system with `Ai
.fi / � C then the induced

homomorphism � D �S W A.�/! Out.F/ is a quasi-isometric embedding.

It is worth noting that since right-angled Artin groups are torsion-free, homo-

morphisms from A.�/ that are quasi-isometric embeddings are injective.

4.2. Splitting construction. Here we present a particular type of graph of groups

decomposition of F that allows for easy applications of �eorem 4.1. Let G be a

free splitting of F along with a family of collapse maps

pi W G �! Gi

to splittings Gi , satisfying the following conditions:

(1) Each splitting Gi has a preferred vertex vi 2 Gi so that all edges of Gi are

incident to vi .

(2) SettingGi D p
�1.vi / � G we require that for i ¤ j one of the two following

conditions hold: either .i/ Gi andGj are disjoint, meaning thatGi \Gj D ;,

or .i i/ Gi\Gj is a subgraph whose induced subgroup is nontrivial and proper

in each of the subgroups induced by Gi and Gj . In the latter case, we say the

subgraphs overlap.

We call the splitting G satisfying these conditions a support graph, and we note

that the above data is determined by the collection of subgraphs Gi . For such a

splitting of F, we set Ai D �1.Gi / D .Gi /vi
2 FF. �is is the vertex groups of
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the vertex vi in Gi . It is clear from the above conditions that such a collection of

free factors forms an admissible collection A.G/ and that �A.G/ is precisely the

coincidence graph of the Gi in G .

Next, we consider the outer automorphisms that will generate the image of

our homomorphism. For each i , chose an fi 2 Out.Fn/ which preserves the

splitting Gi , induces the identity automorphism on the underlying graph of Gi ,

and restricts to the identity on the complement of vi in Gi . In this case, we say

that fi is supported on Gi (or vi ), and if the restriction of fi to the free factor Ai

is fully irreducible, we say that fi is fully supported on Gi (or vi ). With these

choices, the pair S.G/ D .A.G/; ¹fiº/ is an admissible system. Indeed, the only

condition to check is that if vi and vj represent disjoint free factors, then the outer

automorphisms fi and fj commute. Observe that since Gi and Gj are disjoint

subgraphs of G we may collapse each to a vertex to obtain a common re�nement

Gij of Gi and Gj , which has vertices with associated groups .Gi /vi
and .Gj /vj

.

Label these vertices of Gij vi and vj corresponding to the subgraphsGi andGj of

G. From the fact that fi and fj are supported onGi andGj , respectively, it follows

that they both stabilize the common re�nement Gij and are each supported on

distinct vertices, namely vi and vj . �is implies that fi and fj commute in Out.F/.

Hence, S.G/ D .A.G/; ¹fiº/ is an admissible system inducing a homomorphism

�S.G/ W A.�G/ �! Out.F/

given by

vi 7�! fi

as before. With this setup, our main result can be restated as follows.

Corollary 4.2. Suppose G is a free splitting of F that is a support graph with

subgraphs Gi for 1 � i � k. Let � be the coincidence graph for these subgraphs.

�ere is a C � 0 so that if for each i , fi 2 Out.F/ is fully supported on Gi with

`Ai
.fi / � C , then the induced homomorphism

�S.G/ W A.�/ �! Out.F/

is a quasi-isometric embedding.

We remark that once a support graph G is constructed with �1G D Fn, there is

no obstruction to �nding fi fully supported on Gi with large translation length on

F.Ai /. Corollary 4.2 then implies that there exist maps �S.G/ W A.�/ ! Out.Fn/

which are quasi-isometric embeddings.
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4.3. Constructions and applications. We use our main theorem to construct

quasi-isometric homomorphisms into Out.Fn/ beginning with an arbitrary right-

angled Artin group A.�/. We provide a bound on n given a measurement of

complexity of �.

First, it is easy to use the splitting construction of Section 4.2 to start with a

graph � and �nd a quasi-isometric embedding A.�/! Out.Fn/, with n depend-

ing on �. We illustrate this with an example and then give a general procedure.

Note that although using the splitting construction is simple, it will always require

that n is rather large compared to �. As demonstrated in Example 3, more creative

choices of admissible systems can be used to reduce n.

Example 2. Let � D �5 be the pentagon graph with vertices labeled counter-

clockwise v0; v2; v4; v1; v3 as in Figure 1, and let �c be the same graph with ver-

tices labeled cyclically v0; : : : ; v4. Take G to be the graph of groups with underly-

ing graph .�c/0, the barycentric subdivision of �c , with trivial vertex group labels

on the vertices of �c and in�nite cyclic group labels on the subdivision vertices.

Note that �1G D F6. Set Gi .1 � i � 4/ equal to the subgraph of G consist-

ing of the vertex labeled vi , its two adjacent subdivision vertices, and the edges

joining these vertices to vi . Observe that Gi and Gj have empty intersection if

and only if vi and vj are joined by an edge in �. Also, if Gi and Gj intersect

then their intersection is a vertex with nontrivial vertex group. Hence, G is a sup-

port graph with subgraphs Gi whose coincidence graph is �. By Corollary 4.2

there is a constant C such that choosing any collection of outer automorphisms

fi fully supported on the collection Gi with `Ai
.fi / � C determines a homomor-

phism A.�5/! Out.F6/ that is a quasi-isometric embedding. In Example 3, we

improve this construction by modifying G.

Now �x any simplicial graph � with n vertices labeled v1; : : : ; vn. We give

a general procedure for producing a support graph G with subgraphs Gi whose

coincidence graph is �. By Corollary 4.2, this provides examples of homomor-

phisms A.�/ ! Out.�1.G// that are quasi-isometric embeddings. First, assume

that the complement graph �c is connected. Recall that �c is the subgraph of the

complete graph on �0 whose edge set is the complement of the edge set of �. Let

.�c/0 be the barycentric subdivision of �c . We reserve labels vi for the vertices

of .�c/0 that are vertices of �c and label the vertex of .�c/0 corresponding to the

edge .vi ; vj / of �c by vij . Hence, in .�c/0 the vertex vij is valence two and is

connected by an edge to both vi and vj . Set Gi equal to the star of the vertex vi in

.�c/0, i.e. Gi is the union of edges incident to vi together with their vertices. Now

take G to be the graph of groups with underlying graph .�c/0 and in�nite cyclic
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vertex group labels for each vertex vij , i ¤ j . For vertices vi there are two cases

for vertex groups. If vi has valence one in G then we label it with an in�nite cyclic

vertex group and otherwise we give it a trivial vertex group.

With these vertex groups, G becomes of graph of groups decomposition for Fn.

Moreover, G is a support graph for the collection of subgraphsGi with coincidence

graph �. Indeed, Gi and Gj have nonempty intersection in G if and only if vi

and vj are joined by an edge in �c . When this is the case, their intersection is a

single vertex with in�nite cyclic vertex group and this vertex group is proper in

each of the groups induced by Gi and Gj . We can also calculate the rank of �1G.

By construction, the rank of �1G is equal to the rank of the fundamental group

of the underlying graph plus the number of nontrivial vertex groups on G. Since

there is a nontrivial vertex group for each edge of �c and each vertex of �c of

valence one, the rank of �1G equals

1C 2jE.�c/j � jV.�c/j C jvalence 1 vertices of �c j:

Translating this into a function of �, we see that the rank of �1G is

1C jV.�/j � .jV.�/j � 2/ � jE.�/j C jvalence n � 2 vertices of �j;

and we refer to this quantity as the complexity of �, denoted c.�/.

When �c is not connected it decomposes into components �c D tl
iD1�i and

it is not di�cult to show that A.�/ D A.�c
1/ � � � � � A.�

c
l
/. In this case, we

set c.�/ D
P

i c.�
c
i / and the corresponding supported graph is constructed as

follows. LetG.�c
i / be the support graph constructed as above for the graph�c

i . Let

G to be the support graph built by taking the wedge of l intervals (at one endpoint

of each) and attaching the other endpoint of the i th interval to an arbitrary vertex

of G.�c
i /. �e graph of groups structure on G is induced by that of G.�c

i / along

with a trivial group label at the wedge vertex. �en G is a support graph with

coincidence graph � and complexity c.�/. As noted above, the existence of a

support graph with coincidence graph � implies the following:

Corollary 4.3. For any simplicial graph �, A.�/ admits a homomorphism into

Out.Fn/, with n � c.�/, which is a quasi-isometric embedding.

�e next example shows how �eorem 11.1 can be used to give quasi-isometric

embeddings into Out.Fn/ for smaller n than by using support graphs.

Example 3. Again, let � D �5 be the pentagon graph with vertices labeled

counter-clockwise v0; v2; v4; v1; v3 as in Figure 1. Take G as in Figure 1. �is is a

graph of groups decomposition for F5; the central vertex has trivial vertex group
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� G
v0

v1v2

v3v4

hx0i

hx1i

hx2i

hx3i hx0i

G0G1

G2

G3

G4

Figure 1. F5 D �1.G/.

and the 5 valence one vertices joined to the central vertex each have in�nite cyclic

vertex group, with generators labeled x0 : : : ; x4. G can be thought of as a “folded”

version of the support graph that appears in Example 2. For 0 � i � 4, let Gi

be the smallest connected subgraph containing the vertices labeled xi and xiC1,

with indices taken mod 5. Note that G together with the subgraphsGi is not a sup-

port graph; for example G0 and G2 intersect in a vertex with trivial vertex group.

Despite this, for i D 0; : : : ; 4, Ai D �1Gi D hxi ; xiC1i does form an admissi-

ble collection of free factors with coincidence graph �5. Hence, by �eorem 4.1,

there exists aC � 0 so that if there are outer automorphisms fi 2 Out.F5/making

.¹Aiº; ¹fiº/ an admissible system with `Ai
.fi / � C then the induced homomor-

phism � W A.�5/ ! Out.F5/ is a quasi-isometric embedding. Choosing such a

collection in this case is straightforward. Speci�cally, let Bi D hxiC2; xiC3; xiC4i

and choose fi 2 Out.F5/ for i D 0; : : : ; 4 so that

(1) fi .Ai/ D Ai and fi .Bi / D Bi ,

(2) the restriction fi jAi 2 Out.Ai / is fully irreducible with `Ai
.fi / � C , and

(3) the restriction fi jBi D 1 2 Aut.Bi /.

With these choices, it is clear that each fi is fully supported on Ai and that fi

and fj commute if and only if vi and vj are joined by an edge of �. �is makes

S D .¹Aiº; ¹fiº/ into an admissible system with `Ai
.fi/ � C and so the induced

homomorphism

�S W A.�5/ �! Out.F5/

is a quasi-isometric embedding. In fact, as we shall see in the proof of the main

theorem, the required translation length is simple to determine. Further, as each

of free factorsAi in the admissible system is rank 2, the free factor complex F.Ai /

is the Farey graph where translation lengths can be computed.
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For an application, recall that A.�5/ contains quasi-isometrically embedded

copies of �1.†2/, the fundamental group of the closed genus 2 surface (see [9]).

Restricting the homomorphism constructed above to such a subgroup, we obtain

quasi-isometric embeddings

�1.†2/ �! Out.F5/:

5. Splittings and submanifolds

We need a topological interpretation of our projections in order to prove the ver-

sion of Behrstock’s inequality that appears in the next section. We �rst review

some facts about embedded surfaces in 3-manifolds and the splittings they induce.

5.1. Surfaces and splittings. It is well-known that codimension 1 submanifolds

induce splittings of the ambient manifold group [25]. We review some details here,

focusing on the case when then inclusion map is not necessarily �1-injective.

For our application, begin with an orientable, connected 3-manifoldX possibly

with boundary and a property embedded, orientable surface F . We do not require

that F is connected or that each component of F is �1-injective. Working, for

example, in the smooth setting, choose a tubular neighborhood N Š F � I of F

in X whose restriction N \ @X is a tubular neighborhood of the boundary of F

in @X . Let G denote the graph dual to F in X . �is is the graph with a vertex

for each component of X n int.N / and an edge ef , for each component f � F ,

that joins the vertices corresponding to the (not necessarily distinct) components

on either side of f . We may consider G as embedded in X and, after choosing

an appropriate embedding, G is easily seen to be a retract of X . �e retraction is

obtained by collapsing each complementary component ofN to its corresponding

vertex and projecting f �I to I for each component f of F . Here, I is the closed

interval Œ�1; 1� and f � ¹0º corresponds under the identi�cation N Š F � I to

f � N .

Let zX denote the universal cover of X and let zN and zF denote the complete

preimage of N and F , respectively. Let TF denote the graph dual to zF in zX .

Since TF is a retract of the connected, simply connected space zX , TF is a tree.

We call TF the dual tree to the surface F in X . As zF and zX n zN are permuted by

the action of �1.X/, we obtain a simplicial action �1.X/ Õ TF , up to the usual

ambiguity of choosing basepoints. �e following is an exercise in covering space

theory; it appears in [25].
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Proposition 5.1. With the above notation, let v be a vertex of TF corresponding

to a lift of a component C � X n N and e an edge of TF corresponding to a lift

of a component f � F . �en

(1) stab.v/ D im.�1C ! �1X/

(2) stab.e/ D im.�1f ! �1X/

where both equalities are up to conjugation in �1X .

�e action �1X Õ TF provides a splitting of �1X via Basse-Serre theory.

�e corresponding graph of groups decomposition of �1X has underlying graph

G D TF =�1X with vertex and edge groups as given in Proposition 5.1. A subgraph

G0 � G carries a subgroupH � �1X if the subgroup induced by G0 containsH ,

up to conjugacy.

We now specialize to the situation where the action�1X Õ TF has trivial edge

stabilizers. �e following proposition determines when the dual tree to a surface

is minimal. First, say that a connected component f � F is super�uous if f

separates X and to one side bounds a relatively simply connected submanifold,

i.e. X n f D X1 t X2 and im.�1.X1/! �1.X// D 1. A component of F that is

not super�uous is said to split X . Also, use the notation T min to denote the unique

minimal subtree associated to an action on the tree T , see Section 2.2.

Proposition 5.2. Let F be an orientable, properly embedded surface in the ori-

entable 3-manifold X with im.�1f ! �1X/ D 1 for each component f of F .

�en the edge ef � T corresponding to a lift of the component f � F is con-

tained in the minimal subtree Tmin
F if and only if f splits X .

Proof. First suppose that the edge ef whose orbit corresponds to the lifts of f is

not in the minimal subtree T min. Setting G D TF =�1X and Gmin D T min
F =�1X ,

the image of ef in G does not lie in Gmin. Since Gmin carries the fundamental

group of X , the image of ef in G must separate and the component of its com-

plement not containing Gmin has all trivial vertex groups. In X , this implies that

the component f � F separates X and to one side bounds a component whose

fundamental group, when included into �1X , is trivial. Hence, f is super�uous.

Now suppose that f is a component of F that is super�uous. �en f cor-

responds to a separating edge e in G D TF =�1X , with lift ef � TF , whose

complement in G contains a component with trivial induced subgroup. Hence,

this component of G n e is a tree with trivial vertex groups. Set G0 equal to the

other component of the complement of e in G. �en G0 carries all of �1X and

so its complete preimage in TF is connected, �1X invariant, and does not contain

the edge ef . Hence, ef is not in T min.



Right-angled Artin groups and Out.Fn/ 295

We will use the above proposition in the following manner: If f � F splitsX ,

then Tf is a 1-edge collapse of TF corresponding to a 1-edge splitting of �1X .

5.2. Topological projections. �e purpose of this section is to give a topological

description of the projection �A.T / in terms of submanifolds of the manifoldMn.

As discussed below, these are similar to the submanifold projections of [26], and

this section serves to explain the connection between these projections and the

projections of [4]. To verify that our description is accurate, we rely on Hatcher’s

normal position for spheres in M D Mn and its generalization in [16]. Let zM

denote the universal covers ofM . We say that essential sphere systems S1 and S2

in M are in normal position if for �S1 and zS2, the complete preimage of S1 and S2

in zM , any spheres s1 2 zS1 and s2 2 zS2 satisfy each of the following:

(1) s1 and s2 intersect in at most one component and

(2) no component of s1 n s2 is a disk that is isotopic relative its boundary to a

disk in s2.

�is de�nition is easily seen to be equivalent to Hatcher’s original notion of normal

position in the case where one of the sphere systems is maximal [10]. In particular,

the authors of [16] use Hatcher’s original proof of existence and uniqueness of

normal position to show the following:

Lemma 5.3. Any two essential sphere systems S0 and S can be isotoped to be in

normal position. Also, normal position is unique in the following sense: Let S0

be a sphere system of Mn, and let S; S 0 be two isotopic spheres in Mn which are

in normal position with respect to S0. �en there is a homotopy between S and S 0

which restricts to an isotopy on S0.

Fix sphere systems S and SA and a preferred component CA � M n SA. In

what follows we assume that SA D @CA. When this is the case, we say CA is a

splitting component and observe that CA is homeomorphic to Mk;s , as de�ned in

Section 2.3. LetA be the (conjugacy class of) free factor�1.CA/ and let T D TS be

the free splitting of F determined by the sphere system S . Since we are interested

the projection of the splitting F Õ T to the free splitting complex of A, our aim

is a topological interpretation of the projection �A.T / D ŒA Õ T A�.

Put S and SA in normal position and consider the collection of connected com-

ponents of the surface F D S \ CA. �is family of surfaces is well-de�ned up

to homotopy in CA that restricts to isotopy on SA, by Lemma 5.3. Consider the

graph of spaces decomposition of CA given by F with dual tree TF , see Sec-

tion 5.1. Recall that a connected component f � F is super�uous if f sepa-

rates CA and to one side bounds a relatively simply connected submanifold, that is
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CA n f D C1 tC2 and im.�1.C1/! �1.CA// D 1. A component of F that is not

super�uous is said to split CA. Set NF equal to F minus its super�uous components

and let T NF be its dual tree (that is, the tree dual to the complete preimage of NF in

the universal cover of CA).

We claim the following about the associated splitting of �1CA D A:

(1) there is an A-equivariant simplicial embedding � W TF ! T whose image

contains T A,

(2) an edge e of TF maps to an edge in T A if and only if e corresponds to the lift

of a component of f � F that splits CA, and

(3) the projection �A.T / D A Õ T A is conjugate to the A-tree T NF .

To prove the above claim we refer to Figure 2, where as above the free splitting

F Õ T corresponds to the sphere system S � M . Let � W zM ! M be the

universal cover of M and let zS be the complete preimage of S in zM . �e map

labeled Qp is the equivariant map from zM to the tree T obtained by retracting zM

to the tree dual to zS � zM , as explained in Section 5.1. Hence, if we let m denote

the set of midpoints of edges of T then zS D Qp�1.m/. Setting F D S \ CA as

above, we note that if zCA is a �xed component of the preimage of CA in zM then

�j zCA
W zCA ! CA is the universal cover and zF D .�j zCA

/�1.F / D zS \ zCA. Hence,

by de�nition of the dual tree to F in CA, TF is precisely the tree dual to zS \ zCA

in zCA.

TF

zCA
zM T T A

CA M T=Fn T A=A

 

!

�

 !

 - !

 ! � j zCA

 

!
Qp

 ! �  !
!

 -

 !

 - !

 

!  

!

Figure 2. De�ning the map � W TF ! T .

Because Qp is F-equivariant, T 0 D Qp. zCA/ is an A-invariant subtree of T and so

it contains T A, the minimal A-subtree of T . Note that by carefully choosing the

projection Qp, we may assume that T 0 is a subcomplex of T . We �rst show that

the A-tree T 0 is conjugate to the A-tree TF . Since T is dual to zS in zM and TF

is dual to zF D zS \ zCA in zCA � zM each complementary component of zF in zCA

corresponds to a complementary component of zS in zM . �is induces a map from
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the vertices of TF to those of T . As components of zF are contained in components

of zS , this map extends to a simplicial map of A-trees � W TF ! T with image T 0.

We show that this map does not fold edges and is, therefore, an immersion. �is

su�ces to prove that � W TF ! T 0 is an A-conjugacy.

To see that � does not fold edge, suppose to the contrary that two edges e1 and

e2 with common initial vertex v are identi�ed by � (Figure 3). �en the edge ei

is dual to a component fi � zF in zCA and these components are disjoint. Since e1

and e2 are folded by �, their common image e in T corresponds to a sphere s � zS

which must contain f1 and f2 as subsurfaces. Let � be an arc in s that connects

the interiors of f1 and f2 and intersects only the components of s \ @ zCA that

separate f1 and f2. Since each component of @ zCA separates zM , as do all essential

spheres in zM , the �rst and last components of @ zCA intersected by � must be the

same. �is implies that f1 and f2 each have a boundary component on the same

component of @ zCA. Hence, the sphere s intersects the same component of @ zCA in

at least 2 circles. �is, however, contradicts normal position of the sphere systems

S and @CA. We conclude that the A-trees TF and T 0 are simplicially conjugate.

�is proves claim .1/ and justi�es identifying TF and T 0 through �. Observe that

since T 0 contains T A, we get an induced A-conjugacy � W T A
F ! T A on minimal

subtrees.

TF

S

@ zCA

e1

e2

f1

f2

v

Figure 3. Folding edges.

It remains to show that T NF D T A
F , as this identi�es the edges of TF that cor-

respond to components of F that split CA with those contained in T A. Since the

components of NF are precisely those that split CA, Proposition 5.2 implies that the

minimal A-subtree of TF is T NF and so T NF D T
A
F , as required. �is completes the

proofs of claims .2/ and .3/.

To summarize the above discussion:
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Proposition 5.4. Let T 2 S0
n be a free splitting of Fn corresponding to the sphere

system S �Mn. Fix a submanifold CA, as above, with �1.CA/ D A and @CA and

S in normal position. If NF is the surface obtained from F D S \CA by removing

the components that separate and bound relatively simply connected components,

then NF is nonempty if and only if T A is nontrivial. When this is the case, the

resulting splitting T NF is conjugate as an A-tree to �S.A/.T /.

5.3. Relations between the various projections. In [26], Sabalka and Savchuk

de�ne projections from the sphere complex S.Mn/ to the sphere and disk complex

of certain submanifolds of Mn. �eir projections can be interpreted within the

framework developed in this section, providing a simple relationship to �S.A/.T /.

�is answers a question asked in [26, 4]. However, it is important to note that,

as demonstrated below, it is possible for each of the projections to be de�ned in

situations when the other is not. Also, it is not clear whether the distances in

the target complexes of the two projections are comparable. �is section is not

necessary for the rest of the paper.

Let X � Mn denote a component of the complement of some sphere system.

In [26], such X are referred to as submanifolds. Note that X is homeomorphic

to Mk;s for some k < n and s > 0. �e disk and sphere complex of X , denoted

DS.X/, is de�ned to be the simplicial complex whose vertices are isotopy classes

of essential spheres and essential properly embedded disks inX with kC1 vertices

spanning a k-simplex whenever the disks and spheres representing these vertices

can be realized disjointly in X . Sabalka and Savchuk de�ne their projections as

follows. Let S be an essential sphere system in Mn. Put S and @X in normal

position and set F D S \ X . �e projection �SS
X .ŒS�/ � DS.X/ is then de�ned

to be the components of F which are either spheres or disks. If there are no such

components of F , then the projection is left unde�ned.

Fix a submanifold X with A D �1X a rank � 2 free factor of Fn D �1Mn.

�ere is a partially de�ned map ˆ W DS
0.X/ ! S0.A/ given by taking D 2

DS
0.X/ and mapping it to the A-tree TD if D splits X . If D does not split X ,

then ˆ.D/ is left unde�ned. Recall that as in Section 5.1, TD is the dual tree to

D � X . Note that this map will be de�ned on all vertices of DS.X/ only when

X is homeomorphic to Mk;1. When D and D0 are adjacent in DS.X/ and both

ˆ.D/ and ˆ.D0/ are de�ned, then it is clear that dS.A/.ˆ.D/;ˆ.D
0// � 1. With

this setup, we can show the following:
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Proposition 5.5. Let T be a free splitting of Fn and S its corresponding sphere

system in Mn. Let X be a submanifold of Mn with �1X D A ¤ 1. If the compo-

sition ˆ ı �SS
X .S/ is de�ned, then it is a free splitting of A that has �S.A/.T / as a

re�nement.

Proof. By Proposition 5.4, if S and @X are in normal position and F D S \ X

then T A is conjugate to T NF where NF is the union of connected components of F

that splitX . By de�nition,ˆı�SS
X .S/ is the tree dual to the collection of disks and

spheres D � F that split X , which is nonempty by assumption. Since D � NF ,

the induced map T NF ! TD is a collapse map. Hence, T NF re�nesˆ ı�SS
X .S/.

�is proposition also gives the connection between the projections of [26] and

those of [4]. Recall that the projection �BF
S.A/

.B/ is well-de�ned, i.e. has bounded

diameter image, when either .1/ A and B have the same color in a speci�c �nite

coloring of the vertices of FFn or .2/ dFF.A; B/ > 4. See [4] for the de�nition of

the coloring and further details.

Corollary 5.6. Let A;B be free factors of Fn satisfying one of the above con-

ditions so that the projection �BF
S.A/

.B/ is well-de�ned. Let X be a submanifold

of M with �1X D A and let S be any sphere system that contains a sphere sys-

tem S 0 � S whose dual tree TS 0 has B as a vertex stabilizer. If the composition

ˆı�SS
X .S/ is de�ned, then it has bounded distance from �BF

S.A/
.B/ in S.A/, where

the bound depends only on n.

It is important to note that whether ˆ ı �SS
X .S/ is de�ned is highly dependent

on the choice of X and S that represent the free factors A and B in Corollary 5.6.

�is is demonstrated in the examples below.

Proof. By de�nition, we may take �BF
S.A/

.B/ D �S.A/.TS 0/. By Lemma 3.1, this is

re�ned by the projection �S.A/.TS/, and by Proposition 5.5, �S.A/.TS / also re�nes

ˆı�SS
X .S/. �is completes the proof since we may take as our bound the diameter

of the Bestvina–Feighn projection plus 2.

We end this section with some examples that illustrate cases when one of the

projections is de�ned and the other is not. �e general idea is that while the

Bestvina–Feighn projections are robust, i.e. they do not depend on how a fac-

tor is complemented, the Sabalka and Savchuk projections are highly sensitive to

the submanifold that is chosen to represent a free factor.



300 S. J. Taylor

Example 4. TakeM DM4 and S D S1[S2 to be a union of two essential spheres

so that X D M n S connected with �1X D A. Let f 2 Out.Fn/ with f .A/ D A

but f has no power that �xes S in S.M/. �en �S.A/.f
nTS / D �S.A/.TS/ is

unde�ned, as A �xes a vertex of TS , but �SS
X .f nS/ is de�ned for all n � 1 by

construction. Hence, it must be the case that each disk of �SS
X .f nS/ is super�uous

in X . Informally, each disk of �SS
X .f nS/ (n � 1) simply encloses some boundary

components of X without splitting �1X .

Example 5. Take M;X;A as above and refer to Figure 4 where M is drawn as a

handlebody and spheres are drawn as properly embedded disks; doubling the pic-

ture gives an illustration of what is described. Let S3 be any sphere that separates

M into two components, one of which contains S D @X and the other, denoted Y ,

has �1Y D A. Let R be the essential sphere shown in Figure 4 with dual tree TR;

R is in normal position with S3. Note that R splits Y with non-trivial projection

�S.A/.TR/. However, Y \ R has no disks of intersection and so �SS
Y .R/ is unde-

�ned. If instead we use the submanifold X to represent the free factor A, we see

that �SS
X .R/ is the sphere R � X and ˆ ı �SS

X .R/ D �S.A/.TR/.

Even if we only use the submanifold X , which exhaustsM in the terminology

of [26], to represent the free factor A, the question of whether the composition

ˆ ı �SS
X is de�ned still depends on the choice of sphere that is projected. �is is

because the existence of a disk in �SS
X .R/ that splits X is highly depended on R

itself. In fact, it is not di�cult to show the following: for any nonseperating sphere

R � X there is a f 2 Out.F4/ with f .A/ D A and f jA D 1 2 Out.A/, so in par-

ticular �A.f TR/ D �A.TR/ D ˆı�
SS
X .R/, butˆı�SS

X .fR/ is unde�ned. �is im-

plies that all disks of �SS
X .fR/ are super�uous even though �A.f TR/ D �A.TR/.

6. Behrstock’s Inequality

We now introduce an analog of Behrstock’s inequality for projections to the free

factor complex of a free factor. For the original statement and proof in the case

of subsurface projections from the curve complex, see [2]. �e proof of the free

group version given in Proposition 6.1 is similar in spirit to the proof of the original

version of Behrstock’s inequality that is recorded in [22], where it is attributed to

Chris Leininger. Both proofs investigate intersections of submanifolds and give

explicit bounds on the distances of the projections that are considered.
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M

Y

R

S1

S2

S3

Figure 4. Projecting R to Y .

Proposition 6.1. �ere is an M � 0 so that if A and B are free factors of F of

rank � 2 that overlap, then for any T 2 S0 with �A.T / ¤ ; ¤ �B.T / we have

min¹dA.B; T /; dB.A; T /º �M:

Proof. Fix T 2 S0 that has nontrivial projection to both the free factors complex

of A and the free factor complex of B . Since A and B overlap we may, as in

Section 3.2, choose conjugates (still denoted A and B) so that A \B D x, where

x ¤ ¹1º is a proper free factor of A and B . Write A D A0 � x and B D B 0 � x so

that

H D hA;Bi Š A �x B Š A
0 � x � B 0:

Since �A.B � H/ D ¹Œx�º � �A.B/ in F.A/ and�B.A � H/ D ¹Œx�º � �B.A/ in

F.B/ and by Lemma 3.4, �A.�S.H/.T // D �A.T / and �B.�S.H/.T // D �B.T /,

we have

dA.B; T / � dA.�A.B � H/; �S.H/.T //C diamA.�A.B//

� dA.x; �S.H/.T //C 4

and similarly

dB.A; T / � dB.�B.A � H/; �S.H/.T //C diamB.�B.A//

� dB.x; �S.H/.T //C 4:

Hence, it su�ces to show that for T 2 S0 with �A.T / ¤ ; ¤ �B.T /

min¹dA.x; �S.H/.T //; dB.x; �S.H/.T //º �M � 4;

where H is �xed as above.
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To transition to the topological picture, suppose that rank.H/ D k and set

M D Mk with a �xed identi�cation �1M D H . Let SA; SB be two disjoint

spheres inM that correspond to the splittingH D A0 � x �B 0 via Proposition 2.1.

Take CA to be the submanifold with boundary SA and �1CA D A and take CB

to be the submanifold with boundary SB and �1CB D B . By construction SA �

CB and SB � CA and so, in particular, @CA induces a splitting of B D �1CB

whose projection to F.B/ contains �B.A � H/ D ¹Œx�º. Similarly, @CB induces

a splitting of A D �1CA whose projection to F.A/ contains �A.B � H/ D ¹Œx�º.

Now choose any tree T 2 S0.H/ with nontrivial projections to F.A/ and F.B/

and letS be the corresponding sphere system inM . PutS and @CA[@CB in normal

position and recall that by Proposition 5.4, �S.A/.T / is given by the collection of

components of CA \ S that split CA. With this set-up, we show that

min¹dA.@CB ; S/; dB.@CA; S/º � 12

where for any sphere system R in M , �A.R/ denotes �A.TR/.

Suppose, toward a contraction, that dB.@CA; S/ and dA.@CB ; S/ are greater

than 12 and consider the forest G on S that is dual to the circles of intersection

@CA \ S and @CB \ S . We label the edges of G dual to circles of @CA \ S with

“a” and those dual to @CB \ S with “b”. Label the vertices of G that represent

components S n .@CA [ @CB/ contained in CA \ CB with “AB”, those in CA but

not CB with “A”, and those in CB but not CA with “B”.

Call a subtree of G terminal if it has a unique vertex that separates it from its

complement in G. We say a subtree is an a- tree (or b- tree) if all of its edges are

labeled a (or b).

Claim 1. No AB-vertex which is the boundary of both an a-edge and a b-edge is

a vertex for either a terminal a-tree or a terminal b-tree.

Proof of claim 1. We prove the claim for terminal a-trees. �e proof for b-trees is

obtained by switching the symbols a and b.

Suppose that there is an AB-vertex v ofG which bounds both an a-edge and a

b-edge and is the vertex for a terminal a-tree. Observe that the componentS 0 ofS\

CB that corresponds to the union of b-edges at v (as in Figure 5) splits CB and so it

can be used for the projection �B.S/ (see the remark following Proposition 5.2).

To see that S 0 splits CB , recall that if this were not the case then CB n S
0 D

C1 [ C2, where C1 is relatively simply connected in M . As S 0 contains a disk of

intersection with either CB \ CA or CB n CA coming from a valence one vertex

of the terminal a-tree, this disk cobounds a region R contained in C1 with a disk

of @CA. �is shows that R is relatively simply connected with sphere boundary
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and basic combinatorial topology implies that R is simply connected in M . �is

implies thatR is a 3-ball and so it can be used to reduce the number of intersections

of S and @CA, contradicting normal position. Hence, S 0 splits CB .

G

S 0S 0

ABAB b

b

b

b
a
aa

a
a

a

a
a

a

a

aa

a

a

Figure 5. Two cases for S 0.

Now there are two cases (see Figure 5). Suppose �rst that v is an endpoint for

at least two b-edges. �is implies that S 0 has at least two boundary components;

each of which is contained in @CB . Since these edges share the endpoint v, these

boundary components co-bound the same component of S 0 \ CA. Let d1; d2 be

two boundary components of S 0 which are not separated by another such bound-

ary component of S 0 in @CB . Let ˛ be an arc between d1 and d2 in @CB which

intersects no other boundary component of S 0 and let ˇ be an arc in S 0 joining d1

and d2 with @ˇ D @˛ that does not intersect @CA. Since S and @CB are in normal

position, ˇ is not homotopic relative endpoints into @CB and so 
 D ˛ � ˇ is an

essential loop in CA\CB which is disjoint from @CA and can be homotoped not to

intersect S 0. Hence, if Œ
� denotes the conjugacy class of the smallest free factor

containing h
i then

dB.@CA; S/ � diamF.B/.S/C dB.@CA; S
0/

� diamF.B/.S/C dB.@CA; Œ
�/C dB.Œ
�; S
0/

� 4C 4C 4 D 12;

a contradiction.

If v is the endpoint of only one b-edge, this argument does not work. In this

case, S 0 is a disk and we argue as follows: �rst, any disk component of S 0 \ CA

splits CA and is disjoint from @CB providing the bound dA.@CB ; S/ � 4, a con-

tradiction. So assume that each components of S 0 \ CA has at least two bound-

ary components on @CA, except possibly the unique component with a boundary
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component on @CB . Among all components of S 0\CA choose the component S 00

which has two boundary components d1; d2 on @CA which are least separated by

other components of S 0 \ @CA. Let ˛ be an arc in @CA between d1 and d2 that

intersects only the circles of S 0 \ @CA that separate d1 from d2 in @CA. Note that

by our choice of S 00 each circle of S 0 \ @CA that is crossed by ˛ bounds a distinct

component of S 0 \CA. Let ˇ be an arc in S 00 joining these boundary components

with @ˇ D @˛. As before, 
 D ˛ �ˇ is an essential loop in CA\CB and we obtain

a similar contradiction as above if 
 intersects S 0 at most once; so suppose that

this is not the case. Since intersections between S 0 and 
 must occur along ˛ we

conclude that there is a component C of S 0 \ CA which does not have boundary

on @CB and intersects 
 exactly once. �is implies that C is nonseparating in CA.

Hence, C splits CA and is disjoint from @CB . �is provides the upper bound on

distance

dA.S; @CB/ � diamA.S/C dA.C; @CB/

� 4C 4 D 8;

a contradiction.

Claim 2. �ere exists an AB-vertex of G that has both an a-edge and a b-edge.

Proof of claim 2. Assume to the contrary; that is assume that no component of

S\CA\CB has its boundary on both @CA and @CB . Let s 2 S be a sphere of S that

splits CB , this sphere exists by assumption. If s intersection @CB then it does not

meet @CA and so dB.s; @CA/ � 4, a contraction. Hence, s � CB . If s also splitsCA,

i.e. if some component of s\CA splits CA, then we conclude dA.s; @CB/ � 4; so it

must be the case that every component of s\CA is super�uous, that is, it separates

CA and bounds to one side a component that is relatively simply connected. Note

this implies in particular that no component of s\CA is a disk. We show that this

also leads to a contraction. �e argument is similar to that of the second part of

Claim 1.

Among all components of s\CA choose the one with boundary components on

@CA that are least separated by circles of s\@CA, call this component s00. As in the

poof of Claim 2, let ˛ be an arc in @CA between these boundary components of s00

that intersects only the circles of s\@CA that separate these boundary components.

Note that by our choice of s00 each circle of s \ @CA that is crossed by ˛ bounds

a distinct component of s \ CA. Let ˇ be an arc in s00 joining these boundary

components, with the same endpoints as ˛. By normal position, 
 D ˛ � ˇ is an

essential loop inCA\CB that can be homotoped to miss s00 and we obtain a similar

contradiction as above if 
 does not intersect any other components of s \ CA; so
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assume that this is not the case. Since additional intersections with s must occur

along ˛ we conclude that there is a componentC of s\CA that intersects 
 exactly

once. �is implies that C is nonseparating in CA and contradicts the statement that

all components of s \ CA are super�uous.

To conclude the proof of the proposition, �rst locate an AB-vertex v that has

both an a-edge and a b-edge. �e existence of v is guaranteed by Claim 2. By the

Claim 1, the b-edges at v are not contained in a terminal b-tree. Hence, there is an

a-edge adjacent to this b-tree in the complement of the initial vertex; the adjacency

necessarily occurring at an AB-vertex. At this new vertex, Claim 1 now implies

that the a-edges are not contained in a terminal a-tree. Hence we may repeat the

process and �nd a new AB-vertex to which we may again apply Claim 1. Since G

is a forest, these AB vertices are distinct and we conclude that G is in�nite. �is

contradicts that fact that edges of G correspond to components of the intersection

of transverse sphere systems S and SA [ SB in Mk and must, therefore, be �nite.

7. Order on overlapping factors

For trees T; T 0 2 K0 and K � 2M C 1, de�ne �.K; T; T 0/ to be the set of (con-

jugacy classes of) free factors with the property that A 2 �.K; T; T 0/ if and only

if dA.T; T
0/ � K. �is de�nition is analogous to [7], where the authors put a

partial ordering on the set of subsurfaces with large projection distance between

two �xed markings. See [24] and [6] for details on this partial ordering on sub-

surfaces. De�ning a partial ordering on �.K; T; T 0/, however, requires a more

general notion of projection than is available in our situation. We resolve this is-

sue by de�ning a relation that is not necessarily transitive. Lemma 10.1 will then

compensate for this lack of transitivity.

For A;B 2 �.K; T; T 0/ that overlap we de�ne

A � B

to mean that

dA.T; B/ �M C 1;

where M is as in Proposition 6.1. As noted above, this does not de�ne a partial

order. In particular, if A � B and B � C there is no reason to expect that A

and C will meet as free factors. We do, however, have the following version of

Proposition 3.6 from [7].
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Proposition 7.1. Let K � 2M C 1 and choose A;B 2 �.K; T; T 0/ that overlap.

�en A and B are ordered and the following are equivalent:

(1) A � B;

(2) dA.T; B/ �M C 1;

(3) dB.T; A/ �M ;

(4) dB.T
0; A/ �M C 1;

(5) dA.T
0; B/ �M .

Proof. .1/ implies .2/ is by de�nition, .2/ implies .3/ is Proposition 6.1, .3/ im-

plies .4/ is the observation that

dB.T
0; A/ � dB.T; T

0/ � dB.T; A/ � 2M C 1�M DM C 1;

and the proofs of the remaining implications are similar. To show that A;B 2

�.K; T; T 0/ which overlap are ordered, note that by the equivalence of the above

conditions if A ˜ B then dA.T; B/ � M and if B ˜ A, switching the roles of A

and B , dA.T
0; B/ �M so that

dA.T; T
0/ � dA.T; B/C dA.B; T

0/ � 2M � K;

a contradiction.

8. Normal forms in A.�/

Let � be a simplicial graph with vertex set V.�/ D ¹s1; : : : ; snº and edge set

E.�/ � V.�/� V.�/. �e right-angled Artin group, A.�/, associated to � is the

group presented by

hsi 2 V.�/ W Œsi ; sj � D 1 () .si ; sj / 2 E.�/i:

We refer to s1; : : : ; sn as the standard generators of A.�/.

8.1. �e Clay–Leininger–Mangahas partial order. In this section, we brie�y

recall a normal form for elements of a right-angled Artin group. For details see

Section 4 of [7] and the references provided there. Fix a word w D x
e1

1 : : : x
ek

k

in the vertex generators of A.�/, with xi 2 ¹s1; : : : ; snº for each i D 1; : : : ; k.

Each x
ei

i together with its index, which serves to distinguish between duplicate

occurrences of the same generator, is a syllable of the word w. Let syl.w/ denote

the set of syllables for the word w. We consider the following 3moves that can be

applied to w without altering the element in A.�/ it represents:
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(1) If ei D 0, then remove the syllable x
ei

i .

(2) If xi D xiC1 as vertex generators, then replace x
ei

i x
eiC1

iC1 with x
ei CeiC1

i .

(3) If the vertex generators xi and xiC1 commute, then replace x
ei

i x
eiC1

iC1 with

x
eiC1

iC1 x
ei

i .

For g 2 A.�/, set Min.g/ equal to the set of words in the standard generators

of A.�/ that have the fewest syllables among words representing g. We refers to

words in Min.g/ as the normal form representatives of g. Hermiller and Meier

showed in [13] that any word representing g can be brought to any word in Min.g/

by applications of the three moves above. Since these moves do not increase the

word (or syllable) length, we see that words in Min.g/ are also minimal length

with respect to the standard generators and that any two words in Min.g/ di�er by

repeated application of move .3/ only. It is veri�ed in [7] that for any g 2 A.�/ and

w;w0 2 Min.g/ there is a natural bijection between syl.w/ and syl.w0/. Because

of this, for g 2 A.�/ we can de�ne syl.g/ D syl.w/ for w 2 Min.g/. For each

g 2 A.�/, this permits a strict partial order� on the set syl.g/ by setting x
ei

i � x
ej

j

if and only if for every w 2 Min.g/ the syllable x
ei

i precedes x
ej

j in the spelling

of w.

8.2. Order on meeting syllables. By analogy with the weaker notion of order

on free factors, for g 2 A.�/ let
m
� be the relation on syl.g/ de�ned as follows:

x
ei

i

m
� x

ej

j if and only if x
ei

i � x
ej

j and there is a normal form w 2 Min.g/ where

x
ei

i and x
ej

j are adjacent. �e following observation will be important in proving

the lower bound on distance in our main theorem.

Lemma 8.1. �e strict partial ordering� on syl.g/ is the transitive closure of the

relation
m
�.

Proof. From the de�nition of
m
� it su�ces to show that if x

ei

i � x
ej

j in syl.w/ then

x
ei

i and x
ej

j cobound a chain of syllables where adjacent terms are ordered by
m
�.

To this end, let

x
ei

i D a1 � a2 � � � � � an D x
ej

j

be a chain of maximal length joining x
ei

i and x
ej

j in syl.g/. We show that each pair

of consecutive terms in the chain is ordered by
m
�. Take 1 � i � n and consider the

w 2 Min.g/ for which ai and aiC1 are separated by the least number of syllables

in w. If ai and aiC1 are adjacent in w we are done, otherwise write

w D w1 � ai � s �w2 � aiC1 �w3
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where w1; w2; w3 are possibly empty subwords of w and s is a syllable of w. By

our choice of w, ai � s, for otherwise we could commute s past ai resulting

in a normal form for g with fewer syllables separating ai and aiC1. �en either

s � aiC1, which contradicts the assumption that the chain is maximal, or s can be

commuted past aiC1 resulting in a normal form w0 2 Min.g/ with

w0 D w1 � ai �w
0
2 � aiC1 � s �w

0
3

where w0
2 is a subword of w2. �is contradicts our choice of w. Hence, ai and aj

must occur consecutively in w and so ai
m
� aiC1 as required.

9. Large projection distance

Fix an admissible system S D .A; ¹fiº/ for F with coincidence graph �. �is

determines a homomorphism � D �S W A.�/ ! Out.F/ by mapping the vertex

generator si to the outer automorphism fi .

For g 2 A.�/ with w D x
e1

1 : : : x
ek

k
2 Min.g/, let J W ¹1; : : : ; kº ! ¹1; : : : ; nº

be de�ned so that xi D sJ.i/, as generators of A.�/. Hence, �.xi / D fJ.i/ is

supported on AJ.i/. Write

Aw.x
ei

i / D �.x
e1

1 : : : x
ei�1

i�1 /.AJ.i//

for i D 2; : : : ; k and Aw.x
e1

1 / D AJ.1/. �is de�nes a map

Aw W syl.w/! FF
0:

It is veri�ed in [7] that this map is well-de�ned for g 2 A.�/, independent of the

choice of normal form. �en, set Ag D Aw for w 2 Min.g/ and set fact.g/ equal

to the image of the mapAg W syl.g/! FF
0. We refer to the free factors in fact.g/

as the active free factors for g 2 A.�/. For notional convenience, set Bi D AJ.i/

and gi D �.x
ei

i / D f
ei

J.i/
. Note that this notation is for a �xed w 2 Min.g/.

Having developed the necessary tools in the free group setting, the proof of the

�rst part of the following theorem is a veri�cation that the arguments of [7] ex-

tend to this situation, even with a weaker form of Proposition 6.1 . We repeat their

argument here for completeness. Let M be the constant determined in Proposi-

tion 6.1 and let L D 4 be the Lipschitz constant for the projection �A W K! F.A/,

A 2 FF.
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�eorem 9.1. Given an admissible collection A of free factors for F with coinci-

dence graph � and T 2 K0, there is a K � 5M C 3L so that if outer automor-

phisms ¹fiº are chosen to make .A; ¹fiº/ an admissible system with `Ai
.fi / � 2K

then the induced homomorphism � W A.�/ ! Out.F/ satis�es the following: for

any g 2 A.�/ with normal form w D x
e1

1 : : : x
ek

k
2 Min.g/,

(1) d
Ag.x

ei
i

/
.T; �.g/T / � Kjei j for 1 � i � k. In particular, fact.g/ �

�.K; T; �.g/T /.

(2) If x
ei

i

m
� x

ej

j , then Ag.x
ei

i / and Ag.x
ej

j / overlap and

Ag.x
ei

i / � A
g.x

ej

j /:

Proof. Set K D 5M C 3LC 2 �max¹dAi
.T; Aj /º and observe that this choice of

K has the property that if Ai and Aj overlap then dAi
.T; Aj / � K=2 �M . �e

proof of .1/ is by induction on the syllable length of w 2 Min.g/. If w has only

one syllable then

dAJ.1/
.T; f

e1

J.1/
T / � `AJ.1/

.f
e1

J.1/
/ � 2Kje1j:

Now suppose that .1/ has been proven for all elements in A.�/ that have

representative with less than or equal to k � 1 syllables. Take g 2 A.�/ with

w D x
e1

1 : : : x
ek

k
a k-syllable normal form representative for g. Using the notation

at the beginning of this section, write �.w/ as g1 : : : gk so that for 1 � i � k we

must show

dg1:::gi�1Bi
.T; g1 : : : gkT / � Kjei j:

With x
ei

i 2 syl.g/ �xed and gi D �.x
ei

i /, we write �.g/ as abgic by choosing

a normal form w 2Min.g/ so that

(1) c D giC1 : : : gk and gi and giC1 do not commute,

(2) a D g1 : : : gl with l the largest index among w 2 Min.g/ so that gl and gi

do not commute, and

(3) b D glC1 : : : gi�1, all of which commute with gi .

Note that we allow a; b or c to be empty.

Using this notation, we show that dabBi
.T; abgicT / � Kjei j. By Lemma 3.4

and the triangle inequality,

dabBi
.T; abgicT / D dBi

.b�1a�1T; gicT /

� dBi
.T; giT / � dBi

.b�1a�1T; T / � dBi
.gicT; giT /:
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Since b is written in terms of generators that restrict to the identity outer auto-

morphism on Bi and gi restricts to an isometry of the free factor complex of Bi ,

Lemma 3.4 implies

dBi
.b�1a�1T; T / D dBi

.a�1T; T /

and

dBi
.gicT; giT / D dBi

.cT; T /:

�is, along with our hypothesis on translation length, allows us to write

dabBi
.T; abgicT / � 2Kjei j � dBi

.a�1T; T / � dBi
.cT; T /: (1)

We use the induction hypotheses to show that both terms subtracted in .3/ are

� K=2. �is will complete the proof of (1). First, observe that each of a�1 D

g�1
l
: : : g�1

1 and c D giC1 : : : gk is either trivial or is the image of a normal form

subword of w with strictly fewer than k syllables and begins with a syllable not

commuting with x
ei

i . �is is all that is needed for the remainder of the proof. We

show the inequality dBi
.a�1T; T / � K=2, the other appears in [7] where the proof

follows through without change.

By the induction hypothesis applied to a�1,

dBl
.T; a�1T / D dBl

.T; g�1
l : : : g�1

1 T / � Kjel j;

and so since dBl
.T; Bi/ � K=2�M by our choice ofK, we have dBl

.Bi ; a
�1T / �

K � .K=2�M/ �M C 1. Since Bi and Bl overlap, Proposition 6.1 implies that

dBi
.Bl ; a

�1T / �M , so by another application of dBi
.T; Bl/ � K=2�M ,

dBi
.a�1T; T / �M C .K=2�M/ � K=2;

as required. �is completes the proof of the �rst part of the theorem.

�e second part of the theorem is also proven by induction on syllable length.

If g 2 A.�/ has syllable length equal to 1, then there is nothing to prove. Suppose

that the ordering statement holds for all g with a minimal syllable representative

with less then or equal to k � 1 syllables. As in the �rst part of the proof, take

g 2 A.�/ with w D x
e1

1 : : : x
ek

k
a k-syllable normal form representative for g.

Write �.w/ as g1 : : : gk and suppose that x
ei

i

m
� x

ej

j as syllables of g. If j �

k � 1 then we may apply the induction hypothesis to a pre�x of w and conclude

Aw.x
ei

i / � A
w.x

ej

j /. More precisely, let w0 be the word formed by the �rst k � 1

syllables of w; this is a normal form word for some g0 2 A.�/. By the induction

hypothesisAw 0
.x

ei

i / andAw 0
.x

ej

j / overlap andAw 0
.x

ei

i / � A
w 0
.x

ej

j /. �is su�ces
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since for l � k � 1 we have Aw.x
el

l
/ D Aw 0

.x
el

l
/, using the obvious identi�cation

of the syllables of w0 with those of w.

Otherwise, j D k and by de�nition of
m
� we may choose w 2 Min.g/ so that

w D ax
ei

i x
ek

k
and so �.w/ D �.a/gigk. Since x

ei

i

m
� x

ek

k
, Bi and Bk overlap and

so �.a/giBi D �.a/Bi and �.a/giBk also overlap. We have

d
Ag.x

ek
k

/
.Ag.x

ei

i /; �.g/T / D d�.a/gi Bk
.�.a/Bi ; �.a/gigkT /

D dBk
.Bi ; gkT /

� dBk
.T; gkT / � dBk

.Bi ; T /

� dAJ.k/
.T; f

ek

J.k/
T / � dAJ.k/

.AJ.i/; T /

� 2K �K

�M C 1;

and so since Ag.x
ei

i /; A
g.x

ek

k
/ 2 �.K; T; �.g/T /, by Proposition 7.1

Aw.x
ei

i / � A
w.x

ek

k
/:

10. �e lower bound on distance for admissible systems

Let A D .¹Aiº; ¹fiº/ be an admissible system satisfying the hypotheses of �eo-

rem 9.1 for T 2 K0 and let K � 5M C 3L be as in �eorem 9.1. For g 2 A.�/

and w 2 Min.g/ write in normal form

w D x
e1

1 : : : x
ek

k
:

We make use of the notation introduced at the beginning of the previous section.

Set T 0 D �.g/T and choose a geodesic T D T0; T1; : : : ; TN D T 0 in the

1-skeleton ofKn. Similar to [24], we de�ne the subinterval IA D ŒaA; bA� � Œ0; N �

associated to the free factor A 2 �.K; T; T 0/ as follows. Set

aA D max¹k 2 ¹0; : : : ; N º W dA.T; Tk/ � 2M C Lº

and

bA D min¹k 2 ¹aA; : : : ; N º W dA.Tk; T
0/ � 2M C Lº:

Since A 2 �.K; T; T 0/, dA.T; T
0/ � K � 5M C 3L and so both aA and bA are

well-de�ned and not equal. Hence, the interval IA is nonempty and for all k 2 IA,

dA.Tk; T / � 2M C 1 and dA.Tk; T
0/ � 2M C 1:
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�is uses that fact that the projection from K0 to F.A/ is L-Lipschitz. �e next

lemma shows that if syllables are ordered, then distance in their associated free

factors cannot be made simultaneously.

Lemma 10.1. With notation �xed as above, if x
ei

i ; x
ej

j 2 syl.w/ and x
ei

i � x
ej

j

then

I
Aw.x

ei
i

/
< I

Aw.x
ej

j
/
:

�at is, the intervals are disjoint and correctly ordered in Œ0; N �.

Proof. We �rst prove the proposition when x
ei

i

m
� x

ej

j . Recall that since x
ei

i

m
� x

ej

j ,

�eorem 9.1 implies that the free factors Aw.x
ei

i / and Aw.x
ej

j / overlap and are

ordered, Aw.x
ei

i / � A
w.x

ej

j /. If k 2 I
Aw.x

ei
i

/
, then d

Aw.x
ei
i

/
.Tk; T

0/ � 2M C 1

and since Aw.x
ei

i / � A
w.x

ej

j / we have d
Aw.x

ei
i

/
.Aw.x

ej

j /; T 0/ �M . �e triangle

inequality then implies that

d
Aw.x

ei
i

/
.Tk; A

w.x
ej

j // �M C 1:

As the free factors Aw.x
ei

i / and Aw.x
ej

j / overlap, by Proposition 6.1 we have

d
Aw.x

ej

j
/
.Tk; A

w.x
ei

i // �M:

Combining this with the inequality d
Aw.x

ej

j
/
.Aw.x

ei

i /; T / � M , again coming

from the ordering, provides

d
Aw.x

ej

j
/
.T; Tk/ � 2M:

Since this is true for each k 2 I
Aw.x

ei
i

/
it follows from the de�nition of I

Aw.x
ej

j
/

that I
Aw.x

ei
i

/
\ I

Aw.x
ej

j
/
D ;. So if there were an index k 2 I

Aw.x
ei
i

/
with k >

a
Aw.x

ej

j
/
then by disjointness of the intervals a

Aw.x
ei
i

/
> a

Aw.x
ej

j
/
. �is contradict

the choice of a
Aw.x

ej

j
/

as the largest index k with d
Aw.x

ej

j
/
.T; Tk/ � 2M C 1 and

shows that the intervals of interest are disjoint and ordered as I
Aw.x

ei
i

/
< I

Aw.x
ej

j
/
.

Now, if more generally we have that x
ei

i � x
ej

j , then by Lemma 8.1, x
ei

i and

x
ej

j can be joined by a chain of syllables

x
ei

i D a0
m
� a1

m
� � � �

m
� al D x

ej

j :

Hence, we conclude

I
Aw.x

ei
i

/
< IAw.a1/ < � � � < IAw.x

ej

j
/
;

as required.
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Let s D s.�/ be the size of the largest complete subgraph of �. �is is also

the maximal rank of a free abelian subgroup of A.�/. Note by the de�nition of an

admissible system, s is bounded above by a constant depending only on the rank of

F. To simplify notations, associated to the free factorAg.x
ei

i /we set ai D aAg.x
ei
i

/

and bi D bAg.x
ei
i

/
.

Lemma 10.2 (Lower bound on distance). With notation �xed as above, K as in

�eorem 9.1 and w 2 Min.g/ in normal form

X

1�i�k

d
Ag.x

ei
i

/
.T; �.g/T / � 5sL � dK.T; �.g/T /:

Proof. Since Ag.x
ei

i / 2 �.K; T; �.g/T / for all x
ei

i 2 syl.g/ by �eorem 9.1, we

have the collection of nonempty subintervals

¹I
Ag.x

ei
i

/
W 1 � i � kº

of ¹0; 1; : : : ; N º. If, for i � j , it is the case that x
ei

i � x
ej

j then by Lemma 10.1,

I
Ag.x

ei
i

/
and I

Ag.x
ej

j
/

are ordered and, hence, disjoint. Further, any collection of

syllables pairwise unordered by � has size bounded above by s. �is is clear

since such a collection of syllables can be commuted to be consecutive in w using

move .3/ and so correspond to distinct pairwise commuting standard generators.

We conclude that for any integer j 2 Œ0; N �, j is contained in at most s of the

intervals I
Ag.x

ei
i

/
. Hence,

X

1�i�k

jbi � ai j � s � dK.T; �.w/T /:

Using the Lipschitz condition on the projections and the triangle inequality,

d
Ag.x

ei
i

/
.T; �.g/T / � d

Ag.x
ei
i

/
.Tai

; Tbi
/C 4M C 2L

� Ljbi � ai j C 4M C 2L:

Since for each A 2 �.K; T; �.g/T /, dA.T; �.g/T / � K � 5M C 3L we have

jbA � aAj �
M CL

L
. �is implies that dA.T; �.g/T / � 5L � jbA� aAj and so putting

this with the inequality above

X

1�i�k

dAg.i/.T; �.g/T / � 5sL � dK.T; �.g/T /;

as required.
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11. �e quasi-isometric embedding

We can now prove �eorem 11.1.

�eorem 11.1. Given an admissible collection A of free factors for Fn with coin-

cidence graph � there is a C � 0 so that if outer automorphism ¹fiº are chosen

making S D .A; ¹fiº/ an admissible system with `Ai
.fi / � C then the induced

homomorphism � D �S W A.�/! Out.Fn/ is a quasi-isometric embedding.

Proof. Suppose A is an admissible collection of free factors and T 2 K0. Take

C D 2K, for K as in �eorem 9.1. We show that the orbit map A.�/! K1
n

g 7! �.g/T

is a quasi-isometric embedding, where A.�/ is given the word metric in its stan-

dard generators. Since Out.Fn/ is quasi-isometric to K1
n, this su�ces to prove the

theorem. First, recall that the orbit map is Lipschitz, as is any orbit map induced

by an isometric action of a �nitely generated group on a metric space. Speci�-

cally, dK.T; �.g/T / � A � jgj, where A D max¹dK.T; �.si/T W 1 � i � nº and

s1; : : : ; sn are the standard generators.

Let g 2 A.�/. By �eorem 9.1, we know that if w D x
e1

1 : : : x
ek

k
2 Min.g/,

then

d
Ag.x

ei
i

/
.T; �.g/T / � Kjei j

for 1 � i � k. Hence, by Lemma 10.2

jgj D
X

1�i�k

jei j

�
1

K

X

1�i�k

d
Ag.x

ei
i

/
.T; �.g/T /

�
5sL

K
� dK.T; �.g/T /:

We conclude that for any g; h 2 A.�/

1

A
dK.�.g/T; �.h/T / D

1

A
dK.T; �.g

�1h/T / � jg�1hj D dA.�/.g; h/

and

dA.�/.g; h// �
5sL

K
� dK.T; �.g

�1h//T / D
5sL

K
� dK.�.g/T; �.h//T /;

as required.
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