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Abstract. We regard a relatively hyperbolic group as a group acting non-trivially by home-

omorphisms on a compactum T discontinuously on the set of distinct triples and cocom-

pactly on the set of distinct pairs of points of T .

In the �rst part of the paper we prove that such a group G admits a graph of groups

decomposition given by a star graph whose central vertex group is �nitely generated rela-

tively hyperbolic with respect to the edge groups, and the other vertex groups are stabilizers

of non-equivalent parabolic points. It follows from this result that every relatively hyper-

bolic group is relatively �nitely generated with respect to the parabolic subgroups. Another

corollary is that the de�nition of the relative hyperbolicity which we are using is equivalent

to those of Bowditch and Osin (taken with respect to �nitely many peripheral subgroups)

and they are all equivalent to the existence of the above star graph of groups decomposition.

�e second part of the paper uses the method of the �rst part. Considering the induced

action of G on the space of distinct pairs of T we construct a connected graph on which G

acts properly and co�nitely on edges. Equipping the graph with Floyd metrics we prove that

the quasigeodesics in this metric are close somewhere to the geodesics in the word metric.

�is allows us to prove that the parabolic subgroups of G are quasiconvex with respect to

the Floyd metrics. As a corollary we prove that the preimage of a parabolic point by the

Floyd map is the Floyd boundary of its stabilizer.
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1. Introduction

First part of the paper. Let T be a compact Hausdor� space (compactum)

containing at least 3 points. �e action of a discrete group G by homeomor-

phisms of T is called convergence action if the induced action on the space ‚3T

of subsets of cardinality 3 is discontinuous. We say in this case that the action is

3-discontinuous.
�e action ofG on T is called 2-cocompact if the action on‚2T is cocompact.

An action is called parabolic if G is in�nite there is a unique �xed point.

If G admits a non-parabolic action on T which is 3-discontinuous and

2-cocompact then the action is geometrically �nite, i.e. every point of T is

either conical or bounded parabolic or isolated [15]. Conversely if a group G

admits a minimal geometrically �nite action on a metrisable space T without

isolated points then the action is 2-cocompact [29]. If G is �nitely generated

then the existence of a geometrically �nite action of G is equivalent (see [2]

and [31]) to the “classical” relative hyperbolicity in the sense of Farb [11] and Gro-

mov [20, 8.6].

�ese facts justify the following “dynamical” de�nition.

De�nition 1.1 ([15]). A group G is called relatively hyperbolic if it admits a

non-parabolic 3-discontinuous and 2-cocompact action (RH32-action) on a com-

pactum T .

We point out that we do not impose any restriction on the cardinality of G.

We also do not require the metrisability of T:

Our �rst result shows that any relatively hyperbolic group can be “nicely”

approximated by �nitely generated relatively hyperbolic group.
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�eorem A. Let G be a relatively hyperbolic group with respect to a collection
of parabolic subgroups ¹P1; : : : ; Pnº: �en G is the fundamental group of the
following �nite “star graph”

(1)

whose central vertex group G0 is �nitely generated relatively hyperbolic with
respect to those edge groups Qi D Pi \ G0 which are in�nite, all other vertex
groups of the graph are Pi .i D 1; : : : ; n/.

Moreover for every �nite set K � G the subgroup G0 can be chosen to
contain K.

�eorem A yields generalization of several known results omitting the assump-

tion of �nite generatedness.

A group G is said to be �nitely generated with respect to a collection H of

subgroups if there exists a �nite set S�G such that S[.[H/ is a generating set

for G.

Corallary (Corollaries 3.39, 3.40). Let a group G admit a 3-discontinuous
2-cocompact non-parabolic action on a compactum T . �en G is �nitely gen-
erated with respect to a �nite collection of the stabilizers of parabolic points.
In particular, if G acts without parabolics then G is �nitely generated.

In [17, Appendix] we gave a short proof of Bowditch’s theorem that the exis-

tence of a 3-discontinuous and 3-cocompact action of a �nitely generated group

implies that the group is hyperbolic. �e above Corollary omits the assumption

of �nite generatedness.
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In most papers about relatively hyperbolic groups the authors assume that the

group is �nitely generated. Besides De�nition 1.1 there are two more de�nitions

which do not require the �nite generatedness. �e �rst is due to B. Bowditch [2]

and the second is due to D. Osin [26]. We recall them now.

A graph � is called �ne if for any two vertices the set of arcs of �xed length

joining them is �nite. Bowditch calls a groupG relatively hyperbolic if there is an

action of G on a �ne hyperbolic graph � such that the action on edges is proper
(i.e. the edge stabilizers are �nite), co�nite (the set of edge orbits is �nite i.e.

j�1=Gj < 1) and non-parabolic (there is no vertex �xed by G).

We use a “�nite” version of Osin’s de�nition of relative hyperbolicity accord-

ing to which a group G is relatively hyperbolic with respect to a �nite collection

P of subgroups of in�nite index, if it is relatively �nitely presented with respect

to P and satis�es linear isoperimetric inequality relative to this system (see Def-

inition 3.42 in Section 3.5). We note that the original Osin’s de�nition does not

require the �niteness of the peripheral system P whereas all other de�nitions im-

ply this property. So to relate Osin’s de�nition with all other de�nitions we will

always assume that the systemP is �nite. �e assumption that every element of P

is a subgroup of in�nite index is needed to exclude the trivial case of the relative

hyperbolicity with respect to a subgroup of �nite index. �e existence of the star

graph decomposition (1) directly follows from Osin’s de�nition (see [26, �eo-

rem 2.44]). Our �eorem A is a di�erent result as it uses another de�nition of the

relative hyperbolicity. On its turn since the existence of such a graph of groups

decomposition is a common point for both these approaches it gives rise to the

following equivalence of all known de�nitions of the relative hyperbolicity valid

for a group without any restriction on its cardinality.

Corollary (�eorem 3.1). �e following conditions of the relative hyperbolicity
for a group G are equivalent.

1) (�e above De�nition 1.1) �e groupG admits a RH32-action on a compactum
T containing at least 3 points.

2) (Bowditch’s de�nition) �e group G acts non-parabolically on a connected
�ne hyperbolic graph � properly and co�nitely on edges.

3) (Osin’s de�nition) �e group G is relatively �nitely presented and admits a
relative linear isoperimetric inequality relatively to a �nite system of sub-
groups of in�nite index.

4) G admits the star graph decomposition (1) where the central vertex groupG0

is a �nitely generated relatively hyperbolic group with respect to those edge
groupsQi which are in�nite.



Non-�nitely generated relatively hyperbolic groups and Floyd quasiconvexity 373

�e implication 1/ H) 4/ follows from �eorem A and 3/ H) 4/ from

[26, �eorem 2.44]. �e implication 2/ H) 1/ is proved in [16]. �e following

proposition yields the implication 4/ H) 2/:

Proposition 3.43. Suppose that a group G admits a graph of groups decompo-
sition (1) where the group G0 is �nitely generated and relatively hyperbolic with
respect to the subgroupsQi .i D 1; ; ; n/. �en G satis�es Bowditch’s de�nition.

�e proof of the implication 2/ H) 3/ is an easy use of the common methods

for hyperbolic metric spaces [20]. We include it for the completeness avoiding

the references to the sources in which it is not clear that the assumption of �nite

generatedness is inessential.

We resume all this discussion in the following diagram:

[16]
✛
✚

✘
✙2)

Bowditch’s

de�nition

✛
✚

✘
✙1) RH32✲

❄ ❄

Proposition 3.47 �eorem A

✛
✚

✘
✙3)

Osin’s

de�nition

[26] ✲
✛
✚

✘
✙

Proposition 3.43

4)
Star

graph

PPPPPPPPPPPPPP✐

(�)

We note that the vertex groups corresponding to the non-central vertices of

the star graph in the above Proposition 3.43 can be uncountable. �is provides

a construction of an uncountable relatively hyperbolic group too. �e proof of

�eorem A presented below does not depend on the cardinality of G nor on the

metrisability of the space on which it acts, and is self-contained. It is based on

the theory of entourages of a compactum T which are the neighborhoods of the

diagonal of T 2. In Section 3 using a G-orbit A of entourages on T we construct a

graph G on which G acts and whose set of vertices is A. �e subgroup G0 will be

chosen as the stabilizer of a connected component of a re�ned graph zG having the

same set of vertices: zG0 D G0 D A:We will use a system of tubes and horospheres
on G to establish the existence of the requested splitting of G as a star-graph of

groups.
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Historical remarks and comments. For the completeness of the exposition we

provide a short survey of known results related to �eorem 3.1. We start with a less

general (but more standard) case of a �nitely generated group and then describe

brie�y what is known when G is a non-�nitely generated group.

Case 1 . G is finitely generated. �e equivalence of conditions 2) and 3)

was proved by F. Dahmani [9] and D. Osin [26].

B. Bowditch proved that condition 2) implies that G acts properly discontin-

uously by isometries on a proper hyperbolic metric space X , and the action on

the boundary @X is geometrically �nite meaning that every point of @X is either

conical or bounded parabolic. A strengthened converse statement was proved by

A. Yaman [31]. She showed that a group that possesses a geometrically �nite

convergence action on a non-empty metrisable perfect compactum T such that

the stabilizers of parabolic points are all �nitely generated satis�es condition 2).

Note that the �nite generatedness of the maximal parabolic subgroups implies by

Corollary 3.39 that the whole group G is �nitely generated.

From the other hand a minimal action on a metrisable compactum is an

RH32-action if and only if it is geometrically �nite. Indeed the su�ciency fol-

lows from P. Tukia’s result [29, �eorem 1.C]. �e converse statement is a partial

case of [15, Main �eorem, b].

So conditions 1), 2) and 3) are equivalent if G is �nitely generated. By [26,

Lemma 2.46] the implication 4/ H) 3/ is true for anyG (we thank the referee for

this reference). On its turn 4) trivially holds for every �nitely generated relatively

hyperbolic group.

Note that an alternative proof of Yaman’s theorem in the �nitely generated case

is given in [18, Corollary of 7.1.1].

Case 2. G is countable. In [23] C. Hruska pointed out that the proofs of

the equivalence between conditions 2) and 3) given in [9] and [26] remain true for

countable groups. However their relation with the geometrical �nitenness is more

delicate already in this case. C. Hruska noticed that the proof of the above theorem

of Bowditch does not work if the parabolic subgroups are not �nitely generated

[23, Remark after 5.6]. He indicated how to generalize the methods of the paper

of D. Groves and J.F. Manning [22] and to prove the implication 3/ H) 2/ (in

fact the argument gives a stronger statement that 3) implies Gromov’s de�nition

of the relative hyperbolicity denoted by (RH-3) in [23]).

It is claimed without proof in [23] that Yaman’s theorem remains valid in

the countable case (note that in [23] this statement was misleadingly denoted

(RH-1) H) (RH-2) but it should be (RH-1) H) (RH-4)). �e main part of
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Yaman’s proof consists in generalizing the statements of the paper [4] about hy-

perbolic groups to the case of relatively hyperbolic groups. In particular Yaman

uses some lemmas of [4] when the group is a posteriori �nitely generated. So it

seems to us that these arguments still require further explanations in the case when

the group is not �nitely generated.

Note that if one admits that the proof of Yaman works in the countable case

then it would give a proof of our �eorem A in this case. Indeed 1/ yields that

the action is geometrically �nite by [15]. �en Yaman’s theorem would imply 2).

Finally we obtain 2/ H) 3/ as it is described in [23] and 3/ H) 4/ by [26,

�eorem 2.44].

�e argument of Hruska generalizing the theorem of [22] requires the metris-

ability of the compactum T which is homeomorphic to the boundary of a hy-

perbolic space (given by Gromov’s de�nition (RH3)). Any group G admitting a

3-discontinuous action on the metrisable compactum T is countable [15, Corol-

lary 2, Section 5.3] (note that the converse statement is true if one supposes that

the action of G Õ T is RH32 then the countability of G implies the metrisability

of T [15, Main �eorem, c]). So the condition to be countable for a relatively

hyperbolic group seems to be unavoidable in this approach.

Case 3. G is an arbitrary group. As we have mentioned the equiva-

lence 3/ () 4/ is true for any group [26, 2.44 and 2.46]. �e proof of the

equivalence of conditions 3) and 4) to condition 2) is not so di�cult. Since the

arguments are spread in di�erent papers and sometimes require modi�cations, we

included them in Propositions 3.43 and 3.47.

�e relation with the dynamical condition RH32 (or with the geometrical �niten-

ness) was not known before. �us the main result of the section is �eorem A

which establishes (with the statement 2/ H) 1/ from [16]) the equivalence of

condition 1/ to all other conditions.

One of the di�culties of the situation is that the condition RH32 still implies

the geometrically �niteness by [15] but the converse statement is not known in this

case (the argument of Tukia certainly needs the metrisability of the compactum

on which the group acts).

�e implication 1/ H) 3/ follows from the above Corollary. It generalizes

Yaman’s theorem to the case of an arbitrary group admitting an RH32-action (see

also [18, Proposition 7.1.2]). In particular if G is countable together with Tukia’s

theorem it yields a proof of Yaman’s theorem in this case.
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We note that despite that Osin’s theorem and �eorem A have the same con-

clusion (condition 4)) and their assumptions (conditions 3) and 1) respectively)

are equivalent, none of them is a corollary of the other one as the proof of this

equivalence uses both statements.

Notice also that the star-graph decompositions of relatively hyperbolic groups

have been used in [26] to reduce the case of a non-�nitely generated relatively

�nitely presented group to the case of a �nitely generated one.

We �nish this discussion by the following question asking whether Tukia’s

theorem remains valid without assuming the metrisability of the space.

Question. Is it true that a geometrically �nite non-elementary minimal action on
a compactum is an RH32-action?

A positive answer to this question would imply in particular that Yaman’s the-

orem is true in the non-metrisable case too.

Second part of the paper. It deals with �nitely generated relatively hyperbolic

groups. It is based on the methods developed in the �rst part. Starting with

Section 4 we use the Floyd completion of locally �nite graphs. Let � be a lo-

cally �nite, connected graph admitting a cocompact and discontinuous action of a

�nitely generated groupG (e.g. a Cayley graph ofG or the graph of entourages G).

According to W. Floyd by rescaling the graph distance d of � by a scalar func-

tion f W N ! R�0 one obtains the Cauchy completion x�f of the metric space

.�; ıf / where ıf is the rescaled metric. We call this space Floyd completion (see

Section 4). �e action of G extends continuously to x�f . By [16] there exists an

equivariant continuous map F from the Floyd boundary @f � D x�f n � to the

space T . �e kernel of the map F was described in [17, �eorem A]. Namely if

the preimage of a point p is not a single point then p is parabolic and the preimage

coincides with the topological boundary of the stabilizer StabGp of p. We denote

by @f StabGp the Floyd boundary of StabGp corresponding to a function f .

A subsetX of � is called Floyd (r-)quasiconvex if every Floyd geodesic (with

respect to the metric ıf ) with the endpoints in X belongs to r-neighborhood

Nr .X/ for the graph metric d and some r > 0: In particular if f is the identity

then the Floyd quasiconvexity means the standard one. It is well-known that the

parabolic subgroups are quasiconvex with respect to d [10] (for another proof see

e.g. [17, Corollary 3.9]). Our next �eorem establishes the Floyd quasiconvexity

of the parabolic subgroups.
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�eorem C. Let G be a �nitely generated group acting 3-discontinuously and
2-cocompactly on a compactum T: Let � be a locally �nite, connected graph
admitting a cocompact discontinuous action of G: �en there exists a Floyd scal-
ing function f , such that every parabolic subgroupH of G is Floyd quasiconvex
for the Floyd metric ıf .

As a consequence of �eorem C we obtain the following Corollary which an-

swers our question [17, 1.1].

Corollary 7.8. For a scaling function f satisfying conditions (1–3) (see Section 7)
one has

F�1.p/ D @f .StabGp/

for every parabolic point p 2 T .

Note that it was already known that the map F is 1-to-1 at conical points [16].

Corollary 7.8 gives a complete description of the preimage of a parabolic point by

F as the Floyd boundary of its stabilizer. It gives rise to a complete generalization

of the Floyd theorem [12] to the case of relatively hyperbolic groups.

�e proof of �eorem C (and Corollary 7.8) in Section 7 and is based on a de-

scription of a family of tight curves which are quasigeodesics locally everywhere

and geodesic outside the horospheres (see De�nition 6.1). �eir properties are

described in the following �eorem (see Section 6 for more details).

�eorem B. For every tight curve 
 in the graph of entourages G there exists a
quasigeodesic ˛ � A such that every non-horospherical vertex of 
 belongs to a
uniform neighborhood of ˛:

�e main step in proving �eorem C is to show that every Floyd quasigeodesic

is tight. We notice that the graph of entourages G plays here a special role and in

the proofs of �eorems B and C we deal mainly with it.

�is is our second paper in a series of papers about relatively hyperbolic groups.

Keeping the same de�nition of the relative hyperbolicity here we apply however

di�erent methods based on the theory of discrete systems of entourages not used

in [17].

Acknowledgements. During the work on this paper both authors were partially

supported by the ANR grant BLAN 07 � 2183619: We are grateful to the Max-

Planck Institute für Mathematik in Bonn, where a part of the work was done. We
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2. Convergence groups

By compactum we mean a compact Hausdor� space. Let S nT denote the quotient

of the product space

T� : : :�T„ ƒ‚ …
n times

by the action of the permutation group on n symbols. �e elements of S nT are

generalized unordered n-tuples (i.e. an element may belong to a tuple with some

multiplicity). Let ‚nT be the subset of S nT whose elements are non-ordered

n-tuples with all distinct components. Put

�nT D S nT n‚nT;

the set �2T is just the diagonal of T 2.

Convention. If the opposite is not stated all group actions on compacta are as-

sumed to have the convergence property.

We refer to [3], [17], [19], [13], and [28] where standard facts related to the

convergence groups are proved. We recall below some facts that are used in the

paper.

�e limit set ƒ.G/ is the set of accumulation (limit) points of the G-orbit for

the action of G on T: It is known that either jƒ.G/j 2 ¹0; 1; 2º in which case the

action G Õ T is called elementary or it is a perfect set and the action is not

elementary [28].

An elementary action of a group on T is called parabolic if there is unique

�xed point called parabolic �xed point.

A limit point x 2 ƒ.G/ is called conical if there exists an in�nite sequence

gn 2 G and distinct points a; b 2 T such that

gn.y/ ! a ^ gn.x/ ! b for all y 2 T n ¹xº:

A parabolic �xed point p 2 ƒ.G/ is called bounded parabolic if the quotient

space .ƒ.G/ n ¹pº/=StabGp is compact.

A set M is called G-�nite if M=G is a �nite set.



Non-�nitely generated relatively hyperbolic groups and Floyd quasiconvexity 379

An action of a groupG on a compactumT is called geometrically �nite if every

limit point of T is either conical or bounded parabolic. As we have pointed out in

the Introduction if G Õ T is a 3-discontinuous and 2-cocompact action then it is

also a geometrically �nite one. �e opposite statement is also true if one assumes

that T is metrizable.

Notation. From now on we �x the notation P for the set of parabolic points for

the 3-discontinuous and 2-cocompact action G Õ T:

3. Exhaustion of non-�nitely generated relatively hyperbolic groups

by �nitely generated ones

3.1. Entourages, shadows, betweenness relation. �e following de�nition is

motivated by [7, Chapitre 2] and [30].

De�nition 3.1. Let T be a compactum. Any (not necessarily open) neighborhood

of the diagonal �2T in S 2T is called entourage of T: �e set of all entourages of

T is denoted by Ent T .

Convention. By de�nition an entourage consists of non-ordered pairs. However

sometimes we identify an entourage e 2 Ent T with the symmetric neighborhood

Qe of the diagonal in T � T .

We denote the entourages by bold small characters.

An entourage e determines a graph whose vertex set is T; and two vertices

x; y are joined by an edge if and only if ¹x; yº 2 e. Denote by �e the corre-

sponding graph distance which is the maximal distance function with the prop-

erty ¹x; yº2e H) �e.x; y/61: Note that �e.x; y/ D 1 if and only if x and

y belong to di�erent connected components of the graph. A set U � T is called

e-small if its e-diameter is at most 1:

�e set of all e-small sets is denoted by Small.e/. For subsets a; b � T we

de�ne

�e.a; b/ D inf¹�e.x; y/ j x 2 a; y 2 bº

and

z�e.a; b/ D sup¹�e.x; y/ j x 2 a; y 2 bº:
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From the triangle inequality we have the inequality

�e.a; b/ � �e.a; c/� z�e.c; b/

frequently used further.

For a subset a � T de�ne its e-neighborhood ae as ¹x 2 T j �e.x; a/61º.

For a subset o of T its convex hull in T t EntT is the set

Qo D o[¹e2EntT W o02Small.e/º; (�)

where o0 denotes the complement of o.

We equip the space TtEntT with the topology generated by the convex hulls
of open subsets of T and the single-point subsets of Ent T: Namely a set w in

TtEntT is declared open if for every point t 2 w\T there exists and open subset

o of T such that t 2 o and Qo � w: In particular Ent T is a discrete open subset and

T is a closed subspace of TtEntT .

Example 1. �e de�nition of the topology on T tEnt T can be illustrated in terms

of the open subsets of the compacti�ed real hyperbolic space Hn [ @1Hn. Let B

be a bounded subset of Hn. De�ne an entourage eB 2 Ent.@Hn/ in the following

way: ¹x; yº 2 eB if and only if the geodesic 
.x; y/ with the endpoints x and y

misses B: So a set o � T D @1Hn is eB-small if and only if B is contained in

the convex hull of o in Hn (see Figure 1). �us B is close to a in the topology of

Hn [ @1Hn if and only if eB is close to a in the topology of TtEnt T . By the

above de�nition Qo is obtained by adding to o every entourage for which o0 is small.

De�nition 3.2 ([15]). Two entourages a and b are said to be unlinked if there exist

a 2 Small.a/ and b 2 Small.b/ such that T D a [ b. We denote this relation by

a ‰ b. In the opposite case we say that a and b are linked, and write a#b.

Denote by La the set ¹b 2 Ent T j a#bº: It is enough for our purposes to

consider only su�ciently small entourages implying the following.

Convention. All considered entourages are supposed to be self-linked:

a 2 Ent T W a#a: (1)
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a

B

o

Qo

Hn

Figure 1. Bounded set in Hn and its visibility entourage.

De�nition 3.3 ([15]). Let a and b be two unlinked entourages. We de�ne the

following “shadow” sets:

Shab D ¹a 2 Small.a/ j a0 2 Small.b/º;

and

shab D
\

Shab D
� [

Shba
�0

:

It is shown in [15, Lemma S0] that if a ‰ b and diamaT > 2 then shab 6D ;;

and if diamaT > 4 then shab has a nonempty interior.

Convention. We consider only the entourages a with diamaT>4. So every shadow

has non-empty interior.

Example 2. Using the notations of Example 1 let aDeA and bDeB for two disjoint

balls A and B in the hyperbolic space Hn. �en the shadow shab is given by

the intersection with @Hn of the boundaries of all hyperbolic half-spaces of Hn

containing B and not containing A and similarly for shba (see Figure 2).
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a

b

shab

shba

Figure 2. Shadows shba and shba:

De�nition 3.4 (Betweenness relation). Let k be a positive integer.

1) Suppose a; b; c 2 Ent T: We say that an entourage b lies between (or k-be-
tween) a and c, and write a � b � c .k/ (or simply a � b � c), if a ‰ b ‰ c

and �b.shba; shbc/ > k:

2) Let a; b2EntT and let p 2 T . We say that b lies between (or k-between) a

and p if a‰b and �b.shba; b/>k for any b-small neighborhood b of p

We write a � b � p .k/ (or simply a � b � p) in this case.

3) Let b2EntT and let p; q 2 T be two distinct points. We say that b lies between
(or k-between) p and q, and write q � b � p .k/ (or simply q � b � p), if

�b.b1; b2/ > k for any b-small neighborhoods b1 and b2 of the points p and

q respectively.

Remarks 3.5. a) �e betweenness relations 2) and 3) represent an extension “by

continuity” of the relation 1) between entourages to the points of T . Note that the

middle object in the relation a � b � c is always an entourage.

Note also that if �b.shba; b0/>k for some b-small neighborhood b0 of p then

for any such b we have �b.shba; b/ � �b.shba; b0/ � �b.b; b0/ > k � 2 as

p 2 b \ b0 and z�b.b; b0/ � 2. �erefore we will always assume further that

k > 2:

b) De�nition 3.4 in cases 2) and 3) di�ers from the corresponding de�nition

in [15] where the condition �b.shab; p/ > k is stated instead of 2). �e above

betweenness de�nition is stronger than that of [15] and so is easier to use. How-

ever both of them are quite close: the k-betweenness 2) implies k-betweenness
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of [15]. On the other hand since the diameter of any small neighborhood is less

than 1 the k C 1-betweenness of [15] implies (by the triangle inequality) the

k-betweenness 2). We will use results of [15] keeping in mind this relation.

Lemma 3.6 (continuity property). Suppose that a � c � p.k/ .k 2 N/ where
a 2 TtEnt T; c 2 Ent T; p 2 T: Suppose that p 2 T is an accumulation point
for an in�nite subset B of Ent T . �en there exists b 2 B such that a � c � b.k/:

Proof. Let �rst a 2 Ent T be an entourage. Let c D Up be an open c-small

set containing p such that �c.c; shca/ > k. By de�nition of the topology of

TtEnt T the complement c0 is b-small for some b 2 B . �en c0 �
S

Shbc; and

c � shcb D .
S

Shbc/0: �us �c.shca; shcb/ > �c.shca; c/ > k:

If now a 2 T then for a c-small neighborhood U containing a; we obtain

similarly �c.U; shcb/ > �c.U; Up/ > k. So we still have a � c � b .k/ for

b 2 B:

De�nition 3.7 (tubes). [15] A sequence P of elements an of T t Ent T is called

k-tube (or tube) if, for all n,

.an ‰ anC1/ ^ .an�1 � an � anC1.k//

whenever an˙1 are de�ned.

Lemma 3.8. 1) Ordering. For any three entourages at most one can be between
the others.

2) Convexity. If a � b � c.4/ and a; c 2 Ld then b 2 Ld :

Proof. 1) Indeed if not, we obtain a � b � c and a � c � b for some a; b; c: �e

transitivity of the betweenness relation [15] would imply a � b � a and so a ‰ a

which is impossible by our convention (1).

2) Otherwise b ‰ d and we have T D b [ d D a [ b1 D c [ b2 where

bi ; b 2 Small.b/ .i D 1; 2/; d 2 Small.d/; a 2 Small.a/; c 2 Small.c/. It follows

that b \ b1 D ; or b \ b2 D ; since otherwise �b.b1; b2/ � 2 and we would

have �b.shba; shbc/ � 2C z�b.shba; b1/C z�b.shbc; b2/ � 4 (as shba � b1 and

shbc � b2) which is impossible. If, for instance, b \ b1 D ; then b1 � d and

a ‰ d : A contradiction.
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3.2. Discrete sets of entourages. Horospheres. Until the end of Section 3 we

�x a 3-discontinuous 2-cocompact actionG Õ T of a groupG on a compactumT .

De�nition 3.9. A set A of entourages on T is called discrete if

j¹a 2 A W a#wºj < 1 for all w 2 Ent T: (1)

By [15, Proposition P] the set ¹g 2 G W ga#wº is �nite for all w; a 2 Ent T .

�is property is called Dynkin property [14]. Hence every G-�nite set is discrete.

LetA � Ent T be aG-�nite set of entourages. Denote by zT the subspace TtA

of TtEnt T: Since A is discrete zT is compact [15, Proposition D].

De�nition 3.10. Let G D GA be the graph whose vertex set G0 is A and the edge

set G1 is the set of pairs ¹a; bº such that a#b: Denote by dA the corresponding

graph distance.

Since G acts on T by homeomorphisms it acts isometrically on .G; dA/:

Lemma 3.11. �e group G is �nitely generated if and only if there exists a con-
nected graph GA:

Proof. Suppose �rst that G admits a �nite set of generators S .id 2 S ). Since A

is G-�nite we have A D
Sl

iD1G.ai /: Any entourage ai contains a sub-entourage

a0
i such that

a0
i#sa

0
j .i; j 2 ¹1; : : : ; lº/ for all s 2 S:

So up to choosing the entourages ai .i D 1; : : : ; l/ to be su�ciently small we can

assume that the above property is satis�ed. �en all vertices in the set
S

i Sai are

pairwise connected by edges. For any vertex v 2 GA there exists i 2 ¹1; : : : ; lº and

g 2 G such that v D g.ai / and g D si1si2 : : : sik .sij 2 S/. �en GA contains the

edges e D .sik .ai /; ai/, e
0 D .sik�1

.ai/; ai/; and so the path sik�1
e [ e0 between

ai and sik�1
sik .ai/. Continuing in this way we obtain a path between v and ai :

Conversely suppose that GA is connected. Let S be the set ¹s 2 G j saj #ai ,

1 � i � lº where A D
Sl

iD1Gai . By Dynkin property the set S is �nite. For

any g 2 G there is a path l D ¹ai ; b2; : : : ; bn�1; aº � GA between the vertices

a D g.ai / and ai : �en b2#ai so there exists s1 2 S such that b2 D s1.aj /

.1 � j � l/. �us s�1
1 b3#aj and there exists s2 2 S such that b3 D s1s2ak

.1 � k � l/:Continuing in this way we obtain a D s1s2 : : : snar .1 � r � l/:�en

g�1s1s2 : : : sn.ar/ D ai and so g�1s1s2 : : : sn belongs to S (by (1) of Section 3.1).

�e lemma is proved.
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It follows from Dynkin property and our convention (1) that the stabilizer of

each edge and each vertex of G is �nite. �e action G Õ T is 2-cocompact

so by [15, Proposition E] we can suppose that the set A is a single orbit G.a0/

.a0 2 Ent T / having the following properties.

i) m-separation property. For all .p; q/ 2 ‚2T there exists a 2 A such

that

p � a � q.m/; (2)

for a �xed m 2 N.

ii) generating property. For all u 2 Ent T there exists ai 2 A, i=1,. . . ,l,

such that

u �

l\
iD1

ai ; (3)

i.e. A generates Ent T as a �lter.

Convention 3.12. From now on we �x an unlinked entourage a0 2 Ent T (see (1)

of Section 3.1) such that its orbit A D G.a0/ satis�esm-separating and generating

properties. �e value of m can be easily restored in each statement. Keeping in

mind that this value might be needed to be increased further we just suppose that

m is su�ciently large.

Furthermore if G is �nitely generated we will always assume (by Lemma 3.11)

that the graph G is connected.

Remark. �e graph G plays the role of the Cayley graph Ca.G/ if G is �nitely

generated, however by Dynkin property it is always a locally �nite graph. �e

space zT D TtA is a compacti�cation of A D G0 similar to the Floyd completion

(see Section 4). Every action G Õ T can be naturally extended to the space zT .

Lemma 3.13. �e space zT D TtA is a compactum.

Proof. �e space T is Hausdor�. To prove that zT is Hausdor� we will consider

three di�erent cases. Let �rst x; y be distinct points of T then there exist disjoint

closed neighborhoodsUx andUy in T:�eir convex hulls zUx D Ux[¹e 2 A W U 0
x 2

Small.e/º and zUy D Uy [ ¹d 2 A W U 0
y 2 Small.d/º are neighborhoods of these

points in the topology of zT induced from TtEnt T (see (�) of Section 3.1). If

a 2 A \ zUx \ zUy then U 0
x and zU 0

y are both a-small. Since Ux and Uy are disjoint

we have U 0
x [U 0

y D T and so a#a contradicting our convention (1) of Section 3.1.

Hence zUx \ zUy D ; in this case.
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If now x 2 A and y 2 T then by the same reason any x-small neighborhood

of y in zT cannot contain x: Since every entourage is open in zT we are done in

this case too. If �nally both points are entourages they coincide with their disjoint

neighborhoods. So zT is Hausdor�.

�e compactness of zT follows from [15, Proposition D].

Proposition 3.14. If a group G acts 3-discontinuously on a compactum T then
the induced action on zT D T[A is also 3-discontinuous.

Remark. In [16, �eorem 5.1] it is proved that there is a unique topology on

the compacti�ed space zT with respect to which the action is 3-discontinuous.

�e argument below provides a simple proof of this for the induced topology on
zT � TtEnt T introduced above.

Proof. For a subset X � T denote by zX D X [ ¹a 2 A j X 0 2 Small.a/º � zT its

convex hull in zT . In case if X D ¹aº where a 2 A is an entourage we put zX D a:

For every g 2 G denote by Qg its natural extension to zT :

Every point x 2 ‚3 zT admits a closed neighborhood which is a “cube”
zK D zX � zY � zZ where X; Y andZ are either disjoint closed subsets of T or some

of zX; zY ; zZ are isolated entourages (in the latter case we call the corresponding

cube degenerate). Every compact subset of ‚3 zT is a �nite union of such cubes.

So it is enough to prove that for two cubes zKi D zXi � zYi � zZi � ‚3 zT .i D 0; 1/

the following set is �nite:

S D ¹g 2 G j zg zX0 \ zX1 6D ;; Qg zY0 \ zY1 6D ;; Qg zZ0 \ zZ1 6D ;º:

Suppose to the contrary that S is in�nite. Since the action G Õ T is

3-discontinuous, every accumulation point of S with respect to Vietoris topology

is a cross

hp; qi� D p � T t T � q;

cf. [15, Proposition P]. Consider now all possible cases.

Case 1 . Both cubes are not degenerate, i.e. Xi ; Yi ; Zi .i D 0; 1/ are all closed

disjoint subsets of T .

Note that at least one of the “squares” X0 �X1; Y0 � Y1 or Z0 � Z1 does not

meet the cross. Indeed otherwise two of them intersect both either p�T or T � q

which is impossible as Xi ; Yi and Zi are pairwise disjoint for i 2 ¹0; 1º.
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Let us assume that e.g. Z0�Z1\hp; qi� D ;. Let g 2 S be a homeomorphism

whose graph is contained in the neighborhood T 2 n Z0 � Z1 of hp; qi�. �en

gZ0 \ Z1 D ;. However Qg zZ0 \ zZ1 6D ;: So there exists a 2 zZ0 n Z0 such that

Qga 2 zZ1. By de�nition of the convex hull Z0
0 and .g�1.Z1//

0 are a-small. Since

.g�1Z1/
0 [ Z0

0 D T we obtain that T is the union of two a-small sets, so a#a

contradicting our Convention 3.12.

Case 2. At least one of the cubes is degenerate.

�en some of the sets zXi ; zYi ; zZi are entourages. Note that since g zX0 \ zX1 6D ;

for in�nitely many g 2 S , by Dynkin property zX0 and zX1 cannot be entourages

simultaneously. �e same is true for zYi and Zi .i D 0; 1/. So there could be at

most 3 entourages among these 6 sets. We consider all the possibilities below.

Subcase 2.1 . �ere is only one degenerate cube.

We can assume that zX0 D a for some a 2 A: �en for all g 2 S we have

ga 2 zX1. So g�1X 0
1 is a-small. For a limit cross < p; q >� for the set S and

a-small neighborhoods Up and Uq of the points p and q respectively there exists

g 2 S such that gU 0
p � Uq or g�1U 0

q � Up. If now Uq \X1 D ; then T would be

the union of a-small sets g�1X 0
1 and g�1U 0

q contradicting the unlinkness condition

a#a: So for every a-small neighborhood Uq of q we have Uq \X1 6D ;. Since X1

is closed it follows that q 2 X1.

At most one of the disjoint sets Y0 or Z0 can contain the other point p of the

cross, let p 62 Z0:�en for any neighborhoodUq and for in�nitely many elements

g 2 S we have gZ0 � Uq. If gZ0 \ Z1 6D ; for in�nitely many g 2 S then q is

an accumulation point for Z1; and since Z1 is closed we obtain that q 2 Z1 \X1

which is impossible. So for almost all g 2 S W gZ0 \ Z1 D ; and this situation

has been excluded in Case 1.

Subcase 2.2. �ere are two degenerate cubes.

Note that they cannot belong to the same level, namely if zX0 D a 2 A and
zY0 D b 2 A then by the argument of Subcase 2.1 we must have q 2 Y1 \X1 which

is impossible.

So let zY1 D b 2 A and zX0 D a 2 A: By the argument of Subcase 2.1 applied

now to the inverse elements of S we obtain that p 2 Y0: Hence for almost all

elements g 2 S we still have gZ0 \Z1 D ; which is impossible by Case 1.
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Subcase 2.3. �ere are three degenerate cubes.

�en there are at least two of three entourages which are among of the sets of

the same level: zXi ; zYi ; zZi .i D 0 or i D 1/ which is impossible. So neither case

can happen. �e proposition is proved.

Lemma 3.15. Let B be an in�nite subset of A and C D Nd .B/ whereNd .B/ is a
d -neighborhood ofB in zT . �en the topological boundaries of B and C coincide.

In particular, if .bn/n and .cn/n are two sequences in A such that dA.bn; cn/ is
uniformly bounded, then .bn/n converges to a point p 2 T if and only if cn ! p.

Proof. �e second claim directly follows from the �rst one. So to prove the lemma

we need only to show that every accumulation point of C is also an accumulation

point of B: Suppose not and there exists a point r 2 @C n @B: �en for every

neighborhood Ur of r in zT there exists an in�nite subset C0 � C such that for all

c 2 C0 we have c 2 Ur implying that U 0
r � c for some c 2 Small.c/:

Arguing by induction on d without loss of generality we may assume that

d D 1. So for all c 2 C there exists b 2 B such that c#b: �en there exists a

subset B0 � B such that dA.B0; C0/ � 1: Since C0 is in�nite by discreteness of A

the setB0 is in�nite too. Let p 2 T n¹rº be an accumulation point of B0. �en for

every neighborhood Up of p there exists b 2 B0, corresponding to some c 2 C0,

for which U 0
p � b where b 2 Small.b/: Choosing Up to be disjoint from Ur we

obtain b [ c D T and so b ‰ c: A contradiction.

De�nition 3.16 (horospheres, conical and parabolic points [15]). Let k be a �xed

positive integer, and let A be the above discrete set of entourages.

1) We say that a point p 2 T and an entourage e are neighbors (with respect to

A) and write e #
A;k
p, if there is no a 2 A such that e � a � p.k/.

2) �e horosphere TA;k.p/ (or Tk.p/ or T .p/) at the point p 2 T is the set

TA;k.p/ D ¹e 2 A j e #
A;k
pº:

3) A point x 2 T is called .A; k/-conical (or just conical) if TA;k.x/ D ;:

4) A point p 2 T is called .A; k/-parabolic (or just parabolic) if TA;k.p/ is

in�nite.

It is shown in [15] that the notions of .A; k/-conical and .A; k/-parabolic points

for k � 3 (see also Remarks 3.5) are equivalent to the standard de�nitions (see

Section 2) of conical and bounded parabolic points respectively.
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Lemma 3.17 ([15]). If the action G Õ T is 3-discontinuous and 2-cocompact
then every limit point of this action is either conical or bounded parabolic. Fur-
thermore the set of non-conical points is G-�nite and for every parabolic point
p 2 T the set T .p/ is StabGp-�nite.

�e next lemma is proved in [15, Lemma P2] for closed entourages. We prove

it below in a general form.

Lemma 3.18. For every d > 0 the parabolic point p is the unique accumulation
point of the d -neighborhood Nd .TA;k.p// of the horosphere TA;k.p/.

Proof. By Lemma 3.15 it is enough to prove the statement for the horosphere

TA;k.p/: Suppose it admits two distinct accumulation points p and q: Since the

set A is m-separating there exists a 2 A such that p � a � q.k/ for some k � m:

�en by Lemma 3.6 there exists b 2 TA;k.p/ such that p � a � b.k/ which is not

possible.

We have the following transitivity property:

Lemma 3.19. If a; b; c 2 Ent T; p 2 T and k > 2. �en a � b � p.k/ and
b � c � p.k/ imply a � c � p.k/:

Proof. If a 2 Shab and c 2 Shcb, then the sets b D a0; b1 D c0 are b-small and

a[b D b1 [c D T:�en for a c-small neighborhood c0 of p we have�c.c; c0/ �

�c.shcb; c0/� z�c.shcb; c/ > k�1: So�c.c; p/ > k�1 > 0 andp 2 b1:Note that

b\b1 D ; since otherwise�b.b1; shba/ � z�b.b1; b\b1/C�b.b\b1; shba/ � 2

which is impossible as a �b�p.k/ and k � 2:�us b1 � a and a[ c D T . Since

c was an arbitrary element of Shcb; it follows that Shcb � Shca and shca � shcb.

�us �c.shca; c0/ > k.

�e above notions allow us to introduce the following relation on the set Ent T .

De�nition 3.20 (Busemann order). For a; b 2 Ent T; and p 2 T we say that a

and b are Busemann ordered with respect to p if

either a D b;

or a � b � p.k/:

We will denote this relation by a �p;k b:

Lemma 3.19 implies that this relation is a partial order on Ent T . Using Buse-

mann order we can reformulate the above de�nitions of conical and parabolic

points as follows.
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Lemma 3.21. A point p 2 T is A-conical if and only if its Busemann order has
no minimal elements. A point p is A-parabolic if and only if its Busemann order
has in�nitely many minimal elements.

3.3. Non-re�nable tubes

Lemma 3.22. �e set ‰k.a; b/ D ¹c 2 A W a � c � b.k/º is �nite for any k � 1:

Proof. Suppose that a � c � b.k/ and let us prove that c#.a \ b/: If it is not true,

then we have c ‰ .a \ b/, i.e. there exists c 2 Small.c/; w 2 Small.a \ b/

such that c [ w D T: �us c 2 Shca \ Shcb and shca � c; shcb � c: Hence

�c.shca; shcb/ � 1 which is impossible. It follows that c#.a \ b/. �e �niteness

of ‰k.a; b/ now follows from the discreteness of A

De�nition 3.23 (re�nability). A pair ¹a; bº � A is called (k-)re�nable if

‰k.a; b/ 6D ;;

and (k-)non-re�nable otherwise.

Proposition 3.25 below guarantees the existence of a �nite non-re�nable tube

between two given entourages in A. To prove it we need the following:

Lemma 3.24. For every integer k � 2, every pair ¹a; bº � A is either
.k C 1/-nonre�nable or there exists c 2 ‰k.a; b/ such that the pair ¹a; cº is
.k C 1/-nonre�nable.

Proof. Suppose this is not true and let a pair ¹a; bº be a counter-example. By

Lemma 3.22 the set ‰k.a; b/ is �nite so we can assume in addition that the num-

ber j‰k.a; b/j is the minimal one among all such counter-examples. So ¹a; bº is

.k C 1/-re�nable and there exists c 2 ‰kC1.a; b/ such that the pair .a; c/ is

.k C 1/-re�nable too. We now claim that

‰kC1.a; c/ � ‰kC1.a; b/ .k > 1/: (1)

Let d 2 ‰kC1.a; c/. By [15, Lemma T2] we have d � c � b.k/. �en

shdb � shdc, cf. [16, Lemma B1]. �erefore �d .shdb; shda/ � �d.shdc; shda/.

So d 2 ‰kC1.a; b/ and (1) follows.

As c 2 ‰k.a; b/ n ‰k.a; c/ we obtain that j‰k.a; c/j < j‰k.a; b/j. �us by

the minimality of .a; b/ the pair .a; c/ cannot be a counter-example. �en .a;d/

is .k C 1/-nonre�nable. Since d 2 ‰kC1.a; b/ � ‰k.a; b/ the pair .a; b/ cannot

be a counter-example neither. A contradiction.

For a tube P D a � a1 � � � � � an � b we denote by @P its boundary ¹a; bº:
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Proposition 3.25. For every pair ¹a; bº � A and integer k � 2 there exists a
�nite k C 2-nonre�nable k-tube P � A such that @P D ¹a; bº:

Proof. Suppose this is not true. Let a pair ¹a; bº be a counter-example such that

it has the minimal cardinality j‰k.a; b/j among all such pairs. Since ¹a; bº is

k C 2-re�nable by the above lemma there exists c 2 ‰kC1.a; b/ such that ¹a; cº

is .k C 2/-nonre�nable. Since the inclusion ‰k.c; b/ � ‰k.a; b/ is strict there

exists a k C 2-nonre�nable k-tube Q with @Q D ¹c; bº: By the transitivity prop-

erty [15, Lemma T2] the setR D ¹aº[Q is a k-tube with the boundary ¹a; bº: It is

.kC2/-nonre�nable by construction. �us the pair ¹a; bº is not a counterexample.

We have a contradiction.

De�nition 3.26 (horospherical projection [15]). Let p 2 P be a parabolic point

and T .p/ be a horosphere at p. De�ne a projection map

…p W A �! T .p/

(or …p;k) called horospherical projection as follows. If a 62 Tk.p/, then

…p.a/ D ¹p 2 Tk.p/ W a � p � p.k/ºI

and if a 2 Tk.p/, then

…p.a/ D a:

Proposition 3.27. Let P denote the set of parabolic points for the action G Õ T:

�en for any constants k > 3 and d > 0 the following sets are G-�nite:

1) ¹¹c;dº j c 2 …p.ga/; d 2 …p.gb/; p 2 P; g 2 Gº for all ¹a; bº � AI

2) A1 D ¹.a; b/ j ‰k.a; b/ D ;; ¹a; bº 6� TA;k.p/; p 2 PºI

3) a) ¹¹p; qº � P j Nd .TA;k.p// \Nd .TA;K.q// 6D ;º; and

b) ¹Nd .TA;k.p//\Nd .TA;k.q// j ¹p; qº � Pº:

Proof. 1) Suppose to the contrary that the set 1) is in�nite. Assume �rst that a 6D b:

�en there exist an in�nite sequence of elements gn 2 G, distinct entourages

¹cn;dnº � A such that

gna � cn � pn.k/ and gnb � dn � pn.k/; (2)

cn 2 TA;k.pn/; dn 2 TA;k.pn/; pn 2 P:
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Since the set P isG-�nite (Lemma 3.17) we can assume that pn D p: Since the

stabilizer StabGp acts co�nitely on TA;k.p/ (Lemma 3.17) we can also �x cn D

c 2 TA;k.p/, and assume that dn D hn.d/; d 2 TA;k.p/; hn 2 StabGp: So (2)

gives

gna � c � p.k/ and gnb � dn � p.k/; (20)

c 2 TA;k.p/; dn 2 TA;k.p/; p 2 P:

�e following lemma implies that p is a limit point of ¹gnbºn:

Lemma 3.28. If bn � dn � p.k/ .k > 1/; dn 2 TA;k.p/ and lim
n!1

dn D p then

lim
n!1

bn D p.

We start with the following claim.

Claim. For every k > 1 there exists d 2 TA;k.p/ such that q � d � p.k/:

Proof of the claim. Indeed by m-separation property (2) there exists a 2 A such

that q � a � p.k/, for 1 < k � m: If a 2 TA;k we are done. If not let p 2 …p.a/

so a � p �p.k/: Let Up be a p-small neighborhood of p. Let also b 2 Shpa, then

a [ b D T where b is p-small and a D b0 is a-small set respectively. We have

�p.b; Up/ � �p.Up; shpa/ � z�.shpa; b/ > k � 1: �erefore Up � a and so Up

is a-small. �en for any a-small neighborhood Uq of q we have �a.Uq; Up/ > k:

Hence �a.Uq; a/ > k � 1. We have proved that Uq � b for any b 2 Shpa. �us

Uq is p-small and Uq � shpa. It implies that �p.Uq; Up/ � �p.shpa; Up/ > k:

�e claim follows.

Proof of the Lemma . Suppose by contradiction that there exists an accumula-

tion point q 2 T of the set ¹bnºn distinct from p: By the claim there exists

p 2 TA;k�1.p/ such that q � p � p.k � 1/. Since dn ! p and bn ! q by

Lemma 3.6 we obtain bn � p � dn.k � 1/ .n > n0/. So shdn
p � shdn

bn: Since

bn � dn �p.k/ we obtain p � dn �p.k� 1/:�is is impossible as p 2 TA;k�1.p/:

�e lemma is proved.

It follows from (20) that for any .gna/-small set an 2 Shc.gna/ and a c-small

neighborhood Up of p we have �dn
.an; Up/ > k � 1 > 0 .n 2 N/. �us Up � a0

n

and Up is gna-small for all n 2 N:

From the other hand by Proposition 3.14 we have that G Õ zT is a conver-

gence action. �en by [17, Lemma 5.1] for every pair of distinct non-conical points

¹x; yº � zT the accumulation points of the orbit G.x; y/ belong to the diago-

nal �2 zT . By Lemma 3.3 lim
n!1

gn.b/ D p so lim
n!1

gn.a/ D p. Hence for the
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above neighborhood Up we also have that U 0
p is .gna/-small for some n 2 N:�is

is impossible by our convention (1) of Section 3.1. Part 1) is proved.

2) Suppose that ¹.ai ; bi/ 2 A � A j i 2 I º is an in�nite set such that for

every i 2 I there is no ci 2 A such that ai � ci � bi .k/. �e set A is G-�nite

so we can �x a D ai and assume that bi D gi .b/ W gi 2 G. Since the space zT

is compact, the set ¹biºi2I admits an accumulation point p which is a limit point

for the geometrically �nite action G Õ zT : By Lemma 3.17 p is either k-conical

or k-parabolic point for some (any) k > 1. Consider these two cases separately.

Let �rst, p be a k-conical point. �en there exists c 2 A such that a�c �p.k/:

By Lemma 3.6 we have a � c � bi.k/ .i 2 I / contradicting the k-non-re�nability

of the pair ¹a; biº:

Let us now suppose that p is k-parabolic. We will now show that for al-

most all i 2 I the entourages a and bi belong to the same horosphere TA;k.p/:

We claim �rst that a 2 TA;k.p/: Indeed if not, then there exists c 2 A such that

a � c �p.k/ contradicting by the same argument the k-non-re�nability of the pair

¹a; biº .i 2 I /: So a 2 TA;k.p/:

Suppose by contradiction that there exist bi 62 TA;k.p/ for in�nitely many

i 2 I . �en there exist ci 2 TA;k.p/ such that

bi � ci � p.k/: (�)

We �rst note that in (�) we cannot have the same entourage c0 for in�nitely

many di�erent bi . Indeed if not, then from (�) we have �c0
.shc0

bi ; c0/ > k

(i 2 I / for a c0-small set c0 containing p. Since p is an accumulation point for

the set ¹biºi2I then c0
0 is bi -small for in�nitely many i 2 I . �us c0 � shc0

bi ;

and �c0
.c0; shc0

bi / � 1 which is impossible.

So we can assume that ci are all distinct. By Lemma 3.17 the quotient

TA;k.p/=StabGp is �nite, so there exists hi 2 StabGp such that hi .ci / D c 2

TA;k.p/: Hence hi .bi / � c � p.k/ for every i 2 I1 where I1 is an in�nite sub-

set of I: Since a 2 TA;k.p/ by Lemma 3.18 p is an accumulation point for the

set ¹hi .a/ºi2I1
: �en by Lemma 3.6 we obtain hi .bi / � c � hi .a/.k/ and so

bi � h�1
i ci � a.k/ which is impossible.

So bi 2 TA;k.p/ for almost all i 2 I: �is shows that the set A1 is G-�nite.

Part 2) is proved.

3) a) We omit the index k below. Suppose that the �rst set is in�nite. �en there

exists an in�nite set of G-non-equivalent pairs of parabolic points .pi ; qi/ 2 P2

for which Nd .T .pi// \ Nd .T .qi// 6D ; .i 2 I /. Since the action of G on ‚2T

is cocompact there exist gi 2 G such that the pair .gi .pi /; gi.qi // belong to
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a compact subset of ‚2T . So without lost of generality we may assume that

the sets ¹piºi2I and ¹qiºi2I admits two distinct accumulation points p and q:

It follows from [15, Lemma P3] that there cannot exist an entourage belonging to

the intersection of in�nitely many distinct horospheres (for a more general system

of horospheres this is also true, see [18, Corollary of 4.4.2]). So there is an in�nite

sequence of distinct entourages bi 2 Nd .T .pi// \ Nd .T .qi// .i 2 I /. �e set

¹biºi2I admits an accumulation point x 2 T: Let .ci /i � T .pi/ and .di /i � T .qi/

be two subsets for which dA.bi ; ci/ and dA.bi ;di/ are bounded by the constant d:

�us dA.ci ;di / � 2d and by Lemma 3.15 we have p D q D x. A contradiction.

b) If now the second set is not G-�nite then for a �xed parabolic point p 2 P

by the part a) we obtain q 2 P such that the set Nd .T .p//\Nd .T .q// is in�nite.

�en by 3.15 we must have p D q: �e proposition is proved.

Corollary 3.29. Suppose that G is a �nitely generated group acting 3-discontin-
uously and 2-cocompactly on a compactum T:�en there exists a constant C > 0

such that the dA-diameter of each of the sets 1), 2), and 3b) of Proposition 3.27 is
bounded by C .

Proof. Since G is �nitely generated by Lemma 3.11 the graph G is connected. So

d is a real distance. �e Corollary follows from the above proposition.

From Proposition 3.27,2) we immediately have

Corollary 3.30. Let G Õ T be a 3-discontinuous and 2-cocompact action satis-
fying the above conditions. �en if for a �xed a 2 A and in�nitely many bn 2 A

the pairs .a; bn/ are all non-re�nable then for all but �nitely many n one has
.a; bn/ � T .p/.

We will now obtain few more �niteness properties characterizing the horo-

spherical projection …p W A ! TA;k.p/ .p 2 P/. �e following de�nition is moti-

vated by Lemma 3.6.

De�nition 3.31. For a �xed k > 3 a visibility neighborhood of the point p 2

…p.a/ � TA;k.p/ from the point a 2 A is the set

N.a;p; p/ D ¹x 2 TA;k.p/ j a � p � p.k/ ^ : a � p � x.k � 1/º;

where : denotes the opposite logical statement.
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�e following proposition establishes the G-�niteness properties of two more

sets (by continuing the notations of 3.27):

Proposition 3.32. For every k > 1 the following sets are G-�nite:

1) A2 D ¹.x;p/ 2 T 2
k
.p/ j x 2 N.a;p; p/; a 2 A; p 2 PºI

2) A3 D ¹…p.Tk.q// j ¹p; qº � Pº:

Proof. 1) Suppose by contradiction that it is not true and A2 is not G-�nite for

some k > 1: Since A is one G-orbit up to taking an in�nite subset of A2 we can

�x the entourage p: By [15, Lemma P3] p can belong to at most �nitely many

di�erent horospheres. So up to a passing to a new in�nite subset we can �x the

parabolic point p 2 P.

If �rst the set of entourages ¹a j .x;…p.a// 2 A2º is �nite, up to choosing a

new in�nite subset of A2 we have a � p � p.k/ and : a � p � x.k � 1/ for a

�xed a. �en the set of the �rst coordinates ¹x j .x; �/ 2 A2º � T .p/ is in�nite

and by Lemma 3.18 its accumulation point is p: �en by Lemma 3.6 there exists

x in this set such that a � p � x.k/. A contradiction.

If now the set ¹a j .x;…p.a// 2 A2º is in�nite let q 2 T be its accumulation

point. Taking a p-small neighborhood Uq of q we obtain that U 0
q is a-small for

every a 2 Uq : �us Uq � shpa: Since a � p �p.k/; so �p.Uq ; Up/ > k � 1 for a

p-small neighborhoodUp of p: It yields q�p�p.k�1/:�ere are in�nitely many

x 2 T .p/ corresponding to the points a 2 Uq . Since p is the unique accumulation

point of T .p/ we must have x 2 Up for most such x: Hence �.shpa; shpx/ �

�p.Up; Uq/ > k � 1. �erefore a � p � x.k � 1/: Again a contradiction.

2) Suppose not. Since the set of parabolic points P is G-�nite we can �x the

point p 2 P: Using the action of StabGp on Tk.p/ we can also assume that there

is a �xed entourage c 2 T .p/ such that for every q 2 P W c 2 …p.T .q//: So there

exists an in�nite set ¹di 2 …p.T .qi// j i 2 I; qi 2 Pº such that for all i 2 I we

have

bi � di � p.k/; ai � c � p.k/; ¹ai ; biº � T .qi/:

Since p is the unique accumulation point of T .p/, up to passing to an in�-

nite subsequence of I , we may assume that lim
i!1

di D p. �en by Lemma 3.3

we have lim
i!1

bi D p. Let q 2 T be an accumulation point of the set ¹qiºi2I .
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We claim that q D p. Indeed if not then there exists an entourage a 2 A such that

q�a �p.k/. Hence for in�nitely many i 2 I we have q�a �bi.k/ (Lemma 3.6).

�en �a.Uq; shabi / > k for every a-small neighborhood Uq of q. So for some

i 2 I we have qi 2 Uq and hence qi � a � bi .k/. �e latter one is impossible

since bi 2 Tk.qi/: If the set ¹aiº has an accumulation point r di�erent from p

then there exists a 2 A such that r � a �p.k/. So as above we have qi � a � ai.k/

which is impossible by the same reason. So lim
i!1

ai D p: �en for every c-small

neighborhood Up of p we have that Up is also ai -small and U 0
p is ai -small for

in�nitely many i: �is is impossible. �e proposition is proved.

�e following Corollary gives a uniform bound on the cardinality of the inter-

section of the stabilizers of parabolic points for a geometrically �nite action.

Corollary 3.33. Let G be a group admitting a 3-discontinuous and 2-cocompact
action on a compactum T . �en there is a constant C such that for every pair of
distinct parabolic points pi and pj for the action G Õ T one has

jStabGpi \ StabGpj j � C:

Proof. DenoteHi D StabGpi : Suppose the statement is not true. By Lemma 3.17

the set of parabolic points for the action G Õ T is G-�nite. So up to conjugation

we can suppose that there exists a sequence of the stabilizers of parabolic points

H0; Hn .n 2 N/ such that jH0 \ Hnj ! 1: Let Tn be a horosphere at pn .n 2

N [ ¹0º/. �en the projection …p0
.Tn/ of Tn on T0 is invariant under H0 \ Hn:

Since the action H0 Õ T0 is discontinuous we have j…p0
.Tn/j ! 1 which is

impossible by Proposition 3.32.2).

Remark. �e above corollary is also true if G is a countable group acting

3-discontinuously on a compactum T such that every point T is either conical

or bounded parabolic. Indeed in this case by [15, Main �eorem (c)] the space

T is metrisable. So by [29] the action G Õ T is 2-cocompact and the above

Corollary holds.

3.4. Proof of �eorem A. �e aim of this subsection is the following.

�eorem A. Let G be a relatively hyperbolic group with respect to a collection
of parabolic subgroups ¹P1; : : : ; Pnº: �en G is the fundamental group of the
following �nite “star graph”
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(1)

whose central vertex group G0 is �nitely generated relatively hyperbolic with
respect to those edge groups Qi D Pi \ G0 which are in�nite, all other vertex
groups of the graph are Pi .i D 1; : : : ; n/.

Moreover for every �nite set K � G the subgroup G0 can be chosen to
contain K.

Proof. Recall that A D G.a0/ .a0 2 Ent T / is a discrete orbit of entourages

forming the vertex set of the graph G satisfying our Convention 3.12. Without lost

of generality we can assume that the groupG is not �nitely generated and a0 2 K:

So the graph G is not connected (see Lemma 3.11). �e distance dA.x;y/ is a

pseudo-distance being in�nity if and only if x and y belong to di�erent connected

components of G: By Lemmas 3.17 and 3.18 the set P of parabolic points for the

action G Õ T is G-�nite; and for every p 2 P the stabilizer Hp D StabGp acts

co�nitely on its horosphere T .p/:

LetAi .i D 1; 2; 3/ � A2 be theG-�nite sets introduced in Propositions 3.27.2)

and 3.32.

We now construct a new graph zG whose set of vertices is A and the set of edges

is given by the pairs of entourages belonging to the following sets:

a) the �nite set K2 and the set of all its horospherical projections

¹…p.K
2/ j p 2 PºI

b) the set A1 and the set of all its horospherical projections ¹…p.A1/ j p 2 PºI

c) the set A2I

d) the set A3.



398 V. Gerasimov and L. Potyagailo

All these sets areG-�nite. Indeed the set A1 isG-�nite by Proposition 3.27.2).

So by Proposition 3.27.1) the set ¹…p.A1/ j p 2 Pº consisting of the projections

of �nitely many G-orbits of pairs is G-�nite too. �e sets A2 and A3 are G-�nite

by Proposition 3.32.

Lemma 3.34. �ere exists a �nitely generated subgroup G0 of G containing any
�nite subset K � G and which is relatively hyperbolic with respect to Qi D

Pi \G0 .i D 1; : : : ; n/:

Proof. Let G0 be the connected component of zG containingK: SetG0 D StabGG0

and A0 D G0
0: By Lemma 3.11 the group G0 is �nitely generated. We are left to

prove that G0 is relatively hyperbolic with respect to the subgroups ¹Qiº
k
iD1:

Let T0 be a subset of T which is the limit set of G0:We will �rst show that the

action G0 Õ T0 is 2-cocompact. By [15, Proposition E] the 2-cocompactness is

equivalent to the k-separation property: there exists b 2 A0 such that

p � b � q.k/; for all p; q 2 T0; p ¤ q; (1)

for some k > 0: Since the action of G on T is 2-cocompact, property (1) is true

for some b 2 A: If b 2 A0 we are done, so suppose that b 62 A0: Let Up and Uq

be b-small neighborhoods of the points p and q such that �b.Up; Uk/ > k: Since

p and q are accumulation points of A0 there exist entourages a; c 2 A0 such that

U 0
p is a-small and U 0

q is c-small. So Up � shba and Uq � shbc: Hence

a � b � c.k/: (2)

By Proposition 3.25 up to re�ning the pair ¹a; bº we can suppose that the pair

¹a; bº is k C 2-nonre�nable. Since b 62 A0; by operation b) above the pair ¹a; bº

must belong to an horosphere TkC2.r/ .r 2 P/. As ¹a; cº � A0 and G0 is con-

nected there exists a path 
 D 
.a; c/ � G0: Let e D …r .c/: Note that for every

edge l 2 G1
0 we have …r .l/ 2 G1

0. Indeed if l joins two vertices of A0 then by the

operations a), b) and d) all their horospherical projections are joined by edges too.

So …r .G0/ � G0: Since ¹a; eº � T .r/\…r .
/ we have e 2 A0:

Operation c) then implies that b 62 N.c; e; r/: By De�nition 3.31 we have

b � e � c.k C 1/: (3)

So shbc � shbe and (2) yields �b.shba; shbe/ > k � 1 and a � b � e.k � 1/:

�us shea � sheb and by (3) we have a � e � c.k � 1/ with e 2 A0: We have

proved that the action G0 Õ T0 is .k � 1/-separating and so is 2-cocompact; cf.

[15, Proposition E].
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By [15, Main �eorem] every point of T0 is either conical or parabolic for the

action of G0 on T0: Let p 2 T0 be a parabolic point for this action. We need the

following.

Claim. �e point p is also parabolic for the action of G on T:

Proof of the claim. Suppose that the claim is false. Let T .p/ � A0 be a horo-

sphere for the action G0 Õ G0. Let us choose b 2 Tk�3.p/ � T .p/ .k > 3/

where Ts.�/ denotes the “sub-horosphere” of T .�/ of order s (see De�nition 3.16).

Suppose �rst that b does not belong to any horosphere zTk.q/ � A for the

action G Õ zG. Since p is conical for the action G Õ T there exists c 2 A such

that b � c � p.k � 1/: Note that c 62 A0 as otherwise b 62 Tk�1.p/ which is

impossible as Tk�3.p/ � Tk�1.p/: By the sublemma below we can also suppose

up to re�ning the couple .b; c/ that it is not k-re�nable (k > 3). Since b and c do

not belong to one horosphere in zG, by operation b) above, c and b are joined by

an edge in zG: So c 2 A0 and we have a contradiction in this case.

We a�rm now that there exists h 2 StabG0
p such that h.b/ does not belong to

any horosphere zTk.q/ where q 2 P. Suppose not, then b 2 Tk�3.p/ \ zTk.q/ for

some q 2 P: Again since p is conical for the action on T there exists c 2 A n A0

such that b � c � p.k � 1/: By the argument above we can assume that c 2 zTk.q/

too. Up to choosing h 2 StabG0
p so that b1 D h.b/ 2 Tk�3.p/ is su�ciently

close to p we can also assume that b�c �b1.k�1/ (Lemma 3.6). As the distance

dA0
.b; b1/ is large, by Proposition 3.27.3b) we have that b1 62 zTk.q/. �en there

exists q1 2 P n ¹p; qº such that b1 2 zTk.q1/. By the argument above giving

formula (3) it follows that there exists e 2 …q.b1/\A0 such that b1 �e �c.k�1/

and so b � e � b1.k � 2/: Continuing in this way we obtain an in�nite sequence

bn D hn.b/ 2 Tk�3.p/ \ zTk.qn/ where hn 2 StabG0
p and qn D hn.q/ are all

di�erent parabolic points. By Proposition 3.27.1) it follows that the subset B DS
n2N…q.hn.b// of zTk.q/\A0 is �nite. So up to choosing a new subsequence for

a �xed e 2 B we have b�e �bn.k�2/ .n 2 N/: Since p is the accumulation point

of ¹bnºn2N, for any e-small neighborhood Up of p its complement U 0
p is bn-small

for in�nitely many n: �us Up � shebn and so �e.sheb; Up/ > k � 3 implying

b � e � p.k � 3/: �erefore b 62 Tk�3.p/ which is a contradiction proving the

claim.

We have StabG0
p D StabGp\G0. Lemma 3.34 is proved modulo the following

lemma.
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Sublemma 3.35. If b�c�p.k�1/ and b�c1�c.k/ then b�c1�p.k�1/ .k > 3/:

Proof. Let us �rst show that c1 � c � p.k � 2/: Indeed the second assumption

implies that shcc1 � shcb: So for a c-small neighborhood Up of p using the �rst

assumption for any c 2 Shcc1 we have

�c.c; Up/ > �c.shcb; Up/ � z�c.shcb; c/ > k � 2:

So Up � c0 2 Shc1
c and z�c1

.shc1
c; Up/ � 1: Hence

�c1
.shc1

b; Up/ > �c1
.shc1

b; shc1
c/ ��c1

.shc1
c; Up/ > k � 1:

�e lemma and the proposition are proved.

�e following lemma �nishes the proof of the theorem.

Lemma 3.36. �e action G Õ zG induces an action on a bipartite simplicial tree
T such that the graph X D T=G satis�es �eorem A.

Proof. Using the graph zG we construct the tree T to have vertices belonging to two

subsets C andH:�e elements of C are components of zG and the elements ofH are

the horospheres of A D zG0. We call them non-horospherical and horospherical
respectively. Two verticesC andH of T are joined by an edge if and only ifC 2 C,

H 2 H; and C \H 6D ;:

Let us �rst show that T is connected. Indeed by construction every horospher-

ical vertex is joined with a non-horospherical one. So it is enough to prove that

every two non-horospherical vertices can be joined by a path. Let Ci .i D 1; 2/

be the corresponding connected components of zG and let us �x two entourages

a 2 C 0
1 and b 2 C 0

2 . By Proposition 3.25 there exists a non-re�nable tube

between them: P D a � b1 � � � � � bn � b � A: By operation b) above every

non-re�nable pair .bi ; biC1/ either belongs to an horosphere T .p/ or corresponds

to an edge in the graph zG: In the latter case it stays in the same component of zG:

In the former case the horosphere T .p/ corresponds to a single vertex of the

graph T. So the tube P produces a path in T between the corresponding vertices.

�us T is connected.

Let us now show that T is a tree. Suppose not and it contains a simple loop ˛.

Since the vertices of two types alternate on ˛ we can �x a horospherical ver-

tex H corresponding to the horosphere T .p/ and having two non-horospherical

neighboring vertices C1 and C2: Let ˛1 be a subpath of ˛ containing the ver-

tices H , C1, C2; and ˛2 be the closure of ˛ n ˛1. �e path ˛2 corresponds to

an alternating sequence of components of zG and horospheres. So we can choose
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a sequence of tubes Pi � Ci where each Ci .i � 3/ is a component of zG cor-

responding to a non-horospherical vertex of ˛2. �e tube Pi connects two en-

tourages from Ci each belonging to horospheres T .qi/ and T .q0
i/ intersecting Ci :

Note that these horospheres di�er from the initial horosphere T .p/ as ˛ is a sim-

ple loop. By operations b) and d) above it follows that that there exists the pathS
i …p.Pi [ T .qi/ [ T .q0

i// on T .p/ \ zG: It implies that the vertices C1 and C2

correspond to the same connected component of zG which is impossible. So T is a

tree.

By Lemma 3.34 we can assume that the stabilizer G0 of a component G0 2 C

is �nitely generated and contains the �xed �nite set K � G: �e group G acts

transitively on A and so on C:�en every element of C is stabilized by a subgroup

conjugate to G0. So in the graph X D T=G there is only one non-horospherical

vertex v0 D C=G whose vertex group is G0:

�e set of horospheres on T is G-�nite (Lemma 3.17) so X contains n ver-

tices of non horospherical type each representing the G-orbit of an horosphere

T .p/ .p 2 P/: Every one of them is connected with v0 by a unique edge.

So every vertex group of horospherical type is Pi and the edge groups are

Qi D Pi \ G0 .i D 1; : : : ; n/. �e �eorem is proved.

3.5. Corollaries of �eorem A. �eorem A admits several immediate corol-

laries describing di�erent type of �niteness properties of relatively hyperbolic

groups.

Corollary 3.37. LetG be a relatively hyperbolic group with respect to the system
Pj .j D 1; : : : ; n/. �en there exists an exhaustion

G D
[
i2I

Gi ;

where Gi is a �nitely generated group which is relatively hyperbolic with respect
to the system Pj \Gi .j D 1; : : : ; n/:

De�nition 3.38. A group G is called relatively �nitely generated with respect

to a system P of subgroups if it is generated by the system P and a �nite set S

generators.

Furthermore G is relatively �nitely presented with respect to P if there are at

most �nitely many relations between the elements of S:

Corollary 3.39. Let G be a group acting 3-discontinuously and 2-cocompactly
on a compactum T . �en G is relatively �nitely generated with respect to the
stabilizers of the parabolic points.



402 V. Gerasimov and L. Potyagailo

Proof. Indeed by �eorem A the group G is generated by a �nitely generated

subgroup G0 and by the parabolic subgroups Hi .i D 1; : : : ; n/. �e Corollary

follows.

Corollary 3.40. A group G acting 3-discontinuously and 2-cocompactly on a
compactum T without parabolic points is �nitely generated.

Remark. If in particular G acts 3-discontinuously and 3-cocompactly on T with-

out isolated points then every point of T is conical [17, Appendix]. So, by Corol-

lary 3.40, G is �nitely generated in this case. By a direct argument one can now

deduce that G is word-hyperbolic [17, Appendix]. �is provides a new proof of a

theorem due to B. Bowditch [4].

Before we state the next corollary let us recall two more de�nitions of rel-

ative hyperbolicity valid for in�nitely generated groups. �e �rst one is due to

B. Bowditch:

De�nition 3.41 ([2]). A graph � is called �ne if there are at most �nitely many

simple arcs of a bounded length with �xed endpoints.

An action of a group G on a graph � is proper on the set of edges �1 if the

stabilizers of edges are �nite, the action is called co�nite if j�1=Gj < 1.

A groupG is called relatively hyperbolic with respect to a system of subgroups

P if G acts non-parabolically on a connected �ne hyperbolic graph � co�nitely

and properly on edges such that P is a maximal set of non-conjugated in�nite

stabilizers of vertices.

�e second de�nition is due to D. Osin:

De�nition 3.42 ([26, De�nions 2.3, 2.30, 2.35]). A group G is relatively hy-
perbolic with respect to a �nite system P of subgroups of in�nite index if it is

�nitely presented with respect to P and the corresponding relative Cayley graph

� D Cay.G;P[S/ admits a linear relative Dehn function i.e. the relative area of

a cycle in � of length � n is bounded by a linear function of n.

�e main corollary of �eorem A is the following result establishing that all

known de�nitions of the relative hyperbolicity valid for a group of any cardinality

are equivalent to the existence of the star-graph of groups decomposition (1) of

�eorem A.
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�eorem 3.1. �e following conditions are equivalent for a group G:

1) De�nition 1.1.

2) Bowditch’s De�nition 3.41.

3) Osin’s De�nition 3.42

4) G admits the star-graph of groups decomposition (1) of �eorem A where
the central vertex groupG0 is a �nitely generated relatively hyperbolic group
with respect to those edge groupsQi which are in�nite.

Remark. In fact in [26] the �niteness of the system P is not required. We need it

to have the equivalence of the Osin’s de�nition to all others de�nitions which all

imply this assumption.

Proof. As it was mentioned in the Introduction modulo �eorem A and known

facts the proof of the theorem goes according to the diagram (�) from the Intro-

duction. It remains only to show Propositions 3.43 and 3.47 whose proofs are

given below.

Proposition 3.43. Let a group G admit the graph G of groups decomposition (1)

of �eorem A. Suppose that the subgroup G0 acts on a �ne ı-hyperbolic graph �
properly and co�nitely on the set of edges and the groups Qi are the stabilizers
of G0-non-equivalent vertices of �. �en there exists an action of G on a �ne
ı-hyperbolic graph � properly and co�nitely on �1 such that P1; P2; : : : are the
stabilizers of G-non-equivalent vertices.

In particular, ifG0 is relatively hyperbolic in the sense of Bowditch with respect
to the subgroupsQi then G is relatively hyperbolic in the same sense with respect
to the subgroups Pi .i D 1; : : : ; n/.

Note that the statement above is more general than the implication 4/ H) 2/

as we do not need to assume thatG0 is �nitely generated and that all the subgroups

Pi are in�nite. �e group G is relatively hyperbolic with respect to those which

are in�nite.

Proof of the proposition. We will construct the graph� as the quotient of another

graph z�.

Let T be the universal covering tree of the graph G and let � W T ! G be the

covering map. For a vertex v 2 ��1¹G0º�T0 denote by G0;v its stabilizer StGv in

G and by z�v a copy of � on which the group G0;v acts. We can assume that all

these copies are disjoint.
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�ere is a bijection between the T-edges incident to v and the vertices of z�v .

Using this bijection we can replace a small neighborhood of v in T by z�v joining

the v-endpoint of an edge with the corresponding vertex of z�v . �is implantation

can be madeG-equivariantly, so the obtained graph z� is connected and acted upon

by G.

�ere are two kinds of the edges of z�: those of the graphs z�v and those of T.

Now we collapse all the edges of the second kind. Let � denote the resulting

graph. Since the collapsing is G-equivariant there is an induces action GÕ� and

the projection map � W z� ! � is aG-equivariant morphism of graphs. Hence the

graph � is connected too.

We have the diagram

z�
�

�✠
❅
❅❘

� �

� T

of G-equivariant graph morphisms where � collapses z�v to v.

Denote by �v the �-image of z�v is isomorphic to z�v . Unlike the z�v’s the

subgraphs �v of � are not disjoint.

Canonical lifting of the paths. For a vertex w2�0 the subgraph ��1w of z� is

either the star of a vertex Qw2T0 such that � Qw is one of the vertices Pi or a vertex

in some �v . We say that Qw is the central representative of w in the �rst case.

Claim. For every locally injective path 
 W I ! � between two vertices there
exists a unique locally injective path

Q
 W J �! z�

between the central representatives of the endpoints of 
 and a monotone map

� W J �! I

such that


ı�D Q
ı�:

If 
 is geodesic then Q
 also is.
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Proof of the claim. Both existence and uniqueness follow from the fact that the

�-preimages of vertices are connected subtrees and the maximal subpaths in �v’s

lift uniquely to paths in z�v . �ese lifted subpaths can be joined uniquely in the

corresponding subtrees providing the lift of the whole path.

�e statement about geodesic paths follows from the fact that every locally

injective path in a tree is geodesic. �e lemma is proved.

Veri�cation of the properties of the action GÕ�. By construction the action

GÕ�1 is proper and co�nite.

Recall that a circuit in a graph � is a subgraph homeomorphic to the circle S1.

Every circuit of� is contained in a subgraph �v since otherwise its lift is a circuit

in z� containing T-edges so its �-image is a non-trivial circuit in the tree T which

is impossible. �is implies that � is �ne.

It remains to verify that � is ı-hyperbolic provided that � is. Let � be a ge-

odesic triangle in � and let Q� denote the triangle in z� obtained from � by the

canonical lifting of the sides. By Lemma Q� is geodesic in z� and �.�/ is geodesic

in T. �us Q� actually consists in pieces that either T-edges or geodesic bigons in

subgraphs �v or (at most one) geodesic triangle in some �v . Each this piece is

ı-thin by the hypothesis. �e proposition is proved.

Remark. Proposition 3.43 gives a generic construction of non-�nitely generated

relatively hyperbolic groups. By �eorem A any relatively hyperbolic group can

be constructed in this way.

Furthermore the implication 2/ H) 1/ of Proposition 3.43 and [16, Remark 9.1]

imply that G acts 3-discontinuously and 2-compactly on a compactum such that

the ¹Pi W i D 1; : : : ; nº is a complete list of representatives of the stabilizers of

parabolic points.

�e rest of the subsection is devoted to the proof of the implication 2/ H) 3/.

�e argument is rather standard. However we did not �nd an adequate reference

for non-�nitely generated groups, so for the reader’s convenience we provide it

here. �e argument below is motivated by [5].

In this section we consider graphs as 1-dimensional CW-complexes and cycles

as non-oriented cycles.

Let„ denote the graph with two vertices P;Q and three edges a; b; c that join

P with Q.

Every continuous map ' W „ ! � determines three cycles in �; denote them

by 'ab , 'bc , 'ca.
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A non-negative function ˛ on the set ¹cycles in �º is called a pseudo-area
function on � if

˛.'ac/ 6 ˛.'ab/C˛.'bc/

for every continuous map ' W „ ! �.

P

Q

a b c

Let C be a set of circuits in a graph �. Denote by �CC the CW-complex

obtained from � by attaching a 2-cell to each circuit in C.

For a locally injective map 
 W S1 ! � denote by `.
/ the natural length of 
 :

this is the number of edges that 
 consecutively passes.

Lemma 3.44. Let a group G act on a �ne hyperbolic graph � properly and
co�nitely on the set of edges �1 of �. �en there exists a G-�nite set C of circuits
in � such that the complex �CC is simply-connected and for every G-invariant
pseudo-area function ˛ on � there exists a number M such that ˛.
/ 6 M`.
/

for every locally injective map 
 W S1 ! �.

A

B

C

D


1


2

Proof. Consider a locally injective map 
 W S1 ! �. Choose points A;B in the

image of 
 such that jABjDdiam Im.
/. We will show that B belongs to a non-

geodesic piece of 
 of a bounded length.
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Suppose that the d -neighborhood in 
 of the point B is a geodesic segment.

�en we have jBC jDjBDjDd and jCDjD2d . �is implies

jABjCjCDj > dCmax¹jAC jCjBDj; jADjCjBC jº:

Since our graph is hyperbolic, the value of d is bounded by some constant ı [20,

1.1.A].

Hence for d D ı C 1 the arc CBD is not geodesic. We join C with D by a

geodesic segment �. Let 
1 D � [ ÀCAD and 
2 D � [ ÀCBD. �e length of 
2 is

bounded by 4ı C 3.

�us the cycle 
2 possesses a tesselation by at most 4ıC3 simple cycles of

length at most 4ıC3.

Since � is �ne and �1=G is �nite, the set CD¹circuits of length 64ıC3º is

G-�nite. As ˛ is G-invariant there exists a constant M such that ˛.
2/ 6 M . By

the de�nition of pseudo-area ˛.
/ 6 ˛.
1/C˛.
2/. Since `.
1/ 6 `.
/�1 the

desired inequality follows by induction on l.
/. �e lemma is proved.

Let S denote a (�nite) relative system of generators and Pi .i 2 I / be the

system of all maximal parabolic subgroups of G. Recall that the set of vertices

of the coned-o� Cayley graph Cof.G; S [ P/ is G [ P where P is the set of the

parabolic points pi whose stabilizer is Pi . �e set of edges is E1 [E2 whereE1 is

the set of edges of the absolute Cayley graph Cay.G; S/ and E2 is the set of edges

joining every parabolic element in Pi with the point pi �xed by .i 2 I /; cf. [11].

Lemma 3.45. Let a groupG admit a co�nite and proper on edges action on a �ne
hyperbolic graph �. �en there exists a �nite system S of relative generators of
G such that the coned-o� Cayley graph Cof.G; S [P/ is also �ne and hyperbolic
and G acts on it co�nitely and properly on edges, where P is a set of parabolic
vertices of �:

Proof. We present a �nite algorithm for passing from � to Cof.G; S [ P/ by

keeping all the above properties valid.

Consider �rst an intermediate graph � obtained from � as follows. Set �0 D

�0 t G: We call the vertices and the edges of � blue and the elements of G red.

Denote by F � �0 a fundamental set for the action G Õ �0 containing one

representative in each G-orbit of blue vertices. Join the vertex represented by the

element 1 of G with each vertex in F by a red edge. Let � denote this set of red

edges. By applying to this new edges the elements of G we obtain a G-invariant

set G� of red edges. Put �1 D �1 [ G�.
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To construct a new graph z� we have to add a �nitely many orbits of new

edges and eventually remove all the blue edges preserving the connectedness of

the graph. We proceed as follows.

Let e D .x; y/ 2 �1 � �1 be a blue edge. If � n Ge is connected then put
z� D � nGe. Suppose that � nGe is not connected and the endpoints x and y of

a blue edge belong to di�erent connected components of � nGe. We choose red

vertices x0 and y0 adjacent to x and y respectively, join them with a new yellow
edge e0 and put z� D .� nGe/[ Ge0:

We need to show that adding or deleting the orbit of one edge keeps the prop-

erties of � valid. We proceed by induction keeping the notation � for the graph

of the previous step for which all the requested properties were true (at the be-

ginning � D �); and denote by z� the graph � ˙ Ge where e is a red, a yellow

or a blue edge (we add the red and the yellow edges and delete the blue ones).

By construction at least one of the vertices of each new edge e has �nite stabilizer

for G Õ �, so the action on the new graph is still proper and co�nite. Since we

�rst add a yellow edge and then delete the corresponding blue one the graph z�

remains connected.

To prove the �ness of the new graph we will use a result of [2] which we brie�y

state now for the completeness. A collection L of subgraphs of a graph is called

edge-�nite if for every edge e the set ¹L 2 L j e 2 L1º is �nite. We need the

following

Lemma 3.46 ([2, Lemma 2.3]). Suppose that K is a �ne graph, and A is a col-
lection of arcs of bounded length in K. �en the graph KŒA� obtained by adding
the edges joining the endpoints of the arcs in A is also �ne.

By this lemma after the adding of the orbit of an edge to � the obtained graph

remains �ne. Indeed in the orbit A D ¹gL W g 2 Gº of a �nite arc L � � the set

¹g 2 G j e 2 gL1º is �nite. Otherwise, since the set �1=G is �nite, there would

exist an edge of L with in�nite stabilizer.

It is obvious that the operation of deleting of an orbit of blue edges preserves

the �ness.

To check the hyperbolicity let us check that there is a map between the set of

vertices �0 and z�0 of the graphs � and z� respectively which is at most

K-bi-Lipschitz. Here K D max¹r C 1; 3º and r is the diameter of F . Indeed

the map is at most 1-bi-Lipschitz at the beginning when we add the �rst orbit of

red edges. Here the direct map is the identity on �0 and the inverse map is the

projection of G to �0 which does not increase the distances (G is not contained

in �0). On the next steps the direct map is still an isometry on �0. For the inverse
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map to return from z� to � we delete the orbit Ge of the edge ¹x; yº where y is

red and x 2 F is a blue vertex. Note that F contains a vertex x0 already joined

with 1, so the distance between 1 and x in � is at most 1 C r asserting that the

map is .r C 1/-bi-Lipschitz.

In its turn adding of an orbit of yellow or blue edges is at most 3-bi-Lipschitz

as we replace a path of length at most 3 by an edge. So on each step there is

a quasi-isometry between the graphs � and z�. Since the number of orbits is

�nite the process completes after a �nitely many steps and the �nal graph is still

hyperbolic [20].

To obtain a coned-o� Cayley graph from the �nal graph z� it remains to remove

each blue vertex z having �nite stabilizer (the blue vertices with in�nite stabilizers

will be the parabolic vertices of the coned-o� Cayley graph). We also remove all

the red edges incident to z and join every two vertices adjacent to z in z� by a

yellow edge. By the same argument as above the obtained graph is connected,

�ne and hyperbolic, and the G-action on it is co�nite and proper on edges. Let

S denote the set of the elements of G joined with the element 1 by yellow edges.

It follows that the obtained graph is the coned-o� Cayley graph Cof.G; S [ P/

where P is the set of parabolic vertices. �e lemma is proved.

�e following proposition �nishes the proof of �eorem 3.1

Proposition 3.47. Let a group G act on a �ne hyperbolic graph � properly and
co�nitely on�1. �enG is relatively �nitely presented with respect to any maximal
set P of non-conjugate in�nite stabilizers of vertices for the action. Furthermore
it admits a linear relative Dehn function.

Proof. By Lemma 3.45 there exists a �nite set S � G such that the coned-o�

Cayley graph Cof.G; S[P/ is �ne and hyperbolic. �e groupG acts on it co�nitely

and properly on edges.

By Lemma 3.44 there exists a simply connected complex

W D Cof.G; S [ P/ [ C

where C is a G-�nite set of circuits that bound 2-cells. For every such 2-cell D

whose vertices do not all belong to the star of one parabolic vertex we do the

following surgery. Once the boundary @D contains two consecutive red edges

passing through a parabolic vertex p we replace this pair of edges by one yellow

edge and consider the component of D not containing p. We cut in this way all

parabolic vertices on @D and obtain a 2-diskD0 whose boundary lies in the relative

Cayley graph. Proceeding similarly with all 2-cells of W we obtain a 2-complex
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S containing a G-�nite set of 2-cells attached to circuits in the graph Cay.G; S [

.[P//. It follows that every singular disk in S whose boundary is not contained

in the star of a parabolic vertex can be tessellated by a �nite number of the 2-cells

D obtained above. So these cells give rise to a �nite relative presentation for G

relatively to the parabolic subgroups Pi .i 2 I /.

To estimate the Dehn function consider a circuit 
 in the complex S. We can

assume that no three consecutive vertices of 
 belong to a star of a parabolic vertex.

We now replace every yellow boundary edge of 
 whose endpoints belong to the

same coset of a parabolic subgroup Pi by a pair of red edges in Cof.G; S [ P/

passing through its �xed point pi (i 2 I ). Let 
 0 be the obtained circuit in W.

We have ˛.
/ D ˛0.
 0/ and `0.
 0/ � 2`.
/ where ˛ and l (respectively ˛0 and l 0)

denote the relative area and the length of a circuit in the relative Cayley graph

(respectively coned-o� graph). By Lemmata 3.44 and 3.45, ˛0.
 0/ � M`0.
 0/ and

so ˛.
/ � 2M`.
/:

�e proposition and �eorem 3.1 are proved.

4. Floyd metrics and shortcut metrics

From now on we will assume that G is a �nitely generated group acting 3-discon-

tinuously and 2-cocompactly on a compactum T: Let us �rst recall few standard

de�nitions concerning Floyd compacti�cation (see [12], [24], [27], [16], and [17]

for more details).

We will deal with abstract graphs even without assuming any group action

(in particular it can be the Cayley graph or the entourage graph G considered in

Section 3).

Let � be a locally �nite connected graph. For a �nite path ˛ W I ! � .I � Z/

we de�ne its length to be jI j � 1: We denote by d.�; �/ the canonical shortest path

distance function on �, and by B.v; R/ the ball at a vertex v 2 �0 of radius R.

Let

f W N �! R>0

be a function satisfying the following conditions: there exists � > 0 such that, for

all n 2 N,

1 <
f .n/

f .nC 1/
< �I (1)

X
n2N

f .n/ < C1: (2)
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De�ne the Floyd length Lf;v.˛/ of a path ˛ D ˛.a; b/ � � with respect to a

vertex v as follows:

Lf;v.˛/ D
X

i

f .d.v; ¹xi ; xiC1º//: (�)

where ˛0 D ¹xiºi is the set of vertices of ˛ (we assume f .0/ WD f .1/ to make it

well-de�ned).

�e Floyd metric ıf;v is de�ned to be the corresponding shortest path metric:

ıf;v.a; b/ D inf
˛
Lf;v.˛/; (��)

where the in�mum is taken over all paths ˛ between the vertices a and b in �:We

denote by x�f the Cauchy completion of the metric space .�; ıf;v/ and call it Floyd
completion. Let

@f � D x�f n �

be its boundary, called Floyd boundary.
If � is a Cayley graph Ca.G; S/ of a group G with respect to a �nite generat-

ing system S we denote by xGf and by @fG the Floyd completion and the Floyd

boundary respectively. Condition 1 above implies that the G-action extends to its

Floyd completion xGf by homeomorphisms [24]. �erefore in this case for any

g 2 G the Floyd metric ıg is the g-shift of ı1:

ıg.x; y/ D ı1.g
�1x; g�1y/; x; y 2 xGf ; g 2 G;

where 1 is the neutral element ofG. Every two metrics ıg1
and ıg2

are bi-Lipschitz

equivalent with a Lipshitz constant depending on d.g1; g2/: �e same properties

are valid for any locally �nite, connected and G-�nite graph � (j�0=Gj < 1).

Recall that a quasi-isometric map (or c-quasi-isometric map) ' W X ! Y be-

tween two metric spaces X and Y is a correspondence such that

1

c
dX .x; y/ � c < dY .'.x/; '.y// � cdX .x; y/C c;

where c is a uniform constant and dX ; dY denote the metrics of X and Y

respectively.

If in addition dX .id;  ı '/ � const for a (c-)quasi-isometric map  W Y ! X

we say that ' is a (c-)quasi-isometry between X and Y:

A c-quasi-isometric map ' W I ! X is called c-quasigeodesic if I is a convex

subset of Z or R. A quasigeodesic path 
 W I ! � de�ned on a half-in�nite subset

I of Z is called (quasi-)geodesic ray; a (quasi-)geodesic path de�ned on the whole

Z is called (quasi-)geodesic line.

�e following lemma will be often used.
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Lemma 4.1 (Karlsson lemma). Let � be a locally �nite connected graph. �en
for every " > 0 and every c > 0; there exists a �nite set D such that ıv-length of
every c-quasigeodesic 
 � � that does not meetD is less than ".

Remark. A. Karlsson [24] proved it for geodesics in the Cayley graphs of �nitely

generated groups. �e proof of [24] does not use the group action and is also valid

for quasigeodesics.

Consider now a set S of paths of the form 
 W Œ0; n� ! � of unbounded length

starting at the point a D ˛.0/ 2 �. Every 
 2 S can be considered as an element

of the product
Q

i2I B.a; i/. Since � is a locally �nite graph the latter space is

compact in the Tikhonov topology. So every in�nite sequence .˛n/n � S pos-

sesses a “limit path” ı W Œ0;C1/ ! � whose initial segments are initial segments

of ˛n.

�e following lemma illustrates the properties of in�nite quasigeodesics of �.

Lemma 4.2 ([17]). Let � be a locally �nite connected graph. �en the following
statements are true:

1) every in�nite ray

r W Œ0;C1Œ�! �

converges to a point at the boundary,

lim
n!1

r.n/ D p 2 @f �I

2) for every point p2@f � and every a 2 � there exists a geodesic ray joining a
and pI

3) every two distinct points in @f � can be joined by a geodesic line.

Let � be a locally �nite, connected graph on which a �nitely generated group

G acts cocompactly. Besides the Floyd metrics the Floyd completion x�f possesses

a set of shortcut pseudometrics which can be introduced as follows (see also [16]

and [17]). Let ! be a closed G-invariant equivalence relation on x�f : �en there

is an induced G-action on the quotient space x�f =!. A shortcut pseudometric Nıg

is the maximal element in the set of symmetric functions % W x�f �x�f ! R>0 that

vanish on ! and satisfy the triangle inequality, and the inequality %6ıg .
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Forp; q2x�f the value Nıg.p;q/ is the in�mum of the �nite sums
Pn

iD1ıg.pi ; qi/

such that pDp1, qDqn and hqi ; piC1i2! .iD1; : : : ; n�1/, cf. [8, p. 77]. Obvi-

ously, the shortcut pseudometric Nıg is the g-shift of Nı1. �e metrics Nıg1
; Nıg2

are

bi-Lipschitz equivalent for the same constant as for ıg1
, ıg2

.

�e pseudometric Nıg is constant on !�equivalent pairs of points of @f �; so

it induces a pseudometric on the quotient space x�f =!: We denote this induced

pseudometric by the same symbol Nıg .

Let � be a connected, locally �nite and G-�nite graph. �e graph G given by

the discrete system A D G.a0/ .a0 2 Ent T / of entourages (see De�nition 3.10

and Convention 3.12) is also locally �nite, G-�nite and connected (Lemma 3.11).

So there exists a c-quasi-isometry ' W � ! G: Let f and g be scaling functions

satisfying both (1) and (2) as well as the condition

g.n/

f .cn/
< D; n 2 N; (3)

where c is the above quasi-isometry constant. By [17, Lemma 2.5] the map '

extends to a G-equivariant Lipshitz map between the Floyd completions x�f and
xGg of these graphs. We denote this map by the same letter ':�e following lemma

is a direct consequence of the main result of [16]:

Lemma 4.3 (Floyd map). Let G be a �nitely generated group acting 3-discontin-
uously and 2-cocompactly on a compactum T . �en there exist � 2�0; 1Œ and a
continuous G-equivariant map

F W x�f �! zT D A t T

for the scaling function f .n/ D �n:

Furthermore for every vertex v 2 �0 the quantity Nıv.F.x/; F.y// is a metric
on zT where x; y 2 x�f and v D '.v/ D F.v/:

Proof. It follows from [16] that there exists � 2�0; 1Œ and a continuousG-equivari-

ant map F W xGg ! zT where g.n/ D �n:

Let ' W x�f ! xGg be the G-equivariant Lipshitz map described above where

f .n/ D �n and � D �1=c . Set F D F ı ': �e map F transfers the pseudometric
Nıv on x�f to zT as follows:

Nıv.F.x/; F.y// D Nıv.x; y/; where v D F.v/; v 2 Ca.G; S/:

By [16] each Nıv is a metric on zT : �e kernel of F is the closed G-invariant

equivalence relation on x�f such that Nıv.F.x/; F.y// D 0. Indeed since Nıv is a

metric on zT the latter one yields F.x/ D F.y/ .x; y 2 xGf /:
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Remarks 4.4. 1) We will call the obtained metric Nıv (v D F.v/ 2 A) on zT shortcut
(Floyd) metric.

2) Lemma 4.3 is in particularly true for any polynomial scalar function f .

Moreover one can put f D g as f .cn/=f .n/ D const in this case.

3) Since Nıg � ıg the Karlsson Lemma 4.1 is also true when one replaces the

Floyd ıv-length by the shortcut Nıg-length.

5. Horospheres and tubes

Let a �nitely generated group G act 3-discontinuously and 2-cocompactly on

a compactum T . �en the graph of entourages G is connected (Lemma 3.11).

We will use the graph distance dA on G as well as the set of shortcut metrics
Nıv .v 2 G/ on the compacti�ed space zT D T [A coming from Lemma 4.3 where

A D G0:

We obtain in this section several properties of tubes and horospheres which

will be used later on.

Lemma 5.1. For any integer k > 1 there exists a constant � > 0 such that, for all
a; c 2 zT D TtA and all b 2 A,

a � b � c.k/ H) Nıb.a; c/ � �:

Proof. For a �xed entourage b 2 A let Cb;k denote the closure of the set ¹¹a; cº 2
zT � zT W a � b � c.k/º in zT : We �rst claim that the set Cb;k does not intersect the

diagonal of zT � zT : Suppose not and .p; p/ 2 Cb;k \ �2 zT . �en there exist two

in�nite sequences .an/n and .cn/n in Cb;k converging to p. By discreteness of A

we may suppose that p 2 T . By Lemma 3.6 we have an � b � cn.k/. Let U be

a b-small neighborhood of p. �en U 0 is an-small and cn-small simultaneously

for n > n0: Hence shban [ shbcn � U , and so �b.shban; shbcn/ � 1 which is

impossible. It follows that Cb;k \�2 zT D ;:

Since Cb;k is a closed subset of zT � zT ; and Nıb is a metric on zT , there exists a

constant �.b/ > 0 such that Nıb.a; c/ � �.b/ on Cb;k . �us our statement holds for

the set Cb;k of entourages separated by the �xed entourage b:

We have A D G.a0/. If now a � b � c.k/ then there exists g 2 G such that

b D g.a0/, so g�1a � a0 � g�1c.k/: �us Nıb.a; c/ D Nıa0
.g�1.a/; g�1.c// � �;

where � D �.a0/ is the above constant for a0: �e lemma is proved.

�e following lemmas give a local description of C -quasigeodesics around

tubes and horospheres.
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Lemma 5.2. �ere exists a constantD > 0 such that, for every C -quasigeodesic

 D 
.a; c/ in G with the endpoints a; c and all b 2 ‰k.a; c/,

dA.b; 
/ � D; (1)

where ‰k.a; c/ D ¹b 2 A W a � b � c.k/º:

Proof. By Lemma 5.1 we have Nıb.a; c/ � �; and so the Floyd length Lf;b.
/ of


 is at least �: By Karlsson Lemma 4.1 (see also Remark 4.4.3)) there exists a

constant D > 0 such that 
 \ B.b; D/ 6D ; for the dA-ball B.b; D/ in G centered

at b with the radius D: �e lemma is proved.

Lemma 5.3. 1) For any C > 0 and E � 0 there exists L > 0 such that for any
parabolic point p 2 T and any C -quasigeodesic 
 W Œ0; 1� ! G one has

dA.
.1/; T .p// � E H) dA.
;…p.
.0/// � L: (2)

2) �ere exists a constantD > 0 such that for any parabolic point p 2 T and
any C -quasigeodesic 
 W Œ0;1Œ! G one has

lim
n!1


.n/ D p H) dA.
;…p.
.0/// � D: (3)

a D 
0

b


.1/

p

T .p/

Figure 3. Quasigeodesics around horospheres.
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Proof. 1) Suppose not, then there exist constants C and E such that for any n

there exist a parabolic point pn and a C -quasigeodesic 
n W Œ0; 1� ! G such that

dA.
n.1/; T .pn// � E and dA.
n;…pn
.
n.0/// > n for all n 2 N: By Lemma 3.17

there are at most �nitely many G-non-equivalent parabolic points. So we may

assume that p D pn and let bn 2 …p.
n.0//: By the same lemma the group

StabGp acts co�nitely on T .p/ so we may also suppose that b D bn.

Since dA.
n.1/; b/ is unbounded the set ¹
n.1/ºn is in�nite. As dA.
n.1/,

T .p// � E by Lemma 3.18 up to passing to a subsequence we get 
n.1/ ! p.

Denote an D 
n.0/ and cn D 
n.1/: For all n we have an 6D b so an 62 T .p/ and

an � b � p: By Lemma 3.6 we obtain an � b � cn.n > n0/. �us Lemma 5.2

implies that dA.b; 
n/ � D which is a contradiction. Statement 1) is proved.

2) We have lim
n!1

.
.n/ D cn/ D p and without lost of generality we can sup-

pose that a D 
.0/ 62 T .p/:�en arguing similarly we obtain a � b � cn .n > n0/

where b D …p.a/: From Lemma 5.2 we have dA.b; 
/ � D.

�e following lemma is a generalization of the previous one to the geodesics

with variable endpoints:

Lemma 5.4. 1) For any C > 0 and E � 0 there exists M > 0 such that for any
parabolic point p 2 T and any C -quasigeodesic 
 W Œ�1; 1� ! G one has

dA.¹
.�1/; 
.1/º; T .p//� E H) dA.
.0/;…p.
.0/// � M: (20)

2) �ere exists a constant D > 0 such that for any parabolic point p 2 T and
any C -quasigeodesic 
 W Œ�1;C1Œ! G one has

lim
n!˙1


.n/ D p H) dA.
.0/;…p.
.0/// � D: (30)

Proof. 1) As before using the �niteness of G-non-equivalent parabolic points,

we �x a parabolic point p: Let 
� D 
.Œ�1; 0�/; and 
C D 
.Œ0; 1�/: If a D


.0/ 62 T .p/ and b D …p.a/ then by the statement 1) of Lemma 5.3 we have

dA.
˙; b/ � L. Let z 2 
C and y 2 
� be the points realizing these distances.

Since there is a path from z to y through b of length 2L, the length l.
.z;y/// of

the

C -quasigeodesic 
.z;y/ between z and y is at most 2L.C C 1/. So at least for

one of these entourages, e.g. z, we have l.
.a; z// � L.C C 1/: By the triangle

inequality we obtain dA.a; b/ � M D L.C C 2/:

�e same argument and Lemma 5.3.2) imply statement 2).
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�e following Corollary establishes the uniform quasiconvexity of all horo-

spheres and the quasiconvexity (simple) of every parabolic subgroup (see also [15]

and [17]).

Corollary 5.5. Suppose G acts 3-discontinuously and 2-cocompactly T: �en
there exists M > 0 such that for every p 2 P the horosphere T .p/ is a M -quasi-
convex subset of A.

Furthermore for everyp 2 P there exists a constantDp such that the parabolic
subgroupHp D StabGp is Dp-quasiconvex.

Proof. Suppose �rst that 
 � A is a C -quasigeodesic with @
 � T .p/ for some

p 2 P. By Lemma 5.4.1 for E D 0 there exists a uniform constant M > 0 such

that 
 � NM .T .p//; where NM .�/ denotes the M -neighborhood with respect to

the distance dA.

To prove the second part note that since G is �nitely generated it is enough

to prove it for the graph G quasi-isometric to the Cayley graph. By Lemma 3.17

for every p 2 P the set T .p/=Hp is �nite where Hp D StabGp. So there ex-

ists a constant E D E.p/ such that H � NE .Tp/ and T .p/ � NE .H/: So if


 � A is a C -quasigeodesic with @
 � H then dA.@
; T .p// � E. �en again by

Lemma 5.4.1) there exists a constant M D M.p/ such that 
 � NM .T .p//. So


 � NDp
.H/ where Dp D M C E:

Remark. Above Lemmata 5.3 and 5.4 are close to some lemmas contained in our

work [17] where the horospheres were de�ned without using the entourages. We

need the above results in terms of entourages to apply them in the further argument

where the language of entourages is crucial.

By Proposition 3.27.3b) we have that for every d > 0 there exists e D e.d/ > 0

such that, p; q 2 P,

diam.Nd .T .p/\Nd .T .q/// � e: (4)

De�nition 5.6. Let 
 � zT be a C -quasigeodesic. We call an entourage v 2 


d -horospherical if there exist parts Œv; c� and Œa; v� of 
 of length greater than

the constant e and which are contained in a d -neighborhood Nd .T .p// of a horo-

sphere T .p/.

�e entourage v 2 
 is called non-horospherical in the opposite case.

Remark. By 4 we can suppose that the parabolic point p with respect to which

the (non)-horosphericity is considered is unique.
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Lemma 5.7. Let 
 D 
.a; c/ be a c-quasigeodesic. Suppose that P D P.a; c/

is a non-re�nable tube having the same ending vertices a and c as 
 . For every
su�ciently large d > 0 there exists a constant E > 0 such that dA.g; P / � E for
every d -non-horospherical point g 2 
:

Proof. Note that the non-re�nable tube P.a; c/ exists by Proposition 3.25.

By Lemma 5.2 there existsD > 0 such that for every pi 2 P we have dA.pi ; 
/ �

D .i D 1; : : : ; m/. So let us �x a non-horospherical entourage g 2 
 , and let

gi 2 
 be such that dA.pi ; 
/ D dA.pi ;gi/ .i D 0; : : : ; m/. Let us also assume

that g 2 
.gi ;giC1/where 
.gi ;giC1/ denotes the part of 
 between gi and giC1.

By Corollary 3.29 there exists a constant C > 0 such that if dA.pi ;piC1/ > C

then the pair ¹pi ;piC1º is contained in a horosphere T .p/. In this case we have

¹gi ;giC1º � ND.T .p// and by Lemma 5.4 we have that 
.gi ;giC1/ � NL.T .p//

for some L D L.D/ > 0: Let d be any number bigger than L: If g is d -non-

horospherical then, by De�nition 5.6, dA.g;gi / or dA.g;giC1/ is less than e. �us

dA.g; P / � e C d:

If now dA.pi ;piC1/ � C then dA.gi ;giC1/ � c.C C 2D/C c: So dA.g; P / �

dA.gi ;g/CD � c.C C 2D/C c CD:

Put E D max¹e C d; c.C C 2D/C c CDº. �e lemma is proved.

Remark. �e constants d and e depend on the constants D, C and L D L.D/

given respectively by Lemma 5.2, Corollary 3.29, and Lemma 5.4.

6. Tight curves in G

Let a �nitely generated group G act 3-discontinuously and 2-cocompactly on a

compactum T . For a parabolic point p we denote by N.T .p// a neighborhood

of the horosphere T .p/ in the graph G (see Section 3.2). �e notation diam.�/ is

used for the diameter of a set with respect to the distance dA and j � j stands for

the length of a curve. We denote by c�1.n/ the linear function
n

c
� c for some

constant c > 0:

De�nition 6.1. For positive integers l and c, a curve 
 W I ! G is called

.l; c/-tight (or just tight when the values of l and c are �xed) if for every J � I

the following conditions hold:

1) jJ j � l H) 
 jJ is a c-quasigeodesic;

2) if j
.J / \N.T .p//j > l for some p 2 P then diam.
.@J // > c�1.l/:
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�e rest of the section is devoted to the proof of the following theorem

describing the non-horospherical points (see De�nition 5.6) of tight curves.

�eorem B. For every c > 0 and d > 0 there exist positive constants l0; w0; c0

such that for all l � l0 and every .l; c/-tight curve 
 � G there exists a
c0-quasigeodesic ˛ � A such that every d -non-horospherical vertex of 
 belongs
to the w0-neighborhood Nw0

.˛/ of ˛:

�e following three lemmas are close to the results of the previous section.

We use below the notation diam Nıv
for the diameter of a set with respect to the

shortcut metric Nıv .v 2 A/ on zT (see Lemma 4.3)

Lemma 6.2. �ere exist positive constants � and d such that for every c-quasi-
geodesic 
 W I ! G of non-zero length and a d -non-horospherical point 
.0/ 2 G

one has

diam Nı
.0/
.
.@I // > �:

Proof. Let us �rst prove that there exists a constant r > 0 such that for some

� D �.r/ we have

dA.
.0/; 
.@I // > r H) Nı
.0/.
.@I // > �: (�)

Suppose the converse. �en for every d > 0 there exists a sequence of quasi-

geodesics 
n such that dA.
n.0/; 
n.@I // ! C1 and Nı
n.0/.
.@I // ! 0 where


n.0/ is a d -non-horospherical point of 
n:

Up to choosing a subsequence we may suppose that the sequence .
n/n

converges in the Tikhonov topology to a c-quasigeodesic 
 W Z ! G such that

lim
n!˙1


.n/ D p 2 T:�en 
 is a horocycle at p and by [17, Lemma 3.6] the point

p is parabolic. By Lemma 5.4.2) for every i 2 Z the distance dA.
n.i/; T .p// is

uniformly bounded by a constantD > 0. So the points 
n.0/ areD-horospherical

for su�ciently large n: �e obtained contradiction proves (�).

We are left now with the case when dA.
.0/; 
.@I // � r where the constant r

satis�es (�). Suppose �rst that the distance between 
.0/ and both endpoints of


.@I / is less than r . By translating 
.0/ to a �xed basepoint v 2 A we obtain that


 is contained in a �nite ball B.v; r C c.r//. �en the Nıv-length of 
 is uniformly

bounded from below. If the distance between 
.0/ and only one of its endpoints

is bigger than r then the Nı-length of 
 is still bounded from below.

Denoting by � the minimum among all of these constants we obtain the lemma.
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Remark. Above we have used Lemma 3.6 from [17] stated there for the Cayley

graphs. Since our graph G is quasi-isometric to the Cayley graph this result can

be applied.

Recall that A D G.a0/ is the vertex set of the graph G: Using a “re�ning”

procedure we will now introduce a new graph G� whose vertex set A� satis�es

some additional conditions.

From now on we �x the constant d and � D �.d/ coming from Lemma 6.2

and an integer k > 3 which will be used in the betweenness relation below. Let ı

be a number such that

0 < ı <
�

k C 2
: (��)

De�nition of the set A�. For every v 2 A denote by v� the entourage ¹¹x; yº 2

S 2T W Nıv.x; y/ < ıº:

It follows from the following lemma that the compactifying topology on T

coming from the graphs A� and A is the same.

Lemma 6.3. For all p 2 T , an ! p if and only if a�
n ! p:

Proof. Suppose �rst that an ! p and a�
n 6! p. �en there exists a neighborhood

Up of the point p such that U 0
p is not a�

n-small for n > n0: So there exist xn; yn 2

U 0
p such that Nıan

.xn;yn/ > ı: It follows that up to subsequences we have xn !

x 2 T; yn ! y 2 T .n ! 1/ and x ¤ y ¤ p ¤ x: Let Ux and Uy be closed

neighborhoods of x and y such that Up \ Ux \ Uy D ;:

Let H.Ux;y/ � G denote the set of geodesics whose endpoints are situated

in Ux;y D Ux t Uy : By [17, Main Lemma] H.Ux;y/ \ T D Ux;y \ T where
xUx;y means the closure of Ux;y in zT D A t Ent T: It follows that the geodesics


n.xn;yn/ � G between xn and yn do not intersect a neighborhood Vp � Up of

p .n > n0/: Since an ! p we have dA.an; 
n/ ! 1: By Karlsson Lemma 4.1

(see also Remark 4.4.3)) we obtain that Nıan
.xn;yn/ < ı .n > n0/ which is a

contradiction.

Suppose now a�
n ! p and an 6! p:�en up to a subsequence we have an ! q

6D p: Let Up be a neighborhood of p such that U 0
p is a�

n-small (n > n0). We have

dA.an; Up/ ! C1. �en by Karlsson Lemma, for all x; y 2 Up, Nıan
.x; y/ <

ı .n > n0/: So Up and U 0
p are both a�

n-small (n > n0) which is impossible (see (1)

of Section 3.1).
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�e need of the graph A� is explained by the following lemma.

Lemma 6.4. �ere exists constant w > 0 such that for every quasigeodesic


 W I �! G

containing three vertices a; b; c 2 A,

b is d -non-horospherical ^ dA.b; ¹a; cº/ > w H) a� � b� � c�.k/:

Proof. Suppose not and there are sequences an; cn and bn such that bn is d -non-

horospherical, dA.bn; ¹an; cnº/ ! 1 and a�
n � b�

n � c�
n .k/ is not true. Since A is

G-�nite we can suppose that bn D b: Up to a subsequence we have an ! p,

cn ! q. Let 
n D 
n.an; cn/ � G be a geodesic between an and cn. Since b is

non-horospherical we have by Lemma 6.2 that Nıb.p; q/ > �; hence p ¤ q.

Let Up and Uq be disjoint b�-small neighborhoods of p and q respectively.

So Nıb.U; V / > � � 2ı; and (��) yields Nıb.Up; Uq/ � � � 2ı > k � ı. We obtain

�b�.Up; Uq/ > k: By Lemma 6.3 we also have a�
n ! p and c�

n ! q: So U 0
p

and U 0
q are a�

n-small and c�
n -small respectively (n > n0/: Hence Up � shb�a�

n

and Uq � shb�c�
n : It follows that �b�.shb�a�

n; shb�c�
n/ � .�b�.Up; Uq/ > k.

�erefore a�
n � b� � c�

n.k/ which is a contradiction.

Lemma 6.5. For every d > 0 there exists a constant l0 such that for every par-
abolic point p, and all entourages b; c;d 2 Nd .T .p//, and a 2 A, for all l > l0

one has

dA.b; c/ > l ^ dA.b;d/ > l ^ a� � b� � c� .k/ H) a� � b� � d� .k� 1/: (1)

Proof. Since by Lemma 3.17 the set of parabolic points is G-�nite it is enough

to prove the statement for a �xed parabolic point p 2 T: By Lemma 3.18 the

parabolic point p is the unique limit point ofNd .T .p//:By de�nition of the topol-

ogy on TtEntT for su�ciently large l0 our assumption implies that the entourages

c and d are su�ciently close to p. By Lemma 6.3 the entourages c� and d� are

also close to p: So for every b�-small neighborhoodUp of p its complement U 0
p is

c�-small and d�-small for l > l0:�en shb�c� � Up and shb�d� � Up. �erefore
z�b�.shb�c�; shb�d�/ � 1: We obtain

�b�.shb�d�; shb�a�/ � �b�.shb�a�; shb�c�/ � z�b�.shb�c�; shb�d�/ > k � 1:
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Remark 6.6. (about the constants). Since now on we assume that the tightness

constant l is much bigger than the horosphericity constants d , e D e.d/ (see

De�nition 5.6 and the Remark after it) and w (see Lemma 6.4). We will also

suppose that the chosen constants satisfy the relations

l0 > 4w and w > e:

Proof of �eorem B. Recall that for a �xed constant d > 0 by Lemma 6.2 we

have found � D �.d/ and have de�ned the set A� of vertices of a new graph of

entourages. Since now on the term “(non)-horosphericity” will mean “d -(non)-

horosphericity.”

Before going into the details we outline the proof of the theorem. We start by

choosing non-horospherical points vn of the curve 
 which give by Lemma 6.4

an auxiliary tube P � D ¹v�
nº in the graph A�. �ere is a quasi-geodesic ˛� � A�

whose non-horospherical points are in a bounded distance from P � (Lemma 5.7).

Since the graphs G and G� are G-�nite the map ' W v ! v� is a quasi-isometry

between them. �is will give us a quasi-geodesic ˛ � A satisfying the statement

of the �eorem. All the remaining constants will be found in the course of the

proof.

To construct the tube P � we proceed inductively by choosing vertices of 
 as

follows. Let 
.0/ be the �rst non-horospherical point on 
 , then we put v�
0 D


�.0/. Suppose that a point v�
n D 
�.n/ is already chosen. �en for the con-

stant w �xed above we choose inC1 � in C w such that 
.inC1/ is the �rst non-

horospherical point on 
 after 
.in Cw/:We set v�
nC1 D 
�.inC1/:�e following

proposition shows that for every n each three chosen neighboring vertices form a

tube v�
n�1 �v�

n �v�
nC1 .k�2/ for the integer k �xed above. �en all the constructed

vertices will give a tube P � D v�
0 � v�

1 � � � � � v�
m .k � 2/.

Proposition 6.7. For every n 2 N one has v�
n�1 � v�

n � v�
nC1 .k � 2/:

Proof of Proposition 6.7. �ere are four di�erent cases depending on the lengths

j
 jŒin;inC1�j D inC1 � in

of the parts of 
 .n 2 N/:

Case 1 . in � in�1 � l=2 ^ inC1 � in � l=2. By de�nition of a tight curve the

points 
.in�1/; 
.in/; 
.inC1/ belong to a c-quasigeodesic part of 
 so the result

follows from Lemma 6.4.
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Case 2. inC1 � in�1 > l: �ere are three subcases.

Subcase 2.1 . in � in�1 � l=2 ^ inC1 � in > l=2: Since 
.inC1/ is the �rst

non-horospherical point on 
 after 
.in C w/ and w < l=2 the point 
.in C w/

is horospherical. Since w > e by the Remark after De�nition 5.6 there exists a

unique horosphere T .p/ such that dA.
.in C w/; T .p// � d . As 
 jŒin;inCw� is a

c-quasigeodesic we have

dA.
.in/; T .p// < cw C c C d: (� � �)

Furthermore Lemma 6.4 yields


�.in�1/ � 
�.in/ � 
�.in�1 C l/ .k/: (2)

Since inC1 � in�1 > l the point 
.in�1 C l/ is also horospherical and 
.in�1 C l/ 2


 j�inCw;inC1�: �e curve 
 jŒin;inCl� is still c-quasigeodesic so we have

dA.
.in/; 
.in�1 C l// >
in�1 C l � in

c
� c �

l

2c
� c >

l

4c
; (3)

where we assume that l > l0 > 4c
2 for the constant l0 from Lemma 6.5.

T .p/

p


.in�1/ 
.in/


.in C w/

.in�1 C l/


.inC1/

Figure 4. Tight curves around horospheres.

By construction we can also suppose that 
.inC1/ 2 Nd .T .p// for the d -

neighborhood Nd .T .p// of p. Indeed otherwise there would exist another non-

horospherical point on 
 after 
.in C w/ and preceding 
.inC1/. So by (� � �)

¹
.in/; 
.inC1/º � Nd0
.T .p//; where d0 D cw C c C d:

If, �rst, inC1 � in � l then 
 jŒin;inC1� is a c-quasigeodesic, and

dA.
.in/; 
.inC1// >
l

2c
� c >

l

4c
:
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Hence by the choice of l0 (see Remark 6.6) and all l > l0 we have from (2), (3),

and Lemma 6.5


�.in�1/ � 
�.in/ � 
�.inC1/ .k � 1/: (4)

If now inC1 � in > l then applying De�nition 6.1.2) to Nd0
.p/ we obtain

dA.
.in/; 
.inC1// > c
�1.l/

and again (4) follows from (2), (3), and Lemma 6.5.

Subcase 2.2. in �in�1 � l=2 ^ inC1 �in � l=2:�e argument is similar to that

of Subcase 2.1 but it works in the opposite direction. We have the tube 
�.inC1/�


�.in/ � 
�.inC1 � l/ .k/: As above if in � in�1 � l then the curve 
 jŒin�1;in�

is c-quasigeodesic and so its diameter is greater than l=4c. If not then using the

tightness property of it, we obtain that dA.
.in�1/; 
.in// > c
�1.l/ and (4) follows

by the same argument as in Subcase 2.1.

Subcase 2.3. in � in�1 � l=2 ^ inC1 � in � l=2: In this case we have that

the points 
.in � l=4/ and 
.in C l=4/ preceding respectively 
.in/ and 
.inC1/

are both horospherical. Indeed w < l=4 and 
.in/ and 
.inC1/ are the �rst non-

horospherical points after 
.in�1/ and 
.in/ respectively. So we can suppose that


.in/ 2 Nd .T .p// and 
.inC1/ 2 Nd .T .q// where p and q are distinct parabolic

points. Since 
 jŒin�l=4;inCl=4� is a quasigeodesic by Lemma 6.4 we have


�
�
in �

l

4

�
� 
�.in/ � 
�

�
in C

l

4

�
.k/: (5)

We also have dA.
.in�1/; 
.in// and dA.
.in/; 
.inC1// are both greater than

l=4c. Indeed if in � in�1 > l then by .l; c/-tightness we have dA.
.in�1/; 
.in// >

c�l .l/ > l=4c: If in � in�1 � l then 
 jŒin�1;in� is c-quasigeodesic, and as above

dA.
.in�1/; 
.in// > l=4c. In the same way we obtain dA.
.in/; 
.inC1// > l=4c:

Applying now Lemma 6.5 to (5) two times for l > 4cl0 we obtain


�.in�1/ � 
�.in/ � 
�.inC1/ .k � 2/:

�e proposition is proved.

We continue the proof of �eorem B. By Proposition 6.7 the curve 
 admits

a set of non-horospherical points vn D 
.in/ such that v�
n D '.
.in// is a vertex

of the tube P �: Let u D 
.i/ be a non-horospherical point of 
 which does not
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belong to the set ¹vnºn: �en by construction in � i < in C w for some in 2

¹0; : : : ; mº: Since w < l the curve 
 jŒin;inCw� is a c-quasigeodesic so dA.vn; u/ �

cw C c: �e map ' W u 2 A ! u� 2 A� is a quasi-isometry so dA�.u�; v�
n/ �

w1 for some uniform constant w1 > 0: Let ˛� be a geodesic in the graph G�

with the same endpoints as P �. �en by Lemma 5.2 (applied to the graph G�)

there is a constant D� > 0 such that, for all v� 2 P �, dA�.˛�; v�/ � D�: So

for every non-horospherical point u 2 
 we have dA�.u�; ˛�/ � dA�.u�; v�/ C

dA�.v�; ˛�/ � w1 C D� where v� 2 P �: �e map '�1 W u� ! u is a quasi-

isometry too. Hence ˛ D '�1.˛�/ is a c0-quasi-geodesic in G such that for every

non-horospherical point u 2 
 we have dA.u; ˛/ � w0 for some positive constants

c0 and w0: �eorem B is proved.

7. Floyd quasiconvexity of parabolic subgroups

Let G Õ T be a 3-discontinuous and 2-cocompact action of a �nitely generated

group G on a compactum T: Let � be a locally �nite, connected graph on which

G acts discontinuously and co�nitely (e.g. its Cayley graph or the graph of en-

tourages). We denote by d.; / the graph distance of �. Let f W N ! R>0 be a

scaling function esatisfying the following conditions (see Section 4): there exists

� > 0 such that, for all n 2 N,

1 <
f .n/

f .nC 1/
< �I (1)

X
n2N

f .n/ < C1: (2)

To precise that f satis�es (1) with respect to some � 2�1;1Œ we will say that

the function f is �-slow. Denote by ıf the corresponding Floyd metric on � with

respect to a �xed vertex v 2 �0.

By a standard argument based on Arzela-Ascoli theorem it follows that the

Floyd completion x�f of the graph � is a geodesic (strictly intrinsic) space; see

e.g. [8, �eorem 2.5.14]. We call Floyd geodesic (or ıf -geodesic) a geodesic in

the space x�f with respect to the Floyd ıf -metric. �e geodesics in � with respect

to the graph distance d we call below (d -)geodesics.
�e set �0=G D K is �nite so we can identify in � a subgroup H of G with

the orbitHK D
S

h2H hK � �0. LetNR.H/ denote the R-neighborhood ofHK

in � for the graph metric.
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De�nition 7.1. Let � be a locally �nite, connected graph possessing a G-�nite

action. A subgroup H of G is called Floyd quasiconvex in � if there exists a

constant R D R.H/ > 0 such that every Floyd geodesic 
 D 
.h1; h2/ � �

for the metric ıf having the endpoints hi in H belongs to NR.H/ for all x 2


 W d.x;H/ < R:

By Corollary 5.5 every parabolic subgroup of G is quasiconvex with respect

to the word metric (see also [15]). �e aim of this section is to prove the following

�eorem stating the Floyd quasiconvexity of parabolic subgroups.

�eorem C. Let G be a �nitely generated group acting 3-discontinuously and
2-cocompactly on a compactum T: Let � be a locally �nite, connected graph
admitting a cocompact discontinuous action of G: �en there exists a constant
�0 2�1;1Œ such that for every � 2�1; �0Œ and every �-slow Floyd scaling function
f satisfying (1) and (2), each parabolic subgroup H of G is Floyd quasiconvex
for the Floyd metric ıf .

We start with two lemmas.

Lemma 7.2. For every r > 0 there exists �0 > 1 such that for all � 2�1; �0Œ and
every �-slow function f the condition d.x; y/ � r .x; y 2 �0/ implies that every
Floyd ıf -geodesic 
 D 
.x; y/ � � whose endpoints are x and y is a geodesic
in �.

Remark. A similar statement for ı-hyperbolic spaces is proved in [20, Lem-

ma 7.2.1].

Proof. Let v 2 �0 be a basepoint. Denote by ! D !.x; y/ a �-geodesic between

x and y for which j!j D r: Let m 2 ! such that d.v;m/ D d.v; !/: �en for at

least one of the points x or y, say x, we have d.v; x/ � d.m; x/. Indeed otherwise

d.x; y/ � d.v; x/C d.y; v/ < r which is impossible. Put R D d.v; x/: We have

Lf .!/ D

rX
iD1

f .d.v; ¹xi ; xiC1º// � rf .d.v;m//:

Suppose by contradiction that 
 is not d -geodesic and so j
 j � r C 1.

Let 
 0 be the part of 
 in the ball B.v; RC r C 1/ of radius R C r C 1 centered
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at v. By the triangle inequality we also have j
 0j � r C 1: So Lf .
/ � Lf .

0/ �

.r C 1/f .RC r C 1/: We obtain

f .RC r C 1/

f .R � d.x;m//
�
f .RC r C 1/

f .d.v;m//

�
Lf .
/

.r C 1/f .d.v;m//

�
Lf .!/

.r C 1/f .d.v;m//

�
r

r C 1
:

Since f is �-slow we have

f .r CRC 1/

f .R � d.x;m//
>

1

�rCd.m;x/C1
>

1

�2rC1
:

�us
1

�2rC1
<

r

r C 1
: (�)

�en there exists �0 > 1 such that for � 2�1; �0Œ inequality (�) is not true for a

�xed r > 0: So for such �0 we have a contradiction. �e lemma is proved.

Remark. Obviously if r is not �xed and tends to in�nity the above constant �0

does not exist.

�e group G acts discontinuously and co�nitely on the graph � and on the

graph G of entourages (see Section 3). Since the set �0=G D K is �nite and

G0=G D ¹a0º .a0 2 A/ the correspondence K ! a0 extends G-equivariantly to

the quasi-isometry  W gK ! ga0 .g 2 G/: In the same way we de�ne the inverse

quasi-isometric map  �1 W G ! � for which  �1.a0/ 2 K:

For a parabolic point p 2 P let H denote the stabilizer of p in G.

Lemma 7.3. �e map  extends continuously by the identity map to the map
� t P ! G t P. Furthermore for any d > 0 there exists d 0 D d 0.d; p/ such that
 .Nd .H// belongs to a d 0-neighborhoodNd 0.T .p// of the horosphereT .p/ � G,
and conversely  �1.Nd .T .p// � Nd 0.H/:

Proof. It follows from [17, Lemma 3.8] that the unique limit point of Nd .H/ on

T is p. �e set  .Nd .H// is an H -�nite subset of G and so belong to Nd 0.Tp/

for some d 0 D d 0.d; p/ (see also the proof of Corollary 5.5). Since the unique

limit point of the set Nd 0.Tp/ is also p the map  extends identically to the set P.

�e second statement is similar.
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Lemma 7.4. For every l > 0 and " > 0 there exists �0 > 1 such that for any
� 2�1; �0Œ and �-slow function f satisfying (1) and (2) one has: if 
 � � is ıf -
geodesic then the curve  .
/ � G is .l; c/-tight where c is the quasi-isometry
constant of  :

Proof. For a �xed l > 0 by Lemma 7.2 (applied to r D l) there exists �0 > 1

such that for any � 2�1; �0Œ and any �-slow function f , every part of 
 of length

less than l is geodesic in �: �en ˇ D  .
/ is c-quasigeodesic on every interval

of length at most l: So the �rst condition of De�nition 6.1 is satis�ed for ˇ � G:

To verify condition 2) of De�nition 6.1, assume that

jˇ.J /j > l; (��)

If �rst diam.@
.J // � l then again by Lemma 7.2 
 jJ is geodesic in �. So

ˇjJ is c-quasigeodesic in G. It follows from (��) that

diam.@.ˇ.J /// > c�1.l/ D
l

c
� c

If now diam.@
.J // > l then we have j@ˇ.J //j > c�1.l/ since  is a c-quasi-

isometry. �e lemma is proved.

Note that the proof of Lemma 7.4 does not use the horospheres to prove the

tightness condition of De�nition 6.1.2). �e needed property holds for any part of

ˇ of length bigger than l: �e following Corollary shows that it remains valid for

a curve in � close in the Floyd metric to a Floyd geodesic if the latter one does

not belong to the graph.

Corollary 7.5. For every l > 0 there exists �0 > 1 such that for every � 2�1; �0Œ

and �-slow function f if the Floyd geodesic 
Œx; y� � �f joining two distinct
points x and y does not belong to �; then there exists a curve Q
Œx; y� � � between
x andy such that jLf . Q
/�Lf .
/j � " and every part of Q
 of length l is d -geodesic.

Furthermore the curve  . Q
/ � G is .l; c/-tight for the quasi-isometry con-
stant c.

Proof. For a �xed l we choose�-slow function f such that � � l=.lC1/. Suppose

that a Floyd geodesic 
Œx; y� intersects the Floyd boundary @f �. �en for any

" > 0 there exists a curve

O
 W I �! �

such that

O
.@I / D ¹x; yº
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and

jLf . O
/ � Lf .
/j < ":

Let x0 and y0 be two points on O
 such that d.x0; y0/ D l . If the part O
Œx0; y0� of

O
 between them is not d -geodesic we replace it by a d -geodesic ! D !Œx0; y0�

between x0 and y0: �en the d -length of the obtained curve Q
 is strictly less than

that of O
 . Furthermore by Lemma 7.2 (applied to r D l) the curve ! is also a

Floyd geodesic. So we have

Lf .
/ � Lf . Q
/ � Lf . O
/ � Lf .
/C ":

Repeating this procedure with every pair of points of Q
 situated at the distance l

we strictly decrease its d -length. Since d.x; y/ 2 Z>0 after �nitely many steps

we obtain a curve (still denoted by Q
) satisfying the �rst statement.

Since  W � ! G is a c-quasi-isometry the last part follows from the argument

of Lemma 7.4.

Proof of �eorem C. �e groupG acts 3-discontinuously and 2-cocompactly on

a compactum T . Let � be a locally �nite, connected graph admitting cocompact

discontinuous action of G:

Let l0 and �0 be the constants given by �eorem B and Lemma 7.4 (or Corol-

lary 7.5). Let f be a �-slow function for � 2�1; �0Œ. Suppose that 
 D 
.h1; h2/ �

� is a ıf -geodesic between two elements h1 and h2 in the parabolic subgroupH:

�en by Lemma 7.4 the curve ˇ D  .
/ is .l; c/-tight in G:

A segment of a curve ˇ � G having the extremities at points hi 2 G .i D 1; 2/

we denote by ˇŒh1;h2�: By Lemma 7.3 for every d > 0 and p 2 P there exists

d 0 D d 0.d; p/ such that the set  �1.Nd .Tp// belongs to Nd 0.H/: So �eorem C

follows from the following.

Proposition 7.6. For every c > 0 there exist positive constants s, d and l0 such
that for all l > l0 every .l; c/-tight curve ˇŒh1;h2� � G with hi 2 Nd .T .p//

.i D 1; 2/ is situated in Ns.T .p// for some p 2 P.

Proof of the proposition. Since P is G-�nite it is enough to prove the state-

ment for a �xed p 2 P: Suppose that ˇ is a .l; c/-tight curve where l > l0 and

the constants l0 and c are given by �eorem B. So there exists a c0-quasigeodesic

˛ � G such that every non-horospherical point v of ˇ belongs to the w0-neigh-

borhood Nw0
.˛/ with respect to the distance dA: By Lemma 5.4.1), for all i 2 I

dA.˛.i/; T .p// � const:
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�us there exists a constant R D R.d/ > 0 such that for any non-horospherical

point v 2 ˇ we have dA.v; T .p// � R.

Let now ˇŒx;y� be a d -horospherical part of ˇ lying in Nd .T .q// of another

parabolic point q. Up to increasing the above part of ˇ we can suppose that both

extremal points x and y are non-horospherical. So we have dA.x; T .p// � R and

dA.y; T .p// � R. Let x1 and y1 be points on T .p/ realizing these distances re-

spectively. Denote by ˛1 D Œx;x1� and ˛2 D Œy;y1� the corresponding geodesics

(see the �gure below).

p

q

h1 h2

T .p/

T .q/

…p.x/

…p.y/
x1 y1

x y

x0 y 0

˛1

˛2

ˇ

Let…p.x/ and…p.y/ be the projections of x and y on T .p/. By Lemma 5.3.1)

we have dA.˛1;…p.x// D dA.x
0;…p.x// � L for some constant L depend-

ing only on R, where x0 2 ˛1: Hence dA.x;…p.x// � R C L and similarly

dA.y;…p.y// � RC L: By Proposition 3.32.2) the set …p.T .q// is �nite and so

is …p.Nd .T .q///. So there exists a constant C > 0 such that dA.…px;…py/ �

C . �erefore dA.x;y/ � C C 2R C 2L: �e above constants C , R and L de-

pend only on p so we can choose the parameter l from �eorem B satisfying

l > max.l0; C C 2R C 2L/: �en the segment ˇŒx;y� is c-quasigeodesic whose

length is bounded by c.C C 2R C 2L/ C c: Hence ˇŒx;y� � Ns.T .p// where

s D RC c.C C 2RC 2L/C c: �eorem C is proved.

Since every parabolic subgroup H is quasiconvex in G there exists a quasi-

isometric map ' of the group H into the graph �. We have the following.
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Corollary 7.7. For the constant �0 from �eorem C and every � 2�1; �0Œ let f be
a �-slow Floyd function satisfying in addition the following assumption:

f .n/

f .2n/
� �; n 2 N; (3)

for some constant � > 0: Let p be a parabolic point for the action of G on T and
H D StabGp be its stabilizer. �en ' extends injectively to the Floyd boundaries:

' W xHf �! x�f : (4)

Remark. Note that every polynomial type function f .n/ D .n C 1/�k .k > 1/

satis�es conditions (1)–(3) for any �xed � > 1 and � > 0 .n > n0/:

Proof of Corollary 7.7. We suppose thatH � �0 and ' W H ,! �0 is the identity

map inducing the quasi-isometry between the word metrics. Let d 0.�; �/ and d.�; �/

be the graph distances of H and � respectively. We also denote by ıf;H and ıf;G

the corresponding Floyd distances with respect to a �xed basepoint v 2 H: Since

f satis�es (3) by [17, Lemma 2.5] the map ' extends to a Lipschitz map (denoted

by the same letter) ' W xHf ! x�f between the Floyd completions of H and �.

Let x; y 2 H � � be two distinct points. If the Floyd geodesic between x and

y belongs to � we denote it by 
 ; if not for any " 2�0; 1Œ let 
 be the .l; c/-tight

curve (l > l0) given by Corollary 7.5 whose Floyd length is "-close to that of the

Floyd geodesic. In the �rst case by �eorem C there exists a constant R D R.H/

such that that 
 � NR.H/; and in the second case the same conclusion for the

curve 
 follows from Proposition 7.6.

We have Lf .
/ D
Pl

iD1 f .d.v; ¹xi ; xiC1º//: Denote by x0
i 2 H one of the

closest vertices to xi in H .i D 1; : : : ; l/: By �eorem C there exists a constant

R > 0 such that d.xi ; x
0
i/ � R: �us d.x0

i ; x
0
iC1/ � 2R C 1: So for any ver-

tex x0
ij on a geodesic in H between x0

i and x0
iC1 we obtain d.v; ¹xi ; xiC1º/ �

.3R C 1/ C d.v; x0
ij /: Since ' is quasi-isometric we have 1=˛ � d 0.v; x0

ij / � ˇ �

d.v; x0
ij / � ˛d 0.v; x0

ij /C ˇ for some constants ˛ and ˇ. Let 
 0 D 
 0.x; y/ � H

be the curve between x and y obtained by connecting the vertices x0
i and x0

iC1 by

geodesics segments in H passing through x0
ij . We have ˛ � .d.x0

i ; x
0
iC1/ C ˇ/ �

f .d.v; ¹xi ; xiC1º// � d 0.x0
i ; x

0
iC1/ � f .d.v; ¹xi ; xiC1º// D

X
j

f .d.v; ¹xi ; xiC1º/:

�us

f .d.v; ¹xi ; xiC1º// �
1

2˛RC ˇ C ˛

X
j

f .˛d 0.v; x0
ij /Cm1/;
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where m1 D ˇ C 3RC 1. Conditions (1) and (3) yield

Lf;G.
/ �
Lf;H .


0/

.2˛RC ˇ C ˛/�m1�k1
�

ıf;H .x; y/

.2˛RC ˇ C ˛/�m1�k1
; (5)

where k1 D min¹k W 2k > ˛º: Since for every " 2�0; 1Œ there exists a curve 


satisfying (5) and for which Lf;G.
/ � ıf;G.x; y/C " we have

ıf;G.x; y/ �
1

.2˛RC ˇ C ˛/�m1�k1
� ıf;H .x; y/ for all x; y 2 H: (6)

By continuity, inequality (6) remains valid for every pair of distinct points

x; y 2 xHf : So the map ' W xHf ! x�f is injective. �e corollary is proved.

If G acts on T is 3-discontinuously and 2-cocompactly then the kernel of the

equivariant Floyd map F from the Floyd boundary @fG of the Cayley graph of

G to T is described in [17, �eorem A]. Namely if it is not a single point then

it is equal to the topological boundary @.StabGp/ of the stabilizer StabGp of a

parabolic point p 2 T . We denote by @f StabGp the Floyd boundary of StabGp

corresponding to the function f: By Corollary 7.7 we have that 'j@f H is a home-

omorphism. So the following is immediate.

Corollary 7.8. For every� 2�1; �0Œ and each �-slow function f satisfying (1)–(3)

one has
F�1.p/ D @f .StabGp/; (7)

for every parabolic point p 2 T .

Corollary 7.8 answers positively our question [17, 1.1] and provides complete

generalization of the theorem of Floyd [12] for the relatively hyperbolic groups.
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