Groups Geom. Dyn. 9 (2015), 325-329 Groups, Geometry, and Dynamics
DOI 10.4171/GGD/315 © European Mathematical Society

Thompson’s group F is not SCY

Stefan Friedl and Stefano Vidussi!

Abstract. In this note we prove that Thompson’s group F cannot be the fundamental group
of a symplectic 4-manifold with canonical class K = 0 € H?(M) by showing that its
Hausmann—Weinberger invariant g (F) is strictly positive.
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Symplectic 4-manifolds with trivial canonical class, oftentimes referred to as sym-
plectic Calabi-Yau manifolds are, conjecturally, a fairly restricted class of mani-
folds, see [13, 5]. Part of this restriction is reflected in known constraints for their
fundamental groups, that we will refer to as SCY groups. In the case of b; > 0,
these results, for which we refer to [1, 14, 8], corroborate the expectation that such
groups are (virtually) poly-Z.

We are interested here in the following constraints, that apply to the fundamen-
tal group G = w1 (M) of a symplectic Calabi—Yau 4-manifold M with b1 (M) =
b1(G) > 0:

(1) 2 <b1(G) < vbi1(G) < 4, where vb1(G) = sup{h1(G;)|G; <r;. G} denotes
the supremum of the first Betti number of all finite index subgroups of G;

(2) if the first L2-Betti number bgz)(G) vanishes, then ¢(G) = 0, where the
Hausmann—Weinberger invariant ¢(G) = inf{y(X)|71(X) = G} is defined
as the infimum of the Euler characteristic among all 4-manifolds whose fun-
damental group is G ([11]).

(In [8, Proposition 2.2] the vanishing of ¢(G) is stated under the assumption that
G is residually finite, but in fact only the condition b§2)(G) = 0 is used in the
proof.)
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The purpose of this note is to apply these constraints to the case of Thompson’s
group F. The group F (about which we refer to [4, 10] for some preliminary facts)
is a group that admits the finite presentation

F = (xo,x1 | [xox7" x5 x1x0] = 1, [xox7", xg%x1x3] = 1). ¢))

This group has a number of peculiar features, that make it a natural testing ground
for conjectures and speculations. We should mention that S. Bauer asked (cf.
[1, Question 1.5]) if another of Thompson’s groups, 7' (which is a finitely presented
simple group) is SCY, in this case with »; = 0: that question partly motivated the
present note.

From a geometer’s viewpoint, Thompson’s group F has already been knocked
out from the royalty of groups, i.e. Kihler groups, by the work of [17] (whose
authors will hopefully condone us for the slight plagiarism in our title). How-
ever, as any finitely presented group, it keeps a footing as fundamental group of a
symplectic 4-manifold, by [9] and, pushing the dimension up by 2, of symplectic
6-manifolds with trivial canonical class by [7]. In spite of that, we will show that
the constraints discussed above are sufficient to show that F is not SCY. The main
difficulty lies in the fact that the constraint on the first virtual Betti number, that is
often very effective, is inconclusive:

Proposition. Thompson’s group F satisfies b1 (F) = vb1(F) = 2.

Proof. 'This is a consequence of the fact that ([4, Theorems 4.5]) the commutator
subgroup [F, F]is simple. Indeed, let N <y F be a finite index normal subgroup.
Then [N, N]is anormal subgroup of [F, F]. Since [F, F]is simple (and, as F isnot
virtually abelian, N is not abelian) it follows that [N, N] = [F, F]. We therefore
see that H;(N) = N/[N, N] = N/[F, F] is a subgroup of F/[F, F] = Z?. Now,
as the Betti number is non decreasing on finite index subgroups, b1 (N) > b1 (F).
This entails that H,(N) is a finite index subgroup of H;(F), hence a copy of 7>
itself. O

As the constraint on the virtual Betti number is inconclusive, we must resort
to the Hausmann—Weinberger invariant ¢ (F) (whose calculation, to the authors’
knowledge, has not appeared in the literature). While we are not able to calculate
it exactly, we will show that it is strictly positive, whence F is not a SCY group.

Theorem. The Hausmann—Weinberger invariant of Thompson’s group F satisfies
0<q(F)<2
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Proof. As is well known (see e.g. [6]) the Hausmann—Weinberger invariant sat-
isfies the basic inequalities 2 — 2b1(F) < q(F) < 2 — 2def(F), where def(F)
denotes the deficiency of F'. The upper bound is easily obtained then from the
fact that the presentation in (1) has deficiency 0. To prove the lower bound, we
will argue by contradiction. To start, we will compute the first L2-Betti number.
If F were residually finite, the proposition, together with the Liick Approximation
Theorem [15], would immediately imply its vanishing, but as this isn’t the case one
must argue differently. There is more than one way to proceed to this calculation
(see [16, Theorem 7.10] for the original calculation, or [2, Theorem 1.8]). For the
reader’s benefit, we present the following, which is fairly explicit. Start with a
well-known infinite presentation of the group F':

F = (x0,x1,...| Xnxi = XjxXpy41, forall 0 <i < n),

that reduces to that in (1) putting x,, = x§ "x;x2~! foralln > 2. Defining the shift

monomorphism ¢: F — F as ¢(x;) = x;4+1 for all i > 0, the images F(m) =
¢™ (F) are isomorphic to F itself, and F is the properly ascending HNN-extension
with base F(1) itself, bonding subgroups F(1) and F(2) and stable letter xo, i.e.

F = (F(1).x0 | x5" F()xo = $(F(1))).

As F (hence F(1), F(2)) admits a finite presentation, the L?-Betti number bgz) (F)
vanishes by [12, Lemma 2.1]. As F is an infinite group, b((,z)(F ) vanishes as well.
Let M be a 4-manifold with fundamental group F. By standard facts of L2-in-
variants (see e.g. [16]) we have

A(M) = 262 (F) =262 (F) + b (M) = b? (M) > 0,

whence ¢(F) > 0. Assume then, by contradiction, that equality holds for some
manifold M; by [6, Theorem 6] the only obstruction for M to be an Eilenberg—
Mac Lane space K(F, 1) is H?(F,Z[F]). Now for Thompson’s group F all co-
homology groups H*(F, Z[F]) vanish ([10, Theorem 13.11.1]), so the obstruction
vanishes; but in that case F would be a Poincaré duality group of dimension 4,
hence satisfy H*(F,Z[F]) = Z, that is false by the above. O

We observe that the result above entails that the deficiency of F is actually
equal to zero. However, as the homology of F' is known (see e.g. [3]), this follows
also from Morse inequality def(F) < b1(F) — b, (F) = 0 and the existence of the
presentation of (1) of deficiency 0.
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