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1. Introduction

Background. In this paper we will be interested in quasi-isometry invariant struc-

ture in Gromov hyperbolic spaces, primarily structure which is re�ected in the

boundary. For some hyperbolic groups �, the topological structure of the bound-

ary @� alone contains substantial information: witness the JSJ decomposition

encoded in the local cut point structure of the boundary [14], and many situa-

tions where one can detect boundaries of certain subgroups H � � by means of

topological criteria. However, in many cases, for instance for generic hyperbolic

groups, the topology reveals little of the structure of the group and is completely

inadequate for addressing rigidity questions, since the homeomorphism group of

the boundary is highly transitive. In these cases it is necessary to use the �ner

quasi-Möbius structure of the boundary and analytical invariants attached to it,

such as modulus (Pansu, metric-measure, or combinatorial), p̀-cohomology, and

closely related quantities such as the conformal dimension. �e seminal work

of Heinonen-Koskela [24], followed by [16, 25, 38, 29] indicates that when @� is

quasi-Möbius homeomorphic to a Loewner space (an Ahlfors Q-regular

Q-Loewner space in the sense of [24]), there should be a rigidity theory resem-

bling that of lattices in rank 1 Lie groups. �is possibility is illustrated by [11, 39].

It remains unclear which hyperbolic groups � have Loewner boundary in the

above sense. Conjecturally, @� is Loewner if and only if it satis�es the Combinato-

rial Loewner Property [30]. To provide some evidence of the abundance of such

groups (modulo the conjecture), in [10] we gave a variety of examples with the

Combinatorial Loewner Property. On the other hand, it had already been shown

in [13, 8] that there are groups � whose boundary is not Loewner, which can still

be e�ectively studied using p̀-cohomology and its cousins. Our main purpose

in this paper is to advance the understanding of this complementary situation by

providing new constructions of p̀-cohomology classes, and giving a number of

applications.

Setup. We will restrict our attention (at least in the introduction) to proper Gro-

mov hyperbolic spaces which satisfy the following two additional conditions:

� (Bounded geometry) For every 0 < r � R, there is a N.r; R/ 2 N such that

every R-ball can be covered by at most N D N.r; R/ balls of radius r .

� (Nondegeneracy) �ere is a C 2 Œ0;1/ such that every point x lies within

distance at most C from all three sides of some ideal geodesic triangle �x .
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�e visual boundary @X of such a space X is a compact, doubling, uniformly

perfect metric space, which is determined up to quasi-Möbius homeomorphism

by the quasi-isometry class ofX . Conversely, every compact, doubling, uniformly

perfect metric space is the visual boundary of a unique hyperbolic metric space

as above, up to quasi-isometry (see Section 2).

To simplify the discussion of homological properties, we will impose (without

loss of generality) the additional standing assumption thatX is a simply connected

metric simplicial complex with links of uniformly bounded complexity, and with

all simplices isometric to regular Euclidean simplices with unit length edges.

Quasi-isometry invariant function spaces. LetX be a Gromov hyperbolic sim-

plicial complex as above, with boundary @X .

We recall (see Section 3 and [35, 20, 18, 8]) that for p 2 .1;1/, the con-

tinuous (�rst) p̀-cohomology p̀H
1
cont.X/ is canonically isomorphic to the space

Ap.@X/=R, where Ap.@X/ is the space of continuous functions u W @X ! R that

have a continuous extension f W X .0/ [ @X ! R with p-summable coboundary:

kdf k
p

`p
D

X

Œvw�2X.1/

jf .v/ � f .w/jp < 1;

and where R denotes the subspace of constant functions. Associated with the

continuous p̀-cohomology are several other quasi-isometry invariants.

(1) �e p̀-equivalence relation �p on @X , where z1 �p z2 i� u.z1/ D u.z2/ for

every u 2 Ap.@X/.

(2) �e in�mal p such that p̀H
1
cont.X/ ' Ap.@X/=R is nontrivial. We will

denote this by p¤0.X/. Equivalently p¤0.X/ is the in�mal p such that �p

has more than one coset.

(3) �e in�mum psep.X/ of the p such that Ap.@X/ separates points in @X , or

equivalently, psep.X/ is the in�mal p such that all cosets of �p are points.

�ese invariants were exploited in [13, 8, 10] due to their connection with confor-

mal dimension and the Combinatorial Loewner Property. Speci�cally, when @X

is approximately self-similar (e.g. if @X is the visual boundary of a hyperbolic

group) then psep.X/ coincides with the Ahlfors regular conformal dimension of

@X ; and if @X has the Combinatorial Loewner Property then the two critical expo-

nents p¤0.X/ and psep.X/ coincide, i.e. for every p 2 .1;1/, the function space

Ap.@X/ separates points i� it is nontrivial (we refer the reader to Sections 2 and 3

for the precise statements and the relevant terminology).
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Construction of nontrivial continuous `p-cohomology. �e key results in this

paper are constructions of nontrivial elements in the p̀-cohomology. �e general

approach for the construction is inspired by [8], and may be described as follows.

Inside the Gromov hyperbolic complex X , we identify a subcomplex Y such that

the relative cohomology of the pair .X;X n Y / reduces – essentially by excision

– to the cohomology of Y relative to its frontier in X . �en we prove that the

latter contains an abundance of nontrivial classes. �is yields nontrivial classes

in p̀H
1
cont.X/ with additional control, allowing us to make deductions about the

cosets of the p̀-equivalence relation.

Let Y be a Gromov hyperbolic space satisfying our standing assumptions.

We recall [18] that if Y has Ahlfors Q-regular visual boundary @Y , then Ap.@Y /

contains the Lipschitz functions on @Y for anyp > Q, and in particular it separates

points. Our �rst result says that if W � Y is a subcomplex with well-separated

connected components, then for p slightly larger thanQ, the relative cohomology

p̀H
1
cont.Y;W / is highly nontrivial. In other words, at the price of increasing the

exponent slightly, one can arrange for the representing functions f W Y .0/ ! R to

be constant on the (0-skeleton of the) connected components of W , provided the

components are far apart.

�eorem 1.1 (Corollary 4.6). Let Y be hyperbolic simply connected metric sim-
plicial complex satisfying the assumptions above, and let Confdim.@Y / denote the
Ahlfors regular conformal dimension of @Y .

For every ˛ 2 .0; 1/, C � 0, there is a D � 1 with the following properties.
SupposeW � Y is a subcomplex of Y such that

(1) every connected component of W is C -quasiconvex in Y I

(2) for every y 2 W there is a complete geodesic 
 � W lying in the same
connected component of W , such that dist.y; 
/ � C I

(3) the distance between distinct components of W is at least D.

�en for p > 1
˛

Confdim.@Y /, the relative cohomology p̀H
1
cont.Y;W / separates

every pair of distinct points z1; z2 2 @Y , such that ¹z1; z2º ª @H for every con-
nected componentH of W .

We prove �eorem 1.1 by translating it to an existence theorem for functions

on @Y . It then reduces to the following theorem about Hölder functions, which is

of independent interest.



Some applications of `p-cohomology 439

�eorem 1.2 (�eorem 4.1). For every ˛ 2 .0; 1/, there is a D � 1 with the
following property. Suppose Z is a bounded metric space, and C is a countable
collection of closed positive diameter subsets of Z such that the pairwise relative
distance satis�es

�.C1; C2/ D
d.C1; C2/

min.diam.C1/; diam.C2//
� D

for all C1; C2 2 C, C1 ¤ C2. �en for every pair of distinct points z1; z2 2 Z,
either ¹z1; z2º � C for some C 2 C, or there is a Hölder function u 2 C ˛.Z/,
such that

(1) ujC is constant for every C 2 C;

(2) if C1; C2 2 C and u.C1/ D u.C2/, then C1 D C2;

(3) u.z1/ ¤ u.z2/.

We remark that one can construct an example Z, C as in the theorem, where

Z D Sk and
S

C2C C has full Lebesgue measure. In this case, if u W Z ! R is a

Lipschitz function that is constant on every C 2 C, then almost every point z 2 Z

will be a point of di�erentiability of u and a point of density of some element

C 2 C. HenceDu D 0 almost everywhere, and u is constant. �is shows that it is

necessary to take ˛ < 1.

Our second construction of p̀-cohomology classes pertains to a special class

of 2-complexes.

De�nition 1.3. An elementary polygonal complex is a connected, simply con-

nected, 2-dimensional cell complex Y whose edges are colored black or white,

that enjoys the following properties:

� Y is a union of 2-cells that intersect pairwise in at most a single vertex or

edge;

� every 2-cell is combinatorially isomorphic to a polygon with even perimeter

at least 6;

� the edges on the boundary of every 2-cell are alternately black and white;

� every white edge has thickness one, and every black edge has thickness at

least 2. Here the thickness of an edge is the number of 2-cells containing it.

�e union of the white edges in Y is the frontier of Y , and is denoted T; its con-

nected components are trees.
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A simple example of an elementary polygonal complex is the orbit �.P / of a

right-angled hexagon P in the hyperbolic plane, under the group � generated by

re�ections in 3 alternate sides e1; e2; e3 � @P .

Elementary polygonal complexes are relevant for us because they turn up natu-

rally as embedded subcomplexes Y � X , where X is a generic polygonal

2-complex, such that the pair .Y;T/ is the result of applying excision to the pair

.X;X n Y /.

For every elementary polygonal 2-complex Y , we de�ne two invariants:

� p¤0.Y;T/ is the in�mum of the set of p 2 Œ1;1/ such that the relative coho-

mology p̀H
1
cont.Y;T/ is nontrivial;

� psep.Y;T/ is the in�mum of the set of p 2 Œ1;1/, such that for every pair of

distinct points z1; z2 2 @Y , either ¹z1; z2º � @T for some connected compo-

nent T of T, or the relative cohomology p̀H
1
cont.Y;T/ separates ¹z1; z2º.

Our main result about elementary polygonal complexes is the following pair of

estimates on these invariants.

�eorem 1.4 (Corollary 6.6). Let Y be an elementary polygonal complex. Assume
that the perimeter of every 2-cell of Y lies in Œ2m1; 2m2� and that the thickness of
every black edge lies in Œk1; k2�, with m1 � 3 and k1 � 2. �en

1C
log.k1 � 1/

log.m2 � 1/
� p¤0.Y;T/ � psep.Y;T/ � 1C

log.k2 � 1/

log.m1 � 1/
:

Note that the estimate becomes sharp when the thickness and perimeter are

constant.

Applications to spaces and groups. We now discuss some of applications given

in the paper.

We �rst apply �eorem 1.1 to amalgams, generalizing the construction of [8].

�eorem 1.5 (Corollary 5.3). Suppose A;B are hyperbolic groups, and we are
given malnormal quasiconvex embeddings C ,! A, C ,! B . Suppose that
there is a decreasing sequence ¹Anºn2N of �nite index subgroups of A such that
T

n2N An D C , and set

�n WD An ?C B:
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(1) If psep.A/ < psep.B/ then, for all p 2 .psep.A/; psep.B/� and every n large
enough, the p̀-equivalence relation on @�n possesses a coset di�erent from
a point and the whole @�. In particular for n large enough, @�n does not
have the CLP.

(2) If psep.A/ < p¤0.B/ then, for p 2 .psep.A/; p¤0.B// and every n large
enough, the cosets of the p̀-equivalence relation on @�n are single points
and the boundaries of cosets gB , for g 2 �n. In particular, for large n, any
quasi-isometry of �n permutes the cosets gB , for g 2 �n.

We now sketch the proof of the theorem.

LetKA,KB , andKC be �nite 2-complexes with respective fundamental groups

A, B , and C , such that there are simplicial embeddings KC ,! KA, KC ,! KB

inducing the given embeddings of fundamental groups. Let Kn
A ! KA, for every

n, be the �nite covering corresponding to the inclusion An � A, and �x a lift

KC ,! Kn
A of the embeddingKC ,! KA. We letKn be the result of gluing Kn

A to

KB along the copies ofKC , so �1.K
n/ ' An ?C B D �n. �e universal cover zKn

is a union of copies of the universal covers zKn
A D zKA and zKB , whose incidence

graph is the Bass-Serre tree of the decomposition �n D An ?C B . If we choose

a copy Y � zKn of zKA, then the frontier Wn of Y in zKn breaks up into connected

components which are stabilized by conjugates of C , where the minimal pairwise

separation between distinct components of Wn tends to in�nity as n ! 1. �e-

orem 1.1 then applies, yielding nontrivial functions in p̀H
1
cont.Y;Wn/ for every

p > Confdim.A/ and every n su�ciently large; by excision these give functions

in p̀H
1
cont.

zKn/ ' Ap.@�n/=R which are constant on @Z � @�n for every copy

Z � zKn of zKB in zKn. �ese functions provide enough information about the

p̀-equivalence relation �p to deduce (1) and (2).

As a corollary, we obtain examples of hyperbolic groups with Sierpinski carpet

boundary which do not have the Combinatorial Loewner Property, and which are

quasi-isometrically rigid. See Example 5.5. �ese examples answer a question of

Mario Bonk.

Using our estimates for the critical exponents for elementary polygonal com-

plexes, we obtain upper bounds for the Ahlfors regular conformal dimension of

boundaries of a large class of 2-complexes.

�eorem 1.6 (Proposition 7.1). LetX be a simply connected hyperbolic 2-complex
whose boundary is connected and approximately self-similar. Assume that X is a
union of 2-cells, where 2-cells intersect pairwise in at most a vertex or edge.
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(1) If the perimeter of every 2-cell is at least n � 5, the thickness of every edge
lies is at most k � 2, and the link of every vertex contains no circuit of length
3, then

Confdim.@X/ � 1C
log.k � 1/

log.n � 3/
:

(2) If the perimeter of every 2-cell is at least n � 7 and the thickness of every
edge is at most k � 2, then

Confdim.@X/ � 1C
log.k � 1/

log.n � 5/
:

To prove �eorem 1.6(1), by a straightforward consequence of [28, 15],

it su�ces to show that the function space Ap.@X/ separates points in @X for

p > 1 C
log.k�1/

log.n�3/
. To do this, we �nd that (a subdivision of) X contains many

elementary polygonal complexes Y with thickness at most k and perimeter at least

2.n�2/, such that excision applied to .X;XnY / yields the pair .Y;T/. �eorem 1.4

then produces enough elements in Ap.@X/ to separate points.

As an application of �eorem 1.6 we obtain, for every � > 0, a hyperbolic

group � with Sierpinski carpet boundary with the Combinatorial Loewner Prop-

erty, such that Confdim.@�/ < 1C �. See Example 7.2. �is answers a question

of Juha Heinonen and John Mackay.

Organization of the paper. Section 2 is a brief presentation of some useful top-

ics in geometric analysis. Section 3 discusses �rst p̀-cohomology and related in-

variants. We present our new construction of continuous p̀-cohomology, and dis-

cuss several connections between p̀-cohomology and the geometry of the bound-

ary. In Section 4 we establish �eorems 1.1 and 1.2 . Applications to amalgamated

products are given in Section 5. Section 6 focuses on elementary polygonal com-

plexes. Applications to polygonal complexes and Coxeter groups are given in

Sections 7 and 8.

Acknowledgements. We are grateful to John Mackay for his comments on an

earlier version of the paper. M. Bourdon was supported by ANR grant “GdSous”,

and B. Kleiner was supported by NSF grant DMS-1105656.

2. Preliminaries

�is section is a brief presentation of some topics in geometric analysis that will

be useful in the sequel. �is includes the Ahlfors regular conformal dimension,



Some applications of `p-cohomology 443

the Combinatorial Loewner Property, approximately self-similar spaces, and a few

aspects of Gromov hyperbolic spaces.

Ahlfors regular conformal dimension. We refer to [34] for a detailed treatment

of the conformal dimension and related subjects.

Recall that a metric space Z is called a doubling metric space if there is a

constant n 2 N such that every ball B.z; r/ � Z can be covered by at most n balls

of radius r
2
.

A space Z is uniformly perfect , if there exists a constant 0 < � < 1 such that

for every ball B.z; r/ in Z with 0 < r � diamZ one has B.z; r/ n B.z; �r/ ¤ ;.

A spaceZ is AhlforsQ-regular (for someQ 2 .0;C1/) if there is a measure

� on Z such that for every ball B � Z of radius 0 < r � diam.Z/ one has

�.B/ � rQ.

Every compact, doubling, uniformly perfect metric space is quasi-Möbius

homeomorphic to a Ahlfors regular metric space (see [23]). �is justi�es the fol-

lowing de�nition.

De�nition 2.1. Let Z be a compact, doubling, uniformly perfect metric space.

�e Ahlfors regular conformal dimension of Z is the in�mum of the Hausdor�

dimensions of the Ahlfors regular metric spaces which are quasi-Möbius homeo-

morphic to Z. We shall denote it by Confdim.Z/.

�e Combinatorial Loewner Property (CLP). �e Combinatorial Loewner

Property was introduced in [30, 10]. We start with some basic related notions.

Let Z be a compact metric space, let k 2 N, and let � � 1. A �nite graph

Gk is called a �-approximation of Z on scale k, if it is the incidence graph of a

covering of Z, such that for every v 2 G0
k

there exists zv 2 Z with

B.zv; �
�12�k/ � v � B.zv; �2

�k/;

and, for v; w 2 G0
k

with v ¤ w,

B.zv; �
�12�k/ \ B.zw ; �

�12�k/ D ;:

Note that we identify every vertex v of Gk with the corresponding subset in Z.

A collection of graphs ¹Gkºk2N is called a �-approximation ofZ, if for each k 2 N

the graph Gk is a �-approximation of Z on scale k.

Let 
 � Z be a curve and let � W G0
k

! RC be any function. �e �-length
of 
 is

L�.
/ D
X

v\
¤;

�.v/:
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For p � 1 the p-mass of � is

Mp.�/ D
X

v2G0
k

�.v/p:

Let F be a non-void family of curves in Z. We de�ne the Gk-combinatorial
p-modulus by

Modp.F; Gk/ D inf
�
Mp.�/;

where the in�mum is over all F-admissible functions, i.e. functions � W G0
k

! RC

which satisfy L�.
/ � 1 for every 
 2 F.

We denote by F.A; B/ the family of curves joining two subsets A and B of Z

and by Modp.A; B;Gk/ its Gk-combinatorial p-modulus.

Suppose now that Z is a compact arcwise connected doubling metric space.

Let ¹Gkºk2N be a �-approximation of Z. In the following statement �.A;B/

denotes the relative distance between two disjoint non degenerate continua

A;B � Z i.e.

�.A;B/ D
dist.A; B/

min¹diamA; diamBº
: (2.2)

De�nition 2.3. Suppose p > 1. �en Z satis�es the Combinatorial p-Loewner
Property if there exist two positive increasing functions �;  on .0;C1/ with

limt!0  .t/ D 0, such that for all disjoint non-degenerate continua A;B � Z

and for all k with 2�k � min¹diamA; diamBº one has

�.�.A; B/�1/ � Modp.A; B;Gk/ �  .�.A;B/�1/:

We say thatZ satis�es the combinatorial Loewner property if it satis�es the Com-

binatorial p-Loewner Property for some p > 1.

�e CLP is invariant under quasi-Möbius homeomorphisms. A compact

Ahlfors p-regular, p-Loewner metric space satis�es the Combinatorialp-Loewner

Property (see [10] �.2.6 for these results). It is conjectured in [30] that if Z satis-

�es the CLP and is approximately self-similar (see below for the de�nition), then

Z is quasi-Möbius homeomorphic to a regular Loewner space.

Approximately self-similar spaces. �e following de�nition appears in [30]

and [10].

De�nition 2.4. A compact metric space .Z; d/ is called approximately self-similar
if there is a constant L0 � 1 such that if B.z; r/ � Z is a ball of radius

0 < r � diam.Z/, then there is an open subset U � Z which is L0-bi-Lipschitz

homeomorphic to the rescaled ball .B.z; r/; 1
r
d/.
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Observe that approximately self-similar metric spaces are doubling and uni-

formly perfect. Examples include some classical fractal spaces like the square

Sierpinski carpet and the cubical Menger sponge. Other examples are the visual

boundaries of the hyperbolic spaces which admit an isometric properly discontin-

uous and cocompact group action [10]. A further source of examples comes from

expanding �urston maps, [2], [22].

�e following result is due to S. Keith and the second (named) author [28].

A proof is written in [15].

�eorem 2.5. Suppose Z is an arcwise connected, approximately self-similar
metric space. Let ¹Gkºk2N be a �-approximation of Z. Pick a positive constant
d0 that is small compared to the diameter of Z and to the constant L0 of De�ni-
tion 2.4. Denote by F0 the family of curves 
 � Z with diam.
/ � d0. �en

Confdim.Z/ D inf¹p 2 Œ1;C1/ j lim
k!C1

Modp.F0; Gk/ D 0º:

Hyperbolic spaces. Let X be a hyperbolic proper geodesic metric space.

We denote the distance between any pair of points x; x0 2 X by jx � x0j.

Let @X be the boundary at in�nity of X . It carries a visual metric, i.e. a metric d

for which there is a constant a > 1 such that for all z; z0 2 @X , one has

d.z; z0/ � a�L; (2.6)

where L denotes the distance from x0 (an origin in X) to a geodesic .z; z0/ � X .

Moreover X [ @X is naturally a metric compacti�cation of X . �ere is a metric

d on X [ @X that enjoys the following property: for all x; x0 2 X [ @X , one has

d.x; x0/ � a�L min¹1; jx � x0jº; (2.7)

where a is the exponential parameter in (2.6), and whereL denotes the distance in

X from the origin x0 to a geodesic whose endpoints are x and x0. See e.g. [19, 3]

for more details. For a subset E � X we denote by @E its limit set in @X , i.e.

@E D xEX[@X \ @X .

If X satis�es the bounded geometry and nondegeneracy conditions of the

introduction, then @X is a doubling uniformly perfect metric space. Conversely,

every compact, doubling, uniformly perfect metric space is the visual boundary

of a unique hyperbolic metric space as above, up to quasi-isometry; this follows

e.g. from a construction of G. Elek [18] (see also [12] for more details).

We also notice that – thanks to Rips’ construction (see [19, 5, 27]) – every

proper bounded geometry hyperbolic space is quasi-isometric to a contractible

simplicial metric complex, with links of uniformly bounded complexity, and all

simplices isometric to regular Euclidean simplices with unit length edges.
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3. `p-cohomology

�is section presents aspects of the p̀-cohomology that will be useful in the se-

quel. Only the �rst p̀-cohomology will play a role. �erefore, instead of con-

sidering contractible simplicial complexes, we will content ourselves with simply

connected ones.

We consider in this section a connected, simply connected, metric simplicial

complex X , with links of uniformly bounded complexity, and all simplices iso-

metric to regular Euclidean simplices with unit length edges. We suppose that it

is a hyperbolic metric space, and we denote its visual boundary by @X .

First `p-cohomology. For k 2 N denote by X .k/ the set of the k-simplices

of X . For a countable set E and for p 2 Œ1;1/, let p̀.E/ be the Banach space of

p-summable real functions on E. �e k-th space of p̀-cochains is

C .k/
p .X/ WD p̀.X

.k//:

�e standard coboundary operator

d .k/ W C .k/
p .X/ �! C .kC1/

p .X/

is bounded because of the bounded geometry assumption on X . When k D 0,

the operator d .0/ is simply the restriction to p̀.X
.0// of the di�erential operator

d de�ned for every f W X .0/ ! R by

df .a/ D f .aC/ � f .a�/ for all a D .a�; aC/ 2 X .1/:

�e k-th p̀-cohomology group of X is

p̀H
k.X/ D kerd .k/=Im d .k�1/:

Since X is simply connected, every 1-cocycle on X is the di�erential of a unique

function f W X .0/ ! R up to an additive constant. �erefore in degree 1 we get a

canonical isomorphism

p̀H
1.X/ ' ¹f W X .0/ ! R j df 2 p̀.X

.1//º= p̀.X
.0//C R;

where R denotes the set of constant functions on X .0/. In the sequel we shall

always represent p̀H
1.X/ via this isomorphism.
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Equipped with the semi-norm induced by the p̀-norm of df the topological

vector space p̀H
1.X/ is a quasi-isometric invariant ofX . Moreover ifX satis�es

a linear isoperimetric inequality, then p̀H
1.X/ is a Banach space, and p̀H

1.X/

injects in `qH
1.X/ for 1 < p � q < C1. See [35], [20], [9] for a proof of these

results.

�e continuous �rst p̀-cohomology group of X is

p̀H
1
cont.X/ WD ¹Œf � 2 p̀H

1.X/ j f extends continuously to X .0/ [ @Xº;

where X .0/ [ @X is the metric compacti�cation of X .0/ (see Section 2 for the

de�nition).

Following P. Pansu [35] we introduce the quasi-isometric numerical invariant

of X

p¤0.X/ D inf¹p � 1 j p̀H
1
cont.X/ ¤ 0º:

`p-Equivalence relations. For Œf � 2 p̀H
1
cont.X/ denote by f1 W @X ! R its

boundary extension. Following M. Gromov ([20, p.259], see also [18], [8]) we set

Ap.@X/ WD ¹u W @X ! R j u D f1 with Œf � 2 p̀H
1
cont.X/º;

and we de�ne the p̀-equivalence relation on @X by

z1 �p z2 () u.z1/ D u.z2/ for all u 2 Ap.@X/:

�is is a closed equivalence relation on @X which is invariant by the bound-

ary extensions of the quasi-isometries of X . Its cosets are called the p̀-cosets.
We de�ne

psep.X/ D inf¹p � 1 j Ap.@X/ separates points in @Xº:

Equivalently psep.X/ is the in�mal p such that all p̀-cosets are points.

Recall (from the introduction) that X is nondegenerate, if every x 2 X lies

within uniformly bounded distance from all three sides of some ideal geodesic

triangle. For nondegenerate spaces X , every class Œf � 2 p̀H
1
cont.X/ is fully

determined by its boundary value f1 ([37], see also [35], [13] �eorem 3.1).

More precisely Œf � D 0 if and only if f1 is constant. In particular we get the

following result.

Proposition 3.1. Suppose X is nondegenerate. �en

p¤0.X/ D inf¹p � 1 j .@X= �p/ is not a singletonº:

We also notice that for nondegenerate spaces X , the p̀-cosets are always con-

nected in @X ([10] Proposition 10.1).
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Relative `p-cohomology. LetY be a subcomplex ofX . �e k-th space of relative

p̀-cochains of .X; Y / is

C .k/
p .X; Y / WD ¹! 2 C .k/

p .X/ j !jY .k/ D 0º:

�e k-th relative p̀-cohomology group of .X; Y / is

p̀H
k.X; Y / D

ker
�

d .k/ W C
.k/

p .X; Y / ! C
.kC1/

p .X; Y /
�

Im
�

d .k�1/ W C
.k�1/

p .X; Y / ! C
.k/

p .X; Y /
�

:

A straightforward property is the following excision principle.

Proposition 3.2. Suppose U � Y is a subset such that Y n U is a subcomplex
of Y . �en for every k 2 N the restriction map induces a canonical isomorphism

p̀H
k.X; Y / ' p̀H

k.X n U; Y n U/:

SinceX is simply connected, by integrating every relative 1-cocycle, we obtain

the canonical isomorphism

p̀H
1.X; Y / ' ¹f W X .0/ ! R j df 2 p̀.X

.1// and

f jE.0/ is constant in every connected component E of Y º= �;

where f � g if and only if f �g belongs to p̀.X
.0//CR. We will always represent

p̀H
1.X; Y / via this isomorphism. Note that p̀H

1.X; Y / injects canonically in

p̀H
1.X/.

We denote by p̀H
1
cont.X; Y / the subspace of p̀H

1.X; Y / consisting of the

classes Œf � such that f extends continuously to X .0/ [ @X . We introduce two

numerical invariants:

� p¤0.X; Y / is the in�mum of the p 2 Œ1;C1/ such that the relative coho-

mology p̀H
1
cont.X; Y / is nontrivial;

� psep.X; Y / is the in�mum of the p 2 Œ1;C1/ such that for every pair of dis-

tinct points z1; z2 2 @X , either ¹z1; z2º � @E for some connected component

E of Y , or the relative cohomology p̀H
1
cont.X; Y / separates ¹z1; z2º.

In case there is no such p, we just declare the corresponding invariant to be equal

to C1. We emphasize that the property: @E \ @E 0 D ; for every pair of distinct

connected components E;E 0 of Y , is a necessary condition for the �niteness of

psep.X; Y / .
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Obviously one has p¤0.X/ � p¤0.X; Y /. When X is nondegenerate, every

element Œf � 2 p̀H
1
cont.X; Y / is determined by its boundary extension f1, and we

get p¤0.X; Y / � psep.X; Y /.

A construction of cohomology classes. One of the goals of the paper is to con-

struct p̀-cohomology classes of X . We present here a construction that uses the

relative cohomology of special subcomplexes of X .

De�nition 3.3. A subcomplex Y � X decomposes X , if it is connected, sim-

ply connected and quasi-convex, and if its frontier W WD Y n int.Y / enjoys the

following properties:

(1) for every pair H1; H2 of distinct connected components of W one has

@H1 \ @H2 D ;I

(2) every sequence ¹Hiºi2N of distinct connected components of W subcon-

verges in X [ @X to a singleton of @X .

A collection ¹Yj ºj 2J of subcomplexes of X fully decomposesX , if it satis�es the

following properties:

(3) every subcomplex Y 2 ¹Yj ºj 2J decomposes X ;

(4) for every pair of distinct points z1; z2 2 @X , there is a Y 2 ¹Yj ºj 2J , such that

for every connected component E of X n Y one has ¹z1; z2º ª @E.

�e origin of De�nition 3.3 lies in group amalgams, as illustrated by the fol-

lowing example.

Example 3.4. Let A;B; C be three hyperbolic groups, suppose that A and B are

non-elementary and that C is a proper quasi-convex malnormal subgroup of A

and B . �en the amalgamated product � WD A ?C B is a hyperbolic group [26].

Let KA, KB , and KC be �nite 2-complexes with respective fundamental groups

A, B , and C , such that there are simplicial embeddings KC ,! KA, KC ,! KB

inducing the given embeddings of fundamental groups. We let K be the result of

gluingKA toKB along the copies ofKC , so �1.K/ ' A?C B D �. �e universal

cover zK is a union of copies of the universal covers zKA and zKB , whose incidence

graph is the Bass-Serre tree of the decomposition � D A ?C B . If we choose a

copy Y � zK of zKA, then Y decomposes zK. �e frontier of Y in zK breaks up into

connected components which are stabilized by conjugates of C .

�e following proposition and corollary will serve repeatedly in the sequel.
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Proposition 3.5. Suppose that a subcomplex Y decomposes X and let

W WD Y n int.Y /

be its frontier in X . �en

(1) �e restriction map

p̀H
1
cont.X;X n Y / �! p̀H

1
cont.Y;W /;

de�ned by

Œf � 7�! Œf jY .0/ �;

is an isomorphism.

(2) p¤0.X;X n Y / D p¤0.Y;W / and psep.X;X n Y / D psep.Y;W /.

Corollary 3.6. (1) Suppose that a subcomplex Y decomposesX , and letW be its
frontier. �en one has

p¤0.X/ � p¤0.Y;W /:

(2) Suppose that a subcomplex collection ¹Yj ºj 2J fully decomposesX , and let
Wj be the frontier of Yj . �en one has

psep.X/ � sup
j 2J

psep.Yj ; Wj /:

�e proof of the proposition will use the

Lemma 3.7. Let Y � X be a connected subcomplex, let W be its frontier in X ,
and let E be the set of the connected components of X n Y . �en

(1) the connected components ofW are precisely the subsets of the form E \ Y ,
with E 2 EI

(2) their limit sets in @X satisfy @.E \ Y / D @E \ @Y I

(3) if E 2 E is such that @E \ @Y D ;, then @E is open (and closed) in @X .

Proof of Lemma 3.7. (1) Note that W can be expressed as W D .X n Y / \ Y .

Hence it is enough to show that every subset E \ Y (with E 2 E) is contained in

a connected component of W . Consider the following exact sequence associated

to the ordinary simplicial homology of the couple .X;X n Y /:

H1.X/ ! H1.X;X n Y /
N@

�! H0.X n Y /:
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Since X is simply connected one has H1.X/ D 0. By excising the open subset

X n Y from X and X n Y , we get a canonical isomorphism

H1.Y;W / �! H1.X;X n Y /:

�erefore the boundary map N@ W H1.Y;W / ! H0.X n Y / is injective. Let w1; w2

be two distinct points in E \ Y .0/. Since Y is connected there is path 
 � Y .1/

joining w1 to w2. It de�nes a .Y;W /-relative 1-cycle, such that N@.Œ
�/ D

Œw2 � w1� D 0 in H0.X n Y /. Since N@ is injective, Œ
� is trivial in H1.Y;W /.

�erefore there is a 2-chain � in Y , such that @� � 
 is a 1-chain in W whose

boundary is w1 � w2. Hence w1 and w2 lie in the same connected component

of W .

(2) It is enough to prove that

.@E \ @Y / � @.E \ Y /:

Let z 2 @E \ @Y , and pick points xn 2 E, yn 2 Y that both converge to z as

n ! 1. Consider the geodesic segment Œxn; yn�; it must meet E \ Y , let wn be

an intersection point. �en wn converges to z; thus z 2 @.E \ Y /.

(3) Let E 2 E with @E \ @Y D ;. We claim that ¹@E; @.X n E/º is a partition

of @X . Clearly, one has @X D @E [ @.X n E/. Suppose by contradiction that

@E \ @.X n E/ is nonempty. Let z 2 @E \ @.X n E/, and pick xn 2 E and

x0
n 2 X n E that both converge to z. Consider the geodesic segment Œxn; x

0
n�; it

must meet Y , let yn be an intersection point. We get z D lim yn 2 @Y , which is a

contradiction. �e claim follows.

We can now give the

Proof of Proposition 3.5. (1) We apply the excision property (Proposition 3.2) to

the complexes X , X n Y and to the subset U D X n Y . Since .X n Y / n U D

.X n Y /\Y D W , we obtain that p̀H
1.X;X n Y / is isomorphic to p̀H

1.Y;W /.

�e complexes X and Y are simply connected, thus, via the canonical represen-

tation, the isomorphism can simply be written as Œf � 7! Œf jY .0/ �.

We now suppose that f jY .0/ extends continuously to Y .0/ [ @Y , and we prove

that f extends continuously to X .0/ [ @X . Let E be the set of connected compo-

nents ofX n Y . Consider a sequence ¹xnºn2N � X .0/ that converges in X .0/ [@X

to a point x1 2 @X . We wish to prove that ¹f .xn/ºn2N is a convergent sequence.

We distinguish several cases.

If x1 belongs to @X n@Y , then for n andm large enough the geodesic segments

Œxn; xm� do not intersectY . �erefore they are all contained in the same component

E 2 E. �us f .xn/ is constant for n large enough.
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Suppose now that x1 2 @Y . Denote by .f jY .0//1 the boundary extension of

f jY .0/ to @Y . We will prove that f .xn/ ! .f jY .0//1.x1/. By taking a subse-

quence if necessary, it is enough to consider the following special cases:

(A) for every n 2 N, xn belongs to Y ;

(B) there is an E 2 E such that for every n 2 N, xn belongs to E;

(C) there is a sequence ¹Enºn2N of distinct elements of E such that xn 2 En.

Case (A) is obvious. In case (B), let yn 2 Y .0/ which converges to x1. When

one travels from xn to yn along a geodesic path 
n � X .1/, one meets for the �rst

time Y .0/ at a point y0
n 2 .E \ Y .0//. Since y0

n 2 
n, it satis�es y0
n ! x1 when

n ! 1. �erefore we obtain

f .xn/ D f .y0
n/ D f jY .0/.y

0
n/ ! .f jY .0//1.x1/:

In case (C), let y be an origin in Y . Every geodesic segment of X joining y

to En meets En \ Y . It follows from property (2) in De�nition 3.3 and from

Lemma 3.7(1), that the sequence ¹Enºn2N converges in X [ @X to the singleton

¹x1º. For n 2 N, pick yn 2 En \ Y .0/. �e sequence ¹ynºn2N tends to x1; this

leads to

f .xn/ D f jY .0/.yn/ �! .f jY .0//1.x1/:

(2) �e equality p¤0.X;X n Y / D p¤0.Y;W / follows trivially from part (1).

We now establish the equality psep.X;X n Y / D psep.Y;W /.

�e equality psep.Y;W / � psep.X;X n Y / is a straightforward consequence of

Lemma 3.7(2) and part (1) above.

To establish the converse inequality, suppose that p̀H
1
cont.Y;W / separates ev-

ery pair of distinct points z0
1; z

0
2 2 @Y such that ¹z0

1; z
0
2º ª @H for every component

H of W . Given a pair of distinct points z1; z2 2 @X , with ¹z1; z2º ª @E for every

component E 2 E, we are looking for an element Œf � 2 p̀H
1
cont.X;X n Y / such

that f1.z1/ ¤ f1.z2/.

First, suppose there is an E 2 E such that z1 2 @E and @E \ @Y D ;. �en, by

Lemma 3.7(3), the subset @E is open and closed in @X . As an easy consequence

the characteristic function u of @E writes u D f1, with Œf � 2 `qH
1
cont.X;X n Y /,

for every q � 1.

Suppose on the contrary, that neither z1 nor z2 belong to a limit set @E with

@E \ @Y D ;. For i D 1; 2, de�ne a point z0
i 2 @Y as follows:

� if zi 2 @Y set z0
i WD zi ;

� if zi … @Y , then there is an Ei 2 E with zi 2 @Ei ; pick z0
i 2 @Ei \ @Y .
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From Lemma 3.7(2) and from the assumption (1) in De�nition 3.3, we have

@E1 \ @E2 \ Y D ; for every distinct components E1; E2 2 E. It follows that

z0
1 ¤ z0

2, and that ¹z0
1; z

0
2º ª @H for every component H of W . Our separability

assumption on p̀H
1
cont.Y;W /, in combination with part (1) isomorphism, yields

a desired element Œf � 2 p̀H
1
cont.X;X n Y /.

Proof of Corollary 3.6. (1) From a standard inequality and Proposition 3.5(2), one

has

p¤0.X/ � p¤0.X;X n Y / D p¤0.Y;W /:

(2) From De�nition 3.3 and Proposition 3.5(2), one has

psep.X/ � sup
j 2J

psep.X;X n Yj / D sup
j 2J

psep.Yj ; Wj /:

Cohomology and the geometry of the boundary. �e following result relates

the p̀-cohomology of X with the structure of the boundary @X , more precisely

with the Ahlfors regular conformal dimension and the Combinatorial Loewner

Property (see Section 2 for the de�nitions). It will serve as a main tool in the

paper.

�eorem 3.8. Assume that X is non-degenerate and that @X is connected and
approximately self-similar, let p � 1. �en

(1) p > Confdim.@X/ if and only if

.@X= �p/ D @X I

in particular
psep.X/ D Confdim.@X/:

(2) If @X satis�es the CLP, then for 1 � p � Confdim.@X/ the quotient @X= �p

is a singleton; in particular

p¤0.X/ D psep.X/ D Confdim.@X/:

Proof. It follows immediately from �eorem 2.5 in combination with Proposi-

tion 3.1 and [10], Corollary 10.5.

4. A qualitative bound for psep.Y; W /

In this section we make a qualitative connection between the relative invariant

psep.Y;W / de�ned in Section 3 and certain geometric properties of the pair .Y;W /
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(see Corollary 4.6). �is relies on the following result which is also of independent

interest. In the statement �.�; �/ denotes the relative distance, see (2.2) for the

de�nition.

�eorem 4.1. For every ˛ 2 .0; 1/ there is a D � 1 with the following property.
Suppose Z is a bounded metric space, and C is a countable collection of closed
positive diameter subsets ofZ where�.C1; C2/ � D for all C1; C2 2 C, C1 ¤ C2.
�en, for every pair of distinct points z1; z2 2 Z, either ¹z1; z2º � C for some
C 2 C, or there is a Hölder function u 2 C ˛.Z/, such that

(1) ujC is constant for every C 2 CI

(2) if C1; C2 2 C and u.C1/ D u.C2/, then C1 D C2I

(3) u.z1/ ¤ u.z2/.

Remarks. 1) �e countability of C is only used to obtain (2); one gets plenty of

functions without countability.

2) �e argument given in the proof of Prop.1.3 of [8] shows that there is a

function ˛ W .0;1/ ! .0; 1/with the following property. LetZ be bounded metric

space, and let C be a countable collection of closed positive diameter subsets of

Z with �.C1; C2/ � D > 0 for all C1; C2 2 C, C1 ¤ C2. �en for ˛ D ˛.D/

there is a Hölder function u 2 C ˛.Z/ which satis�es conditions (1),(2),(3) above.

�eorem 4.1 above asserts that we can choose the function ˛ so that ˛.D/ ! 1

when D ! 1.

To prove �eorem 4.1, we consider a bounded metric spaceZ, and a countable

collection C of closed positive diameter subsets of Z, such that �.C1; C2/ � D

for all C1; C2 2 C, C1 ¤ C2; here D is a constant that is subject to several lower

bounds during the course of the proof. We can assume that diam.Z/ � 1 by

rescaling the metric of Z if necessary. We will assume that D > 8, and pick

ƒ 2 Œ4; D
2
/ (we will need ƒ � 4 in the proof of Sublemma 4.5). Let rk D 2�k,

and let Ck D ¹C 2 C j diam.C / 2 .rkC1; rk�º. Since diam.Z/ � 1 we have

C D
S

k�0 Ck. Given a Lipschitz function v�1 W Z ! R, we will construct the

Hölder function u as a convergent series
P1

j D�1 vj where, for every k � 0,

� vk is Lipschitz;

� vk is supported in
S

C2Ck
Nƒrk

.C /;

� for every 0 � j � k and C 2 Cj , the partial sum uk D
Pk

j D�1 vj is constant

on C .
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�us one may think of vk as a “correction” which adjusts uk�1 so that it becomes

constant on elements of Ck.

Lemma 4.2. Suppose 0 � i; j < k, i ¤ j , and there are C1 2 Ci , C2 2 Cj such
that

dist.Nƒri
.C1/; Nƒrj

.C2// � rk :

�en ji � j j � log2.
D
6ƒ
/ :

Proof. We may assume i < j . We have

D � �.C1; C2/ �
dist.C1; C2/

� rj

2

� H) dist.C1; C2/ �
Drj

2

and

dist.C1; C2/ � ƒri Cƒrj C rk � 3ƒri

so
ri

rj
�
D

6ƒ
H) j � i � log2

� D

6ƒ

�

:

Let n be the integer part of log2.
D
6ƒ
/; we will assume that n � 1.

Let ¹Lj ºj 2Z � Œ0;1/ be an increasing sequence such that Lj D 0 for all

j � �2, and let yLk D
P1

j D1Lk�jn (this is a �nite sum sinceLj D 0 for j � �2).

De�nition 4.3. �e sequence ¹Lj º is feasible if Lk � yLk for all k � 0.

As an example let Lj D e�j for j � �1, and Lj D 0 for j � �2. �en ¹Lj º

is feasible if e��n < 1
2
. In particular, we may take � small when n is large.

Lemma 4.4. Suppose ¹Lj º is feasible, and v�1 W Z ! R is L�1-Lipschitz. �en
there is a sequence ¹vkº, where for every k � 0,

(1) vk is Lk-Lipschitz;

(2) Spt.vk/ � Nƒrk

�
S

C2Ck
C

�

I

(3) kvkkC 0 � 2LkrkI

(4) for every 0 � j � k, and every C 2 Cj , the partial sum uk D
Pk

j D�1 vj is
constant on C .
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Proof. Assume inductively that for some k � 0, there exist functions v�1; : : :,

vk�1 satisfying the conditions of the lemma. For every C 2 Ck , we would like to

specify the constant value of the function uk . To that end, choose a point pC 2 C

and some uC 2 Œuk�1.pC / � yLkrk; uk�1.pC /C yLkrk�. Let

Wk D
�

Z n
�

[

C2Ck

Nƒrk
.C /

��

t
�

[

C2Ck

C
�

;

and de�ne

Nvk W Wk �! R

by

Nvk.x/ D

8

<

:

0 x 2 Z n
S

C2Ck
Nƒrk

.C /;

uC � uk�1.x/ x 2 C 2 Ck :

Since ƒ < D
2

, the subset Wk contains every C 2 Ci with i < k. �us Nvk.x/ D 0

for x 2 C 2 Ci and for i < k.

Sublemma 4.5. One has

Lip. Nvk/ �

1
X

j D1

Lk�jn D yLk :

Proof of the sublemma. Pick x; y 2 Wk .

Case 1 . Suppose x; y 2 C for some C 2 Ck . �en

j Nvk.x/ � Nvk.y/j

d.x; y/

D
juk�1.x/ � uk�1.y/j

d.x; y/

�
X

¹Lip.vj / j j < k; Spt.vj / \ C ¤ ;º

�
X

¹Lj j j < k; Spt.vj / \ C ¤ ;º

�
X

¹Lj j j < k; there exists C1 2 Cj such that Nƒrj
.C1/ \ C ¤ ;º

�
X

j �1

Lk�jn D yLk ;
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since the sequence Lj is increasing, and consecutive elements of the set

¹j j j < k and there exists C1 2 Cj such that Nƒrj
.C1/ \ C ¤ ;º

di�er by at least n, by Lemma 4.2.

Case 2. There is a C 2 Ck such that x 2 C , and y … C . �en

d.x; y/ � ƒrk. Reasoning as in Case 1, we have juk�1.pC / � uk�1.x/j � yLkrk.

Hence

j Nvk.x/j D juC � uk�1.x/j � juk�1.pC / � uk�1.x/j C yLkrk � 2yLkrk :

�erefore

j Nvk.x/ � Nvk.y/j � j Nvk.x/j C j Nvk.y/j � 4yLkrk;

so, since ƒ � 4,
j Nvk.x/ � Nvk.y/j

d.x; y/
�
4

ƒ
yLk � yLk :

�us the sublemma holds.

By McShane’s extension lemma (see [23]), there is an yLk-Lipschitz extension

vk W Z ! R of Nvk, where kvkkC 0 � kNvkkC 0 � 2yLkrk. Since yLk � Lk by the

feasibility assumption, vk is Lk-Lipschitz and kvkkC 0 � 2Lkrk. Moreover, by

construction, uk is constant equal to uC on every C 2 Ck , and is equal to uk�1 on

every C 2 Ci with i < k. �erefore condition (4) is satis�ed and the lemma holds

by induction.

Proof of �eorem 4.1. To get the Hölder bound, we use the feasible sequence

Lj D e�j , and keep in mind that we may take � close to 0 provided D is large.

Suppose x; y 2 Z and d.x; y/ 2 ŒrkC1; rk�. �en

juk�1.x/ � uk�1.y/j � rk
X

¹Lj j j < k; Spt.vj / \ ¹x; yº ¤ ;º

� rk yLk � Lkrk:

Also,

j
X

j �k

vj .x/ �
X

j �k

vj .y/j � 2
X

j �k

kvj kC 0 � 4
X

j �k

Lj rj

D 4
X

j �k

e�j2�j � 9Lkrk
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when � is small. So

ju.x/ � u.y/j

d.x; y/˛
�
10Lkrk
�

rk

2

�˛ D 10 � 2˛ � .e� � 2˛�1/k

which is bounded independent of k when � is small.

It is clear from the construction that if C is countable, then we may arrange

that u takes di�erent values on di�erent C ’s. Similarly, for a given pair of distinct

points z1; z2 2 Z such that ¹z1; z2º … C for every C 2 C, we can perform the

above construction so that u.z1/ ¤ u.z2/.

We now give an application to hyperbolic spaces. Again we consider Y a hy-

perbolic non-degenerate simply connected metric simplicial complex, with links

of uniformly bounded complexity, and all simplices isometric to regular Euclidean

simplices with unit length edges.

Corollary 4.6. Let Y be as above. For every ˛ 2 .0; 1/, C � 0, there is a D � 1

with the following properties. SupposeW � Y is a subcomplex of Y such that

(1) every connected component of W is C -quasiconvex in Y I

(2) for every y 2 W there is a complete geodesic 
 � W lying in the same
connected component of W , such that dist.y; 
/ � C I

(3) the distance between distinct components of W is at least D.

�en psep.Y;W / � 1
˛

Confdim.@Y /.

�e proof relies on �eorem 4.1 and on the following elementary lemma.

Lemma 4.7. Let Y be a hyperbolic space and let d be a visual metric on @Y . For
every C � 0 there are constants A > 0, B � 0 such that for every C -quasiconvex
subsetsH1; H2 � Y with non empty limit sets, one has

�.@H1; @H2/ � A � a
1
2

dist.H1;H2/ � B;

where a is the exponential parameter of d (see (2.6)). MoreoverA;B depend only
on C , the hyperbolicity constant of Y , and the constants of the visual metric d .

Proof of the lemma. We denote the distance in Y by jy1 � y2j. Pick h1 2 H1,

h2 2 H2 with jh1 � h2j � dist.H1; H2/ C 1. If dist.H1; H2/ is large enough

– compared with C and the hyperbolicity constant of Y – then for every y1 2 H1,

y2 2 H2 the subset Œy1; h1� [ Œh1; h2� [ Œh2; y2� is a quasi-geodesic segment with

controlled constants. In particular the segment Œh1; h2� lies in a metric neigh-

borhood Nr .Œy1; y2�/ where r is controlled. �erefore H1 [ Œh1; h2� [ H2 is a
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C 0-quasiconvex subset, where C 0 depends only on C and the hyperbolicity con-

stant of Y .

Pick an origin y0 2 Y and let p be a nearest point projection of y0 on

H1 [ Œh1; h2�[H2. We distinguish two cases.

Case 1 : p 2 Œh1; h2� . SetLD maxiD1;2 dist.p;Hi/; one has, with relations (2.6),

�.@H1; @H2/ &
a�jy0�pj

a�jy0�pj�L
D aL � a

1
2

dist.H1;H2/:

Case 2: p 2 H1 [H2 . Suppose for example that p belongs to H1. Since every

geodesic joining H1 to H2 passes close by h1 one has

dist.@H1; @H2/ & a�jy0�h1j:

In addition every geodesic joining y0 to H2 passes close by p and thus close by

h1. �erefore,

diam.@H2/ . a�jy0�h1j�dist.H1;H2/;

and so �.@H1; @H2/ & adist.H1;H2/.

Proof of Corollary 4.6. Let ˛ 2 .0; 1/ and let d be a visual metric on @Y . From

the de�nition of the Ahlfors regular conformal dimension, and because ˛C1
2˛

> 1,

there is an Ahlfors Q-regular metric ı on @Y , with Q � ˛C1
2˛

Confdim.@Y /, that

is quasi-Möbius equivalent to d i.e. the identity map .@Y; d/ ! .@Y; ı/ is a quasi-

Möbius homeomorphism. �is last property implies that the relative distances

associated to d and ı are quantitatively related (see [4] Lemma 3.2). �us, thanks

to �eorem 4.1 and Lemma 4.7, there is a constant D � 1 such that if W � Y

satis�es the conditions (1), (2), (3) of the statement, and if H denotes the family

of its connected components, then, for every pair of distinct points z1; z2 2 @Y

with ¹z1; z2º ª @H for every H 2 H, there is a function u 2 C
˛C1

2 .@Y; ı/ with

the following properties

� uj@H is constant for every H 2 H.

� u.z1/ ¤ u.z2/.

We wish to extendu to a continuous function f W Y .0/[@Y ! R that is constant on

everyH 2 H. To do so pick an origin y0 2 Y and observe that the nondegeneracy

property of Y yields the existence of a constant R � 0 such that for every y 2 Y

there is a z 2 @Y with dist.y; Œy0; z// � R.

Let y 2 Y .0/. If y belongs to a H 2 H, set f .y/ D u.@H/. If not, pick a

z 2 @Y such that dist.y; Œy0; z// � R and de�ne f .y/ D u.z/.
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We claim that f is a continuous function of Y .0/ [ @Y . Let a > 1 be the

exponential parameter of the visual metric d . Our hypothesis (2) implies that

there is a constant R0 � 0 so that for every y 2 Y .0/ there is a z 2 @Y with

dist.y; Œy0; z// � R0 and f .y/ D u.z/. Let y1; y2 2 Y .0/ with y1 ¤ y2. By

relation (2.7), their mutual distance in Y .0/ [ @Y is comparable to a�L, where

L D dist.y0; Œy1; y2�/. �e metrics d and ı being quasi-Möbius equivalent they

are Hölder equivalent (see [23], Corollary 11.5). �us u 2 C ˇ .@Y; d/ for some

ˇ > 0, and we obtain

jf .y1/ � f .y2/j D ju.z1/ � u.z2/j . a�ˇ dist.y0;.z1;z2// . a�ˇL: (4.8)

To establish the last inequality one notices that dist.y0; .z1; z2//�L is bounded by

below just in terms of R0 and the hyperbolicity constant of Y . �e claim follows.

We now claim that df 2 p̀.Y
.1// for p > 2Q

˛C1
. To see it, observe that u is a

Lipschitz function of .@Y; ı
˛C1

2 / and ı
˛C1

2 is an Ahlfors 2Q
˛C1

-regular metric on @Y

which is quasi-Möbius equivalent to a visual metric. �erefore the claim follows

from Elek’s extension process [18] (see [9], Proposition 3.2, for more details).

Hence the function f de�nes an element of p̀H
1
cont.Y;W / for p > 2Q

˛C1
, which

separates z1 and z2. �us

psep.Y;W / �
2Q

˛ C 1
�
1

˛
Confdim.@Y /:

5. Applications to amalgamated products

�is section uses Section 3 and Corollary 4.6 to construct examples of group amal-

gams whose p̀-cohomology has speci�ed behavior (see Corollary 5.3 especially).

Let A be a hyperbolic group and let C 5 A be a �nitely presentable subgroup.

Let KA and KC be �nite 2-complexes with respective fundamental groups A and

C , such that there is a simplicial embedding KA ,! KC inducing the given em-

bedding of fundamental groups. Denote by zKA the universal cover of KA and

pick a copy zKC � zKA of the universal cover of KC . �e spaces and invariants

p̀H
1
cont.Y;W /, p¤0.Y /, psep.Y /, p¤0.Y;W /, psep.Y;W /, associated to the pair

.Y;W / D
�

zKA;
[

a2A

a zKC

�

;

will be denoted simply by p̀H
1
cont.A; C /, p¤0.A/, psep.A/, p¤0.A; C / and

psep.A; C /.

We notice that psep.A; C / is �nite when C is a quasi-convex malnormal sub-

group (see Remark 2 after �eorem 4.1 and [8] for more details).
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Recall from [26] that, given A;B two hyperbolic groups and C a quasi-convex

malnormal subgroup of A and B , the amalgamated product A�C B is hyperbolic.

Proposition 5.1. Let A;B; C three hyperbolic groups, suppose that A and B are
non elementary and that C is a proper quasi-convex malnormal subgroup of A
and B . Let � be the amalgamated product A �C B . We have

(1) If p¤0.A; C / < psep.B/ then for all p 2 .p¤0.A; C /; psep.B/� the p̀-equiv-
alence relation on @� possesses a coset di�erent from a point and the whole
boundary @�.

(2) If psep.A; C / < p¤0.B/ then for all p 2 .psep.A; C /; p¤0.B// the p̀-equiv-
alence relation on @� is of the form

z1 �p z2 () z1 D z2 or there exists g 2 � such that ¹z1; z2º � g.@B/:

Proof of Proposition 5.1. Part (2) is established in [8], �eorem 0.1. We provide

here a more enlightening proof.

(1) Let p 2 .p¤0.A; C /; psep.B/� be as in the statement. From Example 3.4 and

Corollary 3.6(1) we have p > p¤0.�/. Hence, by Proposition 3.1, the

p̀-cosets are di�erent from @�. On the other hand we have the obvious inequality

p � psep.B/ � psep.�/. �us �eorem 3.8(1) shows that @� admits a p̀-coset

which is di�erent from a singleton.

(2) Let p 2 .psep.A; C /; p¤0.B// be as in the statement. Let u 2 Ap.@�/.

Its restriction to every g.@B/ (with g 2 �/ is constant since p < p¤0.B/. �us

every g.@B/ is contained in a p̀-coset.

Conversely to establish that

z1 �p z2 H) z1 D z2 or there exists g 2 � such that ¹z1; z2º � g.@B/;

we shall see that Ap.@�/ separates the limit sets g.@B/. Consider �nite simpli-

cial complexesKA; KB ; KC ; K, with respective fundamental group A;B; C; �, as

described in Example 3.4. Let zK be the universal cover of K and choose copies
zKA; zKB � zK of the universal covers of KA; KB. We know from Example 3.4 that
zKA decomposes zK.

Pick two distinct subcomplexesg zKB ; g
0 zKB � zK and a geodesic 
 � zK joining

them. It passes through a subcomplex g00 zKA. Applying .g00/�1 if necessary, we

may assume that g00 D 1. �erefore g zKB and g0 zKB lie in di�erent components

of zK n zKA. By Proposition 3.5(2), we have psep.A; C / D psep. zK; zK n zKA/. Since

p > psep.A; C /, we obtain that Ap.@�/ separates g.@B/ from g0.@B/.



462 M. Bourdon and B. Kleiner

From �eorem 3.8(2), and since �p is invariant under the boundary extensions

of the quasi-isometries of �, we get the following result.

Corollary 5.2. Let A;B; C; � be as in Proposition 5.1.

(1) If p¤0.A; C / < psep.B/ then @� does not admit the CLP.

(2) If psep.A; C / < p¤0.B/ then any quasi-isometry of � permutes the cosets
gB , for g 2 �. More precisely, the image of a coset gB by a quasi-isometry
of � lies within bounded distance (quantitatively) from a unique coset g0B .

In combination with Corollary 4.6 this leads to the following result.

Corollary 5.3. LetA;B; C be as in Proposition 5.1 and suppose that there is a de-
creasing sequence ¹Anºn2N of �nite index subgroups ofA such that

T

n2N An D C .
Set �n WD An �C B .

(1) If psep.A/ < psep.B/ then, for all p 2 .psep.A/; psep.B/� and every n large
enough, the p̀-equivalence relation on @�n possesses a coset di�erent from
a point and the whole @�. In particular for n large enough, @�n does not
admit the CLP.

(2) If psep.A/ < p¤0.B/ then, for p 2 .psep.A/; p¤0.B// and every n large
enough, the cosets of the p̀-equivalence relation on @�n are single points
and the boundaries of cosets gB , for g 2 �n. In particular, for large n, any
quasi-isometry of �n permutes the cosets gB , for g 2 �n.

Proof. According to Proposition 5.1 and Corollary 5.2 it is enough to prove that

limsupn psep.An; C / � psep.A/: (5.4)

We consider the simplicial complexes zKA; zKC introduced in the beginning of the

section, and we set, for n 2 N,

.Y;Wn/ WD
�

zKA;
[

a2An

a zKC

�

:

�en just by de�nition we have psep.An; C / D psep.Y;Wn/. On the other hand,

since CAnC D An, one has in the group A

inf¹dist.C; aC / j aC 2 An=C; aC ¤ C º D dist.1; An n C/:
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�e group A is quasi-isometric to the space zKA. �erefore the last equality, in

combination with the hypothesis
T

n2N An D C , implies that the minimal pair-

wise separation between distinct components of Wn tends in�nity as n ! 1.

It follows from Corollary 4.6 that

limsupn psep.Y;Wn/ � Confdim.@A/:

With �eorem 3.8(1) we get the desired inequality (5.4).

Example 5.5. It is now possible to answer M. Bonk’s question about examples

of approximately self-similar Sierpinski carpets without the CLP. Pick two hy-

perbolic groups A and B whose boundaries are homeomorphic to the Sierpin-

ski carpet, and which admit an isomorphic peripheral subgroup C . Assume that

Confdim.@A/ < Confdim.@B/ and that there is a sequence ¹Anºn2N of �nite in-

dex subgroups of A such that
T

n2N An D C . Such examples can be found among

hyperbolic Coxeter groups, because quasi-convex subgroups of Coxeter groups

are separable. See Example 8.3 and [21]. �en for n large enough the boundary

of An �C B is homeomorphic to the Sierpinski carpet. Moreover, according to

Corollary 5.3, it doesn’t admit the CLP for n large enough.

Example 5.6. Let M , M 0 and N be closed hyperbolic (i.e. constant curvature

�1) manifolds with 1 � dim.N / < dim.M/ < dim.M 0/. Suppose that M and

M 0 contain as a submanifold an isometric totally geodesic copy of N . �e group

�1.N / is separable in �1.M/ (see [1]). For the standard hyperbolic space Hk of

dimension k � 2, by [35], one has Confdim.@Hk/ D p¤0.H
k/ D k�1. �erefore

the assumptions in items (1) and (2) of Corollary 5.3 are satis�ed withA D �1.M/,

B D �1.M
0/ andC D �1.N /. It follows that the manifoldM admits a �nite cover

Mn containing an isometric totally geodesic copy of N , such that the space

K WD Mn tN M 0

possesses the following properties.

� For p 2 .dimM � 1; dimM 0 � 1/, by letting zK be the universal cover of K,

the cosets of the p̀-equivalence relation on @ zK are points and the boundaries

of lifts of M 0. In particular @ zK doesn’t satisfy the CLP.

� Every quasi-isometry of zK permutes the lifts of M 0 � K.

�e second property may also be proven using the topology of the boundary, or

using coarse topology. By combining topological arguments with the zooming

method of R. Schwartz [36], one can deduce from the second property that every

quasi-isometry of zK lies within bounded distance from an isometry.
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6. Elementary polygonal complexes

In this section we compute the invariants p¤0.Y;W / and psep.Y;W / in some very

special cases. �ey will serve in the next sections to obtain upper bounds for the

conformal dimension and for the invariant p¤0.X/.

De�nition 6.1. A polygonal complex is a connected simply connected 2-cell com-

plex X of the following form:

� every 2-cell is isomorphic to a polygon with at least 3 sides;

� every pair of 2-cells shares at most a vertex or an edge.

�e number of sides of a 2-cell is called its perimeter, the number of 2-cells con-

taining an edge is called its thickness.

De�nition 6.2. An elementary polygonal complex is a polygonal complex Y

whose edges are colored black or white, that enjoys the following properties:

� every 2-cell has even perimeter at least 6;

� the edges on the boundary of every 2-cell are alternately black and white;

� every white edge has thickness 1, and every black edge has thickness at

least 2.

We will equip every elementary polygonal complex Y with a length metric of

negative curvature, by identifying every 2-cell with a constant negative curvature

right angled regular polygon of unit length edges; in particular Y is a Gromov

hyperbolic metric space (quasi-isometric to a tree). �e union of the white edges

of Y is called its frontier. �e frontier is a locally convex subcomplex of Y , and

hence every connected component is a CAT .0/ space, i.e. subtree of Y . We call

such components frontier trees of Y .

�e (unique) elementary polygonal complex, whose 2-cells have constant

perimeter 2m and whose black edges have constant thickness k (m � 3; k � 2),

will be denoted by Ym;k .

We denote by T the frontier of Y , and we consider the associated invariants

p¤0.Y;T/; psep.Y;T/. When Y D Ym;k we write Tm;k , pm;k , qm;k for brevity.
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�eorem 6.3. For m � 3 and k � 2 one has

pm;k D qm;k D 1C
log.k � 1/

log.m� 1/
:

Proof. We �rst establish the upper bound

qm;k � 1C
log.k � 1/

log.m � 1/
: (6.4)

For this purpose we will construct some elements in p̀H
1
cont.Ym;k ;Tm;k/.

Set Ym WD Ym;2 for simplicity. Observe that Ym is a planar polygonal complex.

For any choice of 2-cells c � Ym;k , d � Ym there is an obvious continuous

polygonal map

rc;d W Ym;k �! Ym

sending c to d and such that for every y0 2 c and every y 2 Ym;k one has

jrc;d .y0/ � rc;d .y/j D jy0 � yj:

Observe that the frontier of Ym is an union of disjoint geodesics. We will de�ne

a continuous map ' W Ym [ @Ym ! H2 [ S1 which maps every frontier geodesic

of Ym to an ideal point in S1. To do so, �x a 2-cell d � Ym. At �rst we de�ne

'jd so that its image is a regular ideal m-gon. In other words ' collapses every

white edge of d to an ideal point in S1, and these ideal points are m regularly

distributed points in S1. For n 2 N, let Pn be the union of the 2-cells of Ym whose

combinatorial distance to d is less than or equal to n. By induction we de�ne '

on the subcomplex Pn, so that

(i) the images of the 2-cells of Ym form a tesselation of H2 by ideal m-gons;

(ii) the images of the frontier geodesics of Ym, passing through the subcomplex

Pn, are m.m � 1/n�1 ideal points equally spaced on S1.

Let u W S1 ! R be a Lipschitz function. Since '.Y
.0/
m / � S1, the composition

u ı ' ı rc;d is well de�ned on Y
.0/

m;k
. Let f W Y

.0/

m;k
! R be this function. By

construction its restriction to every frontier tree T � Tm;k is constant. Moreover

f extends continuously to Y
.0/

m;k
[@Ym;k since rc;d does. It remains to estimate the

p-norm of df . Let C be the Lipschitz constant of u. �ere arem.m� 1/n.k� 1/n

black edges at the frontier of the subcomplex r�1
c;d
.Pn/. If a is such an edge, one

has from property (ii) above

jdf .a/j �
2�C

m.m � 1/n�1
:
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�erefore

kdf kp
p .

X

n2N

.m � 1/n.k � 1/n

.m � 1/pn
D

X

n2N

..m � 1/1�p.k � 1//n:

�us Œf � belongs to p̀H
1
cont.Ym;k ;Tm;k/ for .m � 1/1�p.k � 1/ < 1 i.e. for

p > 1C
log.k � 1/

log.m � 1/
:

In addition, by varying the 2-cell c and the fonction u, one obtains functions f that

separate any given pair of distinct points z1; z2 2 @Ym;k such that ¹z1; z2º ª @T

for every T 2 Tm;k . Inequality (6.4) now follows.

To establish the theorem it remains to prove

pm;k � 1C
log.k � 1/

log.m � 1/
: (6.5)

To do so we consider, for m; k; ` � 3, the polygonal complex �m;k;` de�ned by

the following properties:

� every 2-cell has perimeter 2m;

� every edge is colored black or white, and the edge colors on the boundary of

each 2-cell are alternating;

� the thickness of every black edge is k, while the thickness of white edges is `;

� the link of every vertex is the full bipartite graph with k C ` vertices.

As with elementary polygonal complexes, we metrize �m;k;` so that each cell is a

regular right-angled hyperbolic polygon, and hence�m;k;` is a right-angled Fuch-

sian building. �e union of its white edges is a disjoint union of totally geodesic

trees in �m;k;`. By cutting �m;k;` along these trees, one divides �m;k;` into sub-

complexes, each isometric to Ym;k. Let Y � �m;k;` be one such subcomplex.

It decomposes �m;k;`. Denote by T its frontier. By Corollary 3.6 one gets that

p¤0.�m;k;`/ � p¤0.Y;T/ D pm;k . On the other hand @�m;k;` is known to admit

the CLP (see [11, 10]). Hence, with �eorem 3.8(2) we obtain

pm;k � p¤0.�m;k;`/ D Confdim.@�m;k;`/:

From [7] formula (0.2), one has Confdim.@�m;k;`/ D 1C 1
x

where x is the unique

positive number which satis�es

.k � 1/x C .`� 1/x
�

1C .k � 1/x
��

1C .`� 1/x
� D

1

m
:
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By an easy computation we get that

lim
`!C1

Confdim.@�m;k;`/ D 1C
log.k � 1/

log.m � 1/
:

Inequality 6.5 follows.

Corollary 6.6. Let Y be an elementary polygonal complex. Assume that the
perimeter of every 2-cell of Y lies in Œ2m1; 2m2� and that the thickness of every
black edge lies in Œk1; k2�, with m1 � 3 and k1 � 2. �en

1C
log.k1 � 1/

log.m2 � 1/
� p¤0.Y;T/ � psep.Y;T/ � 1C

log.k2 � 1/

log.m1 � 1/
:

Proof. We �rst establish the last inequality. By adding 2-cells to Y if necessary,

we obtain an elementary polygonal complex Y 0, whose black edges are of constant

thickness k2, and whose 2-cell perimeters are larger than or equal to 2m1. Let T0

be its frontier. �e cellular embedding .Y;T/ ! .Y 0;T0/ induces a restriction map

p̀H
1
cont.Y

0;T0/ ! p̀H
1
cont.Y;T/, which leads to psep.Y;T/ � psep.Y

0;T0/.

We now compare psep.Y
0;T0/ with qm1;k2

. Observe that any polygon P of

perimeter larger than 2m1 contains a 2m1-gon whose black edges are contained

in black edges of P , and whose white edges are contained in the interior of P .

With this observation one can construct embeddings ' W Ym1;k2
! Y 0 in such a

way that '.Ym1;k2
/ decomposes Y 0 and Proposition 3.5 yields a monomorphism

p̀H
1
cont.Ym1;k2

;Tm1;k2
/ ,! p̀H

1
cont.Y

0;T0/:

For p > qm1;k2
, by varying the embedding ', we see that p̀H

1
cont.Y

0;T0/ separates

any given pair of distinct points z1; z2 2 @Y 0 such that ¹z1; z2º ª @T 0 for every

T 0 2 T
0. �erefore psep.Y

0;T0/ � qm1;k2
, and the last inequality of Corollary 6.6

follows from �eorem 6.3.

�e �rst inequality can be proved in a similar way.

7. Applications to polygonal complexes

Building on earlier Sections 3 and 6, this section derives some results on the con-

formal dimension of polygonal complex boundaries (Proposition 7.1).

LetX be a polygonal complex. If the perimeter of every 2-cell is larger than or

equal to 7, then we identify every 2-cell with a constant negative curvature regular

polygon of unit length edges and of angles 2�
3

. �e resulting length metric on X

is of negative curvature, in particular X is hyperbolic.
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If every 2-cell has perimeter at least 5, and the link of every vertex contains no

circuit of length 3, then we identify every 2-cell with a constant negative curvature

regular polygon of unit length edges and of angles �
2
. Again the resulting length

metric on X is of negative curvature.

�e following result gives a upper bound for the conformal dimension of the

boundary at in�nity of such polygonal complexes. In some cases a lower bound

can be obtained by M. Gromov’s method of “round trees”, see [20] p. 207, [6],

and [33].

Proposition 7.1. Let X be a polygonal complex of negative curvature as above;
suppose that @X is connected and approximately self-similar.

(1) If the perimeter of every 2-cell is at least n � 5, the thickness of every edge
is at most k � 2, and the link of every vertex contains no circuit of length 3,
then

Confdim.@X/ � 1C
log.k � 1/

log.n � 3/
:

(2) If the perimeter of every 2-cell is at least n � 7 and the thickness of every
edge is at most k � 2, then

Confdim.@X/ � 1C
log.k � 1/

log.n � 5/
:

Proof. We shall construct a family of embedded elementary polygonal complexes

that fully decomposes X . �e statement will then follow from Corollaries 3.6(2),

6.6 and �eorem 3.8(1).

(1) First we associate to every edge e � X a rooted directed tree de�ned by the

following process:

(A) join by a directed segment the middle of e to the center O of every 2-cell c

containing e;

(B) connect by a directed segment the centerO to the middle of every edge e0 of

c that is not adjacent nor equal to e;

(C) restart the process with e0 and every 2-cell distinct from c that contains e0.

Let Te be the resulting graph in X . We claim that Te is a bi-Lipschitz embedded

tree in X . To do so, we �rst notice that from its de�nition every edge of Te admits

a direction. A path in Te will be called a directed path if its edges are all directed

in the same way. Pick a directed path 
 � Te. Since X is right angled and non-

positively curved, item (B) in combination with angle considerations implies that

the union of the 2-cells met by 
 is a convex subset of X . �erefore all directed
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paths are uniformly bilipschitz embedded in X . In addition, two di�erent directed

paths in Te issuing from the same point have distinct endpoints. �us Te is an

embedded tree in X . Moreover every backtrack free path in Te is the union of at

most two directed paths making an angle bounded away from 0. Since X is non-

positively curved, one obtains that all backtrack free paths in Te are uniformly

bilipschitz embedded. �e claim follows now easily.

Pick an 0 < � � 1
4

and consider the �-neighborhood Ye of Te in X . �is is a

bi-Lipschitz embedded elementary polygonal complex. �e perimeter of every of

its 2-cell is larger than or equal to 2.n�2/, and the thickness of its edges is smaller

than or equal to k. �e family ¹Yeºe2X.1/ fully decomposesX . Indeed, for a given

pair of distinct points z1; z2 2 @X , let c 2 X .2/ be a 2-cell such that the geodesic

.z1; z2/ connects two non-adjacent sides e1; e2 of c (possibly .z1; z2/ intersects c

in a side e3 of c which joins e1 to e2). Let e be a side of c which is di�erent from

e1 and e2. �en Ye separates z1 and z2. �erefore according to �eorem 3.8(1),

Corollaries 3.6(2) and 6.6 we get

Confdim.@X/ D psep.X/ � sup
e2X.1/

psep.Ye;Te/ � 1C
log.k � 1/

log.n � 3/
;

where Te denotes the frontier of Ye.

(2) �e method is the same apart from a slight modi�cation in the construction

process of the rooted directed trees. Item (B) becomes

(B0) ConnectO to the middle of every edge e0 of c whose combinatorial distance

to e is at least 2.

We claim that Te is again a bi-Lipschitz embedded tree in X . To see this, con-

sider again a directed path 
 � Te and the 2-cells c1; : : : ; cn � X successively

met by 
 . �eir union is not convex in X but a slight modi�cation is. Indeed pick

i 2 ¹1; : : : ; n � 1º, let x be one of the vertices of the segment ci \ ciC1, and let

y 2 ci n ciC1, z 2 ciC1 n ci be the vertices adjacent to x. Denote by �x the convex

hull of the subset ¹x; y; zº � X . By considering the link at x, one sees that it ei-

ther degenerates to the union Œyx�[ Œxz�, or it is a simplex contained in the unique

2-cell which contains x; y; z. Since X is a non positively curved polygonal com-

plex with unit length edges and 2�
3

angles, the angles of �x at y and z are smaller

than �
6

. Moreover item (B0) implies that y … ci�1 and z … ciC2. It follows from

angle considerations that the union
�

[

i

ci

�

[
�

[

x

�x

�

de�nes a locally convex isometric immersion of an abstract CAT(0) space into X ,

and it is therefore a global embedding with convex image.
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�e rest of the proof is similar to case (1). Here the 2-cells of the associated

elementary polygonal complex Ye have perimeter larger than or equal to 2.n� 4/

because of (B0).

Example 7.2. Assume that the link of every vertex is the 1-skeleton of the k-

dimensional cube and that the perimeter of every 2-cell is equal to n � 5. �en

Proposition 7.1(1) in combination with the lower bound established in [6] p.140

gives

1C
log.k � 1/

log.n � 3/C log 15
� Confdim.@X/ � 1C

log.k � 1/

log.n � 3/
:

When the link is the 1-skeleton of the 3-dimensional cube @X is homeomorphic

to the Sierpinski carpet. For even n, examples of such complexes are provided

by Davis complexes of Coxeter groups; their boundaries admit the CLP (see [10],

9.4). �erefore one obtains examples of Sierpinski carpet boundaries satisfying

the CLP, whose conformal dimension is arbitrarily close to 1. �is answers a

question of J. Heinonen and J. Mackay.

Example 7.3. Assume now that the link of every vertex is the full bipartite graph

with kCk vertices and that the perimeter of every 2-cell is equal to n � 5. From [7]

one has

Confdim.@X/ D 1C
log.k � 1/

log
�

n
2

� 1C
q

.n
2

� 1/2 � 1
�

;

which is quite close to the upper bound obtained in Proposition 7.1. We emphasize

that the Hausdor� dimensions of the visual metrics on @X do not give in general

such precise upper bounds. For example it follows from [31] that if every 2-cell

of X is isometric to the same right angled polygon P � H2, then the Hausdor�

dimension of the associated visual metric is larger than

1C
length.@P /

area.P /
log.k � 1/:

8. Applications to Coxeter groups

�is section applies earlier results for the invariants Confdim.@�/ and p¤0.�/ to

Coxeter groups � (Corollary 8.1 and Proposition 8.2)
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Recall that a group � is a Coxeter group if it admits a presentation of the form

� D hs; s 2 S j s2 D 1; .st/mst D 1 for s ¤ ti;

with jS j < C1, andmst 2 ¹2; 3; : : : ;C1º. To such a presentation one associates

a �nite simplicial graphLwhose vertices are the elements s 2 S and whose edges

join the pairs .s; t / such that s ¤ t andmst ¤ C1. We label every edge of Lwith

the corresponding integer mst . �e labelled graph L is called the de�ning graph
of �. �e valence of a vertex s 2 L.0/ will be denoted by val.s/.

Using Proposition 7.1 we will deduce the following result.

Corollary 8.1. Suppose � is a Coxeter group with de�ning graph L.

(1) If for every .s; t / 2 L.1/ one has val.s/ � k, mst � m � 3 and L contains no
circuit of length 3, then � is hyperbolic and

Confdim.@�/ � 1C
log.k � 1/

log.2m � 3/
:

(2) If for every .s; t / 2 L.1/ one has val.s/ � k, mst � m � 4, then � is
hyperbolic and

Confdim.@�/ � 1C
log.k � 1/

log.2m � 5/
:

�e above corollary shows that global bounds for the valence and the integers

mst yield upper bounds for the conformal dimension. In contrast, the following

result asserts that local bounds are enough to obtain upper bounds for p¤0.�/.

Proposition 8.2. Suppose � is a hyperbolic Coxeter group with de�ning graphL.
For s 2 L.0/ set ms WD inf.s;t/2L.1/ mst .

(1) Suppose that there is an s 2 L.0/ with val.s/ � 2, ms � 3 which does not
belong to any length 3 circuit of L. �en

p¤0.�/ � 1C
log.val.s/ � 1/

log.ms � 1/
:

(2) Suppose that there is an s 2 L.0/ with val.s/ � 2, ms � 5. �en

p¤0.�/ � 1C
log.val.s/ � 1/

log.ms � 3/
:

Remarks. �e de�nition of the invariant p¤0.�/ given in Section 3 requires � to

be hyperbolic. However the above proposition extends to non hyperbolic Coxeter

groups as well. In this case the conclusion is simply that p̀H
1.�/ ¤ 0 for p larger

than the right hand side.
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�e proofs of Corollary 8.1 and Proposition 8.2 rely on the fact that every

Coxeter group � has a properly discontinuous, cocompact, isometric action on

a CAT .0/ cellular complexX called the Davis complex of �. We list below some

of its properties (see [17] Chapters 7 and 12 for more details).

For I � S , denote by�I the subgroup of� generated by I . It is again a Coxeter

group; its de�ning graph is the maximal subgraph of L whose vertex set is I .

By attaching a simplex to every subset I � S such that �I is �nite, one obtains

a simplicial complex †L whose 1-skeleton is the graph L. �e Davis complex X

enjoys the following properties.

� �e 1-skeleton of X identi�es naturally with the Cayley graph of .�; S/;

in particular every edge of X is labelled by a generator s 2 S .

� Every k-cell is isometric to a k-dimensional Euclidean polytope.

� �e link of every vertex is isomorphic to the simplicial complex †L.

� For .s; t / 2 L.1/ the corresponding 2-cells of X are regular Euclidean poly-

gons of perimeter 2mst and unit length edges alternately labelled s and t .

More generally if I � S spans a k-simplex in †L, then the correspond-

ing k-cells of X are isometric to the Euclidean polytope which is the Davis

complex of the �nite Coxeter group �I .

� For every I � S , the Davis complex of �I has a canonical isometric embed-

ding in X .

Proof of Corollary 8.1. Given a free productG D A?B of two hyperbolic groups

A;B , it is well known that

Confdim.@G/ D max¹Confdim.@A/; Confdim.@B/º:

�us, by decomposing � as a free product, where each factor is a Coxeter group

associated to a connected component of L, we can and will restrict ourself to the

case L is connected.

For I � S , the hypotheses in (1) or (2) imply that the subgroup �I is �nite if

and only if jI j D 1 or 2. �erefore one has †L D L and the Davis’ complex X

is a polygonal complex. It clearly satis�es the hypothesis (1) or (2) in Proposition

7.1 with n D 2m. �e corollary follows.

Proof of Proposition 8.2. (1) Pick s 2 L.0/ as in the statement, set J WD ¹t 2 S j

.s; t / 2 L.1/º and consider the Coxeter subgroup A 5 � generated by ¹sº [ J .

Its Davis complex, denoted by XA, isometrically embeds in X .
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Since there is no length 3 circuit containing s, the de�ning graph of A consists

only of segments joining s to its neighbour vertices t 2 J . �erefore XA is an

elementary polygonal complex; its black edges are those labelled by s and the

white ones are labelled by an element of J . �e perimeter of its 2-cells is at least

2ms � 6 and the thickness of its black edges is equal to val.s/. Denote by TA its

frontier.

�e absence of a length 3 circuit containing s implies that for every t 2 J and

K � S with ¹s; tº ¤ K, the subgroup�K is in�nite. From the previous description

of the Davis complex X we obtain that XA n TA is an open subset of X . �erefore

XA decomposes X , since X is simply connected. With Corollaries 3.6(1) and 6.6

we get

p¤0.X/ � p¤0.XA;TA/ � 1C
log.val.s/ � 1/

log.ms � 1/
:

(2) Let s and J be as in case (1). Consider the union of the 2-cells of X that

correspond to the family of edges .s; t / 2 L.1/ with t 2 J . Let„ be one of its con-

nected components. It is a 2-cell complex whose universal cover is an elementary

polygonal complex. We color its edges black and white: the black edges are those

labelled by s and the white ones those labelled by an element of J . �e perimeter

of its 2-cells is larger than or equal to 2ms � 10 and the thickness of its black

edges is equal to val.s/.

Since ms � 5 we see that for every t 2 J and K � S with ¹s; tº ¤ K, the

subgroup �K is in�nite. �us „ minus the union of its white edges is an open

subset of X . We will construct an elementary polygonal complex Y � „ that

decomposes X . �e statement will then follow from Corollaries 3.6(1) and 6.6

again.

�e construction of Y uses a variant of the method presented in the proof of

Proposition 7.1. We associate to every black edge e � „ a rooted directed tree
de�ned by the following process:

(A) join by a directed segment the middle of e to the center O of every 2-cell c

containing e;

(B) connect by a directed segment the centerO to the middle of every black edge

e0 of c that is distinct from e and from the two nearest ones;

(C) restart the process with e0 and every 2-cell distinct from c that contains e0.

Let Te be the resulting graph in „. We claim that Te is a bi-Lipschitz embedded

tree in X . To see this we �rst modify the constant curvature of every 2-cell of „

so that their angles become equal to 3�
4

. Since the original angles were at least

equal to � � �
ms

� 3�
4

and since 3�
4

C 3�
4

C �
2

D 2� , the complex X remains

nonpositively curved.
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Consider a directed path 
 � Te as de�ned in the proof of Proposition 7.1, and

let c1; : : : ; cn � „ be the 2-cells successively met by 
 . �eir union is not convex

in X , but a slight modi�cation is. Indeed, pick i 2 ¹1; : : : ; n � 1º, let x be one of

the vertices of the segment ci \ ciC1, and let y 2 ci n ciC1, z 2 ciC1 n ci be the

vertices adjacent to x. Consider the geodesic simplex �x � X whose vertices are

x; y; z. Since X is non positively curved with unit length edges and 3�
4

angles,

the angles of �x at y and z are smaller than �
4

. Moreover item (B) implies that

for two consecutive segments ci�1 \ ci and ci \ ciC1 the associated simplices are

disjoint (they are separated by a black edge of ci at least). It follows from angle

considerations that
�

[

i

ci

�

[
�

[

x

�x

�

is a convex subset of X . �e rest of the argument and of the construction is sim-

ilar to the proof of Proposition 7.1. Here the 2-cells of the associated elementary

polygonal complex Y have perimeter larger than or equal to 2.ms � 2/ because of

the second item of the construction process.

Example 8.3. When a hyperbolic group boundary @� satis�es the CLP one knows

from �eorem 3.8(2) that p¤0.�/ D Confdim.@�/. So Proposition 8.2 yields

an upper bound for the conformal dimension of CLP Coxeter boundaries. For

example consider the following hyperbolic Coxeter group

� D hs1; : : : ; s4 j s2
i D 1; .sisj /

mij D 1; for i ¤ j i ;

where the ordermij is �nite for all i ¤ j and
P

i¤j
1

mij
< 1 for all j 2 ¹1; : : : ; 4º.

�e associated graph is the 1-skeleton of the tetrahedron. �e visual boundary

is homeomorphic to the Sierpinski carpet, so its conformal dimension is larger

than 1, see [32]. Moreover it admits the CLP [10]. De�ne

m D max
1�i�4

.min
j ¤i

mij /:

If m � 5 then from Proposition 8.2(2) we get that

Confdim.@�/ � 1C
log 2

log.m� 3/
:

In particular if we choose an i 2 ¹1; : : : ; 4º, �x the orders ¹mjkºj ¤i;k¤i , and let the

¹mij ºj ¤i go to C1, the conformal dimension tends to 1. We obtain in such a way a

family of Coxeter groups with Sierpinski carpet boundaries of di�erent conformal

dimensions, which all contain an isomorphic peripheral subgroup, namely the

subgroup generated by ¹sj ºj ¤i . Existence of groups with these properties was

evoked in Example 5.5.
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Example 8.4. �e previous examples are quite special because they satisfy the

CLP independently of the choice of the coe�cients mst . In general the CLP for

Coxeter group boundaries is very sensitive to the coe�cients mst . �e reason is

the following: suppose that the graph of a hyperbolic Coxeter group� decomposes

as L D L1 [ L2 where Li (i D 1; 2/ is a �ag subgraph of L (i.e. every edge of

L with both endpoints in Li belongs to Li ). Denote by �i the Coxeter group with

de�ning graph Li , and assume that

� there is a vertex s 2 L1 such that no edges issuing from s belong to L2 and

� the Coxeter group �2 satis�es Confdim.@�2/ > 1.

�en if the coe�cients of the edges issuing from s are large enough compared to

Confdim.@�2/, we get from Proposition 8.2(2) and �eorem 3.8(1)

p¤0.�/ < Confdim.@�2/ � Confdim.@�/;

and so, according to �eorem 3.8(2), the CLP fails for @�.

Concrete examples are provided, for instance, by Coxeter groups whose de�n-

ing graphs are complete bipartite. Let L.k; `/ be the full bipartite graph with k

black vertices and ` white vertices (k � 3, ` � 3). When all the coe�cients mst

are equal to the same integer m � 3 then it is known that the corresponding Cox-

eter group boundary admits the CLP [11, 10]. Now suppose that the number k of

black vertices is at least equal to 4. Pick one black vertex and decompose L.k; `/

accordingly:

L.k; `/ D L.1; `/ [ L.k � 1; `/:

Next, choose the coe�cientsmst � 3 arbitrarily on the edges of the second factor

graph and let the coe�cients of the �rst one go to C1. Since we have k � 1 � 3,

the boundary of the second factor group is homeomorphic to the Menger sponge;

thus its conformal dimension is larger than 1 [32]. �erefore the above discussion

applies and the CLP fails.
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