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1. Introduction

1.1. Background and motivation. Let G be a group. A function f W G ! R is

called a quasimorphism if its defect

D.f / WD sup
g;h2G

jf .gh/ � f .g/ � f .h/j

is �nite. Every bounded perturbation of a homomorphism is a quasimorphism,

but there exist also many quasimorphisms which are not of this form. In geo-

metric group theory such non-trivial quasimorphisms arise from group actions

on non-positively curved spaces with rank-one isometries (see [3] and the refer-
ences therein and also [21, 2] for some recent developments); in Lie theory they
arise from certain classical decompositions of Hermitian Lie groups [18, 7]. �ere
is also a connection between quasimorphisms to dynamical systems; for example
Ghys has observed [17] that the classical Rademacher quasimorphism on PSL2.Z/

is related to the Lorentz attractor. More exotic examples have been constructed
during the last decade on in�nite-dimensional groups of di�eomorphisms arising
in contact and symplectic topology (see [12] for a recent survey). �e interrelations
between these di�erent classes of quasimorphisms are not yet fully understood.

�e goal of this article is to develop the foundations for a uni�ed approach
to quasimorphisms, which allows one to study all the examples mentioned above
in a uniform way. �is new approach, which was foreshadowed e.g. in [9, 6], is
based on group actions on posets. It generalizes various classical constructions
from the theory of left-orderable groups. At the heart of our approach lies a very
general procedure (introduced in [11]) which associates to a certain type of action
of a group G on a poset a numerical function G ! R.

De�nition 1.1. Let .X; �/ be a poset and G be a group acting on X (but not
necessarily preserving �). An element g 2 G is called dominant with respect to
the action if for all h 2 G there exists n 2 N0 such that

kgn:x � kh:x for all k 2 G; x 2 X: (1)

Given a dominant g 2 G the associated growth function g W G ! R by the
formula

g.h/ WD lim
n!1

1

n
� inf¹p 2 Z j kgp:x � khn:x for all k 2 G; x 2 Xº:
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It is easy to see that the limit in the de�nition of a growth function always
exists (see Subsection 2.1). Let us record for later use that growth functions are
homogeneous in the sense that for all h 2 G, n 2 N and any dominant g,

g.hn/ D n � g .h/:

Note also that the de�nitions of a dominant and its growth function simplify con-
siderably if the action is assumed to be order-preserving. In this case, the notion of
a growth function is closely related to the notion of relative growth as introduced
in [11] (see Subsection 2.1 for a detailed discussion).

We will now relate growth functions to homogeneous quasimorphisms.
Our starting point is the following classical example, which will be our guide
throughout the article (see [27, 28] for the original or [16] for a modern treat-
ment). Let H C

Z
.R/ denote the group of those monotone homeomorphisms of the

real line which commute with integral translations. On the one hand, a homoge-
neous quasimorphism TR W H C

Z
.R/ ! R can be de�ned by the formula

TR.g/ WD lim
n!1

gn:x � x

n
;

where x 2 R is an arbitrary basepoint; this quasimorphism TR is known as
Poincaré’s translation number. On the other hand, the group H C

Z
.R/ acts order-

preservingly on the poset .R; �/. �ese two facts are related by the following
observation (see e.g. [5, Cor. 2.19]).

Proposition 1.2. �e action of H C
Z

.R/ on .R; �/ admits dominants, and for
every dominant g 2 G the associated growth function g is a positive multiple
of Poincaré’s translation number.

�e �rst goal of this article consists of de�ning a class of group actions on
posets, which generalizes the H C

Z
.R/-action on .R; �/, and to establish the analog

of Proposition 1.2 for these actions. More precisely, we are going to describe in
De�nition 1.7 below a class of actions on posets called quasi-total actions, such
that

(a) growth functions of quasi-total actions are homogeneous quasimorphism;

(b) conversely, every quasimorphism arises (up to a multiplicative constant) as
the growth function of some quasi-total action;

(c) special classes of quasi-total actions give rise to special classes of quasimor-
phisms.
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Properties (a) and (b) of quasi-total orders will be established in �eorem 1.8 be-
low. �e statement of (c) is intentionally kept vague at this point; we will en-
counter explicit incarnations of this principle in �eorem 1.10 and �eorem 1.13
below. Note that Part (a) is essentially a generalization of Proposition 1.2; its
proof mimics closely the classical proof. Part (b) is based on a tautological con-
struction, which implicitly appeared already in our previous work [6]. While the
existence of such a tautological realization is very satisfactory from a theoretical
point of view, the use of these realizations in applications is limited. It is there-
fore important to remark that the same homogeneous quasimorphism can appear
as the growth function of very di�erent orders. In fact, we observe heuristically
that many quasimorphisms of particular interest happen to admit explicit realiza-
tions as growth functions of orders with very peculiar properties. Once such a
realization has been identi�ed, some version of (c) can be used to obtain further
properties of the quasimorphisms in question. We will see various examples of
this general strategy below.

1.2. Quasi-total triples. �e notion of a quasi-total action arises by abstracting
basic properties of the action of H C

Z
.R/ on .R; �/. �e most notable property

of the poset .R; �/ is that it is totally ordered. It also admits an automorphism
T given by T .x/ WD x C 1 such that for any x; y 2 R we have T nx � y for
all su�ciently large n. Finally, the group H C

Z
.R/ centralizes the translation T .

It turns out that these are the only three properties of the H C
Z

.R/-action on .R; �/

that enter into the proof of Proposition 1.2. In fact, the totality assumption on �

can be weakened. �is leads to the following de�nition.

De�nition 1.3. (i) Let .X; �/ be a poset and Aut.X; �/ the group of order-pre-
serving permutations of X . An element T 2 Aut.X; �/ is called dominant if for
all a; b 2 X there exists n 2 N such that

T na � b:

(ii) Let .X; �/ be a poset and T 2 Aut.X; �/ a dominant. �e triple .X; �; T /

is called a quasi-total triple if there exists N.X/ 2 N such that, for all a; b 2 X ,
there exists k, 0 � k � N.X/, such that

a � T kb or b � T ka (2)

and complete if, for all a 2 X , a � Ta. We denote by AutT .X; �/ the centralizer
of T in Aut.X; �/.

�en the following result can be proved along the same lines as Proposition 1.2.
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�eorem 1.4. Let .X; �; T / be a complete quasi-total triple and G < AutT .X; �/

containing a dominant. �en all growth functions associated with the G action on
.X; �/ are (mutually proportional) nonzero homogeneous quasimorphisms.

�e proof of �eorem 1.4 falls into two separate steps. In a �rst step, we
use the automorphism T in order to construct a homogeneous quasimorphism
on AutT .X; �/; this quasimorphism coincides with the translation number in the
classical case and should thus be thought of as a generalized translation number.
In a second step one then has to show that the growth function associated with
the AutT .X; �/-action on .X; �/ are proportional to this generalized translation
number. �is second part of the proof relies heavily on results from [6]. We will
carry out both steps under slightly weaker assumptions on the G-action; see Sub-
section 3.1 and Subsection 3.2 respectively. As mentioned earlier there is also a
partial converse to �eorem 1.4.

Proposition 1.5. Let G be a group and f W G ! R a homogeneous quasimor-
phism. �en there exists a complete quasi-total triple .X; �; T / and an embedding
of G into AutT .X; �/ such that the image of G contains a dominant and all growth
functions associated with the G-action on .X; �/ are positive multiples of f .

Proposition 1.5 will be established in Subsection 3.4. �e proof is constructive,
but the resulting G-action is rather tautological and not of much interest. As an
almost immediate consequence of �eorem 1.4 and Proposition 1.5 we have

Corollary 1.6. A group G admits a non-zero homogeneous quasimorphism if and
only if it admits an action on a quasi-total triple .X; �; T / containing a dominant.

Indeed, the previous results show that G admits a non-zero homogeneous
quasimorphism if and only if it admits an e�ective action containing a dominant
on a complete quasi-total triple .X; �; T /. Both the e�ectiveness and the com-
pleteness assumption can actually be dropped, see Subsection 4.3.

1.3. Beyond quasi-total triples. In view of �eorem 1.4 and Proposition 1.5 one
might be tempted to de�ne a quasi-total action as an embedding

G ,�! AutT .X; �/;
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Figure 1. A Cayley graph embedding of PSL2.Z/ corresponding to the Rademacher quasi-
morphism.
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where .X; �; T / is a quasi-total triple. By the results of the last section this class
of orders would actually satisfy Properties (a) and (b) as de�ned above. However,
it is too narrow to host various examples, which appear naturally in applications.
Consider for instance the group

G WD PSL2.Z/ D hS; R j S2; R3i:

Continuing the pattern given in Figure 1 one obtains a map from the Cayley graph
� of G (with respect to the generating set ¹S; R; R2º) into R2. �is map will
not be injective, since edges will start to intersect, but we can deform it into an
embedding of � into R3 without changing the .x; y/-coordinates. Once such an
embedding is �xed, any partial order on R3 induces a partial order on �. Let us
choose the order on R3 in such a way that going right in the picture increases
the order and denote by � the induced order on �. Since the element R acts by
rotations on the triangles in �, the order � will not be G-invariant. In particular,
we cannot even embed G into Aut.�; �/, hence also not into AutT .�; �/ for any
automorphism T . Nevertheless one can show that the growth functions of the
G-action on .�; �/ are homogeneous quasimorphisms (and actually proportional
to the Rademacher quasimorphism on G). �is indicates the need for a broader
de�nition of quasi-total action. A closer investigation of the above example shows
that while the order � is not G-invariant, it is in fact invariant up to a bounded
error. �e following de�nition of quasi-total actions is �exible enough to allow
for this kind of behavior.

De�nition 1.7. Let X be a set. (i) A family of subsets ¹Hnºn2Z of X is called a
halfspace �ltration of X if

(H1) HnC1 ¨ Hn, n 2 Z.

(H2)
⋂

Hn D ;,
⋃

Hn D X .

Given a halfspace �ltration ¹Hnºn2Z of X and elements a; b 2 X we denote by

h.a/ WD sup¹n 2 Z j a 2 Hnº

the height of a and by

h.a; b/ WD h.a/ � h.b/

the relative height of a over b with respect to ¹Hnº.
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(ii) A partial order � on X is called a halfspace order if there exists a halfspace
�ltration ¹Hnº of X and a constant w WD w.X; �; ¹Hnº/ such that, for all a; b 2 X ,

h.a; b/ � w H) a � b:

We then say that ¹Hnº is compatible with the order � and that the triple
.X; �; ¹Hnºn2Z/ has width bounded by w.

(iii) Let .X; �/ be a halfspace order and G be a group. An action of G on X is
called quasi-total if it is e�ective, admits a dominant and there exists a compatible
halfspace �ltration ¹Hnº of X and a constant d > 0 such that the associated height
function satis�es

jh.ga; gb/ � h.a; b/j � d for all g 2 G; a; b 2 X: (3)

It is easy to see that in the example above the G-action on the embedded Cay-
ley graph .�; �/ is quasi-total. Also, one can show that given any complete quasi-
total triple .X; �; T / the action of AutT .X; �/ on .X; �/ is quasi-total (see Corol-
lary 3.9). We can now formulate our �rst main theorem.

�eorem 1.8. (i) �e growth functions of any quasi-total action are (mutually
proportional) nonzero homogeneous quasimorphisms.

(iii) Up to a positive multiple, every nonzero homogeneous quasimorphism
arises as the growth function of some quasi-total action of the underlying group.

Note that Part (ii) of the theorem is just a special case of Proposition 1.5; on the
other hand, Part (i) of �eorem 1.8 is more general than �eorem 1.4. Fortunately,
the same two step approach used in the proof of �eorem 1.4 applies also in the
present case (see again Subsection 3.1 and Subsection 3.2).

As a special case of �eorem 1.8 we see that the growth functions of the
PSL2.R/-action on the above Cayley graph embedding into R3 are homogeneous
quasimorphisms. We refer the reader to Example 4.5 for a proof of the fact that
they are proportional to the Rademacher quasimorphism. �is provides a new
construction method for the Rademacher quasimorphism via an embedding of the
Cayley graph of the underlying group into R3. �is method generalizes to other
quasimorphisms on �nitely generated groups; see e.g. Example 4.6 for the case
of Brooks quasimorphisms on free groups.

1.4. Subgroups with vanishing quasimorphism. By de�nition, every quasi-
total action admits a dominant; in terms of a compatible halfspace �ltration ¹Hnº
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and associated height function h this means that the function g 7! h.g:x/ is un-
bounded for some (hence any) basepoint x 2 X . �is unboundedness assumption
ensures that the corresponding quasimorphism is nonzero, hence unbounded. On
the other hand, unboundedness of the function g 7! h.g:x/ is clearly necessary
to obtain an unbounded growth function. �is simple observation yields immedi-
ately the following characterization result.

Corollary 1.9. Let G be a group acting quasi-totally on .X; �/, x0 2 X and
f D x0

the associated quasimorphism. �en for a subgroup H < G the following
are equivalent:

(i) f jH � 0;

(ii) the action of H on .X; �/ is not unbounded;

(iii) for any compatible halfspace �ltration ¹Hnº with height function h and any
x 2 X the function g 7! h.gx/ is bounded on H .

If the poset .X; �/ is well-understood, this allows one to study subgroups with
vanishing quasimorphism. In the study of quasimorphisms on Lie groups a re�ne-
ment of this idea can be used. We can formulate this re�nement in some general-
ity. For this we recall that a poset .X; �/ is called globally hyperbolic if X comes
equipped with a topology such that the �nite order intervals

Œx; y� WD ¹z 2 X j x � z � yº

are compact and the in�nite order intervals

Œx; 1/ WD ¹z 2 X j x � zº; .�1; x� WD ¹z 2 X j z � xº:

are closed. Let us call a subset B � X bounded if its closure is compact. We will
prove the following result in �eorem 3.12.

�eorem 1.10. Let H be a group, .X; �/ a globally hyperbolic poset with a quasi-
total H -action, x0 2 X and f D x0

be an associated growth function. �en for
a subgroup G < H the following are equivalent:

(i) f jG � 0;

(ii) every G-orbit in X is bounded;

(iii) there exists a bounded G-orbit in X .

�us if we manage to �nd a realization of a quasimorphism by a globally
hyperbolic quasi-total triple, then we obtain valuable geometric information about
subgroups of vanishing quasimorphism.
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1.5. Smooth quasi-total triples and Lie groups. In order to illustrate the above
machinery and to provide an application, let us discuss the case of quasimorphisms
of �nite-dimensional connected Lie groups. For this let let D be an irreducible
bounded symmetric domain with Shilov boundary LS and let G be the identity com-
ponent of the isometry group of D with respect to the Bergman metric. �en any
in�nite covering of G admits a (unique up to multiples) homogeneous quasimor-
phism, called Guichardet–Wigner quasimorphism [18, 7]. �ese quasimorphisms
are the basic building blocks for quasimorphisms on Lie groups, in the sense that
every quasimorphism on a �nite-dimensional connected Lie group arises as a pull-
back of a sum of Guichardet–Wigner quasimorphisms and homomorphisms to
R (see [5] for details). For general D we do not know whether the associated
Guichardet–Wigner quasimorphism can be realized using a globally hyperbolic
quasi-total triple. However, if the domain D happens to be of tube type, then by
a result of Kaneyuki [23] there is a unique (up to inversion) G-invariant causal
structure on LS , which gives rise to a partial order � on the universal covering LR

of LS (see Section 5.4 for details of this construction). It was observed by Clerc
and Koufany [9] that this order is closely related to the Guichardet–Wigner quasi-
morphism. In the language of the present paper their results can be reinterpreted
as follows. Denote by T the unique deck transformation of the covering LR ! LS

which is non-decreasing with respect to �. Also denote by LG the unique cyclic
covering of G which acts transitively and e�ectively on LR. �en we have

�eorem 1.11. �e triple . LR; �; T / is a globally hyperbolic quasi-total triple, on
which LG acts by automorphisms. In particular, the growth functions of this action
are proportional to the Guichardet–Wigner quasimorphism on LG.

�eorem 1.11 follows by combining Corollary 5.14 and Corollary 5.15 below.
Concerning the latter, it is important to remark that the order � used in the present
article is the closure of the order considered in [9]. �e combination of �eo-
rem 1.11 and �eorem 1.10 yields the following result.

Corollary 1.12. Let H < LG be a subgroup. �en the Guichardet–Wigner quasi-
morphism vanishes along H if and only if some (hence any) H -orbit in LR is
bounded.

To the best of our knowledge this is the �rst characterization of groups with
vanishing Guichardet–Wigner quasimorphism in the literature.

1.6. Left-orderable groups and circular quasimorphisms. We should men-
tion at this point that in the special case of totally left-ordered group, our main
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theorem is related to classical results in the �eld. Indeed, let G be a countable
group and � a total order on G, which is preserved by the left action of G on
itself. (�e existence of such an order implies in particular, that G is torsion-free.)
As explained e.g. in [25], there exists an order-preserving G-action on the real line
which admits an equivariant order-preserving embedding of G, which is unique
up to conjugation. Note that by construction, the two actions of G on .R; �/

and .G; �/ give rise to the same growth functions. If � admits a dominant, then
the G-action on R can be chosen to commute with the Z-action; in this case the
associated growth functions are proportional to the restriction of the translation
number, hence homogeneous quasimorphisms. To summarize, growth functions
of left-invariant total orders (admitting a dominant) on countable groups are ho-
mogeneous quasimorphisms. �e resulting quasimorphisms are known to be of a
very special sort (see e.g. [14, 15, 1]). Since they arise from lifts of circle actions,
we will call them circular.

It turns out that we can use the machinery of quasi-total triples to decide
whether a given quasimorphism f W G ! R is circular. Let us assume for simplic-
ity that f is unbounded on the center of G. �is assumption is satis�ed in many
examples of interest and can anyway always be achieved by passing to a central
extension. �en we have

�eorem 1.13. Let G be a torsion-free countable group and f W G ! R be a
homogeneous quasimorphism, which is unbounded on the center of G. �en the
following are equivalent:

(i) f is circular;

(ii) f is proportional to the growth functions of a quasi-total triple of the form
.X; �; T / with X D G and � a total order.

For proofs and more precise results (avoiding the assumption that f is un-
bounded on the center) see Section 6.

1.7. Structure of the paper. �is paper is organized as follows. In Section 2 we
collect various preliminary results and notions. In particular, we provide a dic-
tionary between groups actions on posets and partially bi-ordered groups, which
allows us to translate some key results from [6] into our language. As a warm up,
we also reprove a simple special case of our main theorem, due to Hölder. Section
3 is the technical heart of this paper. All the general machinery concerning quasi-
total actions is established in this section. �e �nal three sections are essentially
independent and concern the three main classes of examples studied in this article.
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Section 4 discusses some examples related to countable groups. Section 5 deals
with smooth quasi-total triples and Lie groups. Finally, Section 6 discusses cir-
cular quasimorphisms on torsion-free groups. �e appendix collects some basic
results and de�nition concerning smooth orders, which are used in Section 5.
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2. Preliminaries

2.1. Poset actions and bi-invariant orders. E�ective group actions on posets
are closely related to bi-invariant orders on groups. In the current framework the
poset point of view appears more naturally. Since, however, some of the results we
use are formulated in the language of bi-invariant orders, we will provide a brief
dictionary here. In the sequel we will then use both points of view interchangeably.

Let us begin by recalling some standard terminology concerning orders on
groups. A partial order � on a group G is called bi-invariant if g � h implies
both gk � hk and kg � kh for all g; h; k 2 G. Equivalently, the associated order
semigroup

GC WD ¹g 2 G j g � eº

is a conjugation-invariant monoid satisfying the pointedness condition

GC \ .GC/�1 D ¹eº:

In this case we call the pair .G; �/ a partially bi-ordered group. Every e�ective
action of G on a poset .X; �/ induces a bi-invariant partial order on G, called the
induced order by setting

g � h () .kg/:x � .kh/:x for all k 2 G; x 2 X:
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Note that every bi-invariant partial order is induced from itself via the left action
of G. In the sequel, a bi-invariant partial order induced by a quasi-total action will
be called a quasi-total order.

In [11] the dominant set of a partially bi-ordered group is de�ned as

GCC WD ¹g 2 GC n ¹eº j for all h 2 G there exists n 2 N0 such that gn � hº;

while the relative growth function

� W GCC � G �! R

is de�ned by

�.g; h/ WD lim
n!1

inf¹p 2 Z j gp � hnº

n
:

Our de�nitions, as stated in the introduction, are chosen to match these de�nitions.
Given an e�ective G-action on a poset .X; �/ with induced order �, the notions
of dominants for � and � coincide. Given an e�ective G-action on a poset .X; �/

with induced order � and a dominant g, the growth function g of � is just the
function �.g; �/.

2.2. Relative growth and the sandwich lemma. �e link between actions on
posets and bi-invariant partial orders makes the results from [6] available in our
context. One such result, which will enter crucially into the proof of both direc-
tions of �eorem 1.8, is the so-called sandwich lemma. Because of its relevance
we recall it here. Given a partially bi-ordered group .G; �/ with order semigroup
GC and a homogeneous quasimorphism f W G ! R, we say that f sandwiches
GC if for some C > 0

¹g 2 G j f .g/ � C º � GC: (4)

(In this case automatically GC � ¹g 2 G j f .g/ � 0º, hence the name.) �en the
sandwich lemma can be stated as follows ([6, Proposition 3.3]).

Proposition 2.1. Suppose that .G; �/ is a partially bi-ordered group and that
f W G ! R is a non-zero homogeneous quasimorphism. If f sandwiches �, then
GCC ¤ ; and for all g 2 GCC, h 2 G we have

.g; h/ D
f .h/

f .g/
:
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2.3. A toy example: Hölder’s theorem. Before we turn to the study of general
quasi-total actions, it seems instructive to consider a special class of such actions,
for which the arguments are particularly simple and transparent. �us we will
study growth functions of bi-invariant total orders. �e result is as follows.

Proposition 2.2. Every bi-invariant total order on a group G, which admits a
dominant, is induced from a quasi-total triple. Moreover, the associated growth
functions are homomorphisms.

According to [25] an equivalent result was �rst established by Hölder. Since
the proof is short we reproduce it there; this gives us the opportunity to recall the
following trivial but useful fact to be used throughout.

Lemma 2.3. Let G be a group and � be a bi-invariant partial order on G. �en
for all f1; f2; g1; g2 2 � we have

f1 � g1; f2 � g2 H) f1f2 � g1g2:

Proof of Proposition 2.2. Concerning the �rst statement, choose h 2 GCC and
set

.X; �; T / WD .G; �; �h/;

where �h denotes right-multiplication by h. �en it is easy to check that .X; �; T /

is a quasi-total triple and that the induced quasi-total order coincides with �. We
now turn to the proof of the second statement. We �x g 2 GCC and show that
g is a homomorphism. For this let a; b 2 G. We may assume without loss of
generality that ab � ba. From bi-invariance we then obtain for all w1; w2 2 G

the inequality

w1abw2 � w1baw2: (5)

We claim that this implies that for every n 2 N,

anbn � .ab/n � bnan: (6)

Indeed, using (5) repeatedly we obtain

.ab/n D abab � � � � � ab � a2bbab � ::: � ab

� a2babb � ::: � ab � a3b3ab � ::: � ab

� anbn;
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and the other inequality is proved similarly. If we abbreviate

n.g; h/ WD inf¹p 2 Z j gp � hnº; h 2 G;

then we obtain

1.g; anbn/ � n.g; ab/ � 1.g; bnan/: (7)

On the other hand totality of � yields for every n 2 N,

gn.g;a/�1 � an � gn.g;a/;

gn.g;b/�1 � bn � gn.g;b/

and thus by Lemma 2.3

gn.g;a/Cn.g;b/�2 � anbn � gn.g;a/Cn.g;b/C2;

gn.g;a/Cn.g;b/�2 � bnan � gn.g;a/Cn.g;b/C2:

We deduce that

j1.g; anbn/ � n.g; a/ � n.g; b/j � 2

j1.g; bnan/ � n.g; a/ � n.g; b/j � 2:

Combining this with (7) we obtain

n.g; a/ C n.g; b/ � 2 � n.g; ab/ � n.g; a/ C n.g; b/ C 2

Dividing by n and passing to the limit n ! 1 we get

.g; a/ C .g; b/ � .g; ab/ � .g; a/ C .g; b/:

�is shows that g is a homomorphism.

�e condition of admitting a bi-invariant total order is rather restrictive.
We refer the reader to [25] and the references therein for various characterizations
and properties of totally bi-orderable groups.

3. Foundations of quasi-total actions

3.1. �e translation number of a quasi-total action. Let G be a group acting
quasi-totally on a poset .X; �/. Fix a compatible halfspace �ltration ¹Hnº with
underlying height function h and a constant d > 0 such that (2) holds.
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Proposition 3.1. �e functions ¹fa W G ! Xºa2X given by fa.g/ WD h.ga; a/ are
mutually equivalent quasimorphisms of defect � d . In fact, their mutual distances
are uniformly bounded by d .

Proof. We �rst show that the fa are mutually at bounded distance:

jfa.g/ � fb.g/j D jh.ga/ � h.a/ � h.gb/ C h.b/j

D jh.ga/ � h.gb/ � .h.a/ � h.b//j

D jh.ga; gb/ � h.a; b/j < d:

Now let us use this fact to show that they are quasimorphisms:

jfa.gk/ � fa.g/ � fa.k/j

� jfa.gk/ � fka.g/ � fa.k/j C d

D jh.gka/ � h.a/ � h.gka/ C h.ka/ � h.ka/ C h.a/j C d

D d:

�e assumption that the action of G on X is unbounded implies immediately
that each of the functions fa is unbounded. �en standard properties of homo-
geneization (see e.g. [8]) yield the following results

Corollary 3.2. �ere exists a nonzero homogeneous quasimorphism

T.X;�;¹Hnº/ W G �! R

of defect � 2d such that for all a 2 X ,

T.X;�;¹Hnº/.g/ D lim
n!1

h.gna; a/

n
:

A priori the quasimorphism T.X;�;¹Hnº/ depends on the choice of halfspace
�ltration. We will see below that di�erent choices result in proportional quasi-
morphisms.

De�nition 3.3. �e quasimorphism T.X;�;¹Hnº/ W G ! R is called the translation
number associated with the action of G on .X; �/ and the �ltration ¹Hnº.

3.2. Translation numbers as growth functions. Let .X; �/, G, ¹Hnº, d be
de�ned as in the last subsection and assume that the width of ¹Hnº is bounded
by w. Denote by � the bi-invariant order induced on G via the action on .X; �/.
Our goal is to establish the following result.
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�eorem 3.4. �e growth functions of � are multiples of T.X;�;¹Hnº/, in particu-
lar, they are mutually proportional nonzero homogeneous quasimorphisms.

�e theorem also shows that up to a positive multiple the translation num-
ber T.X;�;¹Hnº/ does not depend on the choice of half-space �ltration. In view of
Proposition 2.1 the proof of �eorem 3.4 is actually reduced to establishing the
following proposition.

Proposition 3.5. With notation as above, the quasimorphism T.X;�;¹Hnº/ sand-
wiches the partial order �.

Proof. �e quasimorphisms fa are mutually at uniformly bounded distance d ,
hence at distance d from T.X;�;¹Hnº/. Now assume T.X;�;¹Hnº/.g/ > w C 2d .
�en for all k 2 G, x 2 X we have

h.kg:x; k:x/ � h.g:x; x/ � d � fx.g/ � d � T.X;�;¹Hnº/.g/ � 2d > w;

hence kg:x � k:x by de�nition of w. �is in turn implies g � e.

�is �nished the proof of �eorem 3.4 and thereby establishes Part (i) of �e-
orem 1.8.

3.3. Quasi-total triples vs. quasi-total orders. �roughout this subsection, let
.X; �; T / be a complete quasi-total triple. We choose a basepoint x0 2 X and
de�ne halfspaces Hn for n 2 Z by

Hn WD ŒT n:x0; 1/:

Since T is dominating, these form indeed a halfspace �ltration for X . Let us
describe the height function of .X; ¹Hnº/ in terms of T and x0. Since the order
is complete, there exists an absolute constant C.X/ such that for all a; b 2 X we
have

.a � T C.X/b/ _ .b � T C.X/a/:

Assume h.a/ D n. �en a � T n:x0 and a 6� T nCk:x0 for k > 0, whence
a � T nC.2C.X/C1/:x0. �us we have established the following result.

Lemma 3.6. If h.a/ D n, then

T n:x0 � a � T nC.2C.X/C1/:x0:

�is property determines h up to a bounded error. Moreover, we can deduce
the following result.
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Lemma 3.7. �e pair .X; �/ is a halfspace order, and ¹Hnº is a compatible half-
space �ltration.

Proof. Assume
h.a; b/ > 2C.X/ C 1;

and let n WD h.a/, m WD h.b/. By the lemma we then have

a � T n:x0 � T mC.2C.X/C1/:x0 � b:

Now assume G acts by automorphisms on the triple .X; �; T /. �en we have
the following result.

Proposition 3.8. For all g 2 G, jh.ga; gb/ � h.a; b/j < 4C.X/ C 2.

Proof. Assume h.a/ D n and h.b/ D m. �en we have h.a; b/ D n � m, and

T n:x0 � a � T nC.2C.X/C1/:x0;

T m:x0 � b � T mC.2C.X/C1/:x0;

and consequently

T n:gx0 � ga � T nC.2C.X/C1/:gx0;

T m:gx0 � gb � T mC.2C.X/C1/:gx0:

Now we �nd k 2 Z such that

T kx0 � g:x0 � T kC.2C.X/C1/:x0I

inserting this into the previous set of inequalities we obtain

T nCk :x0 � ga � T nCkC.4C.X/C2/:x0;

T mCk :x0 � gb � T mC.4C.X/C2/:x0:

We deduce that

n C k � h.ga/ � n C k C .4C.X/ C 2/;

m C k � h.gb/ � m C k C .4C.X/ C 2/;

and hence

.n � m/ � .4C.X/ C 2/ � h.ga/ � h.gb/ � .n � m/ C .4C.X/ C 2/;

which is to say
jh.ga; gb/ � h.a; b/j � 4C.X/ C 2:
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Corollary 3.9. If G < AutT .X; �/ contains a dominant, then it acts quasi-totally
on .X; �/.

We will denote the translation number of the triple .X; �; ¹Hnº/ de�ned as
above by

T.X;�;T / WD T.X;�;¹Hnº/:

�is is justi�ed by the observation that while the sets ¹Hnº depend on T and a
basepoint x0, the resulting translation number is independent of the choice of
basepoint. Indeed, given a; b 2 X de�ne their relative T -height by the formula

hT W X2 �! Z; hT .a; b/ WD inf¹m 2 Z j T mb � aº:

�en unravelling de�nitions yields

jhT .a; b/ � h.a; b/j < 2C.X/ C 2:

�us we obtain the following result.

Proposition 3.10. �e translation number T.X;�;T / satis�es

T.X;�;T /.g/ D lim
n!1

hT .gna; a/

n
I

for all a 2 X .

�is yield in particular the desired independence of the basepoint.

3.4. Tautological realization. We now turn to the proof of Part (ii) of �eo-
rem 1.8. We will actually establish the following slightly stronger version.

Proposition 3.11. Let G be a group. Every nonzero quasimorphisms on G arises
as the multiple of a growth functions of a quasi-total action of G. In fact, it arises
from a quasi-total triple of the form .G; �; T / where G acts by left-multiplication
on itself.

Proof. Let G be a group and f a nonzero (hence unbounded) homogeneous quasi-
morphism on G. Set

x �f y () f .gx/ < f .gy/; for all g 2 G: (8)

and let h 2 G be an element with

f .h/ > 10D.f / C 5:
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Denote by �h the right-multiplication by h. �en .G; �f ; �h/ is a quasi-total triple.
In view of Proposition 2.1 it remains to show that f sandwiches the partial order
�f induced by .G; �f ; �h/ on G. For this let g 2 G with f .g/ > 10D.f / C 5;
then for all x 2 G we have

f .hgx/ � f .g/ C f .h/ C f .x/ � 2D.f / > f .hx/; for all h 2 G,

hence gx �f x and thus g �f e, �nishing the proof

�is completes the proof of �eorem 1.8.

3.5. Global hyperbolicity. It is well-known that the classical translation num-
ber contains valuable information about orbits of subgroups of HomeoC

Z
.R/ on

the real line and circle. For example, the question whether a subgroup H <

HomeoC
Z

.R/ has a bounded orbit in R can be decided from the translation num-
ber. Indeed, such a bounded orbit exists if and only if TRjH � 0; in this case,
in fact all orbits are bounded. In order to obtain similar results for other types
of quasimorphisms additional topological assumptions are necessary; concerning
the existence of bounded orbits, global hyperbolicity is the key property. Indeed,
we have the following result, which was stated as �eorem 1.10 in the introduction.

�eorem 3.12. Let .X; �/ be a globally hyperbolic halfspace order. Let ¹Hnº

be a compatible halfspace �ltration and let H be a group acting quasi-totally
on .X; �/. Denote by TX W H ! R the associated translation number. �en the
following are equivalent for a subgroup G < H :

(i) .TX/jG � 0;

(ii) every G-orbit in X is bounded;

(iii) there exists a bounded G-orbit in X .

Before we turn to the proof we observe that global hyperbolicity can be char-
acterized in terms of halfspaces.

Lemma 3.13. In the situation of the theorem the order .X; �/ is hyperbolic if and
only if order intervals are closed and the sets Hn n HnC1 are compact.

Proof. Denote by w the width of .X; �; ¹Hnº/. Given n 2 N let xC
n 2 HnCwC1

and x�
n 2 Hn�w�1 n Hn�w . �en

Hn n HnC1 � Œx�
n ; xC

n �;
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hence global hyperbolicity implies compactness of the sets Hn n HnC1. For the
converse observe that if x 2 Hn, y 2 Hm, then

Œx; y� �

mCwC1
⋃

kDn�w�1

Hk n HkC1

Proof of �eorem 3.12. (i) H) (ii). We claim that (i) implies that there are no
g 2 G; n 2 N; x 2 X satisfying

h.gnx; x/ � 2d:

Indeed, otherwise, we had for all m 2 N the inequality

h.gnm:x; gn.m�1/:x/ � h.gnx; x/ � d � d;

whence inductively

h.gnm:x; x/ � h.gnm:x; gn.m�1/x/ C h.gn.m�1/:x; x/ � md;

which leads to

h.gnm:x; x/

nm
�

d

n
;

and thus TX.g/ � d
n

by passing to the limit m ! 1. �is contradiction shows
that

h.gnx; x/ � 2d for all g 2 G; n 2 N; andx 2 X;

Applying the same argument to the reverse order, we can strengthen this to

jh.gnx; x/j � 2d for all g 2 G; n 2 N; x 2 X:

�is implies that each orbit is contained in a �nite number of strips of the form
Hn n HnC1, hence bounded by the lemma.

(ii) H) (iii). Obvious.

(iii) H) (i). Assume that G:x is compact and let g 2 G. Consider the sequence
xn WD gn:x. We claim that there exist n�; nC (possibly depending on g and x)
such that

¹xnº � HnC
n Hn�

:

Observe �rst that the claim implies that h.gnx; x/ is bounded, whence TX.g/ D 0;
it thus remains to establish the claim. Assume that the claim fails; replacing the
order by its reverse if necessary we may assume that h.gnx; x/ is not bounded
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above. We thus �nd a subsequence nk such that for every y 2 X there exists
k.y/ such that for all k > k.y/ we have gnk x � y. By compactness of G:x

there exists an accumulation point x1 of xn and since order intervals are closed
we have x1 � y for all y 2 X . However, a halfspace order does not admit a
maximum.

4. Elementary examples

4.1. Basic constructions. �e notion of a quasi-total triple is closed under vari-
ous elementary constructions. �e following three persistence properties are im-
mediate from the de�nition.

Proposition 4.1. (i) Lexicographic products. Let .X0; �0; T0/ be a com-
plete quasi-total triples and .Xi ; �i /i2N be a family of arbitrary posets. On

X WD

1
∏

iD0

Xi

de�ne the lexicographic ordering by

.xi / � .yi / () there exists j 2 N0 such that xi D yi for all i < j

and xj �j yj

and de�ne

T W X �! X

by

T .xi/ WD .T0x0; x1; x2; : : : /:

�en .X; �; T / is a quasi-total triple.

(ii) Subtriples. Let .X; �; T / be a complete quasi-total triple. Let Y � X

be a subset and suppose there exists S 2 Aut.Y; �/ such that for all y 2 Y we
have Sy � Ty. �en .Y; �; S/ is quasi-total.

(iii) Refinement. Let .X; �; T / be a quasi-total triple and �0 be a re�ne-
ment of �. �en .X; �0; T / is a quasi-total triple.
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Example 4.2. Let .X; �; T / D .R; �; x 7! x C 1/ be the standard quasi-total
triple, which realizes the classical Poincaré translation number TR. �en for any
set X (which we consider as a trivial poset .X; D/) we obtain a new quasi-total
triple .CX WD R � X; �; T / as the lexicographic product. Explicitly, we have

.�; x/ � .�; y/ () � < �

and
T .�; x/ WD .� C 1; x/:

�is quasi-total triple induces a quasimorphism

TCX
D T.CX ;�;T /

on
G WD Aut.CX ; �; T /;

hence on any subgroup of G.

�e reader might have the impression that these quasimorphisms are a triv-
ial variation of TR, but this is not the case. In fact, we will provide non-trivial
examples of the above type of construction in Section 5.4. At this point, let
us just point out that TCX

cannot be the pullback of TR via any embedding
Aut.CX ; �; T / ! HomeoC

Z
.R/, even for X WD S1. Indeed, such an embedding

does not exist, since HomeoC
Z

.R/ is torsion-free.

�e notion of a halfspace order is even more �exible. �e following trivial
observation is important.

Lemma 4.3. Let .X; �; ¹Hnº/ be a halfspace order and Y � X a subset such that
Y \ .Hn n HnC1/ ¤ ; for all n. �en .Y; � jY �Y ; ¹Hn \ Y º/ is a halfspace order.

In the next section we will apply the following special case.

Corollary 4.4. Let Y be a set. �en an embedding � W Y ,! Rn induces a halfspace
order on Y by setting

y1 � y2 () �.y1/ D .x1; : : : ; xn/; �.y2/ D .z1; : : : ; zn/; x1 < z1

and
Hn WD ¹y 2 Y j �.y/ D .x1; : : : ; xn/; x1 � nº;

provided Hn n HnC1 ¤ ; for all n 2 Z.
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4.2. Cayley graph embeddings. In view of the last corollary, a good strategy to
construct quasimorphisms on groups is making the group act on a subset of Rn.
One way to achieve this is to embed the group itself, or its Cayley graph (or pre-
sentation 2-complex) into Rn. If the embedding is chosen in such a way that the
action of G induces an unbounded action on the image by quasi-automorphisms,
then we obtain a quasimorphism. We provide two examples of such Cayley graph
embedding into R3. For visualization we will depict the projections of these em-
beddings into the .x1; x2/ plane along the x3-coordinate. �e precise choice of x3

coordinates will not matter, as long as the x3-coordinate is chosen in such a way
as to obtain an embedding. In both examples we will choose the edges to be of
uniformly bounded x1-length. Under this assumption, quasi-totality of the action
will follow from quasi-totality of the action on the vertex set on the graph.

Example 4.5 (Rademacher quasimorphism). Let

G D PSL2.Z/ D Z=2Z � Z=3Z:

Denote by S a generator of Z=2Z and by R a generator of Z=3Z, so that

G D hS; R j S2; R3i:

We observe that the translations

T1 WD SR and T2 WD SR2

are of in�nite order in G and generate a free semigroup G0 in G. Every element
of G can be written uniquely as either w, Sw, wS or SwS , where w 2 G0. Now
the Rademacher quasimorphism f on G can be described as follows (see [1] and
also [29, Corollary 4.3]). Given g 2 G, let w be the element in G0 such that
g 2 ¹w; Sw; wS; SwSº. �en f .g/ is the number of T1s in w minus the number
of T2s in w. A planar embedding of a piece of the Cayley graph of G with gener-
ating set ¹S; R; R2º is depicted in Figure 1, and continuing the picture as indicated
provides a map from the full Cayley graph into R2, which can be deformed into an
embedding into R3 without changing the �rst two coordinates. We claim that the
action of G on the vertex set is quasi-total. Indeed, one immediately reduces to
showing that G0 acts quasi-totally. However, in the above embedding of the Cayley
graph, T1 acts by increasing the x1-coordinate by 1, while T2 acts by decreasing
the x1-coordinate by 1, whence G0 even preserves the relative height function. To
see that the resulting quasimorphism is indeed the Rademacher quasimorphism,
just observe that every g 2 G with f .g/ > 5 maps every point in the Cayley
graph to the right and consequently the induced order on G is sandwiched by the
Rademacher quasimorphism.
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Example 4.6 (Brooks quasimorphism). We now give a similar construction for
the Cayley graph of the free group G on two generators a and b with respect to
the standard generating set ¹a˙1; b˙1º. We �rst label the intersection of the lattice
Z2 with the �rst and third quadrant as in Figure 2, thereby embedding a subset of
the Cayley graph into the plane; in a second step we will extend this embedding
to an embedding of the whole Cayley graph into R3 growing hair. (As before, the
x3 coordinate is only used to avoid self-intersections). To explain this procedure,
let w be a vertex in the graph in Figure 2 with the property that at least one of its
four neighbours in the Cayley graph of G with respect to ¹a˙1; b˙1º does not yet
appear. We will then add the missing neighbour(s) and some further vertices by
the following rules.

� Assume that the a-neighbour wa is missing; this can only happen if the last
letter of w is either a or b�1. We then add the vertices wa, wab, waba,
wabab etc. to the graph. Where precisely we place the �rst new vertex wa

depends on the last letter of w. If it is an a, then we place wa above w (at a
height that has not yet been taken); if it is a b�1 we place it two to the right
of w at a yet available height. Once wa has been placed, we add wab one to
the right of wa at the same height, waba one to the right of wab at the same
height etc. For w D a this is depicted in Figure 3.

� Similar rules apply to the other types of missing neighbours. If the b-neigh-
bour of w is missing, then the last letter of w is either b or a�1. In both cases
we place wb above w and add wba, wbab, wbaba, etc. to the right. If the
a�1-neighbour of w is missing, then the last letter of w is b or a�1. In both
cases we place wb above w and add wa�1, wa�1b�1, wa�1b�1a�1, etc. to
the left. Finally, if the b�1-neighbour of w is missing, then the last letter of
w is either a or b�1 and we place wb�1 two steps left below, respectively
straight below w accordingly. We then add wb�1a�1, wb�1a�1b�1 etc. to
the left. (See again Figure 3.)

After applying this procedure once, every vertex in the original embedding has
four neighbours, but the newly added vertices have only two neighbours each; we
thus continue by growing hair to them according to the same rules. Repeating this
procedure ad in�nitum we �nally obtain an embedding of the full Cayley graph
into R3. Similarly as in the last example it can be checked that the action of G

is quasi-total using the following key observation. If a word w 2 G contains ab,
respectively b�1a�1 as a subword nC, respectively n�-times, then the action of w

is at uniformly bounded height-distance from a translation by 2.nC � n�/. �is
fact can be used to show not only that the action is quasi-total, but also that the
quasimorphism corresponding to the embedding is given (up to a multiple) by
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the Brooks quasimorphism associated with the word ab, which assigns to w as
above the di�erence nC � n�. �is construction can easily be modi�ed to apply
to Brooks quasimorphisms for other words than ab.

More generally, one may wonder whether general quasimorphisms on count-
able groups can be realised by special classes of quasi-total actions on countable
subsets of R3. We refer the reader to [4] for a universal construction in this direc-
tion.

4.3. A characterization result. As a consequence of �eorem 1.8, a group ad-
mits a nonzero homogeneous quasimorphism if and only if admits a quasi-total
action. A more re�ned version of this characterization was stated in Corollary 1.6.
We will now derive this characterization from �eorem 1.4 and Proposition 1.5.
�ese imply that a group G admits a non-zero homogeneous quasimorphism if
and only if it admits an e�ective action containing a dominant on a complete
quasi-total triple .X; �; T /. In fact, the completeness assumption can be dropped.
For this we observe that T is automatically �xed point-free and non-decreasing,
i.e.

T ma 6� a for all a 2 X; m 2 N:

In general, however, T need not be strictly increasing. �is defect can be repaired
as follows. De�ne a new partial order �T by setting

a �T b () there exists k � 0 such that T ka � b:

�en T is strictly increasing with respect to �T , hence .X; �T ; T / is a com-
plete quasi-total triple. We refer to .X; �T ; T / as the completion of .X; �; T /.
�e following simple observation explains why the passage from an incomplete
to a complete quasi-total triple does not a�ect the corresponding quasimorphisms.

Proposition 4.7. A quasi-total triple .X; �; T / and its completion .X; �T ; T /

de�ne the same T -height on X , hence give rise to the same translation number.

Proof. �is follows from

h�T ;T .a; b/ D inf¹m 2 Z j there exists k 2 N0 such that T m�kb � aº

D inf¹m 2 Z j T mb � aº

D h�;T .a; b/:
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Note that if the G-action on a quasi-total triple admits a dominant, then so does
its completion.

We now show that the e�ectiveness assumption on the action can also be
dropped. Indeed, if G acts dominatingly, but not necessarily e�ectively on some
quasi-total triple .X; �; T /, then we obtain an e�ective dominating diagonal
action of G on the quasi-total triple .G � X; �; T 0/, where .g; x/ < .g0; x0/ if
and only if x < x0 and T 0.g; x/ WD .g; T x/. Altogether we have established

Lemma 4.8. If a group acts dominatingly on some quasi-total triple .X; �; T /,
then it acts dominatingly and e�ectively on some complete quasi-total triple
.X 0; �0; T 0/.

Now Corollary 1.6 follows by combining the lemma with �eorem 1.4 and
Proposition 1.5.

5. Lie groups and smooth quasi-total triples

5.1. Causal coverings. In this section we study quasi-total triples induced by
smooth partial orders on manifolds. Since the notion of a smooth partial order is
not used consistently in the literature we have collected the de�nitions that we are
going to use in the appendix of this paper together with some basic facts relating
them. From now on we will assume the terminology and results of the appendix.

�roughout we will denote by . zM; zC/ a causal manifold in the sense of De�-
nition A.6 and by � the associated partial order. We also denote by G. zM; zC/ the
associated automorphism group (see De�nition A.4). �e main problem of this
section can then be formulated as follows.

Problem 1. Given a causal manifold . zM; zC/, is there an automorphism T 2

G. zM ; zC/, which turns . zM; �; T / into a quasi-total triple?

Remark 5.1. For the purpose of this subsection we could as well consider a
weakly causal manifold in the sense of De�nition A.6 and study the associated
strict causality �s instead of �. We would then ask for an automorphism T of
. zM ; zC/ turning . zM; �s; T / into a quasi-total triple. All results of this subsection
remain valid in this setting; the di�erence between �s and � will only become
important when we discuss global hyperbolicity in Subsection 5.3 below.
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We now �x a causal manifold . zM ; zC/. We observe that if T as in Problem 1
exists, then it has to be of in�nite order. Hence, �x T 2 Aut. zM; zC/ of in�nite
order and assume moreover that the group � Š Z generated by T in G. zM; zC/ acts
properly discontinuously on zM ; then M WD �n zM is a manifold and

p W zM �! M

is a covering projection. We will denote by LG the centralizer of T (hence �) in
G. zM ; zC/. �en G WD LG=� acts on M and LG is a central extension of G by �.
We refer to the central extension

0 �! � �! LG �! G �! 1

as the central extension associated with the covering p W zM ! M .

De�nition 5.2. �e covering p W zM ! M is called a causal covering if M is
totally acausal (in the sense of De�nition A.6).

Lemma 5.3. Assume that p W zM ! M is a causal covering, �en either T or T �1

is dominant.

Proof. Denote by p W zM ! M the covering projection and let a; b 2 zM . Since M

is totally acausal there exists a closed causal loop p.a/;p.b/ at p.a/ through p.b/.
We can lift this loop to a curve a;b with initial point a; the result is a causal curve
through a and some T -translate of b. �ereby we �nd integers l.a; b/ 2 Z with
a � T l.a;b/b. Since zM does not contain causal loops, we may assume l.a; a/ > 0

for some given basepoint a upon possibly replacing T by its inverse. We claim
that this implies l.b; b/ > 0 for all b. Indeed, suppose otherwise, say b � T kb

with k > 0. We then �nd m > 0 with

T �mka � b � T mka;

T �mkb � b � T mkb;

hence b � T mk.T �mka/ D a and b � T �mk.T mka/ D a. �is yields a D b

and l.a; a/ < 0, which is a contradiction. We see in particular that we can choose
l.a; b/ positive by adding a suitable multiple of l.b; b/. �is implies that T is
dominant.

�us replacing T by T �1 if necessary we will assume from now on that T is the
unique dominant generator of �. We see from the proof of the last proposition that
for any pair a; b 2 zM there exists n.a; b/ WD min¹l.a; b/; l.b; a/º 2 N such that
a � T n.a;b/b or b � T n.a;b/a. However, the number n is in general not uniformly
bounded.
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De�nition 5.4. A causal covering zM ! M is called quasi-total if the number
n.a; b/ is uniformly bounded.

Equivalently, . zM; �; T / is a quasi-total triple. In the next section we will pro-
vide two di�erent criteria which guarantee this property. Before, let us give some
elementary examples of quasi-total causal coverings. Firstly, the classical trans-
lation number TR is associated with the causal covering R ! S1. �e following
example can be considered as a smooth twisting of this trivial example; as in
Example 4.2 it is easy to argue that this sort of twisting produces fundamentally
di�erent quasimorphisms.

Example 5.5. Let zM WD R�� � 1; 1Œ be a strip of bounded diameter with base-
point x0 WD .0; 0/ and let C � R2 be a closed regular cone which contains the
positive x-axis in its interior. �en the translation invariant cone �eld on R2 mod-
elled on C restricts to a conal structure zC on zM , and the conal manifold . zM; zC/

is in fact causal, since every non-constant causal curve is strictly monotone in the
x-coordinate. Since the cone C contains the positive x-axis in its interior we �nd
x˙ 2 R such that

x˙ 2 R � ¹˙1º \ C:

Choose x˙ minimal with this property and set x0 WD 2 max¹xC; x�º. Let T

be the translation along the x-axis by x0, i.e. T .x; y/ WD .x C x0; y/ and let
M WD zM=hT i. �en M Š S1�� � 1; 1Œ and zM ! M is a quasi-total causal
covering.

Similar twists can also be de�ned for the examples from Lie groups as dis-
cussed below.

5.2. Criteria for quasi-totality. Before we can discuss further examples, we
need to develop criteria which guarantee quasi-totality. �roughout this section
we �x a causal covering zM ! M and denote by

0 ! � ! LG ! G ! 1

the associated central extension of automorphism groups. �e easiest way to guar-
antee quasi-totality is to demand enough transitivity of G on M .

De�nition 5.6. An action of a group G on a space X is almost 2-transitive it
there exists a G-orbit X .2/ � X2 with the property that for all x; y 2 X there
exists z 2 X such that

¹.x; z/; .z; y/º � X .2/:
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In this case we call X almost 2-homogeneous and write x t y to indicate that
.x; y/ 2 X .2/.

�en we obtain the following result.

�eorem 5.7. Let p W zM ! M be a causal covering. If G WD LG=� acts almost
2-transitively on M , then p is quasi-total.

Note that the almost 2-transitivity of G on M implies automatically that M is
totally acausal. We prepare the proof of �eorem 5.7 by the following lemma.

Lemma 5.8. In the situation of �eorem 5.7 there exists a constant N 2 N, de-
pending only on M , and a point c 2 zM such that for all b 2 zM there exists l 2 Z

such that b � T lc � T N b.

Proof. Let a 2 zM be some basepoint and x WD p.a/. �en we �nd z 2 M with
z t x and a closed causal loop x W Œ0; 1� ! M at x with z D x.1=2/. Let Oa be
the lift of x with initial point a. �en Oa.0/ � Oa.1/; we thus �nd N0 > 0 such
that Oa.1/ D T N0 Oa.0/. If we de�ne c WD Oa.1=2/, then

a � c � T N0a:

Now let d 2 zM , w WD p.d/ and assume w t z. �en we �nd g0 2 G0 with
g0:x D w and g0:z D z. �us w D g0:x is a closed causal loop at w through
z. Now let Od be a lift of w with initial point d . Let g 2 G be a lift of g0; then
g maps a to a point in the �ber of d , and modifying g by a deck transformation if
necessary we can assume g:a D d . �en g: Oa is a lift of w with initial point d ,
hence Od D g: Oa by uniqueness. Now we have

Od .1/ D g Oa.1/ D gT N0 Oa.0/ D T N0g Oa.0/ D T N0 Od .0/:

Now since w.1=2/ D z we �nd l 2 Z such that Od .1=2/ D T lc. We thus have
established

d � T lc � T N0d (9)

under the assumption p.d/ t z. Now consider the case of an arbitrary b 2 zM and
let y WD p.b/. We then �nd d 2 zM such that w WD p.d/ satis�es

y t w t z:
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�en (9) holds for some l 2 Z. Moreover, we �nd h0 2 G0 with h0:.x; z/ D

.y; w/. De�ne y WD h0:x and denote by Ob the lift of y with initial point b. By
the same argument as before we then show Ob.1/ D T N0 Ob.0/. Now y.1=2/ D w,
so we �nd l 0 2 Z with Ob.1=2/ D T l 0

d . �us

b � T l 0

d � T N0b (10)

Combining (9) and (10) we obtain

b � T l 0Clc � T 2N0b

We may thus choose N WD 2N0.

Now we deduce the following result.

Proof of �eorem 5.7. Let c and N be as in the lemma. Given a; b 2 zM we �nd
l; l 0 2 Z such that b � T lc � T N b and a � T l 0

c � T N a. We may assume
w.l.o.g. that l 0 � l . Now for all k � 1 we have

T l 0�lb � T l 0

c � T N a � T kN a;

hence T l 0�l�kN b � a. Now choosing k appropriately we can ensure that �N �

l 0 � l � kN � N . �us for all a; b 2 zM there exists k 2 ¹�N; : : : ; N º such that

a � T kb or b � T ka:

Now (2) follows for N. zM / WD 2N .

�e almost 2-transitivity condition of �eorem 5.7 is rather strong and not
always easy to check in practice. We are thus looking for an alternative condition
that ensures quasi-totality. One consequence of quasi-totality is that T k :x � x

for all x and a uniformly bounded k. Here we shall assume the slightly stronger
condition

T:x � x; (11)

i.e. completeness of the triple . zM ; �; T /. We then call the covering p W zM ! M

a complete causal covering. �is terminology understood we have the following
useful criterion.

�eorem 5.9. Assume that M is compact. �en any complete causal covering
p W zM ! M is quasi-total.
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Proof. We �rst observe that there exist points a; b 2 zM and an open subset U �
zM such that a � x � b for all x 2 U . Indeed, choosing a and b close enough

we can ensure that exp.Int.zCa// and exp.Int.�zCb// have open intersection. By
compactness of M there exists �nally many elements g1; : : : ; gl such that

M D p
(

l
⋃

j D1

gj U
)

: (12)

�us if we set

H ˙ WD
⋃

k�0

T ˙k
(

l
⋃

j D1

gj U
)

;

then zM D H � [ H C. For j D 1; : : : ; l we set

aj WD gj a and bj WD gj b:

Let mij be integers such that
bi � T mij aj

and set
N WD max mij :

�en x � T N y for all x; y 2
⋃

gj U , hence x � T N y for all x 2 H �, y 2 H C.
Now let x; y 2 zM be arbitrary. We distinguish three cases.

� If one of them is in H � and the other is contained in H C, then y � T N y or
y � T N x.

� If none of them is in H C, apply T until the �rst of them is. We may assume
T kx 2 H C and T k�1y 62 H C, hence T k�1y 2 H �. �en T k�1y � T kCN x,
hence y � T N C1x.

� If none of them is in H � we argue dually.

We thus obtain x � T N C1y or y � T N C1x in all possible cases.

5.3. A criterion for global hyperbolicity. We have seen in the last section how
compactness of the base manifold can be used to obtain quasi-totality of a given
causal covering. �is sort of compactness assumption also has implications to
global hyperbolicity, which we brie�y want to outline here. More precisely, we
will establish the following result.

�eorem 5.10. Let p W zM ! M be a causal covering and assume that M is
compact. �en the partial order � on zM and its completion �T are globally
hyperbolic.
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While up to this point we could have worked with the strict causality �s

instead of the closed causality �, closedness of � is clearly necessary for �e-
orem 5.10 to hold.

Concerning the proof of �eorem 5.10 we �rst observe that the order intervals
of � are closed by construction; since

Œa; b��T
D

N. zM /�1
⋃

kD0

N. zM /�1
⋃

lD0

ŒT ka; T �lb��;

we see that also �T is closed. It thus remains only to show that �nite order inter-
vals of �T are bounded. From now on, all order intervals will be with respect to
�T . Our starting point is the following trivial observation.

Lemma 5.11. Let a 2 zM and N 2 N. �en for all x 2 M there exists b0 2 p�1.x/

such that
p�1.x/ \ Œa; T N a� � ¹b0; T b0; : : : ; T N b0º:

Proof. Let x 2 M and b 2 Fx WD p�1.x/. Consider

Eb WD ¹k 2 Z j T kb �T aº:

We claim that Eb has a minimal element. Indeed, since T is dominating we have
T la �T b for some l 2 Z and hence a �T T �lb. Now if T kb �T a, then k � �l ,
for otherwise T kb �T a �T T �lb, hence T kClb �T b and thus 0 > k C l � 0.
Now let k 2 Eb be minimal and b0 WD T kb. �en T kb0 � a implies k � 0, while
T kb0 � T N a implies k � N . �us

p�1.x/ \ Œa; T N a� � ¹b0; : : : ; T N b0º:

Now the key to the proof of �eorem 5.10 is the following lemma.

Lemma 5.12. For every x0 2 zM there exists a bounded subset Mx0
� zM such

that p.Mx0
/ D M and x � x0 for all x 2 Mx0

.

Proof. Let a 2 M be some basepoint. �en there exists an open subset U � M

with the following properties.

� there exists a compact neighbourhood V of U , which is evenly covered un-
der p;

� U is contractible;
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� a 2 @U ;

� for every b 2 U there exists a causal curve b W Œ0; 1� ! M with b.0/ D a,
b.1/ D b and b.t / 2 U for all t 2 .0; 1�.

Indeed, we can take a su�ciently small open subset of exp.Int.Ca//. Since M is
compact and weakly homogeneous there exist g1; : : : ; gr 2 G.M;C/ such that

M D

r
⋃

j D1

gj U:

Now choose xj 2 p�1.gj a/ with xj � x0 and let Vj be the connected component
of p�1.Uj / containing xj in its boundary. �en we de�ne

Mx0
WD

r
⋃

j D1

Vj :

�is is clearly bounded (since the closure of each Vj is compact) and covers M .
It remains to show that x � xj for every x 2 Vj ; this however follows easily by
lifting the curve p.x/ to Vj with basepoint xj ; the resulting lift is then a causal
curve joining xj with x.

Now we can easily deduce the theorem.

Proof of �eorem 5.10. Let a 2 zM . We use the lemma to obtain a bounded subset
Ma of zM such that p.Ma/ D M and x � a for all x 2 Ma. In particular we have
x �T a for all x 2 Ma. We claim that there exists some N0 2 N such that

Ma � Œa; T N0a�: (13)

Indeed, suppose otherwise. �en there exists a sequence xn 2 Ma with xn � T na.
Since Ma is bounded there exists a subsequence nk such that xnk

! x 2 zM . Now
for every l there exists k0 2 N such that for every k � k0 we have nk � l and
thus xnk

�T T la. �is implies that xnk
� T l 0

a for some l 0 2 ¹l � N; � � � ; lº for
some �xed constant N . By passing to another subsequence we can thus ensure
that xnkm

� T l 0

a for km � k0. Since � is closed this yields x � T l 0

a and thus
x �T T l�N a. Since l was arbitrary, this contradicts the fact that T is dominating.
�is contradiction establishes (13).

Now let b 2 zM . We then �nd N 2 N such that N � N0 and Œa; b� � Œa; T N a�.
It remains to show that Œa; T N a� is bounded. We claim that

Œa; T N a� �

N
⋃

nD�N

T nMa;
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which implies the desired boundedness. Indeed, let c 2 Œa; T N a� and let

x WD p.c/:

We consider the �ber
Fx WD p�1x:

By Lemma 5.11 we have

Fx \ Œa; T N a� � ¹b0; T b0; : : : ; T N b0º

for some b0 2 Fx . In particular, we �nd k1 2 N with 0 � k � N and c D T k1b0.
On the other hand we have we have

Ma � Œa; T N a� \ Fx \ Œa; T N a� ¤ ;

in view of (13). We thus �nd k2 2 N with 0 � k � N and T k2b0 2 Ma. �en

c D T k1b0 D T k1�k2T k2b0 2 T k1�k2Ma:

Since �N � k1 � k2 � N we obtain

c 2

N
⋃

nD�N

T nMa;

and since c 2 Œa; T N a� was chosen arbitrarily, we obtain the desired boundedness
result.

5.4. Examples from Lie groups. We now explain how the Clerc–Koufany con-
struction of the Guichardet–Wigner quasimorphisms on a 1-connected simple
Hermitian Lie groups of tube type [9] can be reinterpreted in the language of
the present paper.

Let G be an adjoint simple Lie group with maximal compact subgroup K.
�en G is called Hermitian if the associated symmetric space G=K admits a
G-invariant complex structure J , and of tube type if .G=K; J / is biholomorphic to
a complex tube. From now on G will always denote an adjoint simple Hermitian
Lie group of tube type. We then �nd a Euclidean Jordan algebra V such that G=K

can be identi�ed with the unit ball D in V C with respect to the spectral norm.
We will �x such an identi�cation once and for all. �e action of G on D extends
continuously to the Shilov boundary of LS . Since LS is a generalized �ag manifold,
we obtain a notion of transversality on LS from the associated Bruhat decompo-
sition. It then follows from the abstract theory of generalized �ag manifolds that
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G acts almost 2-transitively on LS (see e.g. [31, Lemma 3.30]). If eV denotes the
unit element of the Jordan algebra V , then eV 2 LS and the set LSeV

of points in
LS transverse to eV is Zariski open in LS . �e Cayley transform of V C identi�es
LSeV

and hence T�eV
LS with V . �us the (closed) cone of squares in V gives rise

to a closed cone � � T�eV
LS . By a result of Kaneyuki [23] there exists a unique

G-invariant causal structure C on LS with C�eV
D �.

�e universal covering . LR; zC/ of the causal manifold . LS;C/ is described in [9].
Namely, it turns out that �1. LS/ Š Z, so that p W LR ! LS is an in�nite cyclic
covering. �e universal covering zG of G acts transitively on LR; the kernel of this
action can be identi�ed with �1.G/tors. �us

LG WD zG=�1.G/tors

acts transitively and e�ectively on LR. Now we claim:

Proposition 5.13. �e covering p W LR ! LS is a complete quasi-total causal cov-
ering.

Proof. Identify the tangent space of T�eV
LS with V and choose an inner product

h�; �i on V such that � is a symmetric cone with respect to h�; �i [13]. Since eV is
contained in the interior of � it follows from the self-duality of the latter that there
exists � > 0 such that, for all x 2 �,

hx; eV i � � � kvk: (14)

Now identify LS with the compact symmetric space K=M , where M denotes the
stabilizer of �eV . Since the stabilizer action of M preserves both eV and the inner
product, there exists a K-invariant 1-form ˛ on LS with

˛�eV
.v/ D hx; eV i; v 2 T�eV

LS:

Since K=M is symmetric, this form is closed. It then follows from (14) that ˛

is a uniformly positive 1-form in the sense of De�nition A.7. �is implies that
the pullback ˇ WD p�˛ is a uniformly positive 1-form on LR. In particular, LR is
causal by Proposition A.8. Since LS is a �ag variety, the action of G on LS is almost
2-transitive; just take LS .2/ to be the set of transverse pairs in LS (see e.g. [31]).
�is almost 2-transitivity implies immediately that LS is totally acausal, whence
p W LR ! LS is a causal covering; in view of �eorem 5.7 it also implies that this
causal covering is quasi-total. It remains to show that this covering is total, i.e.
T x � x for all x 2 LR. For this it su�ces to construct a causal curve joining x and
T x; this is established in [9].
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In view of the pioneering work in [23] we refer to the partial order � on LR as
the Kaneyuki order. It was established in [23], that G. LS; LC/ D G unless G Š

PSL2.R/. �us let us assume G 6Š PSL2.R/ from now on. �en the central
extension associated with the causal covering p W LR ! LS is precisely

0 �! Z �! LG �! G �! ¹eº:

We thus obtain a non-trivial quasimorphism T LR
on the simple Lie group LG. It fol-

lows from the classi�cation of such quasimorphisms in [30] that T LR
is necessarily

a multiple of the Guichardet–Wigner quasimorphism on LG; see [18]. We have thus
proved the following result.

Corollary 5.14. �e growth functions of the order � on LG induced from the
Kaneyuki order on LR are multiples of the Guichardet–Wigner quasimorphism.

Guichardet–Wigner quasimorphisms are very well understood; see [7] for an
explicit formula. �e observation that Guichardet–Wigner quasimorphisms are re-
lated to the causal structure on the corresponding Shilov boundaries was �rst made
in [9] (see also [8] for an English introduction to their work). However, their pre-
cise formulation of this phenomenon is di�erent from ours. Corollary 5.14 allows
us to characterize subgroups of LG with vanishing Guichardet–Wigner quasimor-
phism. Indeed, as as special case of �eorem 5.10 we obtain the following result.

Corollary 5.15. �e Kaneyuki order is globally hyperbolic.

Combining this observation with �eorem 3.12 we deduce the following result.

Corollary 5.16. Let H < LG be a subgroup. �en the following are equivalent:

(i) the Guichardet–Wigner quasimorphism vanishes on H ;

(ii) H has a bounded orbit in LR;

(iii) every H -orbit in LR is bounded.

6. Total triples and circular quasimorphisms

6.1. Total triples. A very special class of examples of quasi-total triples
.X; �; T / is given by totally ordered spaces .X; �/ together with a dominating
automorphism T . We then say that .X; � T / is a total triple. In this situation the
theory simpli�es considerably. For instance, the T -height function (see Proposi-
tion 3.10 and the preceding de�nition) admits the following simpler description.
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Proposition 6.1. Let .X; �; T / denote a complete total triple and let a; b 2 X .
�en hT .a; b/ is the unique integer such that

T hT .a;b/�1:b � a � T hT .a;b/:b:

Now let us specialize further to the case where X coincides with G. In this
case � is a left-invariant order on G and we have a distinguished basepoint given
by a D e. Given g 2 G de�ne

n WD n.g/

to be the unique integer satisfying

T n�1:e � g � T n:eI

�en, as a special case of the last proposition we see that the function g 7! n.g/

is at bounded distance from the translation number TG;�;T associated with the
triple .G; �; T /. From this description we see in particular that our construction
generalizes a construction of Ito [22].

Corollary 6.2. Let G be a group, � a left-invariant total order on G, x 2 G and

�x.g/ WD gx:

Assume that .G; �; �x/ is a total triple. �en the translation number TG;�;�x
is the

homogeneization of the quasimorphism �G
x;� constructed in [22].

A particular example seems worth mentioning at this point.

Example 6.3 (Ito). Let Bn be again the n-string braid group and denote by �1; : : : ,
�n�1 its canonical (Artin) generators. �ere is a canonical left-ordering � on Bn,
which is described e.g. in [10] and sometimes called the Dehornoy order. If we
choose

x WD ..�1 : : : �n�1/.�1�2/�1/2;

then x is central in Bn and .Bn; �; �x/ is a total triple. Combining the last corol-
lary with [22, Example 1], we see that the translation number TBn;�;�x

is the ho-
mogeneization of the Dehornoy �oor quasimorphism.

In [22] it is always assumed that

T D �x for some x 2 G.

If G is assumed countable, then this is not a serious restriction.
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Lemma 6.4. Let G be a countable group and .G; �; T / be a total triple with a
dominating G-action. �en there exists a supergroup G1 of G, a total order �1

on G1 and an element x 2 G1 with the following properties:

(i) �1 is a left-invariant, total order on G1 and �1 jG D�;

(ii) x 2 Z.G1/ and x is dominant for �1;

(iii) .G1; �1; �x/ is a total triple with a dominating G1-action.

Moreover, G1 is isomorphic to a quotient of G � Z and the embeddings of G into
G � Z and G1 are compatible.

Proof. Let G1 be the subgroup of Aut.G; �; T/ generated by G and T and set
x WD T . Here G acts on itself by left-multiplication. Since G and T commute,
this group is a quotient of G�Z and x is central. Note that G1 acts on G preserving
�. To de�ne �1 choose an enumeration ¹giºi2N of G with g1 D e; then de�ne that
g �1 h if and only if .ggi / � .hgi / with respect to the lexicographical order on
GN. Since G1 acts e�ectively on G, this de�nes a total order and x is dominant,
since T is dominant. Also, �1 is G1-invariant, since � is. Finally, let g; h 2 G

be distinct; then either g � h or g � h. In the former case we have g:g1 � h:g1

(since g1 D e) and thus g �1 h, while in the second case we have g �1 h. �is
shows that �1 restricts to � on G.

�us in studying total triples .G; �; T / over a countable group G we may focus
on the case, where T D �x for a central dominant x 2 G.

6.2. From circular quasimorphisms to total triples. In this subsection we
study quasimorphisms which arise from lifts of actions on the circle.

De�nition 6.5. Let G be a group. A nonzero homogeneous quasimorphism f on
G is called circular if there exists an injective homomorphism

' W G �! HomeoC
Z

.R/

such that

f D '�TR:

It turns out that circular quasimorphisms are closely related to total triples. �e
precise relation is somewhat technical, and we o�er three di�erent (essentially
equivalent) formulations.
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Proposition 6.6. Let G be a group, and f be a circular homogeneous quasimor-
phism on G.

(i) �ere exists a left-invariant total order � on G such that the growth functions
of the order induced from � via the left-action of G on itself are multiples of
f .

(ii) �ere exists a quasi-total triple .G; �0; T / realizing f with the property that
�0 can be re�ned into a left-invariant total order � on G.

(iii) Assume that f is unbounded on the center of G. �en there exists a total
triple .G; �; T / realizing f .

Proof. (i) We �rst recall [25] that every enumeration ¹qnº of Q de�nes a total
order � on H WD HomeoC

Z
.R/ by setting g � h if and only if .gqn/ � .hqn/ with

respect to the lexicographic ordering on RN. Indeed, this follows from the fact
that every h 2 H is uniquely determined by its restriction to Q. We �x such an
enumeration and the corresponding ordering � once and for all. By construction,
� is left-invariant. Denote by �H the bi-invariant order on H induced by �. �en
�H is sandwiched by TR. Indeed, assume TR.h/ > 10. �en for all q 2 R we
have h:q > q, whence .hqn/ � .eqn/ and thus h �H e.

Now assume f W G ! R is circular and nonzero, say f D '�TR for some
injection ' W G ! H . For notation’s sake let us assume that G is a subgroup of H

and ' the inclusion. �en the restriction � jG de�nes a left-invariant total order on
G. Let � be the order on G induced by � jG . From the fact that TR sandwiches
� we deduce that f sandwiches f � �H ; since � is a re�nement of f � �H ,
it also sandwiches �.

(ii) Argue as in (i), but de�ne �0 to be the bi-invariant order induced by � and
choose T to be right multiplication by some element g 2 G with '.g/ > 10.

(iii) Construct � as in (i) and choose T to be multiplication by a central element
x with f .x/ > 10D.f / C 5.

For countable groups we will establish a partial converse to Proposition 6.6 in
�eorem 6.7 below.

6.3. From total triples to circular quasimorphisms. �e goal of this section
is to establish the following partial converse of Proposition 6.6.

�eorem 6.7. Let G be a countable group and .G; �; T / be a total triple with a
dominating G-action. Denote by � the induced bi-invariant order on G. �en the
growth functions of � are nonzero circular quasimorphisms.
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We will �rst establish the theorem under the additional hypothesis that T D �x

for some central dominant x 2 G. In a second step we will then reduce the general
case to this case by means of Lemma 6.4. �e �rst step of the proof uses crucially
the notion of a dynamical realization [25].

De�nition 6.8. Let � be a left-invariant total order on G. A dynamical realization
of � is a pair .'; t / consisting of an injective homomorphism

' W G �! HomeoC.R/

and a '-equivariant embedding

t W G �! R

such that
t .e/ D 0; inf

g2G
t .g/ D �1; sup

g2G

t .g/ D 1

and

f � g () '.f /:0 < '.g/:0: (15)

A dynamical realization of � is special if '.G/ centralizes the translation

T W x 7�! x C 1I

it is called adapted to x 2 G if

'.x/ D T:

�e following fact is well-known.

Proposition 6.9. Let G be a countable group and � a left-invariant total order
on G.

(i) � admits a dynamical realization.

(ii) �ere exists a special dynamical realization of � adapted to x 2 G if and
only if x is both central and dominant for �.

Proof. (i) see [25, Proposition 2.1]. (ii) Assume that such a realization exists.
Since '.x/ is contained in the centralizer of '.G/ and ' is injective we must have
x 2 Z.G/. Also, given any g 2 G we �nd n 2 N with '.g/:0 < n D '.xn/:0.
We deduce that g � xn, which shows that x is a dominant. �us the conditions
are necessary. On the other hand, assume that x 2 Z.G/ is dominant. �en every
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element in G may be written uniquely as g D g0xn with n 2 Z and e � g0 � x.
Now de�ne the embedding t as follows. Set t .e/ D 0, t .x/ D 1 and let ¹gkºk2N

be an enumeration of the order interval Œe; x� with g1 D e, g2 D x. Inductively
assume t .g1/; : : : ; t .gi�1/ have been de�ned. �en there exists gm; gM such that
gm < gi < gM and �gm; gM Œ\¹g1; : : : ; gi�1º D ;. We then de�ne t .gi/ WD

.t .gm/ C t .gM //=2. Now extend the map t W Œe; x� ! R to all of G by the formula
t .g0xn/ D n C t .g0/. �e action of G on t .G/ given by '.g/t.h/ WD t .gh/

extends continuously to the closure of t .G/ and can be extended to an action of
homeomorphisms onR in a standard way, see [25]. We have '.x/:t .g/ D t .gC1/,
hence '.x/ D T on t .G/. From the construction of the extension in loc. cit. we
deduce '.x/ D T on all of R.

We now �x a total triple of the form .G; �; �x/ with x 2 Z.G/ dominant
and a dynamical realization .'; t / of � adapted to x. As before, we denote by
� the order induced by � on G. We recall that the corresponding dominant set
GCC is non-empty and that its growth functions are multiples of T.G;�;�x/.g/.
We now aim to describe these growth functions in terms of the homomorphism
' W G ! HomeoC

Z
.R/. To this end we observe that ' allows us to pullback the

classical translation number TR to a homogeneous quasimorphism '�TR on G.
�e following fact was observed in [22].

Proposition 6.10 (Ito). Let G be a countable group, � a left-invariant total order
on G and x 2 G a central dominant. Let .'; t / be a dynamical realization of �

adapted to x. �en

T.G;�;�x/ � '�TR W G �! R

is a homomorphism.

Proof. By the proof of [22, �eorem 3] the pullback of the bounded Euler class
�eb WD dTR under ' in real bounded cohomology is the class represented by the
di�erential of the quasimorphism denoted �G

x;� in [22]. (In fact, this is even true
for the corresponding integral bounded cohomology classes, but we do not need
this stronger statement here.) Since TG;�;�x

is at bounded distance from �G
x;� by

Corollary 6.2, we deduce that the di�erential of f WD TG;�;�x
� '�TR represents

the trivial class in H 2
b

.GIR/. Now f is both homogeneous and cohomologically
trivial, hence a homomorphism.

We will strengthen this as follows.
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Lemma 6.11. Let G be a countable group, � a left-invariant total order on G and
x 2 G a central dominant. Let .'; t / be a dynamical realization of � adapted to
x. �en

T.G;�;�x/ D '�TR:

Proof. Since both quasimorphisms are homogeneous it su�ces to show that they
are at bounded distance. For this we may replace TR by the function g 7! '.g/:0

and T.G;�;�x/.g/ by hT .g; e/, since those are at bounded distance from the original
functions. Now choose n so that

'.x/n�1:0 D n � 1 < '.g/:0 � n D '.x/n:0:

�is implies both j'.g/:0 � nj < 1 and xn�1 � g � xnC1, the latter by (15).
We may rewrite the last chain of inequalities by

�.x/n�1:e D xn�1 � g � xnC1 D �.x/nC1:e:

From this we deduce that jhT .g; e/�nj < 2, whence j'.g/:0�hT .g; e/j < 3.

Now we can deduce the theorem.

Proof of �eorem 6.7. Let .G; �; T / be any total triple with a dominating G-ac-
tion. We then construct the extended triple .G1; �1; �x/ as in Lemma 6.4 and
denote by �1 the order induced by �1 on G1. We then choose a dynamical real-
ization .'1; t1/ of �1 adapted to x and deduce from �eorem 1.8 and Lemma 6.11
that �1 is sandwiched by TG1;�1;�x

D '�
1 TR. We thus �nd a constant C such that

for g 2 G1 with TR.'1.g// > C we have

g:x �1 x for all x 2 G1: (16)

Denote by � the bi-invariant order induced by � on G and by ' the composition
of the inclusion G ! G1 with '1. We then claim that � is sandwiched by '�TR.
Indeed, assume g 2 G satis�es '�TR.g/ > C ; then (16) holds, and in particular

g:x �1 x for all x 2 G:

But since �1 jG D�, this shows that g � e, which yields the desired sandwiching
result.

For quasimorphisms which are unbounded on the center of G we have obtained
a complete characterization of circularity.
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Corollary 6.12. Let f W G ! R be a quasimorphism, which is unbounded on the
center of G. �en the following are equivalent:

(i) f is circular;

(ii) f can be realized by a total triple .G; �; T /.

For quasimorphism, which are not unbounded on the center of G the situation
is slightly more technical, as witnessed by the more complicated formulation of
Proposition 6.6 for such quasimorphisms.

A. Smooth partial orders on manifolds

A.1. Causal structures. In various branches of mathematics and physics cone
�elds in the tangent bundle of a manifold are used to de�ne a causality (i.e. a
re�exive and transitive relation) on the manifold itself. �e precise de�nitions of
such causalities, however, di�er widely in the literature; it thus seem worthwhile
to elaborate a bit on the de�nitions we use in the body of text. In the present pa-
per we are mainly interested in invariant cone �elds on homogeneous spaces of
�nite-dimensional Lie groups, and our de�nitions are adapted to work well in this
context. We refer the reader to [20, 19, 24] for sources with a point of view similar
to ours.

A convex, R>0-invariant closed subset � of a vector space V will be called a
wedge. A wedge is called a closed cone if it is pointed, i.e. � \ .��/ D ¹0º. It is
called regular if its interior is non-empty. Given a closed regular cone � � V we
denote by G.�/ the group

G.�/ WD ¹g 2 GL.V / j g� D �º:

De�nition A.1. Let M be a d -dimensional manifold and � � Rd a closed regular
cone. �en a causal structure on M is a principal G.�/-bundle P ! M together
with an isomorphism

� W P �G.�/ V �! TM

(i.e. a reduction of the structure group of TM from GLd .R/ to G.�/.) �e asso-
ciated �ber bundle

C WD �.P �G.�/ �/

of P with �ber � is called the cone �eld of the causal structure P . We then refer
to the pair .M;C/ as a conal manifold.
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We warn the reader that the term causal manifold is traditionally reserved for
a conal manifold with additional properties, see the de�nition below. We also
remark that [20] uses a more general de�nition of causal structure, but the present
de�nition is su�cient for our purposes. For us it will be important that cone �elds
can be lifted along coverings.

Lemma A.2. Let .M;C/ be a conal manifold and zM its universal covering. �en
there exists a unique cone �eld zC on zM such that �1.M/ acts by causal di�eo-
morphisms on . zM; zC/. Conversely, every �1.M/-invariant cone �eld descends
to M .

Proof. �e only way to de�ne a causal structure with the desired property is to
set

zCx D .dpM /�1
CpM .x/;

where dpM W Tx
zM ! TpM .x/M is the derivative of the universal covering projec-

tion. �is de�nes indeed a causal structure on zM , since the triviality condition is
local. �e second statement is obvious.

Given a manifold M and real numbers a < b we call a curve  W Œa; b� ! M

piecewise smooth if it is continuous and there exists real numbers a D a0 < a1 <

� � � < an D b such that  j.aj ;aj C1/ is of class C 1 for j D 0; : : : ; n � 1.

De�nition A.3. Let .M;C/ be a conal manifold. A piecewise smooth curve

 W Œa; b� �! M

is called C-causal if

P.t/ 2 C.t/

for all but �nitely many t 2 Œa; b�. �e relation �s on M obtained by setting
x �s y if there exists a causal curve  W Œa; b� ! M with .a/ D x and .b/ D y,
is called the strict causality of .M;C/.

Since the concatenation of piecewise smooth curves is piecewise smooth, the
strict causality is indeed a causality. It may or may not be anti-symmetric, and it
may or may not be smooth. Antisymmetry can sometimes be obtained by passing
to a suitable covering. Obtaining a closed causality is di�cult in general. Indeed,
the closure � of �s in M � M need no longer be transitive. Fortunately, in homo-
geneous examples this kind of pathology hardly occurs. We make this precise in
the following de�nition.
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De�nition A.4. Let .M;C/ be a conal manifold. A di�eomorphism ' of M is
called causal with respect to C if

d'.Cm/ D C'.m/ for all m 2 M .

�e group of all causal di�eomorphisms of .M;C/ is denoted G.M;C/. A group
action G � M ! M is causal if G acts by causal di�eomorphisms. In this case
the causal structure C is called G-invariant. �e conal manifold .M;C/ is called
uniformly homogeneous if G.M;C/ acts transitively on M and every x 2 M has
an open neighbourhood U such that for all xn 2 U with xn ! x there exists a
sequence gn 2 G.M;C/ such that

gnxn D x and gn ! e

in the compact-open topology.

Lemma A.5 (Hilgert–Ólafsson). Let .M;C/ be a uniformly homogeneous conal
manifold. �en the closure � of �s in M � M is a causality. Moreover, the order
intervals of � are the closures of the order intervals of �s .

Proof. �e assumption of uniform homogeneity guarantees that the proof of [20,
Proposition 2.2.4] carries over.

Note that if G is a �nite-dimensional Lie group and H is a closed subgroup,
then every G-invariant cone �eld on G=H is uniformly homogeneous; indeed, this
follows from the existence of local sections of the principal bundle G ! G=H .
�is case is actually all we need. In any case in all our examples � will be a well-
de�ned causality. We follow [19, 20, 32, 26, 24] in calling �, rather than �s the
causality associated with the conal manifold .M;C/.

A.2. Causal manifolds and positive 1-forms. In this section let .M;C/ be a
conal manifold. We denote by �s the strict causality on M and by � its closure.

De�nition A.6. �e conal manifold .M;C/ is called causal if � is a partial order
and totally acausal if �D M � M . It is called weakly causal if �s is a partial
order.

Note that for .M;C/ to be causal we demand in particular that � is transitive.
We now provide a su�cient condition for M which guarantees causality.
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De�nition A.7. Let .M;C/ be a conal manifold. A closed 1-form ˛ 2 �1.M/ is
called uniformly positive with respect to C if there exists a Riemannian metric on
M and � > 0 such that

˛x.v/ � � � kvk for all x 2 M , v 2 Cx:

Uniformly positive 1-forms are a special case of positive 1-forms as introduced
in [19] re�ning ideas from [32, 26]. Positive 1-forms were introduced to prove
antisymmetry of the strict causality on certain 1-connected manifolds. Uniformly
positive 1-forms play a similar role for the closed causality.

Proposition A.8. Let .M;C/ be a simply-connected uniformly homogeneous conal
manifold admitting a uniformly positive 1-form ˛. �en .M;C/ is causal.

Proof. Since M is uniformly homogeneous, � is transitive, and it remains to show
that it is antisymmetric. Let x; y 2 M be distinct points and assume x � y � x.
By de�nition this means that there exist sequences xn ! x, x0

n ! x, yn ! y,
y0

n ! y in LR such that

xn �s yn; y0
n �s x0

n:

Let G WD G.M;C/ and observe that since .M;C/ is uniformly homogeneous there
exist sequence gn ! e, g0

n ! e in G such that yn D gny, y0
n D g0

ny. Now de�ne
an WD g�1

n xn, bn WD .g0
n/�1y0

n. �en

an �s y �s bn; an ! x; bn ! x:

Denote by d the metric induced by the Riemannian metric, for which ˛ is uni-
formly positive. �en for any causal curve c W Œa; b� ! zM we have

∫

c

˛ D

∫ b

a

˛c.t/. Pc.t// � L.c/ � �;

where L.c/ denotes the length of c. Fix a neighbourhood U of x not containing y

in its closure and set ı WD �
2
d.U; y/. Choose n0 such that an; bn 2 U for all n � n0.

By shrinking U if necessary we may assume that U is geodesically convex and
relatively compact. Now let cn be a causal curve from an to bn through y; then
L.cn/ � ı=� and thus

∫

cn

ˇ � L.cn/ � � � ı > 0:
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Now denote by c0
n a geodesic joining an to bn in U (parametrized by arclength)

and by .c0
n/� the same curve with the opposite orientation. �en the concatenation

cn#.c0
n/� is a closed loop in M ; since M is simply-connected this loop bounds a

disc D and thus
∫

c0
n

˛ D

∫

cn

˛ C

∫

@D

˛ D

∫

cn

˛ C

∫

D

d˛ D

∫

cn

˛:

Now ˛ is bounded on the compact set U , hence their exists C > 0 such that
∫

c0
n

˛ � C � L.c0
n/ D C � d.an; bn/:

We have thus established for all n > n0 the inequality

0 < ı � C � d.an; bn/:

Since d.an; bn/ ! 0, this is a contradiction.
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