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Abstract. We extend the techniques of [8] to build an inductive procedure for studying

actions in the boundary of the Culler–Vogtmann Outer Space, the main novelty being an

adaptation of the classical Rauzy–Veech induction for studying actions of surface type. As

an application, we prove that a tree in the boundary of Outer space is free and indecom-

posable if and only if its dual lamination is minimal up to diagonal leaves. Our main result

generalizes [3, Proposition 1.8] as well as the main result of [22].
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1. Introduction

We consider R-trees T equipped with a minimal very small action of the free
group FN of rank N by isometries: these are points in the closure of the celebrated
unprojectivized Culler–Vogtmann Outer Space cvN [14]. A dual lamination L.T /

is associated to such trees [10]. We recall that a lamination for the free group
is a closed FN -invariant, �ip invariant, subset of the double Gromov boundary
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@2FN D .@FN /2 n �, where � is the diagonal. �e main result result of the
paper relates minimality properties of the tree to minimality properties of its dual
lamination.

For an action FN Õ T there are several notions of minimality for the dynamics
of the action; see Section 2.8. Mixing trees were considered by Morgan [26], and
Guirardel introduced the stronger notion of indecomposability in [17].

De�nition 1.1. An R-tree T 2 cvN is indecomposable if for any non-degenerate
segments I and J in T , there exist �nitely many elements u1; : : : ; un in FN such
that

(1) I � u1J [ u2J [ � � � [ unJ

(2) uiJ \ uiC1J is a non degenerate segment for any i D 1; : : : ; n � 1.

A lamination L is minimal if it does not contain a proper sublamination, or,
equivalently, if the orbit of any leaf of L is dense in L. Laminations dual to
trees are always diagonally closed: if L.T / contains leaves l1 D .X1; X2/, l2 D

.X2; X3/; : : : ; ln D .Xn�1; Xn/, then L.T / also contains the leaf l D .X1; Xn/.
Oftentimes diagonal leaves are isolated in the dual lamination. �us we need a
slightly modi�ed notion of minimality for laminations dual to R-trees.

De�nition 1.2. A lamination L is minimal up to diagonal leaves if

(i) there is a unique minimal sublamination L0 � L, and

(ii) LnL0 consists of �nitely many FN -orbits of leaves, each of which is diagonal
over L0.

In the de�nition, a leaf l 2 L is diagonal over a sublamination L0 � L if there
are leaves .X1; X2/; .X2; X3/; : : : .Xn�1; Xn/ 2 L0 such that l D .X1; Xn/. Note
that the above notion of minimality coincides with the correct notion of minimality
for foliations on a closed surface. Our main result is the following theorem.

�eorem A. Let T be an R-tree with a free, minimal action of FN by isometries
with dense orbits. �e tree T is indecomposable if and only if L.T / is minimal up
to diagonal leaves.

In this case the unique minimal sublamination is the derived sublamination
L.T /0 W the subset of non-isolated leaves.
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�e third author [27] proved that under the same hypotheses, T is indecom-
posable if and only if no leaf of the dual lamination L.T / is carried by a �nitely
generated subgroup of in�nite index. We use this characterization in the proof of
�eorem A.

�eorem A generalizes the main result of [22]. Indeed, it is shown in [8] that
the repelling tree Tˆ�1 of a fully irreducible (iwip) outer automorphism ˆ of FN is
indecomposable, and Tˆ�1 is free exactly when ˆ is non-geometric. Moreover, the
attracting lamination Lˆ of ˆ is minimal [3] and contained in the dual lamination
of the repelling tree (see [8]).

Corollary 1.3 ([22]). Let ˆ be a non-geometric iwip outer automorphism of FN .
�e dual lamination of the repelling tree L.Tˆ�1/ is the diagonal closure of the
attracting lamination Lˆ.

Recall that a current on FN is a positive FN -invariant, �ip invariant, Radon
measure � on @2FN [19]. �e support Supp.�/ of � is a lamination (see [12]). We
consider the intersection form iKL between currents and trees:

iKL W cvN � Curr.FN / ! R�0;

see [20]. A current � is orthogonal to a tree T 2 cvN (i.e iKL.T; �/ D 0) if
and only if the support of � is a sublamination of the dual lamination L.T / [21].
�eorem A implies the following result.

Corollary 1.4. Let T 2 cvN be a free, indecomposable FN -tree, and let � be a
geodesic current. �e following are equivalent:

(i) Supp.�/ � L.T /,

(ii) iKL.T; �/ D 0,

(iii) Supp.�/ D L.T /0.

Our strategy for proving �eorem A is summarized as follows. We encode a
tree T 2 cvN in a system of isometries on a compact R-tree as in [13], and then
develop an inductive procedure for studying such systems of isometries. �ere are
two cases to consider: if the tree T is of Levitt type we use Process I of the Rips
Machine [8] (see also [1, 16]); if the tree T is of surface type we use a splitting
procedure inspired by the Rauzy–Veech induction for �at surfaces. �e result is
a sequence of systems of isometries encoding the tree T ; there is a train track
associated to each of these systems of isometries, and the dual lamination L.T /

is the inverse limit of this sequence of train tracks. We are able read o� from the
sequence of train tracks the desired minimality properties of the lamination. �e
motivation for our procedure comes from surface theory.
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1.1. �e case of a surface lamination. �e proof of �eorem A relies on an
adaptation to the free group FN of train track expansions of a measured lamination
on a hyperbolic surface, which we now casually recall. First, we mention the
correspondence between measured laminations, non-classical interval exchange
transformations, and train tracks, as this correspondence suggests the procedure
presented in this paper. Let † be a non-exceptional hyperbolic surface equipped
with a measured geodesic lamination L D .L; �/. We suppose that L is minimal
and �lling. Choosing an arc I � † that is transverse to L, one can consider
the �rst return map f W I ! I induced by the holonomy of L. �e map f is a
(non-classical) interval exchange transformation, whose dynamics coincide with
those of a �nitely generated collection (similar to a pseudo-group) S of partial
isometries on I : the generators of S are the maximal continuous restrictions of f .
Suspending S , see Section 2.3, gives a foliated space S, which is homeomorphic
to † with �nitely many discs removed; after gluing in these discs and extending
the foliation to them in the obvious way, one obtains a surface homeomorphic to
†, carrying a measured foliation which corresponds to measured lamination L;
see [23].

�e suspension S of the interval exchange f has the homotopy type of a �nite
graph – collapsing each band of S onto one of its leaves gives the desired homotopy
equivalence h W S ! �. �e graph � can be equipped with a train track structure as
follows: let e and e0 be (oriented) edges of � such that the endpoint v of e coincides
with the initial point of e0; make e and e0 tangent at the vertex v if and only if there
is a non-singular leaf of S that crosses the (ordered) pair of bands corresponding
to .e; e0/. �e widths of the bands of S give an assignment of weights to the edges
of �, which clearly satisfy a switch condition. In fact, one sees that � can be
embedded in † as a (measured) train track carrying L.

We now consider the e�ect of the Rauzy–Veech induction. Recall that given
an interval exchange transformation f W I ! I with corresponding partition I D

I1 [� � �[Ir , one step of the Rauzy–Veech induction consists of: �rst removing the
right most interval Ir , then replacing f with the �rst return map f 0 on the interval
I n Ir . Equivalently, consider the suspension S, and split apart the right-most
singularity of the foliation on S (all singularities lie on I ) until I is again reached.
Rauzy–Veech induction is de�ned in the generic case, and extra information is
available when it is unde�ned; see Proposition 4.7. �is process gives a foliated
space S0, which is the suspension of the interval exchange transformation f 0. In the
present note, we consider this “splitting” point of view of Rauzy–Veech induction.

As noted before, there is a measured train track � corresponding to the space S,
such that � carries L. If S0 arises from S via one step of the Rauzy–Veech induc-
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tion, then we say that the measured train track � 0 corresponding to S
0 arises from

� via splitting; there is a homotopy equivalence � W � 0 ! � (� is a fold). �e
sequence of train tracks .�i / arising by iterating this procedure is usually called
a splitting sequence, or, more speci�cally, a train track expansion of L. �e key
features for us are that each �i carries L and that the branches of �i approximate
leaves of L for i >> 0.

1.2. �e case of a very small FN -tree. We now outline our translation of the
above technology. Let T be an R-tree equipped with a free, minimal action of FN

by isometries, and suppose that the action FN Õ T is mixing (see Section 2.8).
Let L.T / denote the dual lamination associated to T (see Section 2.5). Choose
a basis A for FN , let XA denote the Cayley tree of FN with respect to this basis,
and identify @2FN D @2XA in the obvious way. Let CA denote the subset of @2FN

consisting of points represented by geodesics in XA passing through the identity
element. �e set CA is compact (and open), hence LA WD L.T / \ CA is compact
as well. As L.T / is FN -invariant, we may consider the restricted action of FN on
LA; this turns out to be a classical symbolic �ow (see [10]). We “geometrize” this
�ow using the tree T .

It is shown in [13] that there is an FN -equivariant, continuous map

Q2 W L.T / �! xT ;

where xT denotes the metric completion of T ; consider the compact subspace

�A WD Q2.L.T / \ CA/I

this is the analogue of an arc transverse to a surface lamination. From the equiv-
ariance of Q2, we get a partial action of FN on �A, which is just the restriction
of the action FN Õ T . It is shown in [8] that there are two possibilities for the
structure of �A: either �A is a �nite union of compact R-trees, in which case T

is called surface type; or �A is totally disconnected, in which case T is called
Levitt type. In either case the suspension of the (partial) action of FN on �A is
a compact foliated space that is a “geometric realization” of LA. However, in the
Levitt type case, it is more convenient to work with a nicer space: put KA to be
the convex hull of �A in xT (so KA is a compact R-tree), and suspend the (partial)
action of FN on KA. �e result is a foliated space S in which some leaves are
1-ended; deleting all leaves with strictly less than two ends gives the suspension
of �A (see Sections 2.6, 3.2, 2.3, and 3.1).

We now describe our generalization of Rauzy–Veech induction; our induction
has two distinct procedures. In the case that T is surface type, we show (Propo-
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sition 4.7) that there exist in the suspension S singularities which look like sin-
gularities which arise in foliated surface, i.e. they are “splittable”; splitting apart
these singularities as above gives a homotopy equivalence h1 W S0 ! S (h1 “zips
up” the splitting). �ere is a homotopy equivalence h W S ! � to a �nite graph �

got by collapsing each band onto a vertical �ber, and splitting induces a homotopy
equivalence � 0 ! �, where � 0 is the graph associated to S

0 (see Section 4).
In the case that T is Levitt type, we operate on S using Process I of the Rips

Machine: erase from KA all points x such that x is an endpoint of a leaf to get
K 0

A � �A, and suspend K 0
A get S0. Again there are homotopy equivalences S ! �,

S
0 ! � 0, and � 0 ! �.

In either case, we get a sequence of foliated spaces .Si / and graphs �i with
homotopy equivalences �i W �i ! �i�1. Any sublamination L0 � L.T / de�nes
a train track structure on �i just as in Section 1.1, where leaves in L0 are treated
as “non-singular.” As one might expect, choosing too large of a sublamination L0

gives too many legal turns; however, it follows from the results of this paper that
for T indecomposable (see Section 2.8), the derived set L.T /0 consists of leaves
that are morally non-singular; see Sections 2.7 and 5.2, and the Appendix, where
we handle a more general situation. As before, the main features are that the train
tracks �i all carry L.T / and that for i >> 0, the branches of �i “approximate”
leaves of L.T /0. Our train-tracks will have no transverse measure; however, the
informed reader will realize that currents are the natural object for measuring these
train tracks. See [9], where the �rst two authors obtain a bound on the number of
ergodic currents dual to a very small tree with a free action.

Acknowledgments. �is project began during the AIM workshop “�e geometry
of the outer automorphism group of a free group,” which was held in October
2010; we thank the organizers of that conference as well as the American Institute
of Mathematics.

2. Background

In this section we brie�y review the relevant de�nitions around R-trees, Outer
space, and laminations. In what follows FN denotes the free group of rank N .

2.1. Basics about R-trees. A metric space .T; d/ is an R-tree (or just a tree) if
for any two points x; y 2 T , there is a unique topological arc px;y W Œ0; 1� ! T

connecting x to y, and the image of px;y is isometric to the segment Œ0; d.x; y/�.
As is usual, we let Œx; y� stand for Im.px;y/, and we call Œx; y� the segment (also
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called an arc) in T from x to y. A segment is non-degenerate if it contains strictly
more than one point. We let xT stand for the metric completion of T . Unless
otherwise stated, we regard T as a topological space with the metric topology.
If T is a tree, and x 2 T , then x is a branch point if the cardinality of �0.T � ¹xº/

is strictly greater than two. For x 2 T , the elements of �0.T � ¹xº/ are the
directions at x.

In this paper, all the trees we consider are equipped with an isometric (left)
action of FN , i.e. a group morphism � W FN ! Isom.T /; as usual, we suppress
the morphism � and identify FN with �.FN /. A tree T equipped with an isometric
action will be called an FN -tree, and we denote this situation by FN Õ T . Notice
that an action FN Õ T induces an action of FN on the sets of directions and
branch points of T . We identify two FN -trees T; T 0 if there is an FN -equivariant
isometry between them.

�ere are two sorts of isometries of trees: an isometry g of T is elliptic if g

�xes some point of T , while an isometry h of T is hyperbolic if it is not elliptic.
Any hyperbolic isometry h of T leaves invariant a unique isometric copy of R in
T which is the axis, A.h/, of h. If g is an elliptic isometry, we let A.g/ stand for
the �xed point set of g, i.e.

A.g/ WD ¹x 2 T jgx D xº:

�e translation length function of a FN -tree T is lT W FN ! R, where

lT .g/ WD inf¹d.x; gx/jx 2 T º:

�e number lT .g/ is the translation length of g, and for any g 2 FN , the in�mum
is always realized on A.g/, so that g acts on A.g/ as a translation of length lT .g/.
If H � FN is a �nitely generated subgroup containing a hyperbolic isometry, then
H leaves invariant the set

T min
H WD

[

lT .h/>0

A.h/:

which is a subtree of T , and is minimal in the set of H -invariant subtrees of T ;
T min

H is the minimal invariant subtree for H . In the case that H D FN , we omit H

and write T min for T min
FN

. An action FN Õ T is minimal if T D T min; a minimal
action FN Õ T is non-trivial if T contains strictly more than one point.

2.2. System of isometries. A metric space F is a �nite forest if F has �nitely
many connected components, each of which is a compact R-tree. A partial isom-
etry a of F is an isometry between two closed (hence compact) subtrees of F .
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A system of isometries is a pair S D .F; A/ where F is a �nite forest and A

is a �nite collection of non-empty partial isometries of F . By allowing inverses
and composition we get a sort of pseudo-group of partial isometries on F , with
the domains of the partial isometries being closed; our convention will be that this
pseudo-group acts on F on the right.

To a system of isometries S D .F; A/ we associate a graph � whose vertices
are the connected components of F and such that for each partial isometry a 2 A

there is an oriented edge starting at the connected component of F containing
the domain, dom.a/, and ending at the connected component of F containing
the image of a. Denote by V.�/ and E.�/ the sets of vertices and edges of �,
respectively.

By a path in �, we mean a �nite edge path, that is, a path starting and ending
at vertices of �. A path  in � is called reduced if  is an immersion; any path is
homotopic relative to endpoints to a reduced path. A reduced path  in � de�nes a
partial isometry of F , and we say that  is admissible if the corresponding partial
isometry has non-empty domain. We abuse notation, identifying an admissible
path  with the partial isometry corresponding to it. An in�nite reduced path  is
an immersion

 W R�0 �! �

such that

�1.V .�// D N:

For an in�nite reduced path  , the i-pre�x of  , denoted i , is the restriction  jŒ0;i�.
For i � j , one has that dom.i / � dom.j /, and we put

dom./ WD
\

i

dom.i /:

We say that an in�nite path  is admissible if dom./ ¤ ;. A bi-in�nite reduced
path  is an immersion

 W R �! �

such that

�1.V .�// D Z:

Given a bi-in�nite path  , the halves of  are the restrictions

� WD  jR�0
and C WD  jR�0

I

we reparametrize � in order to regard it as an in�nite path. A bi-in�nite re-
duced path is admissible if the domains of its halves have non-empty intersection.
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Equivalently a bi-in�nite path  is admissible if and only if for any i � j 2 Z, the
restriction  jŒi;j � is admissible.

�e set of bi-in�nite admissible paths is called the admissible lamination of
the system of isometries S D .F; A/ and is denoted L.S/; general laminations are
de�ned in Section 2.5.

2.3. �e suspension and the dual tree. Let S D .F; A/ be a system of isome-
tries, and let I D Œ0; 1� denote the unit interval. For each ai 2 A, let

bi WD dom.ai /I

one forms a band

Bi WD bi � I:

Identify bi with bi � ¹0º � Bi , and denote

Qbi WD bi � ¹1º:

Say that bi and Qbi are the bases of the band Bi .

De�nition 2.1. �e suspension S of S is the quotient of F q
`

i Bi , where one
identi�es bi with dom.ai / and Qbi with im.ai / D dom.ai / � ai .

�e suspension of a system of isometries is a compact, Hausdor� space that
has the homotopy type of a �nite graph �. �e graph � is a deformation retract
of S obtained by contracting each connected component of the forest F to a point
and each band bi � I to a core ¹ptº � I . �e graph � is the graph associated to
the system of isometries in Section 2.2. In the sequel, we always suppose that S
is connected. Hence, �1.S/ is a free group FN .

We think of each band as being foliated by leaves of the form ¹ptº � Œ0; 1�,
and the foliations of the bands of S give rise to a foliation on S: de�ne a relation
R on points of S by declaring xRy if and only if x and y lie in the same leaf
of the foliation on some band. �e classes of the smallest equivalence relation
containing R are the leaves of the foliation on S. For a point x 2 F , we let l.x/

denote the leaf of the foliation on S containing x.
We consider the path metric on leaves coming from the metric on Œ0; 1�.

A �nite, in�nite, or bi-in�nite path  in S is an admissible leaf path if  W J ! S,
J a closed subinterval of R with extremities @J � Z[ ¹˙1º, is a locally isomet-
ric, immersed leaf path, so �1.F / D J \ Z. �e lamination (which is rather a
foliation in this setting) L.S/ is the set of bi-in�nite admissible leaf paths.
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Any admissible leaf path  de�nes an admissible path in � which we also
denote by  . Any bi-in�nite admissible leaf path in L.S/ de�nes a bi-in�nite ad-
missible path in the admissible lamination L.S/. �us, the admissible lamination
L.S/ associated to a system of isometries S D .F; A/ is a combinatorial version
of the foliation on the suspension S.

A length measure � on a tree T is a collection ¹�I ºI�T of �nite Borel measures
on the compact arcs I of T , such that if J � I , then �J D �I jJ . For any tree T ,
we have the Lebesgue measure �L on T consisting of the Lebesgue measures on
the compact intervals of T . �e foliated space S inherits a transverse measure
from the Lebesgue measures on the bases.

Let S D .F; A/ be a system of isometries, and let QS denote the universal cover
of S. Lift the foliation and transverse measure from S to QS. �en FN D �1.S/

acts on QS by deck transformations, and the foliation and transverse measure are
preserved. Collapsing to a point each leaf of the foliation of QS gives an R-tree TS.
As the action FN Õ QS preserves the foliation and transverse measure, one gets
an isometric action FN Õ TS; see [8] or [1]. �e action FN Õ TS is dual to the
system of isometries S .

2.4. Outer space and its closure. Recall that an action FN Õ T is free if for
any 1 ¤ g 2 FN one has lT .g/ > 0. If X � T , then the stabilizer of X is
Stab.X/ WD ¹g 2 FN jgX D Xº – the setwise stabilizer of X . An action FN Õ T

is very small if

(i) FN Õ T is minimal,

(ii) for any non-degenerate arc I � T , Stab.I / D ¹1º or Stab.I / is a maximal
cyclic subgroup of FN ,

(iii) stabilizers of tripods are trivial.

A minimal action FN Õ T is discrete (or simplicial) if the FN -orbit of any
point of T is a discrete subset of T ; in this case T is obtained by equivariantly
assigning a metric to the edges of a (genuine) simplicial tree. Note that the metric
topology is weaker than the simplicial topology if the tree is not locally compact.

�e unprojectivised outer space of rank N , denoted cvN , is the topological
space whose underlying set consists of free, minimal, discrete, isometric actions
of FN on R-trees. A minimal FN -tree is completely determined by its translation
length function (see, for example, [6]): we can embed cvN � R

FN . �e closure
cvN in R

FN consists of very small isometric actions of FN on R-trees [7, 2].
For more background on cvN and its closure, see [29] and the references therein.
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2.5. �e map Q and the dual lamination. Here we recall dual algebraic lam-
inations associated to FN -trees; see [10] and [11] for a careful development of the
general theory. Let @FN denote the Gromov boundary of FN – i.e. the Gromov
boundary of any Cayley graph of FN ; let

@2.FN / WD @FN � @FN n �;

where � is the diagonal. �e left action of FN on a Cayley graph induces actions
by homeomorphisms of FN on @FN and @2FN . Let

i W @2FN �! @2FN

denote the involution that exchanges the factors. A lamination is a non-empty,
closed, FN -invariant, i-invariant subset L � @2FN .

Remark 2.2. In the setting of Sections 2.2 and 2.3, if the graph � is connected,
then its fundamental group is a free group FN . Specifying a marking isomorphism
�1.�/ ' FN gives a homeomorphism @ Q� ' @FN , where Q� is the universal cover
of �. A bi-in�nite reduced path in � lifts to bi-in�nite reduced paths in Q� that are
completely described by their pairs of ends in @2FN .

Proposition 2.3 ([25]). Let T 2 cvN have dense orbits, and suppose that
X 2 @FN . �ere is a unique point Q.X/ 2 xT [ @T such that there exists a
sequence un in FN converging to X and a point P 2 T such that unP converges
to Q.X/.

More intuitively, the map Q is the continuous extension of the map

QP W FN �! T;

u 7�! uP

to @FN ! yT obs, where
yT D xT [ @T

is endowed with the weaker observers’ topology – the set of directions in yT is a
basis of open sets for the observers’ topology. �e space yT obs is Hausdor� and
compact.

Proposition 2.4 ([25]). Let T 2 cvN have dense orbits. �e map

Q W @FN �! yT

is FN -equivariant and surjective; further, points in @T have exactly one pre-image
by Q.
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�e crucial property for us is that Q can be used to associate to T a lamina-
tion [11].

De�nition 2.5. Let T 2 cvN have dense orbits. �e dual lamination of T is

L.T / WD ¹.X; Y / 2 @2.FN / j Q.X/ D Q.Y /º:

2.6. �e map Q2 and the compact heart. For a tree T 2 cvN with dense orbits,
the map

Q W @FN �! yT D xT [ @T

induces a map
Q2 W L.T / �! xT ;

.X; Y / 7�! Q.X/ D Q.Y /:

�e metric topology on T canonically extends to xT , and we have the following
result.

Proposition 2.6 ([13]). �e map Q2 W L.T / ! xT is continuous.

�e space @2FN is not compact, but there are many “nice” coverings of @2FN

be compact sets. Fixing a basis A for FN gives an identi�cation of @FN with the
space of in�nite reduced words in A˙1, hence an identi�cation of @2FN with the
space of pairs .X; Y / of distinct in�nite reduced words X ¤ Y . For an in�nite
word X , we let X1 stand for the �rst letter of X . �e unit cylinder of @2FN with
respect to A is the subset

CA WD ¹.X; Y / 2 @2FN jX1 ¤ Y1º:

For any basis A of FN , CA is an open, compact subspace of @2FN , and

@2FN D
[

g2FN

gCA:

For a tree T 2 cvN with dense orbits and a basis A of FN , the compact limit
set of T (with respect to A) is �A WD Q2.L.T / \ CA/ � xT . �e heart of T (with
respect to A) is the convex hull KA of �A in xT . It follows from Proposition 2.6
that �A is a compact subset of xT , so KA is a compact subtree of xT .

Now, �x a tree T 2 cvN with dense orbits and a basis A for FN . For a compact
subtree K � xT , let S D .K; A/ denote the system of isometries with a 2 A the
partial isometry got by the (maximal) restriction of the action of a�1 to K. Let S
denote the suspension of S , and let TS denote the FN -tree dual to S. �e following
result is essential for the present note.
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Proposition 2.7 ([13]). Let T 2 cvN have dense orbits, and �x a basis A for FN .
Let KA denote the heart of T with respect to A; let

S D .KA; A/

denote the associated system of isometries, and let S denote its suspension.

(i) �e tree T is dual to S : T min
S

D T ,

(ii) L.T / \ CA D L.S/ D L.S/, and

(iii) for any in�nite admissible leaf path X in S, dom.X/ D ¹Q.X/º.

�e statement L.S/ D L.S/ means that the obvious map is a bijection. Propo-
sition 2.7 allows us to fully transfer the problem of understanding the dual lami-
nation of a tree in the boundary of Outer space to the problem of understanding
the associated systems of isometries.

If a basis A of FN is �xed, then given any T 2 cvN , we have a well-de�ned
system of isometries S D .KA; A/. If A is understood, then we say that S is
associated to T .

A tree T 2 cvN is geometric if its compact heart KA for some (hence any)
basis A of FN is a �nite tree, that is to say a compact R-tree which is the convex
hull of �nitely many points, see [13].

2.7. Regular leaves and the derived sublamination. In this Section, we collect
some results regarding the derived space of L.T / and its relationship to regular
leaves in systems of isometries associated to T .

De�nition 2.8. Let T be an FN -tree in cvN with dense orbits. A leaf l 2 L.T / is
regular if there exists a sequence ln 2 L.T / of leaves converging to l and such that
the xn D Q2.ln/ are distinct. �e set of regular leaves is the regular sublamination
Lr .T /.

If the action of FN on T is free, by [8, �eorem 5.3] we have that for all x 2 xT ,
.Q2/�1.x/ is a �nite set of uniformly bounded cardinality. Recall that the set of
non-isolated points of a topological space, X , is its derived space, X 0.

Lemma 2.9. Let T 2 cvN be free with dense orbits. �e regular sublamination
of T is equal to the derived lamination:

Lr.T / D L.T /0:
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2.8. Mixing properties for FN -trees. From the work of V. Guirardel [17] (after
J. Morgan [26]), there are several notions of “minimality” for the dynamics of an
action of a group on an R-tree. �ese notions are hierarchized as follows:

(1) dense orbits: the FN -orbit of some (hence any) point P of T is dense in T ;

(2) arc-dense: every orbit meets every non-degenerate segment of T ;

(3) arc-dense directions: for each x 2 T , each direction d at x, and each non-
degenerate arc I � T , there exists g 2 FN such that gx 2 I and gd \ I is
non-degenerate;

(4) mixing: for any non-degenerate segments I and J in T , there exists �nitely
many elements u1; : : : ; un in FN such that I � u1J [ u2J [ � � � [ unJ ;

(5) indecomposable: for any non-degenerate segments I and J in T , there exists
�nitely many elements u1; : : : ; un in FN such that

(a) I � u1J [ u2J [ � � � [ unJ

(b) uiJ \ uiC1J is a non degenerate segment for any i D 1; : : : ; n � 1.

We remark that this hierarchy is not exactly strict as

Lemma 2.10 ([27, Lemma 12.6]). Let T 2 cvN . �e action FN Õ T is mixing if
and only if it has arc-dense directions.

In this paper we will use two characterizations of indecomposable trees.
A transverse family for an action FN Õ T of FN on anR-tree T is an FN -invariant
family ¹Tvºv2V of non-degenerate, proper subtrees of T such that if Tv ¤ Tv0 , then
Tv \ Tv0 contains at most one point.

Proposition 2.11 ([28, Lemma 4.1]). Let FN Õ T be an action of FN on an
R-tree T . �en FN Õ T is indecomposable if and only if there is no transverse
family.

In the proof of Lemma 5.1, we need a re�ned understanding of transverse fam-
ilies that occur in free FN -trees. We collect the following:

Proposition 2.12 ([27, Lemma 4.4] and [24, �eorem 5]). Let T 2 cvN be free
with dense orbits. If T is not indecomposable there exists a non-degenerate sub-
tree T0 of T , such that

(1) ¹gT0 j g 2 FN º is a transverse family,

(2) H D Stab.T0/ is a free factor of FN ,

(3) H acts on T0 with dense orbits.
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A �nitely generated subgroup H of FN is quasiconvex, thus there is a natural
inclusion of boundaries @H � @FN . We say that a line .X; Y / 2 @2FN is carried
by H if .X; Y / 2 @2H .

Proposition 2.13 ([28, Corollary 4.8]). Let T 2 cvN be free and indecomposable,
and let H � FN be �nitely generated. �en H carries a leaf of L.T / if and only
if H has �nite index in FN .

3. �e Rips Machine and types of actions

3.1. �e Rips Machine. We recall the generalization of Process I of the Rips
Machine [16, 1], henceforth called Rips induction, that was �rst studied in the
present context in [8].

Let S D .F; A/ be a system of isometries. �e output of one step of the Rips
Machine applied to S is a new system of isometries S 0 D .F 0; A0/ de�ned as
follows:

F 0 WD ¹x 2 F j 9a ¤ a0 2 A˙1; x 2 dom.a/ \ dom.a0/º

Since A is �nite and since intersections of domains of isometries are compact
R-trees, we have that F 0 is again a �nite forest. We let A0 consist of all maxi-
mal restrictions of the elements of A to pairs of connected components of F 0, so
S 0 D .F 0; A0/ is indeed a system of isometries, as required.

�e suspension S
0 of S 0 is a subspace of the suspension S of S . We can regard

each leaf-path in S
0 as a leaf-path in S, in particular, considering bi-in�nite admis-

sible leaf paths gives L.S0/ � L.S/. On the other hand, the Rips Machine does
not modify bi-in�nite admissible leaf paths, thus:

Lemma 3.1. Let S D .F; A/ be a system of isometries, and let S 0 D .F 0; A0/

denote the output of the Rips Machine applied to S . �e laminations are equal:
L.S/ D L.S0/.

3.2. Types of actions. We consider the output of iterating the Rips Machine
on a system of isometries S0 D .F0; A0/; we denote by Si the output of the i th

iteration of the Rips Machine. If for some i0, one has that Fi0 D Fi0C1, i.e. the
Rips Machine halts on Si0 , then we say that the Rips Machine eventually halts
on S0.

De�nition 3.2. Let S0 be a system of isometries. If the Rips Machine eventually
halts on S0, then S0 is called surface type.
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�e limit set of S0 is � D
T

i2N Fi . If S0 is of surface type then � D Fi0 .
If S D .KA; A/ is a system of isometries associated to a tree T 2 cvN with dense
orbits, then, by de�nition, the limit set � of the system of isometries is equal to
the compact limit set �A with respect to the basis A de�ned in Section 2.6.

De�nition 3.3. Let S0 be a system of isometries, and suppose that the Rips Ma-
chine does not eventually halt on S0. If the limit set � associated to S0 is totally
disconnected, then S0 is said to be Levitt type.

In [8] it is shown that for T 2 cvN with dense orbits, if for some basis A, the
system of isometries associated to KA is of surface type (resp. Levitt type), then
for every basis A0, the system of isometries associated to KA0 is of surface type
(resp. Levitt type). In this case we say that T is of surface type (resp. Levitt type).
It should be noted that there are trees in cvN that are neither of surface type nor
Levitt type; however, we have the following:

Proposition 3.4 ([8, Proposition 5.14]). Let T 2 cvN have dense orbits. If the
action FN Õ T is mixing, then T is either of surface type or Levitt type.

3.3. Levitt type actions. Let T 2 cvN has dense orbits, and let

S0 D .KA; A/ D .F0; A0/

be an associated system of isometries. Denote by Si the output of the i th iteration
of the Rips Machine.

Recall the de�nition of the graph � associated to a system of isometries S from
Section 2.2. Let �i denote the graph associated to Si : �i is got by contracting each
band of Si onto one of its leaves. �ere are induced graph morphisms

�i W �i �! �i�1:

�e following Lemma follows from [8, Propositions 3.12, 3.13, and 5.6].

Lemma 3.5. Let T 2 cvN have dense orbits; let A a basis for FN ; and let S0

denote the associated system of isometries. Denote by Si the output of the i th

iteration of the Rips Machine applied to S0, and let �i be the associated graph.

(i) �i has no vertices of valence 0 or 1, and

(ii) the maps �i W �i ! �i�1 are homotopy equivalences.

Note that, as F0 D KA is connected, �0 is a rose with N petals, so Lemma 3.5
gives a uniform bound 2N �2 on the number of vertices of valence strictly greater
than two in �i .
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Lemma 3.6. Let T 2 cvN be free with dense orbits, and suppose that T is of
Levitt type. If L0 ¨ Lr .T / is a proper sublamination, then every leaf of L0 is
carried by a proper free factor of FN .

�e hypothesis that the action is free is not necessary; see the Appendix.

Proof. Fix a basis A for FN , and let S0 D .KA; A/ be the associated system of
isometries; let Si D .Fi ; Ai/ denote the output of the i th iteration of the Rips
Machine, and let �i denote the graph associated to Si . Recall that since T is of
Levitt type, the limit set � is totally disconnected, hence the number of vertices of
�i goes to in�nity with i . Let l be a bi-in�nite admissible leaf path in Lr .S0/nL0.
�ere exists a sequence ln in L.S0/ converging to l such that the xn D Q2.ln/ are
distinct and distinct from x D Q2.l/. Additionally, we can assume that lnjŒ�n;n� D

l jŒ�n;n� (viewed as admissible paths in �0). As � is totally disconnected, for any
m, there is i.m/ such that xn lie in separate components of Fi for n � m and
i � i.m/. Also, since l … L0, there is M such that

¹l 0 2 L0 j l 0jŒ�M;M � D l jŒ�M;M �º D ;:

We now apply Lemma 3.1 to view the leaves ln as bi-in�nite admissible leaf-paths
in the suspensions Si .

For a given m the leaves ln, n � m, de�ne distinct admissible paths lmjŒ�M IM �

in �i.m/ each of length 2M . As the action of FN on T is free there exists j.M/

such that for i � j.M/ the size of any reduced loop in �i is strictly bigger than
2M . Recall that there are at most 2N � 2 vertices of valence strictly bigger than
two in �i . �us for m large enough, for any i bigger than i.m/ and j.M/, there
exists n � m such that the admissible reduced path lnjŒ�M IM � in �i does not cross
any vertex of valence strictly greater than two.

Note that no leaf of L0 could cross any edge in the image of lnjŒ�M;M � in �i

(else it crosses every such edge); thus every leaf of L0 is contained the subgraph
G0 WD .�i n Im.lnjŒ�M;M �/. By Lemma 3.5, we have that G0 corresponds to a
proper free factor H � FN and every leaf of L0 is carried by H .

We now have our �rst main result.

Proposition 3.7. Let T 2 cvN , and assume that T is free and indecomposable
and of Levitt type. �e regular sublamination Lr .T / � L.T / is minimal.

Proof. According to Lemma 3.6, if there happened to be a proper sublamination
L0 ¨ Lr .T /, then every leaf of L0 would be carried by a proper free factor H of
FN . �is is impossible by Proposition 2.13.
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4. Splitting

In this section we de�ne an inductive procedure that allows us to study the dual
lamination of a free, surface type tree. To de�ne this procedure, which is a gener-
alization of the classical Rauzy–Veech induction, we need to �nd “good” singu-
larities in systems of isometries associated to trees of surface type. Toward that
end we recall some results regarding indices of trees.

4.1. Q-index and geometric index. Let T 2 cvN have dense orbits, and let

Q W @FN �! yT D xT [ @T

be the map de�ned in Section 2.5. For x 2 xT , let Stab.x/ � FN denote the
stabilizer of x. It was shown in [15] that there are �nitely many orbits of points
in T with non-trivial stabilizer and that Stab.x/ is �nitely generated. Note that
for x 2 yT n T , Stab.x/ is always trivial. From the de�nition of Q, one sees that
@Stab.x/ � Q�1.x/; put

Q�1
r .x/ WD Q�1.x/ n @Stab.x/:

Evidently, Stab.x/ acts on Q�1.x/, leaving invariant Q�1
r .x/. For x 2 yT , the

Q-index of x is

indQ.x/ WD jQ�1
r .x/=Stab.x/j C 2Rank.Stab.x// � 2

�e Q-index is constant on FN -orbits in T , and the Q-index of T is

indQ.T / WD
X

Œx�2 yT =FN

max¹0; indQ.x/º

As Q is injective on Q�1.@T /, only points of xT contribute to the Q-index of
T . �e following is established in [8]:

�eorem 4.1 ([8, �eorem 5.3]). Let T 2 cvN have dense orbits. �en

indQ.T / � 2N � 2:

Moreover, T is surface type if and only if indQ.T / D 2N � 2.



Indecomposable FN -trees and minimal laminations 585

Let T 2 cvN have dense orbits, and let x 2 T . �en Stab.x/ acts on �0.T n¹xº/.
Following [15], one de�nes the geometric index of x to be

indgeom.x/ WD j�0.T n ¹xº/=Stab.x/j C 2Rank.Stab.x// � 2

�e geometric index is constant on FN -orbits in T , and one de�nes the geo-
metric index of T to be

indgeom.T / WD
X

Œx�2T=FN

indgeom.x/

We have the following:

�eorem 4.2 ([15]). Let T 2 cvN . �en

indgeom.T / � 2N � 2:

Moreover, T is geometric if and only if indgeom.T / D 2N � 2.

4.2. Finding splitting points

Convention 4.3. If T 2 cvN is of surface type and if B is a basis for FN , we let
S D .KB ; B/ denote the associated system of isometries. In the sequel, we assume
that that any system of isometries S D .F; A/ associated to a surface type action
is obtained from some S D .KB ; B/ by running the Rips Machine until it halts.

A point x is extremal in a tree K if it is not contained in the interior of an arc
contained in K. In this section we are interested in points which are extremal in
some bases of a system of isometries but which are non-extremal in the underlying
forest.

Let S D .F; A/ be a system of isometries. A partial isometry a 2 A˙1 is
de�ned in direction d at a point x 2 F if d is a direction in dom.a/: x 2 dom.a/

and d \ dom.a/ ¤ ;.

Proposition 4.4. [8, Proposition 4.3] Let T 2 cvN be a tree with dense orbits of
surface type and S D .F; A/ be a system of isometries associated to T . For each
direction d at a point x in F there are exactly two partial isometries a; b 2 A˙1

de�ned in d .

In the surface type case, we can locally compare the geometric and Q-indices.
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Lemma 4.5. Let T 2 cvN be free with dense orbits of surface type, and let
S D .F; A/ be a system of isometries associated to T . Let x 2 F lie in the
intersection of at least three distinct bases. If every point of the S -orbit of x is
non-extremal in all bases that contain it, then

indQ.x/ � indgeom.x/:

�e free hypothesis is unnecessary; see the Appendix.

Proof. Let �x be the (in�nite) graph with vertices V.�x/ the S -orbit of x and
with an edge labeled by a 2 A˙1 between each pair of vertices x:u and x:ua with
u 2 FN a partial isometry de�ned at x. As T is free, the graph �x is a tree and
from Proposition 2.7, its space of ends can be identi�ed with Q�1.x/ � @FN .
From �eorem 4.1, �x has �nitely many ends.

Let �d
x be the (in�nite) graph with vertices the directions in F at points in the

S -orbit of x and with an edge labeled by a 2 A˙1 between each pair of vertices
d and d:a (in particular a is de�ned in d ). �e number of connected components
in �d

x is indgeom.x/ C 2. From �eorem 4.2, �d
x has �nitely many connected

components.
By Proposition 4.4, �d

x is a disjoint union of bi-in�nite lines. By our hypothesis
on x, for each edge labeled by a from x:u to x:ua in �x there are at least two edges
labeled by a in �d

x from d1 to d1:a and from d2 to d2:a where d1; d2 2 V.�d
x / are

directions at x:u.
By the previous paragraph, each end of �x is reached by at least two bi-in�nite

lines in �d
x and a bi-in�nite line has two ends, thus the number of lines in �d

x is
bounded below by the number of ends in �x :

indQ.x/ � indgeom.x/:

De�nition 4.6. A splitting point in a system of isometries S D .F; A/ is a point
x in the connected component Kx in F such that

(S1) x is not extremal in Kx;

(S2) there exists a partial isometry a0 2 A˙1 de�ned at x, such that x is extremal
in the base dom.a0/, and such that dom.a0/ ¤ ¹xº. We denote by dx the
unique direction at x which meets dom.a0/. We call dx the splitting direction

(S3) �ere exists exactly one other partial isometry a1 2 A˙1 n ¹a0º de�ned at x

and such that dom.a1/ meets dx .

(S4) �e point x is not extremal in dom.a1/.
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Condition (S3) is guaranteed by our Convention and Proposition 4.4, while
Condition (S4) follows from Conditions (S1) and (S3). Lemma 4.5 ensures that
that splitting points exists.

Proposition 4.7. Let T 2 cvN be free, indecomposable, and of surface type. Let
S D .F; A/ be a system of isometries dual to T . �ere exists a splitting point x

in S .

Proof. First note that the domain of every element of A˙ necessarily is non-
degenerate, as otherwise, the images in the dual tree of lifts of the complement of
the corresponding degenerate band would be a transverse family whose elements
are stabilized by proper factors of FN . �e main point is to �nd a point satisfying
conditions (S1) and (S2).

If there were no points satisfying conditions (S1) and (S2) then we can use
Lemma 4.5 to get

indgeom.T / D
X

Œx�2T=FN

indgeom.x/ �
X

Œx�2T=FN

indQ.x/ D indQ.T /:

As T is of surface type, from �eorem 4.1, indQ.T / D 2N �2 and by �eorem 4.2
we get that T is geometric. By de�nition of geometric trees the forest F has �nitely
many extremal points and as conditions (S1) and (S2) fail, partial isometries send
extremal points to extremal points, and the action is not free, a contradiction.

�us, there exists a point x in F and a partial isometry a0 2 A˙1 satisfying
conditions (S1) and (S2). As T is of surface type, according to Proposition 4.4
condition (S3) is satis�ed. If condition (S4) does not hold then x locally separates
the suspension S of S . In this case there is a proper free factor F 0 of FN that
carries every leaf of Lr .S/, contradicting Proposition 2.13.

�e argument at the end of the second paragraph of the proof uses freeness;
here is how to argue for general actions with dense orbits. If T has dense orbits,
is geometric, and is of surface type, then S contains a minimal component, and
all minimal components can be transformed by the Rips Machine into surfaces
carrying arational measured foliations. In this case, the existence of a splitting
point is a straightforward consequence of the surface theory; see [1, 5]. Since we
will use it later, we record the following observation made in the above proof.

Corollary 4.8. Let S D .F; A/ be a surface type system of isometries. If Con-
ditions (S1)–(S4) do not hold for any x, then every leaf of Lr .S/ is carried by a
proper free factor of FN .
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4.3. Splitting. Let S D .F; A/ be a system of isometries, and let � be its asso-
ciated graph. Assume that x is a splitting point for S . We assume no element of
A has degenerate domain (this is satis�ed in all cases of interest), and we use the
notation of De�nition 4.6.

We split the connected component Kx of x into two new compact R-trees:
K 0 D dx [ ¹xº and K 00 D Kx n dx . We denote by F 0 the �nite forest obtained by
replacing Kx by two disjoint compact R-trees K 0 and K 00 (in particular there are
two copies of x in F 0). De�ne

A0 D ¹a 2 A j x 62 dom.a/ [ dom.a�1/º:

Let a0; a1 2 A˙ be as in the De�nition 4.6, so a0 ¤ a1, and a1 is the unique
element of A˙ n¹a0º whose domain meets dx and contains x. Note that there may
be other elements of A˙ whose domains contain x; any such element, as well
as the element a0, is rede�ned in the obvious way to have its domain contained
in K 00. �e domain of any other element of A n ¹a1º is naturally identi�ed with
a subset of either K 0 or K 00, and these elements are de�ned in the obvious way
on F 0. Finally, the domain of a1 is split apart at the point x, and a1 gives rise to
two partial isometries, a0

1 and a00
1 , de�ned the obvious ways on domains contained

in K 0 and K 00, respectively. Use S 0 D .F 0; A0/ for the new system of isometries;
we say that S 0 is obtained from S by splitting at x in the direction dx .

�e suspension S
0 of S 0 can be “zipped-up” to recover the suspension S

of S : the map z W S0 ! S which identi�es the leaves ¹.x; t / j t 2 Œ0I 1�º in the
band K 0 � Œ0I 1� with ¹.x; t / j t 2 Œ0I 1�º in the band K 00 � Œ0; 1� is a homotopy
equivalence.

Lemma 4.9. A regular bi-in�nite admissible leaf l in S can be lifted by z to a
regular bi-in�nite admissible leaf in S

0.

Proof. �ere exists a sequence ln of bi-in�nite admissible leaves in S converging
to l such that the xn D Q2.ln/ are distinct and distinct from x. We can assume
that for each n the �nite admissible leaf path lnjŒ�n;n� does not cross x. From the
de�nition of splitting, lnjŒ�n;n� can be lifted to a �nite admissible leaf path n in
S

0. �e paths n converges to a bi-in�nite admissible leaf path l 0 in S
0 which is a

lift of l .

We can now iteratively split our system of isometries dual to a tree of surface
type to get the analogue of Lemma 3.5. �ough there might be more than one
splitting point, there are at most �nitely many – each splitting point is the inter-
section of domains of three distinct partial isometries, and such an intersection
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contains at most one point. In order to have a canonical procedure, we should
include algorithm for selecting which splits to perform; the natural choice would
be to split at splitting points and splitting directions “simultaneously.” �is is not
quite well-de�ned, but it is well-de�ned in all cases we consider here. Indeed, it
is evident from the de�nition of splitting that the only way that two splits applied
to S do not commute is if performing one split renders the other split unde�ned
(c.f a saddle connection on a surface).

More precisely, given splitting points and splitting directions x; x0 and dx ; dx0

for S with associated partial isometries a0; a0
0; a1; a0

1 as in De�nition 4.6, the only
way that the two splits do not commute is if xa1 D x0 and dxa1 \ dx0 is non-
degenerate. In this case after applying the x; dx-split to S to obtain S 0 D .F 0; A0/,
we have that x0 locally separates a component of F 0, hence every regular leaf S is
carried by a proper free factor of FN . It follows that if some leaf of the regular
lamination of S is not carried by any proper free factor of FN , then all splits
de�ned on S commute, and there is a well-de�ned system of isometries S 0 got
by splitting at all splitting points in all splitting directions. Our convention in the
sequel is that all possible splits are performed.

Lemma 4.10. Let T 2 cvN be free with dense orbits, and suppose that T is of
surface type. Let S0 denote a system of isometries associated to T . Denote by Si

the output of splitting Si�1, and let �i be the graph associated to Si .

(i) �i has no vertices of valence 0 or 1, and

(ii) the maps �i W �i ! �i�1 are homotopy equivalences.

4.4. Surface type actions. We now establish analogues of Lemma 3.6 and
Proposition 3.7 for actions of surface type.

Lemma 4.11. Let T 2 cvN be free and mixing, and suppose that T is of surface
type. If L0 ¨ Lr.T / is a proper sublamination, then every leaf of L0 is carried
by a proper free factor of FN .

We assume that the action is mixing only for simplicity. Again, the hypothesis
that the action is free is not necessary; see the Appendix.

Proof. Let S D .K; A/ be a system of isometries associated to T . By de�nition
of surface type after �nitely many steps the Rips Machine starting on S halts on a
surface type system of isometries S0. According to Proposition 4.7, Lemma 4.8,
and Corollary 4.10, either we can then perform splittings on S0, or else every leaf
of Lr.T / is carried by a proper free factor of FN . Let Si D .Fi ; Ai/ denote the
result of the i th iteration of splitting applied to S0.
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By Lemma 2.10, directions are arc dense in T , and so by statement (i) of Propo-
sition 2.7, directions are arc dense in Fi under the action of the pseudogroup
Si . In particular if dx is the �rst splitting direction, for any non-degenerate arc
Œy; y0� � F , there is a �nite admissible path  in the graph �0 associated to S0

such that x:0 2 Œy; y0� and dx :0 meets Œy; y0�. For all i � i.y; y0/ D j j, the
images of y and y0 in Fi lie in di�erent components of Fi .

Using Lemma 4.9 and Proposition 4.10, we may now conclude exactly as in
the proof of Lemma 3.6.

We have:

Proposition 4.12. Let T 2 cvN , and assume that T is free, indecomposable and
of surface type. �e regular sublamination Lr.T / � L.T / is minimal.

Proof. According to Lemma 4.11, if there happened to be a proper sublamination
L0 ¨ Lr .T /, then every leaf of L0 would be carried by a proper free factor H �

FN . �is is impossible by Proposition 2.13.

5. Diagonal leaves

Recall from the introduction that a lamination L is minimal up to diagonal leaves
if L contains a unique minimal sublamination L0, such that L n L0 consists of
�nitely many FN -orbits of leaves that are diagonal over L0.

In this section we use both the Rips Machine and the splitting induction to
reach our main result.

5.1. Decomposable trees

Lemma 5.1. Let T 2 cvN be free with dense orbits. If L.T / is minimal up to
diagonal leaves, then T is indecomposable.

Proof. We argue the contrapositive. Let T 2 cvN have dense orbits, and suppose
that T is not indecomposable. Following Proposition 2.12, there exists a non-
degenerate transverse family ¹gT0 j g 2 FN º, where T0 is a closed non-degenerate
subtree of T . �e stabilizer H D Stab.T0/ is a proper free factor of FN and acts
on T0 with dense orbits. �e dual lamination LH .T0/ � @2H of T0 is non-empty,
and LH .T0/ is diagonally closed. Recall that H is quasi-convex in FN and thus
there is an embedding @2H � @2FN . Moreover, as H is a free factor we have

g@H \ @H ¤ ; for all g 2 FN () g 2 H:
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�e lamination generated by L.T0/, L0 D FN :L.T0/, is a sublamination of L.T /

closed by diagonal leaves.
Assume �rst that there exists g 2 FN n H such that g xT0 \ xT0 ¤ ;, and let

x; y 2 xT0 such that x D gy. By Proposition 2.4 the map Q W @H ! yT0 is onto,
thus there exist, X; Y 2 @H such that Q.X/ D x and Q.Y / D y. By de�nition
of the dual lamination, .X; gY / is a leaf of L.T /; by construction .X; gY / is not
diagonal over L0.

We now assume, that, for all g 2 FN n H , g xT0 \ T0 D ;. �e action of
FN on T has dense orbits, thus there exists a sequence gn 2 FN n H such that
d.T0; gnT0/ < 1

n
. Fixing a basis B D ¹a1; : : : arº of H which is completed to a

basis A D ¹a1; : : : ; aN º of FN , we can write gn D hn � g0
n in reduced form with

hn 2 H and g0
n starting with a letter in A n B . Of course d.T0; g0

nT0/ < 1
n
. �e

action of H on T0 has dense orbits thus for any point y 2 T0 there exist h0
n 2 H

such that d.T0; g0
nh0

ny/ < 1
n
. By our assumption the sequence jg0

nh0
nj goes to

in�nity and there is a subsequence converging to Y 2 @FN . �e �rst letter of Y

written as an in�nite reduced word is in AnB thus Y 62 @H . Now we use the weaker
observers’ topology so that yT obs is compact and, we extract again a subsequence to
have g0

nh0
ny converging to a point x 2 yT obs

0 . We get that Q.Y / D x, but as x 2 OT0

there exists X 2 @H such that Q.X/ D x. By de�nition of the dual lamination,
.X; Y / is a leaf in L.T /; by construction .X; Y / is not diagonal over L0.

Considering Propositions 3.7 and 4.12 and Lemma 5.1, to establish �eorem A,
we need understand diagonal leaves in L.T / for T free and indecomposable.

5.2. Train tracks and the main result. Let T be a free, indecomposable tree in
cvN . Let A be a basis for FN , and let S D .KA; A/ be the associated system of
isometries. By Proposition 3.4, T is either surface or Levitt type. If T is surface,
we run the Rips Machine on S until it halts. In either case, we get a system of
isometries S0 D .F0; A0/ (which is equal to S if T is Levitt type), and we denote
by Si D .Fi ; Ai/ the result of running either the Rips Machine or splitting on S0

for i steps. �ere are homotopy equivalences Si ! �i and �i W �i ! �i�1.
A turn in �i is a pair ¹e; e0º of directed edges with the same initial vertex.

We give the graph �i a train track structure by declaring a turn legal if it is crossed
by a regular leaf, i.e. a regular leaf contains the subpath Nee0. Train track structures
on graphs were introduced in [4].

Remark 5.2. From Propositions 3.5 and 4.9, our inductive procedure (either the
Rips Machine or splitting) applied to Si has the e�ect of “splitting” an illegal turn
in �i : in other words, the graph morphisms �i only fold at illegal turns.
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For a vertex v of �i , let Leg.v/ denote the set of legal turns in �i at v, and
let I.v/ denote the set of edges of �i with initial vertex v. Following [4] again,
we de�ne the Whitehead graph, Wh.v; �i/, associated to the vertex v of �i . �e
vertex set of Wh.v; �i/ is I.v/ and there is an edge from e to e0 if the turn ¹e; e0º

is legal.

Lemma 5.3. For every v 2 V.�i /, the Whitehead graph Wh.v; �i/ is connected.

Proof. Toward contradiction suppose that there is i and v 2 V.�i / such that
Wh.v; �i/ is not connected. Following the proof of [4, Proposition 4.5] this proves
that every regular leaf of L.T / is carried by a proper free factor of FN , contra-
dicting Proposition 2.13.

Lemma 5.4. For any x 2 �A, there exists a regular leaf l such that Q2.l/ D x.
In particular, if l 2 L.T / is such that .Q2/�1.Q2.l// D ¹lº then l is regular.

Proof. Let x 2 �A. For each i let vi be the connected component of Fi contain-
ing x. By Lemma 5.3, there is a bi-in�nite regular admissible leaf-path li passing
through vi . Up to passing to a subsequence, li converge to a bi-in�nite regular
admissible leaf path l . By the continuity of Q2 and arguing as in the proof of
Lemma 4.11 and 3.6 we get that Q2.l/ D x.

Proposition 5.5. Let T 2 cvN be free and indecomposable. Every leaf in
L.T / n Lr .T / is diagonal over Lr.T /, and there are �nitely many FN -orbits of
such leaves.

Proof. Let l be a leaf in L.T /, and let Q2.l/ D x. If .Q2/�1.x/ D ¹lº, then by
Lemma 5.4, l is regular. Assume now that j.Q2/�1.x/j > 1. From [8], there are
�nitely many orbits of such points x in xT and as the action is free, .Q2/�1.x/ is
�nite and there are �nitely many orbits of such leaves l . By Lemma 5.4, there are
regular leaves in .Q2/�1.x/, and we now proceed to prove that l is in the diagonal
closure of the regular leaves in .Q2/�1.x/.

Let A be a basis of FN and let S D .KA; A/ D .F0; A0/ be the system of isome-
tries associated to T , and let Si D .Fi ; Ai/ denote the output of i iterations of the
appropriate inductive procedure (either the Rips Machine or splitting, depending
on the type of T ). Let �i denote the graph associated to Si .

Let �x be the (in�nite graph) with vertex set the orbit of x under the pseudo-
group S (equivalently it is the intersection of the orbit of x in xT with F0 D KA),
and such that there is an edge labeled by a 2 A˙1 between x:u and x:ua, where
u 2 FN is a partial isometry de�ned at x.
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Note that .Q2/�1.x/ D @2�x, which is �nite, and so l D .X; uY /, where
.X; X 0/; .Y; Y 0/ 2 Q2.l/ are regular leaves. �e turn between X and u, the turn
between Y and u, and the turns taken by u may be illegal; to �nish we need to
see that l can be �nitely subdivided into legal paths. Run the induction for i steps
to get that the legal structure on �i has the maximum number of illegal turns.
It follows that any turn crossed by l that is not crossed by a regular leaf is illegal
in �i and that any legal path in �i is a subpath of a regular leaf.

A turn ¹e; e0º at the vertex y D x:u in �x is legal if there exists a regular bi-
in�nite leaf-path l 0 2 .Q2/�1.y/ such that l 0.Œ0; 1�/ D e and l 0.Œ0; �1�/ D e0.
As we may have performed splittings, the point y may lie in more than one con-
nected component of Fi . �e Whitehead graph Wh.y; �x/ at y is the superposition
of the Whitehead graphs Wh.v; �i/ for all components v of Fi which contain a
copy of y. But, Lemma 5.3 gives that Wh.y; �x/ is connected. By the previous
paragraph, it follows that l is in the diagonal closure of the set of regular leaves in
.Q2/�1.x/.

Combining Propositions 3.7, 4.12, and 5.5 and Lemmata 5.1 and 2.9, we get
our main result.

�eorem A. Let T be an R-tree with a free, minimal action of FN by isometries
with dense orbits. �e tree T is indecomposable if and only if L.T / is minimal up
to diagonal leaves. In this case the unique minimal sublamination of L.T / is the
regular sublamination, which is equal to derived sublamination of L.T /.

6. Appendix: non-free actions

We now explain how to handle non-free actions, and we prove a result that we
expect to have nice applications. Let T 2 cvN have dense orbits, and let x 2 T

have non-trivial stabilizer H D Stab.x/. By De�nition 2.5, the dual lamination
L.T / contains @2H . It follows from [18], see also [15], that H is �nitely gener-
ated, so by the Marshall Hall �eorem,

S
g2FN

@2H g is a sublamination of L.T /.
By [15] there are �nitely many orbits of points in T with non-trivial stabilizer (arc
stabilizers in T are trivial), and so the collection Lp.T / � L.T / of all leaves
carried by a point stabilizer in T is a sublamination of L.T /; we all Lp.T / the
peripheral sublamination of L.T /.
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Put
�.T / WD L.T / n Lp.T /;

and set
ƒ.T / WD .�.T //0I

so ƒ.T / is an FN -invariant, �ip-invariant subspace of @2FN . Notice that if T is
free and indecomposable, then ƒ.T / D L.T /0. One should think of ƒ.T / as the
“dynamical part” of L.T /. In contrast to the case of a measured lamination on
a surface, ƒ.T / need not by closed (it is diagonally closed), and so ƒ.T / need
not be a lamination. Nonetheless, our techniques are su�ciently robust to study
ƒ.T /, so we record the following, which will be useful in future applications.

�eorem 6.1. Let T be a very small tree with dense orbits. If ƒ.T / contains
a leaf l that is not carried by a proper free factor of FN , then the subspace
ƒtop.T / � ƒ.T / consisting of all leaves not carried by a proper free factor con-
tains no isolated points and is dynamically minimal: if l; l 0 2 ƒtop.T /, then the
smallest lamination containing l coincides with the smallest lamination contain-
ing l 0.

Note that if T is indecomposable, then [28] ensures that ƒtop.T / is non-empty,
so �eorem 6.1 generalizes �eorem A. �e details of the following proof are left
as an exercise; we provide a complete sketch.

Proof. As the rank of stabilizers are taken in account in the de�nition of the geo-
metric and Q-indices, Lemma 4.5 remains true if we remove the free action hy-
pothesis. From this Lemma we can deduce that Proposition 4.7 is also true without
that hypothesis: the argument on extremal points in the geometric case can be re-
placed by an argument on the direction at extremal points and the fact that very
small actions with dense orbits have trivial arc stabilizers.

In the proofs of Lemma 3.6 and 4.11 we used that the action is free to infer that
the graphs �i do not have short loops for i >> 0. In fact we only need that there
are �nitely many short loops, which is true as the geometric index is bounded
above by 2N � 2.
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